A Integral de Riemann

As noções de derivada e integral constituem o par de conceitos mais importantes da Análise. Enquanto a derivada corresponde à noção geométrica de tangente e à idéia física de velocidade, a integral está associada à noção geométrica de área e à idéia física de trabalho. É um fato notável e de suma importância que essas duas noções, aparentemente tão diversas, estejam intimamente ligadas.

1 Revisão sobre sup e inf

Demonstraremos aqui alguns resultados elementares sobre supremos e ínfimos de conjuntos de números reais, para uso imediato.

Dada uma função limitada $f: X \to \mathbb{R}$, lembremos que $\sup f = \sup f(X) = \sup \{f(x); x \in X\}$ e $\inf f = \inf f(X) = \inf \{f(x); x \in X\}$. Todos os conjuntos a seguir mencionados são não-vazios.

Lema 1. Sejam $A, B \subset \mathbb{R}$ tais que, para todo $x \in A$ e todo $y \in B$ se tenha $x \leq y$. Então $\sup A \leq \inf B$. A fim de ser $\sup A = \inf B$ é necessário e suficiente que, para todo $\varepsilon > 0$ dado, existam $x \in A$ e $y \in B$ com $y - x < \varepsilon$.

Demonstração: Todo $y \in B$ é cota superior de A, logo sup $A \leq y$. 'Isto mostra que sup A é cota inferior de B, portanto sup $A \leq \inf B$. Se valer a desigualdade estrita sup $A < \inf B$ então $\varepsilon = \inf B - \sup A > 0$ e $y - x \geq \varepsilon$ para quaisquer $x \in A$, $y \in B$. Reciprocamente, se sup $A = \sum_{i=1}^n a_i = 1$

infBentão, para todo $\varepsilon>0$ dado, sup $A-\varepsilon/2$ não é cota superior de Ae inf $B+\varepsilon/2$ não é cota inferior de B,logo existem $x\in A$ e $y\in B$ tais que sup $A-\varepsilon/2 < x \leq \sup A = \inf B \leq y < \inf B + \varepsilon/2$. Segue-se que $y - x < \varepsilon$.

Lema 2. Sejam $A,B\subset\mathbb{R}$ conjuntos limitados e $c\in\mathbb{R}$. São também $limitados\ os\ conjuntos\ A+B=\{x+y;x\in A,y\in B\}\ e\ c\cdot A=\{cx;x\in A,y\in B\}$ A}. Além disso, tem-se $\sup(A+B) = \sup A + \sup B$, $\inf(A+B) = \sup A + \sup B$ $\inf A + \inf B \ e \sup(c \cdot A) = c \cdot \sup A, \ \inf(c \cdot A) = c \cdot \inf A, \ caso \ seja \ c \ge 0.$ Se c < 0 então $\sup(c \cdot A) = c \cdot \inf A$ e $\inf(c \cdot A) = c \cdot \sup A$.

Demonstração: Pondo $a = \sup A$ e $b = \sup B$, para todo $x \in A$ e todo $y \in B$ tem-se $x \leq a, \, y \leq b,$ logo $x+y \leq a+b.$ Portanto, a+bé cota superior de $A+B.\,$ Além disso, dado $\varepsilon>0,$ existem $x\in A$ e $y \in B$ tais que $a - \varepsilon/2 < x$ e $b - \varepsilon/2 < y$, donde $a + b - \varepsilon < x + y$. Isto mostra que a+b é a menor cota superior de A+B, ou seja, que $\sup(A+B)=\sup A+\sup B.$ A igualdade $\sup(c\cdot A)=c\cdot \sup A$ é óbvia se c=0. Se c>0, dado qualquer $x\in A$ tem-se $x\leq a$, logo $cx\leq ca$. Portanto ca é cota superior do conjunto $c \cdot A$. Além disso, dado qualquer número d menor do que ca, temos d/c < a, logo existe $x \in A$ tal que d/c < x. Segue-se que d < cx. Isto mostra que $c \cdot a$ é a menor cota superior de $c \cdot A$, ou seja, que $\sup(c \cdot A) = c \cdot \sup A$. Os casos restantes enunciados no lema são provados de modo análogo.

Corolário. Sejam $f,g\colon X\to \mathbb{R}$ funções limitadas. Para todo $c\in \mathbb{R}$ são limitadas as funções $f+g,\ cf{:}\ X\to\mathbb{R}.$ Tem-se além disso, $\sup(f+g) \le \sup f + \sup g$, $\inf(f+g) \ge \inf f + \inf g$, $\sup(cf) = c \cdot \sup f$, $e\inf(cf)=c\inf f$ quando $c\geq 0$. Caso c<0, $tem\text{-se}\sup(cf)=c\inf f$ $e \inf(cf) = c \cdot \sup f$.

Com efeito, sejam $A = f(X), B = g(X), C = (f + g)(X) = \{f(x) + g(X) \}$ $g(x); x \in X$. Evidentemente $C \subset A + B$, logo $\sup(f + g) = \sup C \le A + B$ $\sup(A+B) = \sup A + \sup B = \sup f + \sup g$. Além disso, $\sup(cf) =$ $\sup\{c\cdot f(x);x\in X\}=\sup(cA)=c\cdot \sup A,$ quando $c\geq 0.$ Os demais casos enunciados no corolário se provam de modo análogo.

Observação. Pode-se ter efetivamente $\sup(f+g)<\sup f+\sup g$ e $\inf(f+g) > \inf f + \inf g$. Basta tomar $f,g \colon [0,1] \to \mathbb{R}, \ f(x) = x$ e g(x) = -x.

Lema 3. Dada $f: X \to \mathbb{R}$ limitada, sejam $m = \inf f$, $M = \sup f e$ $\omega = M - m$. Então $\omega = \sup\{|f(x) - f(y)|; x, y \in X\}$.

Demonstração: Dados $x, y \in X$ arbitrários, para fixar idéias seja $f(x) \geq f(y)$. Então $m \leq f(y) \leq f(x) \leq M$, donde $|f(x) - f(y)| \leq M$ $M-m=\omega$. Por outro lado, para todo $\varepsilon>0$ dado podemos achar $x, y \in X$ tais que $f(x) > M - \varepsilon/2$ e $f(y) < m + \varepsilon/2$. Então

$$|f(x) - f(y)| \ge f(x) - f(y) > M - m - \varepsilon = \omega - \varepsilon.$$

Assim, ω é a menor das cotas superiores do conjunto $\{|f(x)-f(y)|; x,y \in$ X}, o que prova o lema.

Lema 4. Sejam $A' \subset A$ e $B' \subset B$ conjuntos limitados de números reais. Se, para cada $a \in A$ e cada $b \in B$, existem $a' \in A'$ e $b' \in B'$ tais que $a \le a' \ e \ b' \le b$, então $\sup A' = \sup A \ e \inf B' = \inf B$.

Demonstração: Evidentemente, sup A é uma cota superior de A'. Além disso, se $c < \sup A$ existe $a \in A$ com c < a, logo existe $a' \in A'$ com $c < a \le a'$, portanto c não é cota superior de A'. Assim, sup Aé a menor cota superior de A', isto é, sup $A = \sup A'$. Um raciocínio análogo demonstra o resultado para infB e infB'.

Integral de Riemann

Uma partição do intervalo [a,b] é um subconjunto finito de pontos P= $\{t_0,t_1,\ldots,t_n\}\subset [a,b]$ tal que $a\in P$ e $b\in P$. A notação será sempre usada de modo que $a = t_0 < t_1 < \cdots < t_n = b$. O intervalo $[t_{i-1}, t_i]$, de comprimento $t_i - t_{i-1}$, será chamado o *i-ésimo intervalo* da particão P. Evidentemente, $\sum_{i=1}^{n} (t_i - t_{i-1}) = b - a$.

Sejam P e Q partições do intervalo [a,b]. Diz-se que Q refina Pquando $P \subset Q$. A maneira mais simples de refinar uma partição é acrescentar-lhe um único ponto.

Dada uma função limitada $f:[a,b]\to\mathbb{R}$, usaremos as notações

$$m = \inf\{f(x); x \in [a, b]\}\$$
 e $M = \sup\{f(x); x \in [a, b]\}.$

Em particular, temos $m \leq f(x) \leq M$ para todo $x \in [a,b]$. Se P = $\{t_0, t_1, \dots, t_n\}$ é uma partição de [a, b], as notações $m_i = \inf\{f(x); t_{i-1} \le a_i\}$ $x \leq t_i$, $M_i = \sup\{f(x); t_{i-1} \leq x \leq t_i\}$ e $\omega_i = M_i - m_i$ indicarão o ínfimo, o supremo e a oscilação de f no i-ésimo intervalo de P. Quando f é contínua, m_i e M_i são valores efetivamente assumidos por f em $[t_{i-1},t_i]$. Em particular, neste caso existem $x_i,y_i\in[t_{i-1},t_i]$ tais que $\omega_i = |f(y_i) - f(x_i)|.$

A soma inferior de f relativamente à partição P é o número

$$s(f;P) = m_1(t_1 - t_0) + \dots + m_n(t_n - t_{n-1}) = \sum_{i=1}^n m_i(t_i - t_{i-1}).$$

A soma superior de f relativamente à partição P é, por definição,

$$S(f; P) = M_1(t_1 - t_0) + \dots + M_n(t_n - t_{n-1}) = \sum_{i=1}^n M_i(t_i - t_{i-1}).$$

Evidentemente, $m(b-a) \le s(f;P) \le S(f;P) \le M(b-a)$ seja qual for a partição P. Além disso, $S(f;P) - s(f;P) = \sum_{i=1}^{n} \omega_i(t_i - t_{i-1})$.

Quando f estiver clara no contexto, pode-se escrever simplesmente s(P) e S(P) em vez de s(f; P) e S(f; P) respectivamente.

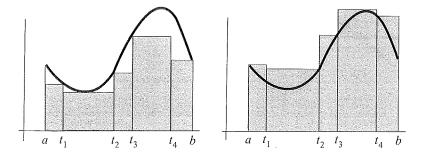


Figura 9: A soma inferior e a soma superior.

No caso em que $f(x) \geq 0$ para todo $x \in [a,b]$, os números s(f;P) e S(f;P) são valores aproximados, respectivamente por falta e por excesso, da área da região limitada pelo gráfico de f, pelo intervalo [a,b] do eixo das abscissas e pelas verticais levantadas nos pontos a e b desse eixo. Quando $f(x) \leq 0$ para todo $x \in [a,b]$, essas somas são valores aproximados de tal área, com o sinal trocado.

A integral inferior e a integral superior da função limitada $f:[a,b] \rightarrow \mathbb{R}$ são definidas, respectivamente, por

$$\int_{a}^{b} f(x) \, dx = \sup_{P} s(f; P), \quad \bar{\int}_{a}^{b} f(x) \, dx = \inf_{P} S(f; P),$$

o sup e o inf sendo tomados relativamente a todas as partições P do intervalo [a,b].

Teorema 1. Quando se refina uma partição, a soma inferior não diminui e a soma superior não aumenta. Ou seja: $P \subset Q \Rightarrow s(f;P) \leq s(f;Q) \in S(f;Q) \leq S(f;P)$.

Demonstração: Suponhamos inicialmente que a partição $Q = P \cup \{r\}$ resulte de P pelo acréscimo de um único ponto r, digamos com $t_{j-1} < r < t_j$. Sejam m' e m'' respectivamente os ínfimos de f nos intervalos $[t_{j-1},r]$ e $[r,t_j]$. Evidentemente, $m_j \leq m'$, $m_j \leq m''$ e $t_j - t_{j-1} = (t_j - r) + (r - t_{j-1})$. Portanto

$$s(f;Q) - s(f;P) = m''(t_j - r) + m'(r - t_{j-1}) - m_j(t_j - t_{j-1})$$

= $(m'' - m_j)(t_j - r) + (m' - m_j)(r - t_{j-1}) \ge 0.$

Para obter o resultado geral, onde Q resulta de P pelo acréscimo de k pontos, usa-se k vezes o que acabamos de provar. Analogamente, $P \subset Q \Rightarrow S(f;Q) \leq S(f;P)$.

Corolário 1. Para quaisquer partições P, Q do intervalo [a,b] e qualquer função limitada $f: [a,b] \to \mathbb{R}$ tem-se $s(f;P) \leq S(f;Q)$.

Com efeito, a partição $P\cup Q$ refina simultaneamente P e Q, logo $s(f;P)\leq s(f;P\cup Q)\leq S(f;P\cup Q)\leq S(f;Q)$.

Corolário 2. Dada $f: [a, b] \to \mathbb{R}$, se $m \le f(x) \le M$ para todo $x \in [a, b]$ então

$$m(b-a) \le \int_{\underline{a}}^{b} f(x) dx \le \int_{a}^{\overline{b}} f(x) dx \le M(b-a).$$

Com efeito, as desigualdades externas são óbvias e a do meio resulta do Corolário 1 e do Lema 1.

Corolário 3. Seja P_0 uma partição de [a,b]. Se considerarmos as somas s(f;P) e S(f;P) apenas relativas às partições P que refinam P_0 , obteremos os mesmos valores para $\int_a^b f(x) dx$ e $\int_a^b f(x) dx$.

Com efeito, basta combinar o Teorema 1 e o Lema 4.

Uma função limitada $f:[a,b]\to\mathbb{R}$ diz-se integrável quando sua integral inferior e sua integral superior são iguais. Esse valor comum chama-se a integral (de Riemann) de f e é indicado por $\int_a^b f(x) \, dx$.

No símbolo $\int_a^b f(x) dx$, x é o que se chama uma "variável muda", isto é, $\int_a^b f(x) dx = \int_a^b f(y) dy = \int_a^b f(t) dt$, etc.

Às vezes prefere-se a notação mais simples $\int_a^b f.$ A justificativa para a notação mais complicada será vista no Teorema 2, Capítulo 11.

Quando f é integrável, sua integral $\int_a^b f(x) \, dx$ é o número real cujas aproximações por falta são as somas inferiores s(f;P) e cujas aproximações por excesso são as somas superiores S(f;P). O Teorema 1 diz que essas aproximações melhoram quando se refina a partição ${\cal P}.$ Geometricamente, quando $f(x) \geq 0$ para todo $x \in [a,b],$ a existência de $\int_a^b f(x)\,dx$ significa que a região limitada pelo gráfico de f, pelo segmento [a,b] do eixo das abscissas e pelas verticais levantadas pelos pontos a e bé mensurável (isto é, possui área) e o valor da integral é, por definição, a área dessa região. No caso geral, tem-se a área externa $\bar{\int_a^b} f(x) \, dx$ e a área interna $\int_a^b f(x) dx$, que podem ser diferentes, como veremos agora.

Exemplo 1. Seja $f\colon [a,b]\to \mathbb{R}$ definida por f(x)=0 se x é racional e f(x)=1 quando xé irracional. Dada uma partição arbitrária $P,\,{\rm como}$ cada intervalo $[t_{i-1},t_i]$ contém números racionais e irracionais, temos $m_i=0$ e $M_i=1,$ logo s(f;P)=0e S(f;P)=b-a. Assim, fnão é integrável, pois $\int_a^b f(x) dx = 0$ e $\int_a^b f(x) dx = b - a$.

Exemplo 2. Seja $f : [a, b] \to \mathbb{R}$ constante, f(x) = c para todo $x \in [a, b]$. Então, seja qual for a partição P, temos $m_i=M_i=c$ em todos os intervalos, logo s(f;P) = S(f;P) = c(b-a). Assim f é integrável, com $\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx = c(b-a).$

Teorema 2. (Condição imediata de integrabilidade.) Seja f: $[a,b] \to \mathbb{R}$ limitada. As seguintes afirmações são equivalentes:

- (1) f é integrável.
- (2) Para todo $\varepsilon > 0$, existem partições P, Q de [a,b] tais que S(f;Q) $s(f; P) < \varepsilon$.
- (3) Para todo $\varepsilon > 0$, existe uma partição $P = \{t_0, \dots, t_n\}$ de [a, b] tal que $S(f;P) - s(f;P) = \sum_{i=1}^{n} \omega_i(t_i - t_{i-1}) < \varepsilon$.

Demonstração: Sejam A o conjunto das somas inferiores e B o conjunto das somas superiores de f. Pelo Corolário 1 do Teorema 1, tem-se $s \leq S$ para toda $s \in A$ e toda $S \in B$. Supondo (1), vale sup $A = \inf B$.

Logo, pelo Lema 1, podemos concluir que (1) \Rightarrow (2). Para provar que (2) \Rightarrow (3) basta observar que se $S(f;Q) - s(f;P) < \varepsilon$ então, como a partição $P_0 = P \cup Q$ refina ambas P e Q, segue-se do Teorema 1 que $s(f;P) \, \leq \, s(f;P_0) \, \leq \, S(f;P_0) \, \leq \, S(f;Q),$ donde se conclui que $S(f; P_0) - s(f; P_0) < \varepsilon$. Finalmente, (3) \Rightarrow (1) pelo Lema 1.

Exemplo 3. Seja $f \colon [a,b] \to \mathbb{R}$ definida por f(x) = c quando $a < x \le b$ e f(a) = A. Afirmamos que f é integrável, com $\int_a^b f(x) dx = c(b - a)$ a). Para fixar idéias, suponhamos c < A. Então, dada uma partição qualquer $P = \{t_0, t_1, \dots, t_n\}$ temos $m_1 = c, M_1 = A$ e $m_i = M_i = c$ para $1 < i \le n$. Portanto $S(f; P) - s(f; P) = (A - c)(t_1 - t_0)$. Dado arbitrariamente $\varepsilon > 0$, tomamos uma partição P com $t_1 - t_0 < \varepsilon/(A - c)$ e obtemos $S(f;P)-s(f;P)<\varepsilon.$ Logo f é integrável. Além disso, como s(f; P) = c(b - a) para toda partição P, temos

$$\int_{a}^{b} f(x) dx = c(b - a).$$

Mas, sendo f integrável, resulta que

Secão 3

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx = c(b - a).$$

Evidentemente, um resultado análogo vale quando f(x)=c para $x\in$ [a,b), ou quando f(x)=c para todo $x\in(a,b)$.

Propriedades da integral

Teorema 3. Seja a < c < b. A função limitada $f \colon [a,b] \to \mathbb{R}$ é in $tegr\'{a}vel\ se,\ e\ somente\ se,\ suas\ restriç\~{o}es\ f|[a,c]\ e\ f|[c,b]\ s\~{a}o\ integr\'{a}veis.$ No caso afirmativo, tem-se $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

 Demonstração: Sejam A e B respectivamente os conjuntos das somas inferiores de f|[a,c] e f|[c,b]. Vê-se facilmente que A+B é o conjunto das somas inferiores de f relativamente às partições de $\left[a,b\right]$ que contêm o ponto c. Pelo Corolário 3 do Teorema 1, ao calcular a integral inferior de f,basta considerar as partições desse tipo, pois elas são as que refinam $P_0 = \{a, c, b\}$. Pelo Lema 2,

$$\int_{a}^{b} f(x) \, dx = \sup(A+B) = \sup A + \sup B = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Analogamente se mostra que

$$\int_{a}^{\overline{b}} f(x)dx = \int_{a}^{\overline{c}} f(x)dx + \int_{\overline{c}}^{\overline{b}} f(x)dx.$$

Logo

$$\bar{\int}_a^b f - \int_a^b f = \left(\bar{\int}_a^c f - \int_a^c f\right) + \left(\bar{\int}_c^b f - \int_c^b f\right).$$

Como as duas parcelas dentro dos parênteses são ≥ 0 , sua soma é zero se, e somente se, elas são ambas nulas. Assim, f é integrável se, e somente se, suas restrições f[a,c] e f[c,b] o são. No caso afirmativo, vale a igualdade $\int_a^b f = \int_a^c f + \int_a^b f$.

Exemplo 4. Diz-se que $f:[a,b]\to\mathbb{R}$ é uma função-escada quando existem uma partição $P = \{t_0, \dots, t_n\}$ de [a, b] e números reais c_1, \dots, c_n tais que $f(x) = c_i$ quando $t_{i-1} < x < t_i$. (Note-se que nada se diz sobre os valores $f(t_i)$.) Segue-se do Teorema 3 e do Exemplo 3 que toda função escada é integrável e $\int_a^b f(x) dx = \sum_{i=1}^n c_i (t_i - t_{i-1}).$

Convenção. A igualdade $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_a^b f(x) dx$ faz sentido apenas quando a < c < b. A fim de torná-la verdadeira seiam quais forem $a,b,c\in\mathbb{R}$, faremos duas convenções, que serão adotadas doravante. Primeira: $\int_a^a f(x) dx = 0$. Segunda: $\int_a^b f(x) dx = -\int_b^a f(x) dx$. Aceitas estas convenções, vale para toda função integrável f a igualdade acima. Para verificá-la, há seis possibilidades a considerar: a < b < c. $a \le c \le b$, $b \le a \le c$, $b \le c \le a$, $c \le a \le b$ e $c \le b \le a$. Em cada caso, basta admitir a integrabilidade de f no intervalo maior.

Teorema 4. Sejam $f, g: [a, b] \to \mathbb{R}$ integráveis. Então:

(1) A soma f + q é integrável e

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

- (2) O produto $f \cdot g$ é integrável. Se $c \in \mathbb{R}$, $\int_a^b c \cdot f(x) dx = c \cdot \int_a^b f(x) dx$.
- (3) Se $0 < k \le |g(x)|$ para todo $x \in [a,b]$ então o quociente f/a é integrável.
- (4) Se $f(x) \leq g(x)$ para todo $x \in [a, b]$, então $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

(5) |f| é integrável $e \mid \int_a^b f(x) dx \mid < \int_a^b |f(x)| dx$.

Demonstração: Dada uma partição arbitrária P de [a, b], se indicarmos com m'_i , m''_i e m_i respectivamente os ínfimos de f, g e f + g no i-ésimo intervalo de P, teremos $m'_i + m''_i \leq m_i$, pelo Corolário do Lema 2, logo $s(f; P) + s(g; P) \leq s(f + g; P) \leq \int_a^b (f + g)$ para toda particão P. Se tomarmos duas partições P e Q teremos ainda

$$s(f; P) + s(g; Q) \le s(f; P \cup Q) + s(g; P \cup Q) \le \int_{\underline{a}}^{b} (f + g).$$

Por conseguinte.

$$\int_{\underline{a}}^{b} f + \int_{\underline{a}}^{b} g = \sup_{P} s(f; P) + \sup_{Q} s(g; Q)$$
$$= \sup_{P,Q} [s(f; P) + s(g; Q)] \le \int_{\underline{a}}^{b} (f + g).$$

Isto prova a primeira das desigualdades abaixo. A terceira se demonstra de modo análogo e a segundo é óbvia:

$$\int_{a}^{b} f + \int_{a}^{b} g \le \int_{a}^{b} (f+g) \le \int_{a}^{\bar{b}} (f+g) \le \int_{a}^{\bar{b}} f + \int_{a}^{\bar{b}} g.$$

Quando f e g são integráveis, as três desigualdades se reduzem a igualdades, o que prova (1).

(2) Seja K tal que $|f(x)| \le K$ e $|g(x)| \le K$ para todo $x \in [a, b]$. Dada uma partição P, sejam ω_i' , ω_i'' e ω_i respectivamente as oscilações de f, $g \in f \cdot g$ no i-ésimo intervalo $[t_{i-1}, t_i]$. Para quaisquer $x, y \in [t_{i-1}, t_i]$ temos:

$$|f(y) \cdot g(y) - f(x) \cdot g(x)| = |(f(y) - f(x))g(y) + f(x)(g(y) - g(x))|$$

$$\leq |f(y) - f(x)| |g(y)| + |f(x)| |g(y) - g(x)|$$

$$\leq K(\omega_i' + \omega_i'').$$

Daí $\sum \omega_i(t_i - t_{i-1}) \leq K \cdot \left[\sum \omega_i'(t_i - t_{i-1}) + \sum \omega_i''(t_i - t_{i-1})\right]$. A integrabilidade de $f \cdot g$ segue-se então da integrabilidade de f e g, pelo Teorema 2.

Quanto a cf, sua integrabilidade resulta do que acabamos de provar. Além disso, se $c \ge 0$, temos $s(cf;P) = c \cdot s(f;P)$ para toda partição P, donde, pelo Lema 2,

$$\int_{a}^{b} cf = \int_{a}^{b} cf = c \cdot \int_{a}^{b} f = c \cdot \int_{a}^{b} f.$$

Caso c < 0, temos $s(cf; P) = c \cdot S(f; P)$, logo $\int_a^b cf = \int_a^b cf = c \cdot \int_a^b f = c \cdot \int_a^b f$.

(3) Como $f/g = f \cdot (1/g)$, basta provar que 1/g é integrável se g é integrável e $0 < k \le |g(x)|$ para todo $x \in [a,b]$. Indiquemos com ω_i e ω_i' respectivamente as oscilações de g e 1/g no i-ésimo intervalo de uma partição P. Dado $\varepsilon > 0$, podemos tomar P de modo que $\sum \omega_i(t_i - t_{i-1}) < \varepsilon \cdot k^2$. Para quaisquer x, y no i-ésimo intervalo de P tem-se

$$\left| \frac{1}{g(y)} - \frac{1}{g(x)} \right| = \frac{|g(x) - g(y)|}{|g(y)g(x)|} \le \frac{\omega_i}{k^2},$$

portanto $\omega_i' \leq \omega_i/k^2$. Segue-se que $\sum \omega_i'(t_i-t_{i-1}) < \varepsilon$, logo 1/g é integrável.

(4) Se $f(x) \leq g(x)$ para todo $x \in [a,b]$ então $s(f;P) \leq s(g;P)$ e $S(f;P) \leq S(g;P)$ para toda partição P, donde $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$.

(5) A desigual dade evidente $||f(y)| - |f(x)|| \le |f(y) - f(x)|$ mostra que a oscilação de |f| em qual quer conjunto não supera a de f. Logo, f integrável $\Rightarrow |f|$ integrável. Além disso, como $-|f(x)| \le f(x) \le |f(x)|$ para todo $x \in [a,b]$, resulta de (4) que

$$-\int_a^b |f(x)| dx \le \int_a^b f(x) dx \le \int_a^b |f(x)| dx,$$

ou seja, $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.

Corolário. Se $f:[a,b] \to \mathbb{R}$ é integrável e $|f(x)| \le K$ para todo $x \in [a,b]$ então $\left| \int_a^b f(x) \, dx \right| \le K(b-a)$.

Observação. Se uma função integrável $f: [a,b] \to \mathbb{R}$ é tal que $f(x) \ge 0$ para todo $x \in [a,b]$ então $\int_a^b f(x) \, dx \ge 0$. Isto resulta de (4) acima. Mas é possível ter $f(x) \ge 0$ para todo $x \in [a,b]$, com $\int_a^b f(x) \, dx = 0$ sem que f seja identicamente nula. Basta tomar f(x) = 1 num conjunto finito de

pontos em [a,b] e f(x)=0 nos pontos de [a,b] fora desse conjunto finito. Pelo Exemplo 4, f é integrável e sua integral é zero. Entretanto, se f é contínua e $f(x)\geq 0$ para todo $x\in [a,b]$ então $\int_a^b f(x)\,dx=0$ implica f identicamente nula. Com efeito, se existisse algum ponto $x_0\in [a,b]$ onde $f(x_0)=c>0$, existiria um intervalo não-degenerado $[\alpha,\beta]$, com $x_0\in [\alpha,\beta]\subset [a,b]$ tal que f(x)>c/2 para todo $x\in [\alpha,\beta]$. Então, como $f(x)\geq 0$, teríamos $\int_a^b f(x)\,dx\geq \int_\alpha^\beta f(x)\,dx>\frac{c}{2}\,(\beta-\alpha)>0$, uma contradição.

4 Condições de integrabilidade

Teorema 5. Toda função contínua $f:[a,b] \to \mathbb{R}$ é integrável.

Demonstração: Dado $\varepsilon > 0$, pela continuidade uniforme de f no compacto [a,b], existe $\delta > 0$ tal que $x,y \in [a,b]$, $|y-x| < \delta$ implicam $|f(y)-f(x)| < \varepsilon/(b-a)$. Seja P uma partição de [a,b] cujos intervalos têm todos comprimento $< \delta$. Em todo intervalo $[t_{i-1},t_i]$ de P existem x_i, y_i tais que $m_i = f(x_i)$ e $M_i = f(y_i)$, donde $\omega_i = f(y_i) - f(x_i) < \varepsilon/(b-a)$. Consequentemente $\sum \omega_i(t_i-t_{i-1}) < \varepsilon$. Pelo Teorema 2, f é integrável.

Teorema 6. Toda função monótona $f:[a,b] \to \mathbb{R}$ é integrável.

Demonstração: Para fixar idéias, seja f não-decrescente e não-constante. Dado $\varepsilon > 0$, seja $P = \{t_0, \ldots, t_n\}$ uma partição de [a, b] cujos intervalos têm todos comprimento $< \varepsilon / [f(b) - f(a)]$. Para cada $i = 1, \ldots, n$ temos $\omega_i = f(t_i) - f(t_{i-1})$ portanto $\sum \omega_i = f(b) - f(a)$ e

$$\sum \omega_i(t_i - t_{i-1}) < \frac{\varepsilon}{f(b) - f(a)} \cdot \sum \omega_i = \varepsilon.$$

Logo f é integrável.

As considerações a seguir são um preparativo para o Teorema 7, que engloba os Teoremas 5 e 6 como casos particulares.

Se a < b, indicaremos com |I| = b - a o comprimento do intervalo (fechado, aberto ou semi-aberto) I cujos extremos são a e b. Diz-se que o conjunto $X \subset \mathbb{R}$ tem medida nula quando, para todo $\varepsilon > 0$ dado; existe uma cobertura finita ou infinita enumerável $X \subset \bigcup I_k$ de X por intervalos abertos I_k cuja soma dos comprimentos é $\sum |I_k| < \varepsilon$.

Na definição de conjunto de medida nula, os intervalos I_k da cobertura $X \subset \bigcup I_k$ são tomados abertos a fim de permitir o uso do Teorema

Cap. 10

de Borel-Lebesgue, quando necessário. Deve-se observar porém que se, para todo $\varepsilon > 0$, existir uma cobertura enumerável $X \subset \bigcup I_k$ por meio de intervalos limitados I_k (abertos ou não), com $\Sigma |I_k| < \varepsilon$, então X tem medida nula. Com efeito, sendo assim, para todo $k \in \mathbb{N}$ tomamos um intervalo aberto $J_k \supset I_k$ com $|J_k| = |I_k| + \varepsilon/2k$, o que nos dá uma cobertura aberta $X \in \bigcup J_k$, com $\Sigma |J_k| = \Sigma |I_k| + \Sigma(\varepsilon/2k) = \Sigma |I_k| + \varepsilon < 2\varepsilon$, logo X tem medida nula.

Exemplo 5. Todo conjunto enumerável $X = \{x_1, \dots, x_k, \dots\}$ tem medida nula. Com efeito, dado arbitrariamente $\varepsilon > 0$, seja I_k o intervalo aberto de centro x_k e comprimento $\varepsilon/2^{k+1}$. Então $X \subset \bigcup I_k$ e $\sum |I_k| =$ $\varepsilon/2<\varepsilon.$ Em particular, o conjunto $\mathbb Q$ dos números racionais tem medida nula.

Teorema 7. Se o conjunto D dos pontos de descontinuidade de uma função limitada $f: [a,b] \to \mathbb{R}$ tem medida nula então f é integrável.

Demonstração: Dado $\varepsilon > 0$, existem intervalos abertos I_1, \ldots, I_k, \ldots tais que $D \subset \bigcup I_k$ e $\sum |I_k| < \varepsilon/2K$, onde K = M - m é a oscilação de f em [a,b]. Para cada $x \in [a,b]-D$, seja J_x um intervalo aberto de centro x tal que a oscilação de $f(J_x \cap [a,b])$ é menor do que $\varepsilon/2(b-a)$. Pelo Teorema de Borel-Lebesgue, a cobertura aberta $[a,b] \subset (\bigcup_k I_k) \cup$ $(\bigcup_x J_x)$ possui uma subcobertura finita $[a,b] \subset I_1 \cup \cdots \cup I_m \cup J_{x_1} \cup \cdots \cup I_m \cup J_{x_n} \cup \cdots J_{x_n} \cup \cdots \cup J_{x_n} \cup \cdots \cup$ $\cdots \cup J_{x_n}$. Seja P a partição de [a,b] formada pelos pontos a e b e os extremos desses m + n intervalos que pertençam a [a, b]. Indiquemos com $[t_{\alpha-1}, t_{\alpha}]$ os intervalos de P que estão contidos em algum \overline{I}_k e com $[t_{\beta-1},t_{\beta}]$ os demais intervalos de P, cada um dos quais está contido em algum J_{x_i} . Então $\sum (t_{\alpha} - t_{\alpha-1}) < \varepsilon/2K$ e a oscilação de f em cada intervalo $[t_{\beta-1}, t_{\beta}]$ é $\omega_{\beta} < \varepsilon/2(b-a)$. Logo

$$S(f;P) - s(f;P) = \sum \omega_{\alpha}(t_{\alpha} - t_{\alpha-1}) + \sum \omega_{\beta}(t_{\beta} - t_{\beta-1})$$

$$< \sum K(t_{\alpha} - t_{\alpha-1}) + \sum \frac{\varepsilon(t_{\beta} - t_{\beta-1})}{2(b-a)}$$

$$< \frac{K\varepsilon}{2K} + \frac{\varepsilon \cdot (b-a)}{2(b-a)} = \varepsilon.$$

Logo f é integrável.

A recíproca do Teorema 7 é verdadeira. A fim de demonstrá-la, faremos uso da oscilação $\omega(f;x)$ da função limitada $f\colon [a,b] \to \mathbb{R}$ no ponto $x \in [a, b]$, assim definida: para cada $\delta > 0$, seja $\omega(\delta) = M_{\delta} - m_{\delta}$,

onde M_{δ} e m_{δ} são respectivamente o sup e o inf de f em $[a,b] \cap [x-\delta,x+\delta]$. A função $\omega(\delta)$ é ≥ 0 , limitada e não-decrescente, logo existe o limite $\omega(f;x)=\lim_{\delta\to 0}\omega(\delta),$ que chamaremos a oscilação de f no ponto x. Seguese imediatamente da definição de função contínua que $\omega(f;x) > 0$ se, e somente se, a função f é descontínua no ponto x. Se x é um ponto interior do intervalo $I \subset [a,b]$ então $\omega(f;x) < \omega(f;I)$, onde $\omega(f;I) =$ $\sup_{x\in I} f(x) - \inf_{x\in I} f(x)$. Mas se x é um dos extremos de I, pode ocorrer que seja $\omega(f;x) > \omega(f;I)$. Este é, por exemplo, o caso quando $f:[-1,1] \to$ \mathbb{R} é dada por f(x) = 1 para $-1 \le x < 0$ e f(x) = 0 quando $x \ge 0$. Tomando I = [0, 1] e x = 0, temos $\omega(f; I) = 0$ e $\omega(f; x) = 1$.

Com esses preliminares esclarecidos, passemos à

Recíproca do Teorema 7. O conjunto D dos pontos de descontinuidade da função integrável $f:[a,b] \to \mathbb{R}$ tem medida nula.

Demonstração: Para cada $k \in \mathbb{N}$, seja $D_k = \{x \in [a, b]; \omega(f; x) \ge 1/k\}$. Então $D = \bigcup D_k$, logo basta mostrar que cada D_k tem medida nula. Fixemos k e tomemos $\varepsilon > 0$. Sendo f integrável, existe uma partição $P = \{t_0 < t_1, < \dots < t_k\}$ de [a, b] tal que $\sum \omega_i \cdot (t_i - t_{i-j}) < \varepsilon/k$, onde ω_i é a oscilação de f em $[t_{i-j}, t_i]$. Indicando com $[t_{\alpha-i}, t_{\alpha}]$ os intervalos de Pque contêm pontos de D_k em seu interior, temos $\omega_{\alpha} \geq 1/k$ para cada α e $D_k = [\cup(t_{\alpha-1}, t_{\alpha})] \cup F$, onde F é o conjunto (finito) das extremidades dos $(t_{\alpha-1}, t_{\alpha})$ que pertençam a D_k . Então

$$\frac{1}{k}\Sigma(t_{\alpha}-t_{\alpha-1})\leq \Sigma\omega_{\alpha}\cdot(t_{\alpha}-t_{\alpha-1})\leq \Sigma\omega_{i}(t_{i}-t_{i-1})<\varepsilon/k,$$

logo $\Sigma(t_{\alpha}-t_{\alpha-1})<\varepsilon$. Assim, para todo $\varepsilon>0$ dado, é possível cobrir D_k com um conjunto finito F mas uma reunião finita de intervalos cuja soma dos comprimentos é $< \varepsilon$. Segue-se que D_k tem medida nula.

Exemplo 6. O conjunto de Cantor K (seção 5 do Capítulo 5), embora não-enumerável, tem medida nula. Com efeito, se pararmos na n-ésima etapa de sua construção, veremos que o conjunto de Cantor está contido na reunião de 2^n intervalos, cada um tendo comprimento $1/3^n$. Dado $\varepsilon > 0$, podemos tomar $n \in \mathbb{N}$ tal que $(2/3)^n < \varepsilon$, e concluiremos que a medida de K é zero. Podemos considerar a função $f:[0,1]\to\mathbb{R}$, definida pondo-se f(x) = 0 se $x \in K$ e f(x) = 1 se $x \notin K$. Como [0,1] - Ké aberto, a função f é localmente constante, e portanto contínua, nos pontos $x \notin K$. Como K não possui pontos interiores, f é descontínua em

odos os pontos de K. Pelo Teorema 7, f é integrável. Dada qualquer partição P de [0,1] todos os intervalos de P contêm pontos que não pertencem a K, pois int $K=\varnothing$. Assim, $M_i=1$ e S(f;P)=1 para toda partição P. Segue-se que $\int_0^1 f(x) \, dx = \int_0^1 f(x) \, dx = 1$.

Exemplo 7. Se a < b, o intervalo [a,b] não tem medida nula. Com feito, se $[a,b] \subset \bigcup I_k$ é uma cobertura (que podemos supor finita) por ntervalos I_k , tem-se sempre $\Sigma |I_k| \geq b-a$. De fato, os pontos a,b e nais as extremidades dos I_k que estejam contidas em [a,b] formam uma artição $P = \{a = t_0 < t_1 < \cdots < t_m = b\}$ tal que cada intervalo t_{i-1},t_i) está contido em algum I_k . Se escrevermos $i \subset k$ para significar ue $(t_{i-1},t_i) \subset I_k$, teremos $\sum\limits_{i \subset k} (t_i-t_{i-1}) \leq |I_k|$. Portanto

$$b - a = \Sigma(t_i - t_{i-1}) = \sum_k \left[\sum_{i \subset k} (t_i - t_{i-1}) \right] \le \Sigma |I_k|.$$

Exercícios

leção 2: Integral de Riemann

- 1. Defina $f: [0,1] \to \mathbb{R}$ pondo f(0) = 0 e $f(x) = 1/2^n$ se $1/2^{n+1} < x \le 1/2^n$, $n \in \mathbb{N} \cup \{0\}$. Prove que f é integrável e calcule $\int_0^1 f(x) dx$.
- 2. Seja $f : [-a,a] \to \mathbb{R}$ integrável. Se f é uma função ímpar, prove que $\int_{-a}^{a} f(x) dx = 0$. Se, porém, f é par, prove que $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- 3. Seja $f: [a, b] \to \mathbb{R}$ definida pondo f(x) = 0 se x é irracional e f(x) = 1/q se x = p/q é uma fração irredutível e q > 0. (Ponha f(0) = 1 caso $0 \in [a, b]$.) Prove que f é contínua apenas nos pontos irracionais de [a, b], que é integrável e que $\int_a^b f(x) dx = 0$.
- 4. Seja $f:[a,b]\to\mathbb{R}$ uma função integrável, com $f(x)\geq 0$ para todo $x\in [a,b]$. Se f é contínua no ponto $c\in [a,b]$ e f(c)>0, prove que $\int_a^b f(x)\,dx>0$.
- 5. Seja $f: [a, b] \to \mathbb{R}$ definida pondo f(x) = x quando x é racional e f(x) = x + 1 quando x é irracional. Calcule as integrais (inferior e superior) de f. Usando uma função integrável $g: [a, b] \to \mathbb{R}$ em vez de x, defina agora $\varphi(x) = g(x)$ se x é racional e $\varphi(x) = g(x) + 1$

para x irracional. Calcule as integrais (inferior e superior) de φ em termos da integral de g.

Seção 3: Propriedades da integral

- 1. Seja $f: [a, b] \to \mathbb{R}$ integrável. Prove que a função $F: [a, b] \to \mathbb{R}$, definida por $F(x) = \int_a^x f(t) dt$, é lipschitziana.
- 2. Prove que se $f,g:[a,b]\to\mathbb{R}$ são integráveis então são também integráveis as funções $\varphi,\psi\colon [a,b]\to\mathbb{R}$, definidas por $\varphi(x)=\max\{f(x),g(x)\}$ e $\psi(x)=\min\{f(x),g(x)\}$. Conclua daí que são integráveis as funções $f_+, f_-\colon [a,b]\to\mathbb{R}$ dadas por $f_+(x)=0$ se $f(x)\leq 0, \ f_+(x)=f(x)$ se $f(x)>0; \ f_-(x)=0$ se $f(x)\geq 0$ e $f_-(x)=-f(x)$ se f(x)<0 (supondo ainda f integrável).
- 3. Prove que se $f,g\colon [a,b]\to \mathbb{R}$ são contínuas então

$$\left[\int_a^b f(x)g(x)\,dx\right]^2 \le \int_a^b f(x)^2 dx \cdot \int_a^b g(x)^2 dx.$$

(Desigualdade de Schwarz.)

Seção 4: Condições suficientes de integrabilidade

- 1. Prove que a função f do Exercício 2.3 é integrável.
- 2. Prove que o conjunto dos pontos de descontinuidade de uma função monótona é enumerável e conclua daí que o Teorema 6 decorre do Teorema 7.
- 3. Seja D o conjunto dos pontos de descontinuidade de uma função limitada $f: [a,b] \to \mathbb{R}$. Se D' (conjunto dos pontos de acumulação de D) é enumerável, prove que f é integrável.
- 4. Uma função limitada $f: [a, b] \to \mathbb{R}$, que se anula fora de um conjunto de medida nula, pode não ser integrável. Nestas condições, supondo f integrável, prove que sua integral é igual a zero.
- 5. Diz-se que um conjunto $X \subset \mathbb{R}$ tem conteúdo nulo quando, para todo $\varepsilon > 0$ dado, existe uma cobertura $X \subset I_1 \cup \cdots \cup I_k$, por meio de um número finito de intervalos abertos, com $\sum_{j=1}^k |I_j| < \varepsilon$. Prove:
 - (a) Se X tem conteúdo nulo, o mesmo ocorre com seu fecho \overline{X} .

- (b) Existem conjuntos de medida nula que não têm conteúdo nulo.
- (c) Um conjunto compacto tem medida nula se, e somente se, tem conteúdo nulo.
- (d) Se uma função limitada $g:[a,b] \to \mathbb{R}$ coincide com uma função integrável $f:[a,b] \to \mathbb{R}$ exceto num conjunto de conteúdo nulo, prove que g é integrável e sua integral é igual à de f.
- 6. Se um conjunto $X \subset [a,b]$ não tem medida nula então existe $\varepsilon > 0$ tal que, para toda partição P de [a,b], a soma dos comprimentos dos intervalos de P que contêm pontos de X em seu interior é maior do que ε .
- 7. Seja $\varphi: [a,b] \to \mathbb{R}$ uma função positiva (isto é, $\varphi(x) > 0$ para todo $x \in [a,b]$). Existe $\alpha > 0$ tal que o conjunto $X = \{x \in [a,b]; \varphi(x) \ge \alpha\}$ não tem medida nula.
- 8. Se a função $\varphi \colon [a,b] \to \mathbb{R}$ é positiva e integrável, então $\int_a^b \varphi(x) \, dx > 0$. Conclua que se $f,g \colon [a,b] \to \mathbb{R}$ são integráveis e f(x) < g(x) para todo $x \in [a,b]$ então $\int_a^b f(x) \, dx < \int_a^b g(x) \, dx$. (Use os exercícios 6. e 7.)
- 9. Seja $p: [a,b] \to \mathbb{R}$ integrável, com $p(x) \ge 0$ para todo $x \in [a,b]$. Prove que se $\int_a^b p(x) \, dx = 0$ então o conjunto dos pontos $x \in [a,b]$ tais que p(x) = 0 é denso em [a,b]. Se $f: [a,b] \to \mathbb{R}$ é qualquer função integrável que se anula num conjunto denso de pontos em [a,b], prove que $\int_a^b f(x) \, dx = 0$.