Lista de Exercícios - Séries Numéricas

15/08/2022

1. Seja $\sum a_n$ uma série convergente com termo geral $a_n \ge 0$ e (b_n) uma sequência limitada. Prove que a série $\sum a_n b_n$ converge.

2. Se $\sum a_n$ é uma série convergente, mostre que $\sum a_n^2$ converge. Dê um exemplo para mostrar que a recíproca é falsa

3. Sejam $\sum a_n$ e $\sum b_n$ séries convergentes com termo geral não negativo. Prove que a série $\sum a_n b_n$ converge. dica: $(a-b)^2 \geqslant 0 \Rightarrow 2ab \leqslant a^2 + b^2$.

4. Sejam (a_n) e (b_n) sequências de termos não negativos. Mostre que se a série $\sum b_n$ converge e $\lim \frac{a_n}{b_n} = 0$, então $\sum a_n$ converge.

5. Mostre que: $\sum a_n$ converge $\iff \sum \frac{a_n}{a_n+1}$ converge. dica: $\frac{a_n}{a_n+1} \leqslant 2a_n$, para n grande.

6. Dados a, r > 0, mostre que se a série $\sum \frac{1}{a + nr}$ diverge.

7. Dado $a \in \mathbb{R}$ qualquer, mostre que a série abaixo é convergente e calcule a soma.

$$a^{2} + \frac{a^{2}}{1+a^{2}} + \frac{a^{2}}{(1+a^{2})^{2}} + \dots$$

8. Prove que a série \sum sen (1/n) diverge.

dica:
$$\lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = 1.$$

9. Use o critério da comparação para verificar qual das seguintes séries são convergentes:

(a) $\sum_{n=0}^{\infty} \frac{2^n}{n!},$

- (c) $\sum_{n=2}^{\infty} \frac{1}{\log n},$
- (e) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}},$

(b) $\sum_{n=1}^{\infty} \frac{n!}{n^n},$

- (d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}}$,
 - $(f) \sum_{n=1}^{\infty} \frac{n+2}{2^n n}.$

10. Sejam a > 1 e k um inteiro positivo. Mostre que as seguintes séries são convergentes:

- (a) $\sum_{n=1}^{\infty} \frac{n^k}{a^n},$
- (b) $\sum_{n=1}^{\infty} \frac{a^n}{n},$
- (c) $\sum_{n=1}^{\infty} \frac{n}{n^n},$

11. Calcule as somas parciais da série $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ e use isso para mostrar que essa série converge e tem soma igual a 1.

12. Seja P(x) um polinômio de grau superior a 1. Prove que a série $\sum_{n=1}^{\infty} \frac{1}{P(n)}$ converge.

13. Usando um teste de convergência, verifique quais das seguintes séries são convergentes:

(a)
$$\sum_{n=1}^{\infty} n^b a^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
,

(e)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{a^n 2^{n^2}}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{2^n},$$

(d)
$$\sum_{n=1}^{\infty} \frac{a^n}{2^{n^2}},$$

14. Verifique quais das seguintes séries são convergentes. Para as séries que forem convergentes diga se a convergência é absoluta ou condicional.

(a)
$$\sum_{n=0}^{\infty} \frac{\cos 3n}{n^2 + 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+1}$$

(e)
$$\sum_{n=1}^{\infty} n! e^{-n} \frac{1}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\log n}$$