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Abstract—In this work, we consider a class of linear dissipative evolution equations. We show
that the solution of this class has a polynomial rate of decay as time tends to infinity, but does not
have exponential decay. c© 2004 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

This paper is concerned with the stability of the C0-semigroups associated with the following
initial value problem:

Cutt +Au+But = 0, (1.1)

u(0) = u0, ut(0) = u1, (1.2)

where A, B, and C are self-adjoint positive definite operators with the domain D(A) ⊂ D(C) ⊂
D(B) dense in a Hilbert space H.

We will show a class of operators A, B, and C, for which the above equation is dissipative but
the corresponding semigroup is not exponentially stable. In addition, we show that the solution
of equation (1.1) decays polynomially to zero as time goes to infinity. To do this we assume
some spectral properties of the operators A, B, and C and proceed as in [1], where the authors
present a systematic approach combining a theorem by Gearhart [2] (see also [3]) and Huang [4] in
the theory of semigroups with partial differential equations techniques. To show the polynomial
decay we use the energy method and a some perturbation arguments.
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Such damping mechanisms, for which the corresponding system defines a semigroup which is
not exponentially stable, we call weak dissipation.

The rest of this work is organized as follows. In Section 2, we show, under suitable hypotheses
on the operators A, B, and C, the existence of solutions to equation (1.1). Finally, in Section 3,
we show the asymptotic behaviour of the solution.

2. EXISTENCE OF SOLUTIONS

In this section, we use the semigroup approach to show existence and uniqueness of solution
to (1.1),(1.2). To do that, we assume that C is a self-adjoint operator with inverse C−1. Let us
denote by Ã = C−1A, B̃ = C−1B. Finally, we will assume that Ã and B̃ are also self-adjoint
positive definite operators. Then equations (1.1),(1.2) can be rewritten as

utt + Ãu+ B̃ut = 0, (2.1)

u(0) = u0, ut(0) = u1. (2.2)

Let us denote
H = D

(
Ã1/2

)
×H.

Putting v = ut, equation (2.1) can be written as the following initial value problem:

dU

dt
= ABU,

U(0) = U0,
(2.3)

with U = (u, v), U0 = (u0, u1). Let us define

D(AB) =
{

(u, v) ∈ D
(
Ã
)
×D

(
Ã1/2

)
: Ãu+ B̃v ∈ H

}
(2.4)

and

ABU =
(

v

−
(
Ãu+ B̃v

))
. (2.5)

Clearly, for U ∈ D(AB),

(ABU,U)H =
(
Ã1/2v, Ã1/2u

)
H
−
(
Ãu+ B̃v, v

)
H

=
(
Ã1/2v, Ã1/2u

)
H
−
(
Ã1/2u+ Ã−1/2B̃v, Ã1/2v

)
H

= −
∥∥∥B̃−1/2v

∥∥∥
H
≤ 0.

(2.6)

Thus, AB is a dissipative operator. Under the above notation we can establish the following
theorem.

Theorem 2.1. Let us assume that Ã = C−1A and B̃ = C−1B are self-adjoint operators with

Ã = C−1A a positive definite and also a bijection operator between D(Ã) and H. Then the

operator AB is the infinitesimal generator of a C0-semigroup SB(t) of contraction in H.

Proof. Since D(Ã) is dense in H and D(Ã)×D(Ã) ⊂ D(AB), then D(AB) is dense in H. Thus,
to prove Theorem 2.1, it is sufficient to prove that 0 ∈ ρ(AB). Let us take F = (f, g) ∈ H, we
will prove that there exists Y = (u, v) ∈ AB satisfying

ABY = F, (2.7)
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i.e.,
v = f ∈ D

(
Ã1/2

)
,

−Ãu− B̃v = g ∈ H.
(2.8)

Taking v = f obtained from (2.6), we get

−Ãu− B̃f = g ∈ H. (2.9)

Since Ã is invertible, we conclude that there exists u

u = −Ã−1g + Ã−1Bf. (2.10)

Therefore, Y = (u, v) ∈ D(AB) and satisfies (2.7). Thus, the proof is complete.

3. MAIN RESULT

Here we will use necessary and sufficient conditions for C0-semigroups being exponentially
stable in a Hilbert space. This result was obtained by Gearhart [2] and Huang [4], independently
(see also [3,5]).

Theorem 3.1. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space. Then S(t)
is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR

and

lim
|β|→∞

∥∥(iβI −A)−1
∥∥ <∞

hold, where ρ(A) is the resolvent set of A.

To study the asymptotic behaviour of the semigroup associated to (1.1), we assume that the
operators A, B, and C have the same eigenvectors and the eigenvalues satisfy

Awν = λνwν ,

Bwν = f(λν)wν , where f(λ) = o(λ1−β−α), 0 < β,

Cwν = g(λν)wν , where g(λ) = o(λ1−α), 0 ≤ α,
(3.1)

λν → +∞.

The following theorem describes the main results of this paper.

Theorem 3.2. Let us suppose that hypothesis (3.1) holds. Let SB(t) be the C0-semigroup of

contractions generated by AB , and

E(t) =
1
2

∥∥∥A1/2u
∥∥∥2

H
+

1
2

∥∥∥C1/2ut

∥∥∥2

H
,

the energy associated to (1.1). Then, it follows that

(i) SB(t) is not exponentially stable, but

(ii) there exists a positive constant c, such that

E(t) ≤ c

t
EB(0), ∀ t > 0,

where

EB(t) =
1
2

∥∥∥L1/2ut

∥∥∥2

H
+

1
2

∥∥∥Q1/2u
∥∥∥2

H
, ∀ t > 0,

with L = CB−1C and Q = CB−1A.
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Proof. To prove (i), we use Theorem 3.1. That is, let us take F = (f, g) ∈ H and let us denote
by U = (u, v) the solution of the system

iλU −ABU = F,

i.e.,
iλu− v = f,

iλv + C−1Au+ C−1Bv = g.
(3.2)

Let us take f ≡ 0 and g = wν . We look for solution of the form u = awν and v = bwν , with
a, b ∈ C. From (3.2), we get that a and b satisfy

−λ2awν + λνg(λν)−1awν + bf(λν)g(λν)−1wν = wν .

Now, choosing λ =
√
λνg(λν)−1, and using the above equation, we obtain

f(λν)g(λν)−1wνb = wν ⇒ b =
g(λν)
f(λν)

,

so we have

a = − g(λν)3/2

λ
1/2
ν f(λν)

i. (3.3)

Therefore, we have

u = − g(λν)3/2

λ
1/2
ν f(λν)

iwν and v =
g(λν)
f(λν)

wν . (3.4)

Now we claim that
‖U‖H → +∞, as ν →∞.

In fact, using (3.4), we conclude that

‖U‖2H =
∥∥∥Ã1/2u

∥∥∥2

H
+ ‖v‖2H =

∥∥∥∥∥C−1/2A1/2

(
− g(λν)3/2

λ
1/2
ν f(λν)

iwν

)∥∥∥∥∥
2

H

+
∥∥∥∥ g(λν)
f(λν)

wν

∥∥∥∥2

H

=
(
g(λν)
f(λν)

)2

‖wν‖2H +
(
g(λν)
f(λν)

)2

‖wν‖2H = o
(
λ2β
ν

)
→ +∞.

(3.5)

Recalling that
iλU −ABU = F ⇐⇒ U = (iλI −AB)−1F,

it follows from (3.5) and Theorem 3.1 that SB(t) is not exponentially stable.
To prove (ii), we consider

Cutt +Au+But = 0. (3.6)

Multiplying by ut and recalling the definition of E, we get that

d

dt
E(t) = −

∥∥∥B1/2ut

∥∥∥2

H
. (3.7)

On the other hand, applying the operator CB−1 to (3.6), we have

CB−1Cutt + CB−1Au+ Cut = 0. (3.8)

Thus, multiplying equation (3.8) with ut, we deduce that

dEB
dt

= −
∥∥∥C1/2ut

∥∥∥2

H
. (3.9)
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Multiplying equation (3.6) with u, we get

dφ

dt
=
∥∥∥C1/2ut

∥∥∥2

H
−
∥∥∥A1/2u

∥∥∥2

H
, (3.10)

where
φ(t) = (Cu, ut)H +

1
2

∥∥∥B1/2u
∥∥∥2

. (3.11)

Consequently, from (3.9) and (3.10), we arrive to

d

dt
{EB(t) + εφ(t)} = −

∥∥∥C1/2ut

∥∥∥2

H
+ ε

∥∥∥C1/2ut

∥∥∥2

H
− ε

∥∥∥A1/2u
∥∥∥2

H

= −(1− ε)
∥∥∥C1/2ut

∥∥∥2

H
− ε

∥∥∥A1/2u
∥∥∥2

H

≤ −γ0E(t),

(3.12)

for some γ0 > 0, since 0 < ε < 1. Integrating (3.12) from 0 to t, we obtain

EB(t) + εφ(t) + γ0

∫ t

0

E(s) ds ≤ EB(0) + εφ(0), ∀ t > 0,

which in particular implies that ∫ +∞

0

E(s) ds ≤ cEB(0), (3.13)

for some positive constant c. Finally, we have

d

dt
{tE(t)} = E(t) + t

dE

dt
(t) ≤ E(t),

and from (3.7), we obtain after integrating the above identity that

tE(t) ≤
∫ +∞

0

E(s) ds ≤ cEB(0) ⇒ E(t) ≤ c

t
EB(0).

This completes the proof.

Application 1

Let us take B = A−β , C = I in (1.1). Then equation (1.1) can be written as

utt +Au+A−βut = 0, u(0) = u0, ut(0) = u1.

Choosing 0 < β and arguing as in Theorem 3.2, it can be proved that the corresponding semi-
group Sα(t) is not exponentially stable, but its energy E(t) = (1/2)‖A1/2u‖2 + (1/2)‖ut‖2 has a
polynomial decay. Note that EB(t) = (1/2)‖A(1+β)/2u‖2 + (1/2)‖Aβ/2ut‖2.

Application 2

Our result also can be applied to study mathematical models with frictional damping (see [6,
p. 429])

utt − uxxtt − uxx + γut = 0,

u(0, t) = u(L, t) = 0,

u(0) = u0, ut(0 = u1.
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Letting C = I−(·)xx and A = −(·)xx, with H and D(A) being L2(0, L) and H1
0 (0, L), respectively,

the above model may be written as equation (1.1). Hence, there is no exponential stability, but
a polynomial decay as given in Theorem 3.2, where

E(t) =
1
2

∫ L

0

|ux|2 + |ut|2 + |uxt|2 dx, EB(t) =
1
2

∫ L

0

|uxx|2 + |ut|2 + |uxxt|2 dx.

Similar results are obtained in the n-dimensional case. That is, let us take Ω ⊂ R2 an open
bounded set with smooth boundary. Consider

utt −∆utt −∆u+ γut = 0, in ∂Ω× ]0,∞[,

u(x, t) = 0, on ∂Ω,

u(0) = u0, ut(0) = u1, in ∂Ω.

Application 3

Let us denote by Ω ⊂ R2 an open bounded set with smooth boundary. Let us consider the
plate equation

utt −∆utt + ∆2u+ γut = 0, in ∂Ω× ]0,∞[,

u = ∆u = 0, on ∂Ω,

u(0) = u0, ut(0) = u1, in ∂Ω.

Letting C = I−∆ and A = ∆2, with H and D(A) being L2(Ω) and H1
0 (Ω)∩H2(Ω), respectively,

the above model may be written as equation (1.1). Using Theorem 3.2, we conclude that there
is no exponential stability, but a polynomial decay where

E(t) =
1
2

∫
Ω

|ut|2 + |∇ut|2 + |∆u|2 dx, EB(t) =
1
2

∫
Ω

|ut −∆ut|2 + |∆u|2 + |∆3/2u|2 dx.
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