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Abstract

In this paper we consider the thermoelastic plate equation with localized thermal dissipa-
tion of memory type, proposed by Gurtin and Pipkin [11]. We will show that the solution of
the corresponding model decays exponentially as time goes to infinity, provided the relaxa-
tion function decays exponentially. The main difference with others thermoelastic system is
that the whole system is of hyperbolic type, and the dissipation is weaker (indefinite) than
such given by the Fourier Law for the heat flux.

Keywords – Exponential stability, transmission problem, thermoelasticity.

1 Introduction

In the classical linear theory of thermoelasticity Fourier’s law is used to describe the heat conduc-

tion of the body. Therefore, the corresponding thermoelastic equations consist of an hyperbolic

equation for the displacemente field coupled with a parabolic equation for the heat equation.

This theory has two shortcomings: First, it is unable to take into account the memory effect

which may prevail in some materials, particularly at low temperatures. Second, the correspond-

ing parabolic part of the system predicts an unrealistic result in the sense that the thermal

disturbance at one point of the body is instantly felt everywhere in the body. Although, at first

sight, this outcome of the theory seems to contradict the physical intuition, it can be justified by

resorting to the fact that molecular motion, which plays a crucial part in transport phenomena,

is very rapid except at extremely low temperatures. Hence a finite velocity of propagation for
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thermal perturbations is usually nononservable unless experiments are performed in some neigh-

bourhood of absolute zero as in the case of liquid helium. In fact, thermal waves, commonly

known as second sound, are detected in some metals cooled approximately down to 20oK. For

example Brorson et al [2] observed electron temperature transport velocities of 8.4× 105m/s in

thin gold films upon sudden heating with ultrafast femtosecond laser irradiation. Other result

in this directions can be found in [25, 9, 8, 3, 7, 4] among others. Very limited documented

experimental results appear for these situations in the literature. For a short survey the reader

is referred to the works of Ackerman and Guyer [1], Taylor et al. [27], and Jackson and Walker

[14].

To take into account the memory effect at low temperatures, Gurtin and Pipkin [11] introduce

a new constitutive law for the heat flux. This constitutive law depends on the heat memory and

as a first consequence the parabolicity of the system is removed. Therefore the thermoelastic

system is fully hyperbolic. So we have finite speed of propagation (see [18]).

In this paper we study the transmission problem for a partial thermoelastic plate. That

is, we consider a plate composed by two components, a thermoelastic part and an elastic part

insensible to changes of temperature. This in particular means that the thermal constants are

discontinuous on the plate, positive over the thermoelastic region and zero over the elastic part.

More precisely, let us denote by Ω an open bounded set of R
2 with smooth boundary ∂Ω =

Γ1 ∪Γ2. We assume that over the region Ω1 the plate is sensitive to the change of temperature,

while in the complementary part Ω2 = Ω\Ω1, the plate is indifferent to changes of temperature.

Let us denote by Γ0 the interphace, that is a curve between Ω1 and Ω2, a typical example of Ω

is given by the next picture,

n

n
n

2
W

1
W

1
G

2
G

0
G

Let us denote by u and v the transverse oscillation over Ω1 and Ω2, respectively and by θ the

difference of temperature, then the transmission problem for the thermoelastic plate equation is

written as

ρ1utt − γ14utt + β14
2u + µ4θ = 0 in Ω1 × R

+ (1.1)

ρ0θt − β0(k ∗ 4θ) − µ4ut = 0 in Ω1 × R
+ (1.2)

ρ2vtt − γ24vtt + β24
2v = 0 in Ω2 × R

+ (1.3)
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with the following boundary conditions

u =
∂u

∂ν
= 0 on Γ1 × R

+, v =
∂v

∂ν
= 0 on Γ2 × R

+ (1.4)

θ = 0 on Γ0 × R
+ and θ = 0 on Γ1 × R

+ (1.5)

and the transmission conditions over Γ0

u = v,
∂u

∂ν
=

∂v

∂ν
(1.6)

β14u = β24v (1.7)

γ1
∂utt

∂ν
− β1

∂4u

∂ν
− µ

∂θ

∂ν
= γ2

∂vtt

∂ν
− β2

∂4v

∂ν
. (1.8)

Finally, we prescrive the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω1 (1.9)

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω2. (1.10)

The constants ρ0, ρ1, ρ2, β0, β1, β2, γ1, γ2, µ are all positive. We denote by k ∈ C1(0,∞) the

relaxation function and by ∗ the convolution product given by

k ∗ ϕ(t) =

∫ t

0
k(t − τ)ϕ(τ) dτ.

Problem (1.1)–(1.3) is know as Volterra’s integral differential equation see [5]. To be precise in

our formulation, let us first introduce the following definition.

Definition 1.1 Let k ∈ L1(R+), We say that k is a positive definite function when

∫ t

0
ϕk ∗ ϕ ds ≥ 0, ∀t ≥ 0, ∀ϕ ∈ C0(R+).

We say that k is strongly positive definite function when there exists δ > 0 such that k(t)− δe−t

is positive definite.

One important characterization of positive definite function is given in the following theorem,

which is proved in [23].

Theorem 1.1 Let k ∈ L1(R+), then k is a positive definite function if and only if

Re k̂(iξ) ≥ 0 where k̂(λ) =

∫
∞

0
k(t)e−λt dt.

The hypotheses we use to show the existence result and the exponential decay are the following

H1 k ∈ C2 is a strongly positive definite function, satisfying k(0) ≥ 0

3
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H2 k decays to zero exponentially.

Remark 1.1 Hypotheses H2 we will use only to show the exponential decay. It is not necessary

to show the existence of solution.

One important remark is that the dissipation produced for the Gurtin and Pipkin’s law is of

indefinite type. That is, the derivative of the energy function can change its sign. In fact, the

total energy associated with system (1.1)-(1.10) is given by

E(t) =
1

2

∫

Ω1

ρ1|ut|
2 + γ1|∇ut|

2 + β1|4u|2 + ρ0|θ|
2dx +

+
1

2

∫

Ω2

ρ2|vt|
2 + γ2|∇vt|

2 + β2|4v|2dx. (1.11)

Using the equations we can verify that

d

dt
E(t) = −β0

∫

Ω1

(k ∗ ∇θ) · ∇θdx. (1.12)

Note that the right hand side of the above equation, does not have a definite sign. This is

because positive definite function as k, does not make that the right hand side of equation

(1.12) is negative. In fact, let us consider the functions

k(t) = e−t cos t, y(t) = e−2t.

We have that k satisfies

k ∈ L1(0,∞) and Re k̂(iξ) ≥
1

2(1 + ξ2)
, ∀ξ ∈ R,

then k is strongly definite positive (see Remark 0.1.1). On the other hand we have that

Y(t) ≡ (k ∗ y)(t) · y(t) =
e−4t

2
[et(cos t + sin t) − 1],

change of sign. To see this take t = π
2 + 2mπ to get Y(t) > 0, while for t = −π

2 + 2mπ we have

Y(t) < 0. Therefore Y(t) change of sign. But
∫ T

0 Y(t)dt > 0 for any T > 0.

Integrating (1.12) over [0, t[, we get

E(t) = E(0) − β0

∫ t

0

∫

Ω1

(k ∗ ∇θ) · ∇θdt (1.13)

and using the fact that k is positive definite we conclude that E(t) is bounded by E(0). Therefore,

system (1.1)-(1.10) is not of dissipative type. Note also that the thermal effect, which produces

the indefinite dissipation is active only in one equation. So, we may ask whether the energy

associated to system decays or not to zero uniformly as time goes to infinity.

4
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Concerning the literature relative to our problem, we have the work of Fabrizio-Lazzari-

Rivera[6], that proves the exponential stability for a thermoelastic plate, when the temperature

is active over the whole plate configurated over Ω, (Ω2 = ∅). Here we follow similar ideas but

we have to deal also with estimates over the interphase of the plate which in general produces

several problems. In [10], it is considered the one dimensional thermoelastic system with Gurtin

and Pipkin’s law for the temperature, working over the whole domain, it is proved that the

corresponding solution decays exponentially to zero, provided that the relaxation function is

strongly positive and also decays exponentially to zero. Finally, in [20] the authors consider the

transmission problem for the thermoelastic plate equation with the Fourier law. It is proved

that the corresponding solution decays exponentially to zero as time goes to infinity, no matter

how small is the thermoelastic part (the dissipative part) of the plate.

The main result of this paper is to prove that the solutions of the partial thermoelastic plate

system decays exponentially to zero, no matter the size of the thermoelastic component of the

plate Ω1, which produces the thermal dissipation over the plate. The main difference concerning

the result in [10] is because of the interphase conditions. For plates the interphase conditions

are more complicated, so it is necessary to take care to estimate terms over the interphase of

the body configurated over Ω. Concerning the work [20], the system is of hyperbolic-parabolic

type because of the Fourier law. This fact, produce a strong dissipation that gives an important

help to arrive to the exponential decay. In our case the system is not dissipative and does not

have a parabolic part. Therefore the regularizing properties dessapear and we have to look for

others techniques to achieve the estimates necessary to show the exponential stability.

The method we use to prove the main result is based on observabilities inequatilies for

transmission problems. We also introduce new multipliers which combining with Volterra’s

method to solve integral equations produce crux estimates to achieve the exponential estability.

The rest of the paper is organized as follows. In section 0.2 we introduce some notations

and establish some results which will be useful to show the existence of solutions as well as the

exponential decay. In section 0.3 we establish the existence and regularity of solutions. Finally,

in section 0.4 we show the exponential decay.

2 Notations and Preliminaries

Let us introduce, the following functional space

H
1 = {(ϕ, ψ) ∈ H1(Ω1) × H1(Ω2); satisfying (2.14)}






ϕ = 0 on Γ1

ψ = 0 on Γ2

ϕ = ψ on Γ0

(2.14)

5

Page 5 of 14

http://mc.manuscriptcentral.com/imamat

Manuscripts submitted to (i)The IMA Journal of Applied Mathematics(/i)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

H
2 = {(ϕ, ψ) ∈ [H2(Ω1) × H2(Ω2)] ∩ H

1; satisfying (2.15)}





∂ϕ

∂ν
= 0 on Γ1

∂ψ

∂ν
= 0 on Γ2

∂ϕ

∂ν
=

∂ψ

∂ν
on Γ0

(2.15)

V
2 = H2(Ω1) × H2(Ω2) ∩ H

1,

V
3 = H3(Ω1) × H3(Ω2) ∩ H

2,

V
4 = H4(Ω1) × H4(Ω2) ∩ H

2.

Lemma 2.1 The space H
1 with the inner product

〈(ϕ1, ψ1), (ϕ2, ψ2)〉H1 =

∫

Ω1

(ρ1ϕ
1ϕ2 + γ1∇ϕ1 · ∇ϕ2)dx +

∫

Ω2

(ρ2ψ
1ψ2 + γ2∇ψ1 · ∇ψ2)dx

is a Hilbert space.

Lemma 2.2 The space H
2 with the inner product

〈(ϕ1, ψ1), (ϕ2, ψ2)〉H2 = β1

∫

Ω1

4ϕ14ϕ2dx + β2

∫

Ω2

4ψ14ψ2dx

is a Hilbert space.

We finish this section establishing the following Lemma whose proof can be found in [26]

Lemma 2.3 Let us suppose that k ∈ L1(R+) is a strongly positive definite kernel satisfying

k′ ∈ L1(R+); then we have

∫ t

0
|k ∗ y(τ)|2 dτ ≤ β0K

∫ t

0
k ∗ y(τ) y(τ) dτ

for any y ∈ L1
loc(R

+), where K = |k|21 + 4|k′|21 and β0 > 0 such that the function k(t) − β−1
0 e−t

is a positive definite kernel.

3 Existence and uniqueness of solutions

Here we establish the existence and regularity of weak solutions of (1.1)-(1.10). To this end

we assume that the hypotheses H1 holds. Our starting point is to define weak solution to

(1.1)–(1.3)

6
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Definition 3.1 We say that (u, v, θ) is a weak solution of the system (1.1)-(1.10) when

(u, v) ∈ L∞(0, T ; H2) (ut, vt) ∈ L∞(0, T ; H1)

θ ∈ L∞(0, T ; L2(Ω1)), (k ∗ θ) ∈ L2(0, T ; H1(Ω1))

and satisfies the following identities

−ρ1

∫

Ω1

u1(x)ϕ(x, 0)dx − γ1

∫

Ω1

∇u1 · ∇ϕ(x, 0)dx + ρ1

∫

Ω1

u0(x)ϕt(x, 0)dx −

−γ1

∫

Ω1

∇u0 · ∇ϕt(x, 0)dx − ρ2

∫

Ω2

v1(x)ψ(x, 0)dx − γ2

∫

Ω2

∇v1 · ∇ψ(x, 0)dx +

+ρ2

∫

Ω2

v0(x)ψt(x, 0)dx − γ2

∫

Ω2

∇v0 · ∇ψt(x, 0)dx +

∫ T

0

∫

Ω1

[ρ1uϕtt + γ1∇u · ∇ϕtt]dxdt +

+β1

∫ T

0

∫

Ω1

4u4ϕdxdt + µ

∫ T

0

∫

Ω1

θ4ϕdxdt +

∫ T

0

∫

Ω2

[ρ2vψtt + γ2∇u · ∇ψtt]dxdt +

+β2

∫ T

0

∫

Ω2

4v4ψdxdt = 0

ρ0

∫

Ω1

θ0(x)φ(x, 0)dx − ρ0

∫ T

0

∫

Ω1

θφtdxdt + β0

∫ T

0

∫

Ω1

(k ∗ ∇θ) · ∇φdxdt +

+µ

∫ T

0

∫

Ω1

∇ut · ∇φdxdt = 0

∀(ϕ, ψ) ∈ C2([0, T ]; H2) such that

ϕ(·, T ) = ϕt(·, T ) = ∇ϕ(·, T ) = ∇ϕt(·, T ) = 0

ψ(·, T ) = ψt(·, T ) = ∇ψ(·, T ) = ∇ψt(·, T ) = 0

∀φ ∈ C1([0, T ];H1
0 (Ω1))

Using Galerkin method, and standard estimates we can show the following theorem.

Theorem 3.1 (Existence of solutions) Let us suppose that hypotheses H1 holds, if (u0, v0) ∈

H
2, (u1, v1) ∈ H

1 and θ0 ∈ L2(Ω1). Then, there exists a unique weak solution for (1.1)-(1.10).

On the other hand, if (u0, v0) ∈ V
4, (u1, v1) ∈ V

3 and θ0 ∈ H2(Ω1) ∩ H1
0 (Ω1) with:

β14u0 = β24v0, β1
∂4u0

∂ν
= β2

∂4v0

∂ν

then, there exists a unique solution for (1.1)-(1.10), satisfying:

(u, v) ∈ C([0,∞[; V4) ∩ C1([0,∞[; V3) ∩ C2([0,∞[; H2)

θ ∈ C([0,∞[;H1
0 (Ω1) ∩ H2(Ω1)) ∩ C1([0,∞[;H1

0 (Ω1))

(k ∗ θ) ∈ L2(0, T ; H3(Ω1))

7
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For a more general method to prove existente to transmission problems, we refer to [13, 15].

Remark 3.1 To show the existence of a weak solution we only need that the strongly positive

function k be in C0, and k(0) > 0. Instead, to get the regularity result we need hypotheses H1.

4 Exponential decay

In this section we will assume that the domain Ω has the following geometric property: There

exists x0 ∈ R
2 such that the function m(x) = x − x0 satisfies:

m · ν ≥ δ0 > 0 in Γ0

m · ν ≤ 0 in Γ2

for δ0 > 0.

To show that the solution decays exponentially to zero as time goes to infinity, we introduce

the following functions

U(x, t) = u(x, t)eηt, Θ(x, t) = θ(x, t)eηt, and V (x, t) = v(x, t)eηt.

Therefore, to prove the exponential decay, we only have to prove that the above functions are

uniformly bounded with respect to the time for η small enough. To do this, let us differentiate

with respect to the time to get

Ut = ηU + eηtut, Utt = 2ηUt + eηtutt − η2U

Vt = ηV + eηtvt, Vtt = 2ηVt + eηtvtt − η2V

Θt = ηΘ + eηtθt, k̃ ∗ 4Θ = eηt(k ∗ 4θ).

From the above identities and using equations (1.1)-(1.10), we see that (U,Θ, V ) satisfies the

following system

ρ1Utt − γ14Utt + β14
2U + µ4Θ = P, in Ω1 × R

+ (4.16)

ρ0Θt − β0(k̃ ∗ 4Θ) − µ4Ut = Q, in Ω1 × R
+ (4.17)

ρ2Vtt − γ24Vtt + β24
2V = R, in Ω2 × R

+ (4.18)

with the following boundary conditions:

U =
∂U

∂ν
= 0 on Γ1 × R

+, V =
∂V

∂ν
= 0 on Γ2 × R

+ (4.19)

Θ = 0 on Γ0 × R
+ and Θ = 0 on Γ1 × R

+ (4.20)

8
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where P,Q and R are given by:

P = 2ηρ1Ut − ρ1η
2U + γ1η

24U − 2γ1η4Ut,

Q = ρ0ηΘ − µη4U,

R = 2ηρ2Vt − ρ2η
2V + γ2η

24V − 2γ2η4Vt.

Finally, the couple (U, V ) must verify the following transmission conditions:

U = V,
∂U

∂ν
=

∂V

∂ν
(4.21)

β14U = β24V (4.22)

γ1

{∂Utt

∂ν
− 2η

∂Ut

∂ν
+ η2 ∂U

∂ν

}
− β1

∂4U

∂ν
− µ

∂Θ

∂ν
= γ2

{∂Vtt

∂ν
− 2η

∂Vt

∂ν
+ η2 ∂V

∂ν

}
− β2

∂4V

∂ν
(4.23)

in Γ0 × R
+; and initial conditions:

U(x, 0) = u0(x), Ut(x, 0) = u1(x) + ηu0(x) in Ω1 (4.24)

Θ(x, 0) = θ0(x) in Ω1 (4.25)

V (x, 0) = v0(x), Vt(x, 0) = v1(x) + ηv0(x) in Ω2 (4.26)

Let us introduce the energy function E(t) associated with the above equations,

E(t) =
1

2

∫

Ω1

ρ1|Ut|
2 + γ1|∇Ut|

2 + β1|4U |2 + ρ0|Θ|2 dx +
η2

2

∫

Ω1

ρ1|U |2 + γ1|∇U |2dx

+
ρ2

2

∫

Ω2

|Vt|
2 + γ2|∇Vt|

2 + β2|4V |2 dx +
η2

2

∫

Ω2

ρ2|V |2 + γ2|∇V |2dx.

To show the exponential decay of E(t) it is enough to show that E(t) is uniformly bounded for

any t > 0. To this end, we start with the following Lemma.

Lemma 4.1 Let us suppose that the initial data satisfy (u0, v0) ∈ V
4, (u1, v1) ∈ V

3 e θ0 ∈

H2(Ω1) ∩ H1
0 (Ω1) with

β14u0 = β24v0, β1
∂4u0

∂ν
= β2

∂4v0

∂ν

Then, there exist positive constants c and β0 satisfying

d

dt
E(t) ≤ −β0

∫

Ω1

(k̃ ∗ ∇Θ) · ∇Θdx + cηE(t).

Proof: Multiplying equation (4.16) by Ut , (4.17) by Θ and (4.18) by Vt and summing up the

product result our conclusion follows.

9
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Theorem 4.1 Under the same hypotheses as in Lemma 0.4.1, if in addition we assume that

ρ1 ≥ ρ2, γ1 ≥ γ2 e β1 ≤ β2, (4.27)

then the solution of system (1.1)-(1.10) decays exponentially to zero as time goes to infinity.

That is, there exist positive constants C > 0, λ > 0, such that

E(t) ≤ CE(0)e−λt.

Proof: Let us denote by KU = m · ∇U − 1
2U, multiplying equation (4.16) by KU , equation

(4.18) by KV , applying hypotheses (4.27) and using integration by parts we get

d

dt
I(t) ≤

β1

2

∫

Γ1

(m · ν)|4U |2dx +
ρ1η

2

2

∫

Γ0

(m · ν)|U |2dx +
γ1η

2

2

∫

Γ0

(m · ν)|∇U |2dx

−
3ρ1

2

∫

Ω1

|Ut|
2dx −

γ1

2

∫

Ω1

|∇Ut|
2dx −

β1

2

∫

Ω1

|4U |2dx −
3ρ2

2

∫

Ω2

|Vt|
2dx

−
γ2

2

∫

Ω2

|∇Vt|
2dx −

β2

2

∫

Ω2

|4V |2dx + µ

∫

Ω1

∇Θ · ∇(m · ∇U)dx

+
µ

2

∫

Ω1

Θ4Udx + ηc0E(t),

where

I(t) = ρ1

∫

Ω1

UtKU + γ1

∫

Ω1

∇Ut · ∇KUdx −
ηρ1

2

∫

Ω1

|U |2dx −
ηγ1

2

∫

Ω1

|∇U |2dx + ρ2

∫

Ω2

VtKV

+γ2

∫

Ω2

∇Vt · ∇KV dx −
ηρ2

2

∫

Ω2

|V |2dx −
ηγ2

2

∫

Ω2

|∇V |2dx.

The main problem in the above inequality is with the term µ
∫
Ω1

∇Θ · ∇(m · ∇U)dx, which

is not possible to estimate in terms of the first order energy E(t). For this reason we introduce

the functional,

M(t) = ρ0

∫

Ω1

Θmi
∂

∂xi
(k̃ ∗ Θ)dx − µ

∫

Ω1

4Umi
∂

∂xi
(k̃ ∗ Θ)dx.

That is to say, let us multiply equation (4.17) by mi
∂

∂xi
(k̃∗Θ). Therefore for η > 0 small enough,

we have that there exist positive constants c1, c2, c3, such that:

d

dt
M(t) ≤ −

β0δ0

2

∫

Γ0

|k̃ ∗
∂Θ

∂ν
|2dx +

β0

2

∫

Γ1

(m · ν)|k̃ ∗
∂Θ

∂ν
|2dx − c1

∫

Ω1

|Θ|2dx

−µk̃(0)

∫

Ω1

∇Θ · ∇(m · ∇U)dx + c2

∫

Ω1

|k̃ ∗ ∇Θ|2 + ηc3E(t),

where we have used that
∫

Ω1

∇Θ · ∇(m∇U) dx =

∫

Ω1

(m · ∇Θ)4U dx.
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To simplifly notations, let us introduce the functional G(t) = I(t) + 1
k̃(0)

M(t). For η > 0 small

enough there exist positive constants c0, c1, c2 such that

d

dt
G(t) ≤

β1c0

2

∫

Γ1

|4U |2dx

︸ ︷︷ ︸
:=J1

+
β0c0

2k̃(0)

∫

Γ1

∣∣∣k̃ ∗
∂Θ

∂ν

∣∣∣
2
dx

︸ ︷︷ ︸
:=J2

−
β0δ0

2k̃(0)

∫

Γ0

∣∣∣k̃ ∗
∂Θ

∂ν

∣∣∣
2
dx

− c1E(t) + c2

∫

Ω1

|k̃ ∗ ∇Θ|2dx +
µ2

4β1

∫

Ω1

|Θ|2dx.

From the above inequality, we see that our next problem is to estimate the boundary terms J1

and J2. To do this, we apply an observability technique which consist in to use some multipliers

at the boundary, such as h = (h1, h2) ∈ [C2(Ω)]n defined by

h(x) =






−ν(x) se x ∈ Γ1

0 se x ∈ Bδ(Ω2).

where

Bδ(Ω2) = {x ∈ Ω, dist(x,Ω2) ≤ δ} .

Let us introduce the functional

H(t) = ρ1

∫

Ω1

Ut(h · ∇U)dx + γ1

∫

Ω1

∇Ut · ∇(h · ∇U)dx

+
1

k̃(0)

{
ρ0

∫

Ω1

Θhi
∂

∂xi
(k̃ ∗ Θ)dx − µ

∫

Ω1

4Uhi
∂

∂xi
(k̃ ∗ Θ)dx

}
.

Multiplying equation (4.16) by (h · ∇U) and equation (4.17) by hi
∂

∂xi
(k̃ ∗ Θ). Summing up

the product results, we get for η > 0 small enough that there exist positive constants Ci with

i = 1, 2, ..., 5 such that:

d

dt
H(t) ≤ −

β1

2

∫

Γ1

|4U |2dx −
β0

2k̃(0)

∫

Γ1

|k̃ ∗
∂Θ

∂ν
|2dx − C1

∫

Ω1

|Ut|
2dx + ηC2

∫

Ω1

|∇Ut|
2dx

−C3

∫

Ω1

|4U |2dx − C4

∫

Ω1

|Θ|2dx + C5

∫

Ω1

|k̃ ∗ ∇Θ|2dx.

To simplify once more, let us denote by F (t) the function F (t) = G(t) + ε0H(t). So we have

that for ε0 > 0 large enough and for η > 0 small, there exists a positive constant, we denote by

ci with i = 1, 2, ...5, such that

d

dt
F (t) ≤ −c1

∫

Γ1

|4U |2dx − c2

∫

Γ1

|k̃ ∗
∂Θ

∂ν
|2dx − c3

∫

Γ0

|k̃ ∗
∂Θ

∂ν
|2dx

−c4E(t) + c5

∫

Ω1

|k̃ ∗ ∇Θ|2dx. (4.28)

Let us define the Lyapunov functional L, given by

L(t) = NE(t) + F (t),
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where N denotes a large positive constant to be fixed later. Combining Lemma 0.4.1 and

inequality (4.28) and using Lemma 0.2.3 we conclude that:

d

dt
L(t) ≤ −β0N

∫

Ω1

(k̃ ∗ ∇Θ) · ∇Θdx + c5

∫

Ω1

|k̃ ∗ ∇Θ|2dx − (c4 − ηcN)E(t, U,Θ, V ) −

− c1

∫

Γ1

|4U |2dx − c2

∫

Γ1

|k̃ ∗
∂Θ

∂ν
|2dx − c3

∫

Γ0

|k̃ ∗
∂Θ

∂ν
|2dx.

Integrating over [0, t[ we get

L(t) ≤ L(0) − β0N

∫ t

0

∫

Ω1

(k̃ ∗ ∇Θ) · ∇Θdxdτ + c5

∫ t

0

∫

Ω1

|k̃ ∗ ∇Θ|2dxdτ −

−(c4 − ηcN)

∫ t

0
E(τ)dτ − c1

∫ t

0

∫

Γ1

|4U |2dxdτ −

−c2

∫ t

0

∫

Γ1

|k̃ ∗
∂Θ

∂ν
|2dxdτ − c3

∫ t

0

∫

Γ0

|k̃ ∗
∂Θ

∂ν
|2dxdτ. (4.29)

Using Young’s inequality we can to prove that for N large enough, there exist positive constants

C1, C2 such that

e2ηtE(t) ≤ 2E(t) ≤ C1L(t) + C2

∫

Ω1

|k̃ ∗ ∇Θ|2dx. (4.30)

Combining (4.29) and (4.30) we conclude that for N large enough and η small enough we have:

E(t) ≤ C1L(0)e−2ηt ≤ CE(0)e−2ηt.

Which implies the exponential stability.

Remark 4.1 As a final remark, since the problem is linear, Theorem 0.4.1 can be extended by

using standard density method, to weak solution. That is when the initial data satisfies

(u0, v0) ∈ H
2, (u1, v1) ∈ H

1, θ0 ∈ L2(Ω1).

In this case we get from (4.29) the regularity result to weak solutions

∂(k ∗ θ)

∂ν
∈ L2(0, T ; L2(Γ0 ∪ Γ1)), 4u ∈ L2(0, T ; L2(Γ1))

which can not be obtained as a consequence of the regularity result of the weak solution.
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