MATE 7010 Equações Diferenciais Ordinárias S1 - 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

21 DE MARÇO

Aula de hoje: Existência e unicidade das soluções (Parte II)

- Teorema de Picard-Lindelöf
- Teorema de Cauchy-Peano
- T.E.U.
- T.E.U. para equações autônomas.

O GRANDE OBJETIVO

TEOREMA (T.E.U.)

Suponha $f:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ uma função contínua tal que $\frac{\partial f}{\partial x}$ exista e seja contínua no aberto U. Nestas condições, dado qualquer ponto $(t_0,x_0)\in U$, existe uma única solução do P.V.I.

$$\begin{cases}
 x' = f(t, x), \\
 x(t_0) = x_0,
\end{cases}$$
(1)

definida num intervalo aberto $(t_0 - \alpha, t_0 + \alpha)$, para um certo $\alpha = \alpha(t_0, x_0) > 0$.

SOBRE A NOTAÇÃO

• Como $f:U\subset \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n$, então $\frac{\partial f}{\partial x}$ denota a função

$$\frac{\partial f}{\partial x}:U\to M(n),$$

dada por

$$\frac{\partial f}{\partial x}(t,x) = \begin{bmatrix} \frac{\partial f_i}{\partial x_j}(t,x) \end{bmatrix}_{n \times n}$$

$$= \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(t,x) & \frac{\partial f_1}{\partial x_2}(t,x) & \dots & \frac{\partial f_1}{\partial x_n}(t,x) \\ \frac{\partial f_2}{\partial x_1}(t,x) & \frac{\partial f_2}{\partial x_2}(t,x) & \dots & \frac{\partial f_2}{\partial x_n}(t,x) \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_n}{\partial x_1}(t,x) & \frac{\partial f_n}{\partial x_2}(t,x) & \dots & \frac{\partial f_n}{\partial x_n}(t,x) \end{bmatrix}_{n \times n}$$

• Assim, $\frac{\partial f}{\partial x}$ é contínua em U se, e somente se, cada $\frac{\partial f_i}{\partial x_j}$ é contínua em U.

ESPAÇOS DE FUNÇÕES

Uma norma em $\mathscr{C}(I; \mathbb{R}^n)$

Sejam $I \subset \mathbb{R}$ intervalo compacto e $\mathscr{C}(I;\mathbb{R}^n)$ o espaço das funções contínuas $f:I \to \mathbb{R}^n$. Então temos a norma (da convergência uniforme)

$$||f|| = \sup_{x \in I} ||f(x)|| = \max_{x \in I} ||f(x)||.$$

Proposição

O espaço $\mathscr{C}(I;\mathbb{R}^n)$ é completo quando munido da norma da convergência uniforme.

PONTO DE FIXO DE BANACH PARA CONTRAÇÕES

TEOREMA

Seja (M,d) um espaço métrico completo. Se $L:M\to M$ é uma contração, isto é, existe $0<\alpha<1$ tal que

$$d(L(x), L(y)) \le \alpha d(x, y), \quad \forall x, y \in M,$$

então L tem um único ponto fixo, isto é, existe um único $\hat{x} \in M$ tal que $L(\hat{x}) = \hat{x}$.

COROLÁRIO

Sejam (M,d) um espaço métrico completo e $L:M\to M$ uma função. Se existe $k\in\mathbb{N}_0$ tal que L^k é uma contração, então L possui um único ponto fixo $a\in M$ tal que

$$\lim_{n\to\infty} L^n(\mu) = a, \ \forall \mu \in M.$$

(Dem: Corolário 8.6 no livro do Lopes) (Dem: Corolário da página 13 no livro do Soto)

A HIPÓTESE LIPSCHITZ

DEFINIÇÃO

Dizemos que uma função $f:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ é lipschitziana na variável espacial em U se existe K>0 tal que

$$||f(t,x) - f(t,y)|| \le K||x - y||, \ \forall (t,x), (t,y) \in U.$$

HIPÓTESE

Suponha que tenhamos um intervalo I tal que $(t_0, x_0) \in I \times \mathbb{R}^n \subset U$.

• Para cada $y \in \mathscr{C}(I; \mathbb{R}^n)$, defina

$$Ty(t) = x_0 + \int_{t_0}^t f(s, y(s))ds, \ t \in I.$$
 (2)

• Note que x é solução de (17) se, e somente se, Tx = x.

- Note que $Ty \in \mathscr{C}(I; \mathbb{R}^n)$, ou seja, $T : \mathscr{C}(I; \mathbb{R}^n) \to \mathscr{C}(I; \mathbb{R}^n)$.
- Mais ainda, se supormos que I é um intervalo compacto, então $\mathscr{C}(I;\mathbb{R}^n)$ é um espaço métrico completo (ou um espaço de Banach).

LEMA

Seja K > 0 uma constante de Lipschitz de f em $I \times \mathbb{R}^n$. Então, dado $m \in \mathbb{N}_0$,

$$|T^m g(t) - T^m h(t)| \le \frac{K^m}{m!} |t - t_0|^m ||g - h||,$$

para quaisquer $g, h \in \mathcal{C}(I; \mathbb{R}^n)$ e todo $t \in T$.

UM PRIMEIRO RESULTADO

TEOREMA 1

Suponha $f:U\subset \mathbb{R}\times \mathbb{R}^n\to \mathbb{R}^n$ uma função contínua. Assuma que $[a,b]\times \mathbb{R}^n\subset U$ e que f é lipschitziana na variável espacial em $[a,b]\times \mathbb{R}^n$. Nestas condições, dados qualquer ponto $(t_0,x_0)\in [a,b]\times \mathbb{R}^n$, existe uma única solução do P.V.I.

$$\begin{cases}
 x' = f(t, x), \\
 x(t_0) = x_0,
\end{cases}$$
(3)

definida no intervalo [a, b].

APLICAÇÃO

TEOREMA 2

Sejam $A:I\to M(n)$ e $b:I\to\mathbb{R}^n$ dois caminhos contínuos num intervalo $I\subseteq\mathbb{R}$. Então, dados quaisquer $t_0\in I$ e $x_0\in\mathbb{R}^n$, existe uma única solução do P.V.I.

$$\begin{cases} x' = A(t)x + b(t), \\ x(t_0) = x_0, \end{cases}$$

definida no intervalo I.

COROLÁRIO

Se $A = [a_{i,j}]_{n \times n}$ é uma matriz real, então dado $x_0 \in \mathbb{R}^n$ existe única solução do P.V.I.

$$\begin{cases} x' = Ax, \\ x(0) = x_0, \end{cases}$$

definida em \mathbb{R} .

O CASO GERAL PARA $U \subset \mathbb{R}^{n+1}$

• Voltemos a supor $f:U\subset \mathbb{R}\times \mathbb{R}^n\to \mathbb{R}^n$ uma função contínua em que U não necessariamente contém uma faixa vertical.

RETÂNGULO

Dados $(t_0, x_0) \in U$, podemos escolher a, b > 0 tais que

$$R_{a,b} = I_a \times B_b$$

esteja contido em U, sendo

$$I_a = [t_0 - a, t_0 + a]$$
 e $B_b = B[x_0, b]$.

ESPAÇO DE FUNÇÕES

Para a e b escolhidos acima, denotaremos por $\mathscr{F} = \mathscr{C}(I_a; B_b)$ o espaço da funções contínuas de I_a em B_b . Note que \mathscr{F} é completo quando munido da norma da convergência uniforme.

PICARD-LINDELÖF

PROPOSIÇÃO

Sejam $f:U\subset\mathbb{R} imes\mathbb{R}^n o\mathbb{R}^n$ uma função contínua e M uma constante positiva satisfazendo

$$||f(t,x)|| \leq M, \ \forall (t,x) \in R_{a,b}.$$

Definindo

$$\alpha = \min\left\{a, \frac{b}{M}\right\} \tag{4}$$

tem-se $T: \mathscr{C}(I_{\alpha}; B_b) \to \mathscr{C}(I_{\alpha}; B_b)$.

TEOREMA (PICARD-LINDELÖF)

Sejam $f: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ uma função contínua, $(t_0, x_0) \in U$ um ponto a, b > 0 tais que $R_{a,b} \subset U$. Se f é lipschitziana em $R_{a,b}$, então existe uma única solução do problema

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$

definida no intervalo $I_{\alpha} = [t_0 - \alpha, t_0 + \alpha]$, sendo α como em (4).

FINALMENTE, O T.E.U.

PROPOSIÇÃO

Suponha $f:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ uma função contínua tal que $\frac{\partial f}{\partial x}$ exista e seja contínua em U. Dados $(t_0,x_0)\in U$ e o retângulo $R_{a,b}$, existe uma constante K>0 tal que:

(a)

$$\left\| \frac{\partial f}{\partial x}(t,x) \right\| \leq K, \ \forall (t,x) \in R_{a,b}.$$

(b)

$$||f(t,x)-f(t,y)|| \le K||x-y||, \ \forall (t,x), (t,y) \in R_{a,b}.$$

TEOREMA (T.E.U.)

Suponha $f: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ uma função contínua tal que $\frac{\partial f}{\partial x}$ exista e seja contínua em U. Nestas condições, dado qualquer ponto $(t_0, x_0) \in U$, existe uma única solução do P.V.I. (1) definida num intervalo aberto $(t_0 - \alpha, t_0 + \alpha)$, para um certo $\alpha = \alpha(t_0, x_0) > 0$.

T.E.U. PARA EQUAÇÕES AUTÔNOMAS

TEOREMA

Suponha $f:W\subset\mathbb{R}^n\to\mathbb{R}^n$ uma função de classe C^1 no aberto W. Então, dado qualquer ponto $(t_0,x_0)\in\mathbb{R}\times W$ existe uma única solução do problema

$$\begin{cases} x' = f(x), \\ x(t_0) = x_0, \end{cases}$$

definida num intervalo aberto $(t_0 - \alpha, t_0 + \alpha)$, para um certo $\alpha = \alpha(t_0, x_0) > 0$.

CAUCHY-PEANO

TEOREMA (ASCOLI)

Seja $\{x_n\}$ uma sequência de caminhos contínuos $x_n : [a,b] \to \mathbb{R}^n$ e suponha que existam constantes M, K > 0 tais que, para todo n e todos $s, t \in [a,b]$,

$$||x_n(s) - x_n(t)|| \le K|s - t| \text{ e } ||x_n(t)|| \le M.$$

Existe uma subsequência de $\{x_n\}$ que é de Cauchy em $\mathscr{C}([a,b];\mathbb{R}^n)$ e portanto converge uniformemente para $x \in \mathscr{C}([a,b];\mathbb{R}^n)$.

CAUCHY-PEANO

- Sejam $f: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ uma função contínua, $(t_0, x_0) \in U$ um ponto a, b > 0 tais que $R_{a,b} \subset U$.
- Considere também α como em (4).
- Fixado $\delta > 0$, denote

$$I(\delta) = [t_0 - \delta, t_0 + \delta]$$

LEMA

Dado qualquer $0<\epsilon\leq \delta$ existe um caminho contínuo $x_\epsilon:I(\delta)\to\mathbb{R}^n$ tal que, para quaisquer $t,u\in I(\delta)$, valem

$$||x_{\epsilon}(t) - x_{\epsilon}(u)|| \le M|t - u| \quad \mathbf{e} \quad ||x_{\epsilon}(t) - x_{0}|| \le b \tag{5}$$

e, para qualquer $t_0 \le t \le t_0 + \alpha$, vale

$$x_{\epsilon}(t) = x_0 + \int_{t_0}^{t} f(s, x_{\epsilon}(s - \epsilon)) ds$$
 (6)

CAUCHY-PEANO

TEOREMA (CAUCHY-PEANO)

Sejam $f:U\subset \mathbb{R}\times \mathbb{R}^n\to \mathbb{R}^n$ uma função contínua, $(t_0,x_0)\in U$ um ponto a,b>0 tais que $R_{a,b}\subset U$. Então existe uma solução do problema

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$

definida no intervalo $I_{\alpha} = [t_0 - \alpha, t_0 + \alpha]$, sendo α como em (4).

