CMI 022 Álgebra Linear S2 - 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

7 DE DEZEMBRO

Aula de hoje:Matrizes de transformações lineares

Referências:

- COELHO, F. U., e LOURENÇO, M. L., UM CURSO DE ÁLGEBRA LINEAR
- LIMA, E. L., ÁLGEBRA LINEAR.
- LEON, S. J. ., ÁLGEBRA LINEAR COM APLICAÇÕES.

TRANSFORMAÇÃO LINEAR

DEFINIÇÃO

Sejam U e V dois espaços vetoriais. Dizemos que uma função $T:U\to V$ é uma transformação linear se valem as seguintes propriedades:

- (a) T(x + y) = T(x) + T(y), para todo $x, y \in U$.
- (b) $T(\lambda x) = \lambda T(x)$, para todo $x \in U$ e todo $\lambda \in \mathbb{R}$.

OBSERVAÇÃO

• Sejam $T: U \to V$ uma transformação linear, $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ e $u_1, \ldots, u_k \in U$. Então

$$T\left(\sum_{j=1}^k \lambda_j u_j\right) = \sum_{j=1}^k \lambda_j T(u_j)$$

• Seja $A_{m \times n}$ uma matriz real. Temos então a transformação linear $T_A: \mathbb{R}^n \to \mathbb{R}^m$ dada por

$$T_A(v) = A \cdot v.$$

MATRIZES DE TRANSFORMAÇÕES LINEARES

Sejam U e V dois espaços vetoriais de dimensão finita, $\mathcal{A} = \{u_1, \dots, u_n\}$ uma base de U e $\mathcal{B} = \{v_1, \dots, v_m\}$ uma base de V.

MATRIZES DE TRANSFORMAÇÕES LINEARES

Sejam U e V dois espaços vetoriais de dimensão finita, $\mathcal{A} = \{u_1, \dots, u_n\}$ uma base de U e $\mathcal{B} = \{v_1, \dots, v_m\}$ uma base de V.

• Para u_1 , existem $a_{11}, a_{21}, a_{31}, \dots, a_{m1}$ tais que

$$T(u_1) = a_{11}v_1 + a_{21}v_2 + a_{31}v_3 + \ldots + a_{m1}v_m.$$

• Para u_2 , existem $a_{12}, a_{22}, a_{32}, \dots, a_{m2}$ tais que

$$T(u_2) = a_{12}v_1 + a_{22}v_2 + a_{32}v_3 + \ldots + a_{m2}v_m.$$

• Continuando, obtemos para u_j escalares $a_{1j}, a_{2j}, \alpha_{3n}, \ldots, a_{mj}$ tais que

$$T(u_j) = a_{1j}v_1 + a_{2j}v_2 + a_{3j}v_3 + \ldots + a_{mj}v_m.$$

DEFINIÇÃO

Sejam U e V dois espaços vetoriais de dimensão finita, $T:U\to V$ uma transformação linear. Dadas $\mathcal{A}=\{u_1,\ldots,u_n\}$ uma base de U e $\mathcal{B}=\{v_1,\ldots,v_m\}$ uma base de V, a matriz **da transformação** T, com respeito a estas bases, é a matriz

$$[T]_{\mathcal{A},\mathcal{B}} = \left[egin{array}{cccc} a_{11} & a_{12} & \dots & a_{m1} \ a_{21} & a_{22} & \dots & a_{m2} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}
ight]$$

DEFINIÇÃO

Sejam U e V dois espaços vetoriais de dimensão finita, $T: U \to V$ uma transformação linear. Dadas $\mathcal{A} = \{u_1, \dots, u_n\}$ uma base de U e $\mathcal{B} = \{v_1, \dots, v_m\}$ uma base de V, a matriz **da transformação** T, com respeito a estas bases, é a matriz

$$[T]_{\mathcal{A},\mathcal{B}} = \left[egin{array}{cccc} a_{11} & a_{12} & \dots & a_{m1} \ a_{21} & a_{22} & \dots & a_{m2} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}
ight]$$

DEFINIÇÃO

Quando U = V e A = B escreveremos apenas $[T]_A$.

• Considere a transformação linear $T:\mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$T(x, y) = (2x + y, y - x, 3x)$$

e as bases $\mathcal{A} = \{(1,2),(2,-1)\}$ e $\mathcal{B} = \{(1,1,1),(0,1,1),(0,0,1)\}.$ Neste caso,

$$[T]_{\mathcal{A},\mathcal{B}} = \left[\begin{array}{cc} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{array} \right],$$

• Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$T(x, y) = (2x + y, y - x, 3x)$$

e as bases $\mathcal{A} = \{(1,2),(2,-1)\}$ e $\mathcal{B} = \{(1,1,1),(0,1,1),(0,0,1)\}$. Neste caso,

$$[T]_{\mathcal{A},\mathcal{B}} = \left[\begin{array}{cc} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{array} \right],$$

• Considere a transformação linear $D: \mathbb{P}_3 \to \mathbb{P}_3$ dada por

$$D(p) = p'$$

e as bases $A = \{1, x, x^2, x^3\}$. Neste caso,

$$[T]_{\mathcal{A}} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right],$$

• Retornando às notações $\mathcal{A} = \{u_1, \dots, u_n\}$ base de $U, \mathcal{B} = \{v_1, \dots, v_m\}$ base de V e $T: U \to V$ uma transformação linear, temos:

• Retornando às notações $A = \{u_1, \dots, u_n\}$ base de $U, \mathcal{B} = \{v_1, \dots, v_m\}$ base de V e $T: U \to V$ uma transformação linear, temos:

$$T(u_1) = a_{11}v_1 + a_{21}v_2 + a_{31}v_3 + \dots + a_{m1}v_m = \sum_{i=1}^m a_{i1}v_i$$

$$\vdots$$

$$T(u_j) = a_{1j}v_1 + a_{2j}v_2 + a_{3j}v_3 + \dots + a_{mj}v_m = \sum_{i=1}^m a_{ij}v_i$$

$$\vdots$$

$$T(u_n) = a_{1n}v_1 + a_{2n}v_2 + a_{3n}v_3 + \dots + a_{mn}v_m = \sum_{i=1}^m a_{in}v_i$$

• Assim, se $u \in U$, então $u = \sum_{j=1}^{n} \alpha_{j} u_{j}$, donde

$$T(u) = \sum_{i=1}^{m} \left[\left(\sum_{j=1}^{n} a_{ij} \alpha_{j} \right) v_{i} \right] = \sum_{i=1}^{m} \beta_{i} v_{i},$$

sendo $\beta_i = \sum_{j=1}^n a_{ij} \alpha_j$.

• Assim, se $u \in U$, então $u = \sum_{i=1}^{n} \alpha_{i} u_{i}$, donde

$$T(u) = \sum_{i=1}^{m} \left[\left(\sum_{j=1}^{n} a_{ij} \alpha_{j} \right) v_{i} \right] = \sum_{i=1}^{m} \beta_{i} v_{i},$$

sendo $\beta_i = \sum_{j=1}^n a_{ij} \alpha_j$.

Assim,

$$u_{\mathcal{A}} = (\alpha_1, \dots, \alpha_n)_{\mathcal{A}} \implies [T(u)]_{\mathcal{B}} = (\beta_1, \dots, \beta_m)_{\mathcal{B}}$$

• Assim, se $u \in U$, então $u = \sum_{j=1}^{n} \alpha_{j} u_{j}$, donde

$$T(u) = \sum_{i=1}^{m} \left[\left(\sum_{j=1}^{n} a_{ij} \alpha_{j} \right) v_{i} \right] = \sum_{i=1}^{m} \beta_{i} v_{i},$$

sendo $\beta_i = \sum_{j=1}^n a_{ij} \alpha_j$.

Assim,

$$u_{\mathcal{A}} = (\alpha_1, \ldots, \alpha_n)_{\mathcal{A}} \implies [T(u)]_{\mathcal{B}} = (\beta_1, \ldots, \beta_m)_{\mathcal{B}}$$

• Note então, que

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{m1} \\ a_{21} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}_{\mathcal{A}} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}_{\mathcal{B}}$$

• Assim, se $u \in U$, então $u = \sum_{j=1}^{n} \alpha_{j} u_{j}$, donde

$$T(u) = \sum_{i=1}^{m} \left[\left(\sum_{j=1}^{n} a_{ij} \alpha_{j} \right) v_{i} \right] = \sum_{i=1}^{m} \beta_{i} v_{i},$$

sendo $\beta_i = \sum_{j=1}^n a_{ij} \alpha_j$.

Assim,

$$u_{\mathcal{A}} = (\alpha_1, \ldots, \alpha_n)_{\mathcal{A}} \implies [T(u)]_{\mathcal{B}} = (\beta_1, \ldots, \beta_m)_{\mathcal{B}}$$

Note então, que

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{m1} \\ a_{21} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}_{\mathcal{A}} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}_{\mathcal{B}}$$

Ou ainda

$$[T(u)]_{\mathcal{B}} = [T]_{\mathcal{A},\mathcal{B}} u_{\mathcal{A}}$$

• Vimos que a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$, dada por T(x, y) = (2x + y, y - x, 3x), tem como matriz

$$[T]_{\mathcal{A},\mathcal{B}} = \left[\begin{array}{cc} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{array} \right],$$

sendo $\mathcal{A} = \{(1,2),(2,-1)\}$ e $\mathcal{B} = \{(1,1,1),(0,1,1),(0,0,1)\}.$

• Vimos que a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$, dada por T(x,y) = (2x+y,y-x,3x), tem como matriz

$$[T]_{\mathcal{A},\mathcal{B}} = \left[\begin{array}{cc} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{array} \right],$$

sendo $\mathcal{A} = \{(1,2), (2,-1)\}$ e $\mathcal{B} = \{(1,1,1), (0,1,1), (0,0,1)\}.$

• Assim, se $u = (-2, 3)_A$, então

$$[T(u)]_{\mathcal{B}} = [T]_{\mathcal{A},\mathcal{B}} u_{\mathcal{A}}$$

$$= \begin{bmatrix} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{bmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix}_{\mathcal{A}}$$

$$= \begin{pmatrix} 1 \\ -12 \\ 23 \end{pmatrix}_{\mathcal{B}}$$

• Vimos que a transformação linear $D: \mathbb{P}_3 \to \mathbb{P}_3$ dada por D(p) = p' tem como matriz

$$[T]_{\mathcal{A}} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right],$$

sendo $A = \{1, x, x^2, x^3\}.$

• Vimos que a transformação linear $D: \mathbb{P}_3 \to \mathbb{P}_3$ dada por D(p) = p' tem como matriz

$$[T]_{\mathcal{A}} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right],$$

sendo $A = \{1, x, x^2, x^3\}.$

• Assim, se $u = (-2, 0, 1, 4)_A$, então

$$[T(u)]_{\mathcal{A}} = [T]_{\mathcal{A}} u_{\mathcal{A}}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} -2 \\ 0 \\ 1 \\ 4 \end{pmatrix}_{\mathcal{A}}$$

$$= \begin{pmatrix} 0 \\ 2 \\ 12 \\ 0 \end{pmatrix}_{\mathcal{B}}$$

TEOREMA

Sejam U e V espaços de dimensão finita com bases \mathcal{A} e \mathcal{B} , respectivamente. Dadas duas transformações lineares $T,S:U\to V$ e $\lambda,\mu\in\mathbb{R}$ vale que

$$[\lambda T + \mu S]_{\mathcal{A},\mathcal{B}} = \lambda [T]_{\mathcal{A},\mathcal{A}} + \mu [S]_{\mathcal{A},\mathcal{A}}$$

TEOREMA

Sejam U e V espaços de dimensão finita com bases \mathcal{A} e \mathcal{B} , respectivamente. Dadas duas transformações lineares $T,S:U\to V$ e $\lambda,\mu\in\mathbb{R}$ vale que

$$[\lambda T + \mu S]_{\mathcal{A},\mathcal{B}} = \lambda [T]_{\mathcal{A},\mathcal{A}} + \mu [S]_{\mathcal{A},\mathcal{A}}$$

TEOREMA

Sejam U, V e W espaços de dimensão finita com bases A, B e C, respectivamente. Dadas duas transformações lineares $T: U \to V$ e $S: V \to W$ vale que

$$[T \circ S]_{\mathcal{A},\mathcal{C}} = [T]_{\mathcal{A},\mathcal{B}} \cdot [S]_{\mathcal{B},\mathcal{C}}.$$

TEOREMA

Sejam U e V espaços de dimensão finita com bases \mathcal{A} e \mathcal{B} , respectivamente. Dadas duas transformações lineares $T,S:U\to V$ e $\lambda,\mu\in\mathbb{R}$ vale que

$$[\lambda T + \mu S]_{\mathcal{A},\mathcal{B}} = \lambda [T]_{\mathcal{A},\mathcal{A}} + \mu [S]_{\mathcal{A},\mathcal{A}}$$

TEOREMA

Sejam U, V e W espaços de dimensão finita com bases A, B e C, respectivamente. Dadas duas transformações lineares $T: U \to V$ e $S: V \to W$ vale que

$$[T \circ S]_{\mathcal{A},\mathcal{C}} = [T]_{\mathcal{A},\mathcal{B}} \cdot [S]_{\mathcal{B},\mathcal{C}}.$$

TEOREMA

Sejam U e V espaços de dimensão finita com bases \mathcal{A} e \mathcal{B} . Se $T:U\to V$ é uma transformação linear inversível, então

$$[T^{-1}]_{\mathcal{B},\mathcal{A}} = [T]_{\mathcal{A},\mathcal{B}}^{-1}.$$

O ESPAÇO $\mathcal{L}(U,V)$

O ESPAÇO $\mathcal{L}(U, V)$

DEFINIÇÃO

Sejam U e V espaços vetoriais. Denotamos por $\mathcal{L}(U,V)$ o conjunto de todas as transformações lineares $T:U\to V$. Além disso, munimos $\mathcal{L}(U,V)$ com as seguintes operações:

$$(T+S): U \to V, (T+S)(u) = T(u) + S(u)$$

e

$$(\lambda T): U \to V, \ (\lambda T)(u) = \lambda T(u).$$

O ESPAÇO $\mathcal{L}(U, V)$

DEFINIÇÃO

Sejam U e V espaços vetoriais. Denotamos por $\mathcal{L}(U,V)$ o conjunto de todas as transformações lineares $T:U\to V$. Além disso, munimos $\mathcal{L}(U,V)$ com as seguintes operações:

$$(T + S) : U \to V, (T + S)(u) = T(u) + S(u)$$

e

$$(\lambda T): U \to V, \ (\lambda T)(u) = \lambda T(u).$$

TEOREMA

O conjunto $\mathcal{L}(U,V)$ é um espaço vetorial. Além disso, se U e V possuem dimensão finita, então fixadas \mathcal{A} e \mathcal{B} bases de U e V, então a aplicação

$$\Psi: \mathcal{L}(U,V) \to \mathbb{M}_{m \times n}, \text{ dada por } T \mapsto [T]_{\mathcal{A},\mathcal{B}}$$

é bijetiva.