Fundamentos de Matemática Elementar I

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

AULA 2 - 08/08/2023

Conjuntos e Demonstrações

George Cantor (1845-1918):

Chama-se **conjunto** o agrupamento num todo de objetos, bem definidos e discerníveis, de nossa percepção ou de nosso entendimento, chamados os elementos do conjunto.

George Cantor (1845-1918):

Chama-se **conjunto** o agrupamento num todo de objetos, bem definidos e discerníveis, de nossa percepção ou de nosso entendimento, chamados os elementos do conjunto.

Exemplo

(a) Os conjuntos numéricos:

$$\begin{split} \mathbb{N} &= \{1,2,3,\ldots\} \\ \mathbb{Z} &= \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} \\ \mathbb{Q} &= \{p/q;\ p,q \in \mathbb{Z},\ q \neq 0\} \\ \mathbb{I} &= \{\textit{n\'ameros irracionais}\} \\ \mathbb{R} &= \mathbb{Q} \cup \mathbb{I} \end{split}$$

- (b) Conjunto das funções polinomiais, das funções trigonométricas;
- (c) Gráficos de funções, Retas, planos, esferas.

► Tendo como base a definição dada por Cantor iremos sempre assumir o seguinte: um conjunto *A* é formado por seus elementos e iremos dizer qualquer um de seus elementos **pertence** a ele.

└Os símbolos ∈ e ∉

► Tendo como base a definição dada por Cantor iremos sempre assumir o seguinte: um conjunto *A* é formado por seus elementos e iremos dizer qualquer um de seus elementos **pertence** a ele.

NOTAÇÕES:

 $x \in A \doteq x$ é um elemento (ou pertence) ao conjunto A.

 $x \notin A \doteq x$ não é um elemento (ou não pertence) ao conjunto A.

└Os símbolos ∈ e ∉

► Tendo como base a definição dada por Cantor iremos sempre assumir o seguinte: um conjunto *A* é formado por seus elementos e iremos dizer qualquer um de seus elementos **pertence** a ele.

NOTAÇÕES:

 $x \in A \doteq x$ é um elemento (ou pertence) ao conjunto A.

 $x \notin A \doteq x$ não é um elemento (ou não pertence) ao conjunto A.

Neste ponto, defini-se o conjunto vazio, denotado por ∅, o qual não possui nenhum elemento.

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

└Os símbolos ∈ e ∉

Exemplo

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

- $ightharpoonup 1 \in A$;
- **▶** 1 ∉ *C*;

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 1 ∉ *C*;

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

 $ightharpoonup 1 \in B$;

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 9 ∈ *C*;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

 $ightharpoonup 1 \in B$;

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 9 ∈ *C*;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

 $1 \in B;$

▶ $10 \in C$;

Considere os conjuntos

$$A=\{1,2,7,9\},\ B=\{1,7\}\ \ e\ \ C=\{9,10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 9 ∈ *C*;

▶ 1 ∉ *C*;

ightharpoonup 7 \in *B*;

 $\bullet \quad 1 \in B;$

▶ $10 \in C$;

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

 $ightharpoonup 1 \in A$;

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 9 ∈ *C*;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

 $ightharpoonup 1 \in B$;

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

▶ 1 ∈ *A*:

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 9 ∈ *C*;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

 $ightharpoonup 1 \in B$;

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

 \triangleright 0 \in A:

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

▶ 1 ∈ *A*:

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 9 ∈ *C*;

▶ 1 ∉ *C*;

ightharpoonup 7 \in *B*;

 $\bullet \quad 1 \in B;$

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

- \triangleright 0 \in *A*;
- \triangleright 2 \in A:

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

▶ 1 ∈ *A*:

 $ightharpoonup 7 \in A$;

▶ 7 ∉ *C*;

▶ 9 ∈ *C*;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$;

 $ightharpoonup 1 \in B$;

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

 \triangleright 0 \in A;

▶ {1, 3, 7} ∈

 \triangleright 2 \in A:

A;

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

▶ 1 ∈ *A*:

 $ightharpoonup 7 \in A$:

▶ 7 ∉ *C*;

 \triangleright 9 \in C;

▶ 1 ∉ *C*;

▶ 7 ∈ B:

▶ 1 ∈ *B*:

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

 \triangleright 0 \in *A*;

▶ $\{1,3,7\}$ ∈ ▶ $1 \notin A$;

 \triangleright 2 \in A:

A;

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

▶ 1 ∈ *A*:

 $ightharpoonup 7 \in A$:

▶ 7 ∉ *C*;

 \triangleright 9 \in C;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$:

▶ 1 ∈ *B*:

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

 \triangleright 0 \in *A*;

▶ $\{1,3,7\}$ ∈ ▶ $1 \notin A$;

 \triangleright 2 \in A:

A;

▶ 3 ∉ *A*;

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

▶ 1 ∈ *A*:

 $ightharpoonup 7 \in A$:

▶ 7 ∉ *C*;

 \triangleright 9 \in C;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$:

 $ightharpoonup 1 \in B$;

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

 \triangleright 0 \in *A*;

▶ {1, 3, 7} ∈

▶ 1 ∉ *A*;

▶ 7 ∉ *A*;

 \triangleright 2 \in A:

A;

> 3 ∉ *A*;

Considere os conjuntos

$$A = \{1, 2, 7, 9\}, B = \{1, 7\} \ e \ C = \{9, 10\}.$$

▶ 1 ∈ *A*:

 $ightharpoonup 7 \in A$:

▶ 7 ∉ *C*;

 \triangleright 9 \in C;

▶ 1 ∉ *C*;

 $ightharpoonup 7 \in B$:

 $ightharpoonup 1 \in B$;

▶ $10 \in C$;

Exemplo

Considere o conjunto $A = \{0, 2, \{1, 3, 7\}\}$. Neste caso, temos o seguinte:

 \triangleright 0 \in *A*;

▶ {1, 3, 7} ∈

▶ 1 ∉ *A*;

▶ 7 ∉ *A*;

 \triangleright 2 \in A:

A;

> 3 ∉ *A*;

Definição

Sejam A e B dois conjuntos.

 (i) Dizemos que B é subconjunto de A quando todo elemento de B for elemento de A. Notação: B ⊂ A.

Definição

Sejam A e B dois conjuntos.

- (i) Dizemos que B é subconjunto de A quando todo elemento de B for elemento de A. Notação: B ⊂ A.
- (ii) Dizemos que B é subconjunto **próprio** de A quando $B \subset A$ e existe pelo menos um $x \in A$ tal que $x \notin B$. Notação: $B \subsetneq A$.

☐ Igualdade de Conjuntos

Definição

Sejam A e B dois conjuntos.

- (i) Dizemos que B é subconjunto de A quando todo elemento de B for elemento de A. Notação: B ⊂ A.
- (ii) Dizemos que B é subconjunto próprio de A quando B ⊂ A e existe pelo menos um x ∈ A tal que x ∉ B. Notação: B ⊆ A.
- (iii) Dizemos que os conjuntos A e B são iguais quando $A \subset B$ e $B \subset A$. Neste caso, escreve-se A = B. Em particular, escrevemos $A \subseteq B$ para indicar que A é subconjunto de B, ou igual a B.

Enfatizamos os seguintes fatos:

Enfatizamos os seguintes fatos:

 a) A definição de igualdade de conjuntos, apesar de ser muito intuitiva e, aparentemente, trivial fornece uma importante ferramenta para a demonstração de alguns resultados.

Enfatizamos os seguintes fatos:

- a) A definição de igualdade de conjuntos, apesar de ser muito intuitiva e, aparentemente, trivial fornece uma importante ferramenta para a demonstração de alguns resultados.
- b) Convém ressaltar que, tão importante quanto entender quando um conjunto *A* é subconjunto de um conjunto *B*, é entender quando essa propriedade falha:

Enfatizamos os seguintes fatos:

- a) A definição de igualdade de conjuntos, apesar de ser muito intuitiva e, aparentemente, trivial fornece uma importante ferramenta para a demonstração de alguns resultados.
- b) Convém ressaltar que, tão importante quanto entender quando um conjunto A é subconjunto de um conjunto B, é entender quando essa propriedade falha:

A não está contido em B, quando existe alguma elemento de A que não é elemento de B. Em símbolos:

$$A \not\subset B \doteq \exists x \in A; x \notin B.$$

Enfatizamos os seguintes fatos:

- a) A definição de igualdade de conjuntos, apesar de ser muito intuitiva e, aparentemente, trivial fornece uma importante ferramenta para a demonstração de alguns resultados.
- b) Convém ressaltar que, tão importante quanto entender quando um conjunto A é subconjunto de um conjunto B, é entender quando essa propriedade falha:

A não está contido em B, quando existe alguma elemento de A que não é elemento de B. Em símbolos:

$$A \not\subset B \doteq \exists x \in A; \ x \notin B.$$

c) Note que o conjunto vazio é subconjunto de qualquer outro conjunto.

Enfatizamos os seguintes fatos:

- a) A definição de igualdade de conjuntos, apesar de ser muito intuitiva e, aparentemente, trivial fornece uma importante ferramenta para a demonstração de alguns resultados.
- b) Convém ressaltar que, tão importante quanto entender quando um conjunto A é subconjunto de um conjunto B, é entender quando essa propriedade falha:

A não está contido em B, quando existe alguma elemento de A que não é elemento de B. Em símbolos:

$$A \not\subset B \doteq \exists x \in A; x \notin B.$$

- c) Note que o conjunto vazio é subconjunto de qualquer outro conjunto.
- d) Denotaremos por $\mathcal{P}(A)$ o conjunto formado por todos os subconjuntos de A.

Considerando o conjunto $A = \{0, 2, \{3, 7\}\}$ temos:

Considerando o conjunto $A = \{0, 2, \{3, 7\}\}$ temos:

 $ightharpoonup \emptyset \subset A;$

- \triangleright $\emptyset \subset A$;
- $\blacktriangleright \ \{0\} \subset A;$

- \triangleright $\emptyset \subset A$;
- $\blacktriangleright \{0\} \subset A;$
- \blacktriangleright {2} \subset *A*;

- \triangleright $\emptyset \subset A$;
- $\blacktriangleright \{0\} \subset A;$
- $\blacktriangleright \{2\} \subset A;$
- ▶ $\{\{3,7\}\}\subset A;$

Considerando o conjunto $A = \{0, 2, \{3, 7\}\}$ temos:

- \triangleright $\emptyset \subset A$;
- $\blacktriangleright \{0\} \subset A;$
- \blacktriangleright {2} \subset *A*;
- ► {{3,7}} *⊂ A*;

▶ $\{0,2\} \subset A;$

- \triangleright $\emptyset \subset A$;
- $\blacktriangleright \{0\} \subset A;$
- $\blacktriangleright \{2\} \subset A;$
- **▶** {{3,7}} *⊂ A*;

- $\blacktriangleright \{0,2\} \subset A;$
- ▶ $\{0, \{3, 7\}\} \subset A;$

- \triangleright $\emptyset \subset A$;
- $\blacktriangleright \{0\} \subset A;$
- $\blacktriangleright \{2\} \subset A;$
- ▶ $\{\{3,7\}\}\subset A;$

- ▶ $\{0,2\} \subset A$;
- ▶ $\{0, \{3, 7\}\} \subset A;$
- ▶ $\{2, \{3, 7\}\} \subset A;$

- \triangleright $\emptyset \subset A$;
- $\blacktriangleright \{0\} \subset A;$
- \blacktriangleright {2} \subset *A*;
- ▶ $\{\{3,7\}\}\subset A;$

- ▶ $\{0,2\} \subset A$;
- ▶ $\{0, \{3, 7\}\} \subset A;$
- ▶ $\{2, \{3, 7\}\} \subset A;$
- ▶ $\{0, 2, \{3, 7\}\} \subset A;$

Considerando o conjunto $A = \{0, 2, \{3, 7\}\}$ temos:

- \triangleright $\emptyset \subset A$:
- $\blacktriangleright \{0\} \subset A;$
- $\blacktriangleright \{2\} \subset A;$
- ▶ $\{\{3,7\}\}\subset A;$

- ▶ $\{0,2\} \subset A$;
- ▶ $\{0, \{3, 7\}\} \subset A;$
- ▶ $\{2, \{3, 7\}\} \subset A;$
- ▶ $\{0, 2, \{3, 7\}\} \subset A;$

PERGUNTA:

Se *A* possui *n* elementos, quantos elementos temos em $\mathcal{P}(A)$?

Sejam A e B dois conjuntos tais que $A \subseteq B$. Defini-se o complementar de A, com respeito ao conjunto B, como sendo o conjunto

$$A^{C} = B - A = B \setminus A = \{x \in B, \text{ tais que } x \notin A\}.$$

Sejam A e B dois conjuntos tais que $A \subseteq B$. Defini-se o complementar de A, com respeito ao conjunto B, como sendo o conjunto

$$A^{C} = B - A = B \setminus A = \{x \in B, \text{ tais que } x \notin A\}.$$

Exemplo

- Se $A = \{1, 2\}$ e $B = \{1, 2, 3, 4\}$, então $A^C = \{3, 4\}$.
- Se $A = \{1, 2\}$ e $B = \{1, 2\}$, então $A^C = \emptyset$.

Sejam A e B dois conjuntos. São definidos os seguintes conjuntos:

$$(Uni\tilde{a}o)\ A\cup B\doteq \{x;x\in A,\ ou\ x\in B\}.$$

Sejam A e B dois conjuntos. São definidos os seguintes conjuntos:

(União)
$$A \cup B \doteq \{x; x \in A, ou x \in B\}.$$

$$(Interse ç \tilde{a}o) \ A \cap B \doteq \{x; x \in A \ e \ x \in B\}.$$

Sejam A e B dois conjuntos. São definidos os seguintes conjuntos:

(União)
$$A \cup B \doteq \{x; x \in A, ou x \in B\}.$$

(Interseção)
$$A \cap B \doteq \{x; x \in A \ e \ x \in B\}.$$

Exemplo

Sejam A, B e C os conjuntos $A = \{1, 5, 7, 9\}$, $B = \{1, 7, 10\}$ e $C = \{8\}$.

 $A \cup B = \{1, 5, 7, 9, 10\};$

► $A \cap B = \{1, 7\}$;

 \triangleright $B \cup C = \{1, 7, 8, 10\};$

 $\blacktriangleright B \cap C = \emptyset;$

Teorema

As seguintes afirmações são verdadeiras para quaisquer subconjuntos $A,B\in C$ de um conjunto U.

(a)
$$(A \cap B) \subset A$$

(e)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

(b)
$$A \subset (A \cup B)$$

(f)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

(c)
$$A \subset B e B \subset C \Longrightarrow A \subset C$$

(g)
$$(A \cup B)^C = A^C \cap B^C$$

(d)
$$(A \cup B) = (A \cap B) \iff A = B$$

(h)
$$(A \cap B)^C = A^C \cup B^C$$

Teorema

As seguintes afirmações são verdadeiras para quaisquer subconjuntos $A,\,B\,e\,C\,$ de um conjunto U.

(a)
$$(A \cap B) \subset A$$

(e)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

(b)
$$A \subset (A \cup B)$$

(f)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

(c)
$$A \subset B e B \subset C \Longrightarrow A \subset C$$

(g)
$$(A \cup B)^C = A^C \cap B^C$$

(d)
$$(A \cup B) = (A \cap B) \iff A = B$$

(h)
$$(A \cap B)^C = A^C \cup B^C$$

Teorema

O número $\sqrt{2}$ é irracional.