MATE-7007 - Análise Funcional - Verão 2022 Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 1

1 Métricas

Exercício 1 Seja (M, d) um espaço métrico. Mostre as desigualdades

- 1. $|d(x,z) d(z,y)| \le d(x,y), \forall x, y, z \in M$.
- 2. $|d(x_1, y_1) d(x_2, y_2)| \le d(x_1, x_2) + d(y_1, y_2), \forall x_1, x_2, y_1, y_2 \in M$.

Exercício 2 Sejam (M,d) um espaço métrico e $A \subset M$ um subconjunto não-vazio. Defina a distância entre um ponto $x \in M$ e o conjunto A pondo

$$\delta(x, A) = \inf\{d(x, a); \ a \in A\}.$$

- (a) Se $\delta(x,A) = 0$, então $x \in A$?
- (b) Mostre que

$$|\delta(x,A) - \delta(y,A)| \le d(x,y), \ \forall x,y \in M;$$

(c) Mostre que

$$|d(x,z) - d(y,z)| \le d(x,y), \ \forall x,y,z \in M.$$

O que isso quer dizer geometricamente?

Exercício 3 Sejam (M_1, d_1) , (M_2, d_2) espaços métricos.

(a) Mostre que a função

$$d(x,y) = \sqrt{d_1(x_1,y_1)^2 + d_2(x_2,y_2)^2},$$

para $x=(x_1,x_2),\ y=(y_1,y_2),\ \acute{e}\ uma\ m\'{e}trica\ em\ M=M_1\times M_2.$

(b) Identificando \mathbb{C} como produto cartesiano do conjunto de números reais e mostre que d(z, w) = |z - w| (módulo de uma diferença de números complexos) é uma métrica em \mathbb{C} .

Exercício 4 Seja $\mathcal{R}[a,b]$ o conjunto das funções reais Rieamann integráveis definidas no intervalo [a,b]. Dadas $f,g \in \mathcal{R}[a,b]$ ponha

$$d(f,g) = \int_a^b |f(x) - g(x)| dx. \tag{1}$$

- (a) Mostre que (4) não define uma métrica.
- (b) Qual hipótese poderia ser adicionada as funções de $\mathcal{R}[a,b]$ para tornar (4) uma métrica?

(c) Mostre que a relação

$$f \sim g \doteq d(f, g) = 0. \tag{2}$$

é uma relação de equivalência.

(d) Com respeito a relação definida em (3) considere o espaço quociente $N = \mathcal{R}[a,b]/\sim$. Os elementos de N são as classes de equivalências

$$[f] = \{ h \in \mathcal{R}[a, b]; \ d(f, h) = 0 \}.$$

Mostre que a relação $D: N \times N \to \mathbb{R}$ dada por

$$D([f], [g]) = d(f, g), \ f \in [f] \ e \ g \in [g], \tag{3}$$

define uma métrica no espaço quociente $N=M/\sim$. (Não esqueça de provar que, de fato, D é uma função!)

Exercício 5 Uma função $f: M \to N$ entre espaços métricos é dita uma imersão isométrica se

$$d_N(f(x), f(y)) = d_M(x, y), \ \forall x, y \in M.$$

Uma isometria é uma imersão sobrejetiva.

- (a) Mostre que uma imersão isométrica é necessariamente injetiva;
- (b) Mostre que qualquer imersão isométrica define uma isometria $f: M \to f(M)$;
- (c) Sejam (M, d_M) um espaço métrico, X um conjunto e $f: X \to M$ uma função injetiva. Mostre que a expressão

$$d_f(x,y) \doteq d_M(f(x),f(y))$$

define uma métrica em X.

- (d) Fixados $a, u \in \mathbb{R}^n$, com ||u|| = 1, mostre que a aplicação $f : \mathbb{R} \to \mathbb{R}^n$ dada por f(t) = a + tu é uma imersão isométrica. (Considere uma métrica no espaço \mathbb{R}^n induzido por uma norma qualquer).
- (e) Seja \mathbb{R}^{∞} o espaço vetorial formado pelas sequências $x=(x_1,x_2,\ldots)$ com apenas um número finito de termos $x_k \neq 0$. Defina em \mathbb{R}^{∞} o produto itnerno $\langle x,y \rangle = \sum_j x_j y_j$. Mostre que a transformação linear $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ dada por

$$T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$$

é uma imersão isométrica mas não é uma isometria;

Exercício 6 Seja $\Delta = \{(x,x); x \in M\}$ a diagonal do produto $M \times M$, onde M é um espaço métrico. Mostre que, se $z = (x,y) \notin \Delta$, então $\delta(z,\Delta) > 0$.

Exercício 7 Seja $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1}; |x| = 1\}$ a esfera unitária n-dimensional. O espaço projetivo de dimensão n é o conjunto \mathbb{P}^n cujos elementos são os pares não-ordenados $[x] = \{x, -x\}$, com $x \in \mathbb{S}^n$.

- (i) Mostre que [x] = [y] se, e somente se, y = -x.
- (ii) Mostre que

$$d([x], [y]) = \min\{|x - y|, |x + y|\}$$

define uma métrica sobre \mathbb{P}^n ;

(iii) Mostre que a aplicação natural $\pi: \mathbb{S}^n \to \mathbb{P}^n$, dada por $\pi(x) = [x]$, cumpre a condição

$$d(\pi(x), \pi(y)) \le d(x, y).$$

Exercício 8 Uma pseudométrica num conjunto M é uma função real $p: M \times M \to \mathbb{R}$ tal que

$$p(x,x) = 0, \ p(x,y) = p(y,x) \ge 0 \ e \ p(x,z) \le p(x,y) + p(y,z),$$

para quaisquer $x, y, z \in M$.

(a) Sejam p uma pseudométrica num conjunto M e dois pontos $x,y \in M$. Mostre que a seguinte relação é de equivalência:

$$x \sim y \doteq p(x, y) = 0. \tag{4}$$

(b) Com respeito a relação definida em (4) considere o espaço quociente $N=M/\sim$. Os elementos de N são os conjuntos $[x] \subset M$, com $x \in M$, definidos por

$$[x] = \{t \in M; \ p(x,t) = 0\}.$$

Mostre que a expessão

$$d([x], [y]) = p(x, y), x \in [x] \ e \ y \in [y],$$

define uma métrica no espaço quociente $N=M/\sim$. (Não esqueça de provar que, de fato, d é uma função $d:N\times N\to\mathbb{R}$.)

2 Espaços normados

Exercício 9 Seja (V, d) um espaço métrico no qual V é um espaço vetorial satisfazendo as seguintes propriedades

- 1. $d(\alpha x, \alpha y) = |\alpha| d(x, y)$, para todo $x, y \in V$ e escalares α ,
- 2. d(x+z,y+z) = d(x,y), para todo $x,y,z \in V$.

Mostre que d é uma métrica induzida por alguma norma em V, isto é, existe uma norma, $\|\cdot\|$ em V tal que

$$d(x,y) = ||x - y||, \quad \forall x, y \in V.$$

Exercício 10 Seja $(\mathcal{N}, \|\cdot\|)$ um espaço normado.

- (a) Mostre que a aplicação $d_0(x,y) := \sqrt{\|x-y\|}$ é uma métrica em \mathcal{N} .
- (b) A aplicação $||x||_0 := \sqrt{||x||}$ é uma norma em \mathcal{N} ?
- (c) A aplicação $d_2(x,y) = \|x-y\|^2$ é uma métrica em X? Justifique sua resposta.

Exercício 11 Seja $(\mathcal{N}, \|\cdot\|)$ um espaço normado. Mostre que vale a desigualdade

$$|||x|| - ||y||| \le ||x - y||, \quad \forall x, y \in \mathcal{N}.$$

Exercício 12 Seja $(\mathcal{N}, \|\cdot\|)$ um espaço normado no qual \mathcal{N} tem dimensão finita. Mostre que:

(a) Todas as normas em \mathcal{N} são equivalentes .

- (b) $(\mathcal{N}, \|\cdot\|)$ é Banach.
- (c) Um conjunto é compacto se, e somente se, é limitado e fechado.

Exercício 13 Dizemos que duas normas $\|\cdot\|_0$ e $\|\cdot\|_1$ são equivalentes num espaço vetorial $\mathbb X$ se existem constantes positivas c_1, c_2 tal que

$$c_1 ||x||_0 \le ||x||_1 \le c_2 ||x||_0, \quad \forall x \in \mathbb{X}.$$

Para $1 \leq p < q \leq \infty$, mostre que as normas $\|\cdot\|_p$ e $\|\cdot\|_q$ são equivalentes no espaço \mathbb{R}^n .

3 Espaços com produto interno

Exercício 14 Sejam $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ um espaço com produto interno e $\{x_n\}$ e $\{y_n\}$ duas sequências em \mathcal{V} que convergem para x e y, respectivamente. Mostre que

$$\lim_{n \to \infty} \langle x_n, y_n \rangle = \langle x, y \rangle.$$

Exercício 15 Seja $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ um espaço com produto interno.

- (a) Se x e y são ambos não nulos e $x \perp y$, então $\{x,y\}$ é l.i.
- (b) Se $x \perp y$, para todo $y \in \mathcal{V}$, então x = 0.
- (c) Se $x \perp y$, então $||x + y||^2 = ||x||^2 + ||y||^2$.
- (d) Seja $\{x_n\}$ uma sequência em \mathcal{V} convergindo para x tal que $x_n \perp y$, para todo n. Mostre que $x \perp y$.
- (e) Temos $x \perp y$ se, e somente se,

$$||x + ty|| > ||x||, \ \forall t \in \mathbb{K}.$$

Exercício 16 Seja $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ um espaço com produto interno. Mostre a validade da identidade de polarização:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2), \text{ se } \mathbb{K} = \mathbb{R}$$

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right), \quad se \quad \mathbb{K} = \mathbb{C}.$$

Exercício 17 Um semi-produto interno num espaço vetorial V é uma função $f: V \times V \to \mathbb{K}$ tal que

- (i) f(u+v,w) = f(u,w) + f(v,w);
- (iii) $f(u,w) = \overline{f(v,u)};$

(ii) $f(\lambda u, w) = \lambda f(u, v)$;

- (v) $f(u,u) \geqslant 0$:
- (a) Mostre que $\mathcal{N} = \{x \in V; \ f(x,x) = 0\}$ é um subespaço vetorial;
- (b) Mostre que

$$p([x], [y]) = f(x, y), x \in [x], y \in [y],$$

define um produto interno no quociente V/\mathcal{N} ;

Exercício 18 Considere $T:(V,<\cdot,\cdot>)\to (V,<\cdot,\cdot>)$ uma transformação linear.

- (a) Mostre que T é continua sem $x \in V$ se, e somente se é continua em x = 0.
- (b) Se < Tx, x >= 0, para todo $x \in V$ então podemos garantir T = 0? Em caso de resposta negativa, adicione suponha T contínua e faça a mesma pertunga. (Neste caso vai fazer diferneção a escolha $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

Exercício 19 Seja V um espaço vetorial com produto interno. Mostre que se $\langle x, z \rangle = \langle y, z \rangle$, para todo z, então o x = y.

Exercício 20 Seja V um espaço vetorial com produto interno. Mostre que

$$||x|| = \max_{\|y\|=1} |\langle x, y \rangle|.$$

Exercício 21 Mostre que, num espaço com produto interno, a condição ||x|| = ||y|| implica que os vetores x + y e x - y são ortogonais.

Exercício 22 Considere a seguinte função definida em $\mathbb{C} \times \mathbb{C}$:

$$(z, w) \mapsto \langle z, w \rangle_1 \doteq z\overline{w}.$$

- (a) Mostre que $\langle z, w \rangle_1$ define um produto interno em \mathbb{C} . Mais ainda, obtemos a métrica usual.
- (b) Para quais condições obtemos ortogonalidade?

Exercício 23 Considere o espaço C[-1,1] com o produto interno $\langle f,g\rangle == \int_{-1}^{1} f(x)g(x)dx$. Considere os subespaços de funções pares e impares respectivamente

$$A = \{ f \in C[-1,1] : f(-x) = f(x) \} \quad e \quad B = \{ f \in C[-1,1] : f(-x) = -f(x) \}.$$

Mostre que $A \perp B$ e que $C[-1,1] = A \oplus B$.

4 Topologia

Exercício 24 Mostre que normas equivalentes num espaço vetorial induzem a mesma topologia, isto é, se um conjunto é aberto com uma norma também será aberto com uma norma equivalente.

Exercício 25 Seja V um espaço vetorial com produto interno. Considere um vetor $y \in V$ e $\{x_n\}$ uma sequência em V. Mostre que se $x_n \perp y$, para cada $n \in \mathbb{N}$, e $x_n \to x \in V$, então $x \perp y$.

Exercício 26 Sejam V um \mathbb{C} espaço vetorial com produto interno e $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ duas sequências convergentes em V (com respeito a norma induzida). Mostre que a sequência $\{\langle x_n, y_n \rangle\}_{n\in\mathbb{N}}$ é convergente em \mathbb{C} . (o mesmo vale para $\mathbb{K} = \mathbb{R}$)

Exercício 27 Seja A um subconjunto do espaço métrico \mathbb{X} . Um ponto $x_0 \in \mathbb{X}$ é dito ponto de acumulação de A se para todo $\epsilon > 0$, temos que

$$A \cap (B_{\epsilon}(x_0) \setminus \{x_0\}) \neq \emptyset.$$

Neste caso, mostre que $B_{\epsilon}(x_0)$ tem infinitos elementos de A.

Exercício 28 Sejam A um subconjunto do espaço métrico (X,d). Mostre que A é aberto, se e somente se, para toda sequência (x_n) em X que converge a algum ponto de A existe $n_0 \in \mathbb{N}$ tal que $x_n \in A$ para todo $n \geq n_0$.

Exercício 29 Considere M um espaço métrico e A, F subconjuntos de M. Mostre que:

- (a) $p \in \overline{A}$ se, e somente se, existe $\{x_n\}_{n \in \mathbb{N}} \subset A$ tal que $x_n \to p$;
- (b) $F \subset M$ é fechado se, e somente se, $\overline{F} = F$;
- (c) $p \in A'$ se, e somente se, existe $\{x_n\}_{n \in \mathbb{N}} \subset A$ tal que $x_n \neq p$, $\forall n \in \mathbb{N}$, e $x_n \to p$.

Exercício 30 Seja (M,d) um espaço métrico. Mostre que:

- (a) Os conjuntos M e Ø são fechados.
- (b) A interseção de uma coleção arbitrária de conjuntos fechados é um conjunto fechado.
- (c) A união de um número finito de conjuntos fechados é fechado.

Exercício 31 Seja \mathbb{X} um espaço métrico e $Z \subseteq \mathbb{X}$.

- (a) Se \mathbb{X} é compacto, mostre que Z é compacto se, e somente se, é fechado.
- (b) Se X é completo, mostre que Z é completo se, e somente se, é fechado.

Exercício 32 Considere os seguintes subespaços vetoriais de ℓ^{∞} : $\ell_0^{\infty} = \{(x_n) : x_n \to 0\}$, e

 $W = \{(x_n) : tem \ somente \ um \ número \ finito \ de \ coordenadas \ não \ nulas\}.$

Mostre que ℓ_0^{∞} é completo enquanto W não é.

Exercício 33 Considere a função $f: \mathbb{X} \to \mathbb{X}$, onde \mathbb{X} é um espaço métrico completo. Defina $f^n := f(f^{n-1})$ e mostre que, se f^n é uma contração para algum $n \in \mathbb{N}$, então f tem um único ponto fixo. Use este fato para mostrar que o problema de valor inicial

$$\frac{dx}{dt} = Ax + b, \quad x(t_0) = x_0$$

onde A é uma matriz real $n \times n$, $b, x_0 \in \mathbb{R}^n$, tem uma única solução contínua $x : \mathbb{R} \to \mathbb{R}^n$.

Exercício 34 Sejam X_1 , X_2 , espaços isométricos. Mostre que X_1 é completo se, e somente se, X_2 é completo.

Exercício 35 Seja (X,d) um espaço métrico e $A\subseteq X$. Mostre que $x\in \bar{A}$ se e somente se

$$\inf_{y \in A} d(x, y) = 0.$$

Exercício 36 Seja (X,d) um espaço métrico. Um ponto x_0 se diz um ponto de fronteira de $A \subseteq X$ se

$$A \cap B_{\epsilon}(x_0) \neq \emptyset$$
 $e \ A^c \cap B_{\epsilon}(x_0) \neq \emptyset$, $\forall \epsilon > 0$

O conjunto de pontos de fronteira de um conjunto A é denotado por ∂A .

- (a) Mostre que $\partial A = \overline{A} \cap \overline{A^c}$.
- (b) Encontre a fronteira dos subconjuntos [0,1], \mathbb{Q} , $[0,\infty[$ $e \mathbb{R}$ no espaço \mathbb{R} .
- (c) Encontre a fronteira do subconjunto $\{\rho e^{i\theta}: 0 < \rho < 1, \ \theta \in \mathbb{R}\}$ no espaço \mathbb{C} .

Exercício 37 Seja $\|\cdot\|$ uma seminorma no espaço vetorial $\mathbb X$ (isto é, $\|x\|=0$ não implica necessariamente em x=0). Vejamos que podemos reformular o espaço $\mathbb X$ para que a seminorma se torne uma norma. Para $x,y\in\mathbb X$ escrevemos

$$x \sim y$$
 se $||x - y|| = 0$.

- 1. Mostre que "~" é uma relação de equivalência.
- 2. Considere o conjunto $\widetilde{\mathbb{X}}$ de todas as classes de equivalência $[x], x \in \mathbb{X}$. Mostre que as operações

$$[x] + [y] := [x + y], \quad \lambda[x] := [\lambda x], \ (\lambda \ escalar)$$

estão bem definidas, isto é, o resultado independe dos representantes de cada classe, e com estas operações, mostre que $\widetilde{\mathbb{X}}$ é um espaço vetorial.

- 3. Se definimos ||[x]|| := ||x||, $x \in \mathbb{X}$, mostre que esta função bem definida e é uma norma em $\widetilde{\mathbb{X}}$. Desta forma, por simplicidade denotamos [x] por seu representante x (que equivale a denotar $\widetilde{\mathbb{X}}$ por \mathbb{X}), então podemos dizer que a seminorma se torna uma norma em \mathbb{X} .
- 4. Aplique os itens anteriores para que a seminorma

$$||f|| = \int_a^b |f(x)| dx.$$

se torne uma norma em $\mathcal{R}(a,b)$.

5 Continuidade

Exercício 38 Sejam M e N espaços métricos e $f: M \to N$ uma função. Mostre que f é contínua em $p \in M$ se, e somente se, para toda sequência $\{x_n\}$ em M que converge para p tem-se que $\{f(x_n)\}$ converge para f(p) em N.

Exercício 39 Mostre que toda métrica $d: M \times M \to \mathbb{R}$ e toda norma $\|\cdot\|: \mathcal{N} \to \mathbb{R}$ são funções contínuas.

Exercício 40 Mostre que a imagem de um conjunto aberto de uma função contínua não é necessariamente aberto.

Exercício 41 Mostre que a função (entre espaços métricos) $f: (\mathbb{X}, d_X) \to (\mathbb{Y}, d_{\mathbb{Y}})$ é contínua se, e somente se, $f^{-1}(F) := \{x \in \mathbb{X} : f(x) \in F\}$ é um conjunto fechado em \mathbb{X} para todo conjunto fechado F de \mathbb{Y} .

Exercício 42 Mostre que o gráfico de uma função contínua $f: M \to N$, entre espaços métricos, é homeomorfo ao domínio de f. (Siga os passos abaixo)

- (a) pondo $G(f) = \{(x, f(x)); x \in M\} \subset M \times N \text{ considere a função } \widehat{f}(x) = (x, f(x));$
- (b) obtenha a inversa de \hat{f} ;

Como aplicação, mostre que $\mathbb{R}\setminus\{0\}$ é homeomorfo à hipérbole $H=\{(x,y)\in\mathbb{R}^2;\ xy=1\}.$

Exercício 43 Sejam X e Y dois espaços topológicos. Mostre que as projeções $\pi_X: X \times Y \to X$ e $\pi_Y: X \times Y \to Y$ são abertas;

Exercício 44 Sejam M, N espaços métricos e $f, g: M \to N$ duas funções.

- (a) Se ambas são contínuas num ponto $a \in M$ e $f(a) \neq g(a)$. Mostre que existe uma bola aberta B, de centro a, tal que $f(B) \cap g(B) = \emptyset$. Em particular, se $x \in B$ então $f(x) \neq g(x)$.
- (b) Suponha que f e g são contínuas em M. Dado $a \in M$ suponha que toda bola de cetrro a contenha um ponto x tal que f(x) = g(x). Mostre que f(a) = g(a). Usando este fato, mostre que $f, g : \mathbb{R} \to \mathbb{R}$ são contínuas e f(x) = g(x) para todo x racional, então f = g.

Exercício 45 Sejam \mathbb{X} , \mathbb{Y} espaços métricos e $f: \mathbb{X} \to \mathbb{Y}$ uma função contínua.

- 1. Se \mathbb{X} é compacto, mostre que f é uniformemente contínua, isto é, para cada $\epsilon > 0$ é possível encontrar $\delta > 0$ tal que $d_{\mathbb{Y}}(f(x_1), f(x_2)) < \epsilon$ para todo $x_1, x_2 \in \mathbb{X}$ tal que $d_{\mathbb{X}}(x_1, x_2) < \delta$.
- 2. Se \mathbb{X} é compacto e f bijetiva, mostre que f^{-1} é contínua.

Exercício 46 Um espaço vetorial topológico sobre $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ é um espaço topológico V com uma estrutura de espaço vetorial sobre \mathbb{K} tal que $\{0\}$ é um conjunto fechado (na topologia) tal que as operações

$$(\lambda, x) \mapsto \lambda x \quad e \quad (x, y) \mapsto x + y$$

são contínuas como funções

$$\mathbb{K} \times V \to V \ e \quad e \ V \times V \to V.$$

- (a) Mostre que todo espaço vetorial topológico é Hausdorff.
- (b) Seja V um espaço vetorial topológico sobre \mathbb{C} . Mostre que uma aplicação linear $f:\mathbb{C}^n \to V$ é necessariamente contínua.

Exercício 47 Um grupo metrizável é um espaço métrico G munido de uma estrutura de grupo tal que as operações

$$m: G \times G \to G, \ m(x,y) = x \cdot y \ e \ f: G \to G, \ f(x) = x^{-1}$$

são contínuas. Prove as sequintes afirmações:

(a) Seja G um espaço métrico com estrutura de grupo. G é um grupo metrizável se, e somente se, a aplicação

$$q: G \times G \to G, \ q(x,y) = x \cdot y^{-1}$$

é contínua.

- (b) São grupos metrizáveis: o grupo aditivo de um espaço vetorial normado (em particular \mathbb{R}^n), o grupo aditivo \mathbb{S}^1 dos complexos de módulo 1 e o grupo das matrizes reais $n \times n$ invertíveis.
- (c) Sejam G e H grupos metrizáveis. Um homomorfismo $f:G\to H$ é contínuo se, e somente se, é contínuo no elementro neutro $e\in G$.