MATE-7007 Análise Funcional - Verão 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

10 DE JANEIRO

Aula de hoje:

- Espaço métrico
- Espaço normado
- Espaço com produto interno

MÉTRICA

DEFINIÇÃO (MÉTRICA)

Seja M um conjunto. Uma métrica (ou distância) em M é uma função $d: M \times M \to \mathbb{R}$ que satisfaz os seguintes axiomas:

- (D1) $d(x, y) \ge 0, \forall x, y \in M$.
- (D2) $d(x, y) = 0 \iff x = y$.
- (D3) d(x, y) = d(y, x) para todo $x, y \in M$. (Simetria)
- (D4) $d(x,y) \le d(x,z) + d(z,y)$ para todo $x,y,z \in M$. (Designaldade Triangular)
 - Um conjunto M munido de uma métrica d é chamado de Espaço Métrico e quando seja necessário este será denotado por (M, d).
 - Se consideramos num conjunto M duas métricas, digamos d_1 e d_2 , então teremos dois espaços métricos $M_1 = (M, d_1)$ e $M_2 = (M, d_2)$.
 - Se (M, d) é um espaço métrico e X ⊂ M é um subconjunto, então podemos considerar o espaço métrico (X, d), sendo d a restrição de d ao conjunto X × X. (Dizemos que d é a métrica induzida por d).

EXEMPLOS (TRIVIAIS)

• Dado um conjunto $M \neq \emptyset$ temos a seguinte métrica (discreta, ou 0-1):

$$d(x,y) = \begin{cases} 1, & \text{se } x \neq y, \\ 0, & \text{se } x = y. \end{cases}$$

Este é um exemplo bastante trivial, mas muito útil para contra-exemplos

• Em \mathbb{R} temos a métrica (usual) d(x, y) = |x - y|.

EXEMPLO (ESPAÇO EUCLIDIANO)

• Considere \mathbb{R}^n com sua estrutura natural de espaço vetorial real e assuma fixada a base canônica. Dados $x, y \in \mathbb{R}^n$, escreveremos

$$x = (x_1, \ldots, x_n)$$
 e $y = (y_1, \ldots, y_n)$.

Em \mathbb{R}^n temos as seguintes métricas:

$$d(x,y) = \left[\sum_{j=1}^{n} (x_j - y_j)^2\right]^{1/2}, \ d_s(x,y) = \sum_{j=1}^{n} |x_j - y_j| \ \text{e} \ d_{\infty}(x,y) = \max_{1 \le j \le n} |x_j - y_j|.$$

Exercício: Mostre que dados quaisquer $x, y \in \mathbb{R}^n$ vale a desigualdade

$$d_{\infty}(x, y) \le d(x, y) \le d_s(x, y) \le nd_{\infty}(x, y).$$

EXEMPLO (FUNÇÕES LIMITADAS)

• Sejam X um conjunto arbitrário e $f:X\to\mathbb{R}$ uma função. Dizemos que f é limitada se existe $K\ge 0$ tal que

$$|f(x)| \le K, \ \forall x \in X.$$

O conjunto das funções limitadas de X em \mathbb{R} será denotado por $\mathscr{B}(X;\mathbb{R})$.

Uma métrica em $\mathscr{B}(X;\mathbb{R})$

A função $d: \mathscr{B}(X;\mathbb{R}) \times \mathscr{B}(X;\mathbb{R}) \to \mathbb{R}$ definida por

$$d(f,g) = \sup_{x \in X} |f(x) - g(x)|$$

define uma métrica em $\mathcal{B}(X;\mathbb{R})$, chamada de *métrica da convergência uniforme*.

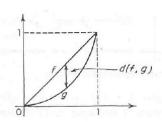
EXEMPLO (FUNÇÕES CONTÍNUAS)

- Sejam $[a,b] \subset \mathbb{R}$ um intervalo e $\mathcal{C}[a,b]$ o espaço das funções contínuas $f:[a,b] \to \mathbb{R}$.
- Note que C[a,b] é um subconjunto (subespaço) de $\mathscr{B}([a,b];\mathbb{R})$. Assim, temos em C[a,b] a métrica

$$d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|.$$

EXEMPLO

Considerando o intervalo [0,1] e as funções f(x) = x e $g(x) = x^2$ temos d(f,g) = 1/4.



◆ロト ◆部ト ◆注 > ◆注 > ・注 ・ から(

EXEMPLO (ESPAÇOS DE SEQUÊNCIAS)

• Considere $S = \{x = \{x_j\}_{j \in \mathbb{N}}; x_j \in \mathbb{C}\}$ o espaço das sequências numéricas.

 $\operatorname{Em} \mathcal{S}$ temos a métrica

$$d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|x_j - y_j|}{1 + |x_j - y_j|}.$$

NORMAS

Ao longo do curso iremos considerar espaços vetoriais sobre um corpo de escalares K (R ou C). A menos de menção contrária, sempre iremos considerar C.

DEFINIÇÃO (NORMA)

Uma norma num espaço vetorial V é uma função $\|\cdot\|:V\to\mathbb{R}$ que satisfaz as seguintes propriedades:

- (N1) $||x|| \ge 0$, $\forall x \in V$, valendo a igualdade se, e somente se, x = 0.
- (N2) $\|\lambda \cdot x\| = |\lambda| \|x\|$, para todo $\lambda \in \mathbb{K}$ e para todo $x \in V$;
- (N3) $||x + y|| < ||x|| + ||y||, \forall x, y \in V.$
- O par $(V, ||\cdot||)$ é dito ser um *espaço normado*.
- Se $(V, \|\cdot\|)$ é um espaço normado e W é um subespaço vetorial de V, então temos o espaço normado $(W, \|\cdot\|_W)$, sendo $\|\cdot\|_W$ a restrição de $\|\cdot\|$ sobre W.
- Exercício: Num espaço normado $(V, \|\cdot\|)$ tem-se a métrica (induzida por $\|\cdot\|$):

$$d(x,y) = ||x - y||_{\mathcal{N}}$$

DESIGUALDADE DE HÖLDER

Sejam $\{a_n\}$ e $\{b_n\}$ sequências de números reais não negativos tais que

$$\sum_{n=1}^{\infty} a_n^p < \infty, \quad \text{e} \quad \sum_{n=1}^{\infty} b_n^q < \infty,$$

sendo $1 < p, q < \infty$ com $\frac{1}{p} + \frac{1}{q} = 1$. Então,

$$\sum_{n=1}^{\infty} a_n b_n \le \left(\sum_{n=1}^{\infty} a_n^p\right)^{1/p} \left(\sum_{n=1}^{\infty} b_n^q\right)^{1/q}$$

DESIGUALDADE DE MINKOWSKI

Sejam $p \ge 1$ um número real, $\{a_n\}$ e $\{b_n\}$ sequências de números reais não negativos tais que

$$\sum_{n=1}^{\infty} a_n^p < \infty \ \text{e} \ \sum_{n=1}^{\infty} b_n^p < \infty.$$

Então,

$$\left(\sum_{n=1}^{\infty} (a_n + b_n)^p\right)^{1/p} \le \left(\sum_{n=1}^{\infty} a_n^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} b_n^p\right)^{1/p}.$$

EXEMPLOS (BÁSICOS)

• Em \mathbb{R}^n (ou \mathbb{C}^n) temos as seguintes métricas:

$$||x||_p = \left[\sum_{j=1}^n |x_j|^p\right]^{1/p}, (p \ge 1), ||x||_s = \sum_{j=1}^n |x_j| e ||x||_\infty = \max_{1 \le j \le n} |x_j|.$$

• No espaço das funções contínuas C[a, b] temos a norma

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

• Se denotarmos por $\mathcal{R}[a,b]$ o espaço das funções Riemann integráveis $f:[a,b]\to\mathbb{R}$, então a aplicação

$$f \mapsto \int_{a}^{b} |f(t)| dt$$

não define uma norma em $\mathcal{R}[a,b]$.

EXEMPLOS (ESPAÇOS DE SEQUÊNCIAS)

OS ESPAÇOS ℓ^p

Seja $1 \le p < \infty$ fixado e considere o conjunto

$$\ell^p = \left\{ x = \left\{ x_n \right\} \in \mathcal{S} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}.$$

• Em ℓ^p temos a norma

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}.$$

O ESPAÇO ℓ^{∞}

Considere o subespaço vetorial

$$\ell^{\infty} = \{x = \{x_n\} \in \mathcal{S}; \{x_n\} \text{ \'e limitada}\}$$

• Em ℓ^{∞} temos a norma

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|.$$

DEFINIÇÃO (PRODUTO INTERNO)

Seja $\mathcal V$ um espaço vetorial sobre o corpo de escalares $\mathbb K$ ($\mathbb K=\mathbb R$ ou $\mathbb C$). Um produto interno em $\mathcal V$ é uma função $\langle \cdot,\cdot \rangle: \mathcal V \times \mathcal V \to \mathbb K$ que satisfaz as seguintes propriedades:

- (P1) $\langle x, x \rangle \neq 0$, para todo $x \neq 0$,
- (P2) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ para todo $x, y \in \mathcal{V}$,
- (P3) $\langle \alpha x + y, z \rangle = \alpha \langle x, y \rangle + \langle y, w \rangle$, para todo $x, y, z \in \mathcal{V}$ e todo $\alpha \in \mathbb{K}$.

Um espaço vetorial $\mathcal V$ munido de um produto interno $\langle\cdot,\cdot\rangle$ é chamado de *Espaço com produto interno* e quando necessário usaremos a notação $(\mathcal V,\langle\cdot,\cdot\rangle)$.

• Note que $\langle x, 0 \rangle = \langle 0, y \rangle = 0$, para todo $x, y \in \mathcal{V}$. Em particular,

$$\langle x, x \rangle = 0 \Longleftrightarrow x = 0.$$

Exercício: É verdade que $\langle x, y \rangle = 0$ implica em x = y?

EXEMPLOS

• Em C[a, b] temos o produto interno

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx$$

• Em \mathbb{K}^n ($\mathbb{K} = \mathbb{C}$ ou \mathbb{R}) temos o produto interno

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}.$$

Em

$$\ell^2 = \left\{ x = \{x_n\} \in \mathcal{S} : \sum_{n=1}^{\infty} |x_n|^2 < \infty \right\}$$

temos o produto interno

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}.$$

ALGUMAS OBSERVAÇÕES

TEOREMA

Seja $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ um espaço com produto interno. Para cada $x \in \mathcal{V}$ considere o número real

$$||x|| = \sqrt{\langle x, x \rangle}.$$

- (a) Vale a desigualdade (Cauchy-Schwarz) $|\langle x,y\rangle| \le ||x|| \, ||y||$, para todo $x,y \in \mathcal{V}$. A igualdade é válida se, e somente se, $\{x,y\}$ é l.d.
- (b) $||x + y|| \le ||x|| + ||y||$, para todo $x, y \in \mathcal{V}$. A igualdade é válida se, e somente se, x = 0 ou x = ty, para algum $t \ge 0$.
- (c) A função $x \mapsto \sqrt{\langle x, x \rangle}, x \in \mathcal{V}$, define uma norma (induzida) em \mathcal{V} .
 - Em (V, ⟨·,·⟩) sempre iremos considerar (a menos de menção contrária) a norma induzida.
- Dizemos que dois vetores $x, y \in \mathcal{V}$ são ortogonais se $\langle x, y \rangle = 0$. Neste caso, utilizaremos a notação $x \perp y$.

LEI DO PARALELOGRAMO

TEOREMA

A norma $\|\cdot\|$ num espaço normado $\mathcal N$ é induzida por um produto interno se, e somente se, ela satisfaz a identidade

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2, \ \forall x, y \in \mathcal{N}.$$

APLICAÇÃO:

- A norma em ℓ^p provem de um produto interno se, e somente se, p=2.
- A norma $\|\cdot\|_p$ em \mathbb{K}^n provem de um produto interno se, e somente se, p=2.
- A norma do sup em C[-1,1] não provém de um produto interno.