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Preface

This book provides an introduction both to real analysis and to a range of important
applications that depend on this material. Three-fifths of the book is a series of
essentially independent chapters covering topics from Fourier series and polynomial
approximation to discrete dynamical systems and convex optimization. Studying
these applications can, we believe, both improve understanding of real analysis and
prepare for more intensive work in each topic. There is enough material to allow a
choice of applications and to support courses at a variety of levels.

This book is a substantial revision of Real Analysis with Real Applications, which
was published in 2001 by Prentice Hall. The major change in this version is a greater
emphasis on the latter part of the book, focussed on applications. A few of these
chapters would make a good second course in real analysis through the optic of one
or more applied areas. Any single chapter can be used for a senior seminar.

The first part of the book contains the core results of a first course in real analysis.
This background is essential to understanding the applications. In particular, the
notions of limit and approximation are two sides of the same coin, and this interplay
is central to the whole book. Several topics not needed for the applications are not
included in the book but are available online, at both this book’s official website
www.springer.com/978-0-387-98097-3 and our own personal websites,
www.math.uwaterloo.ca/~krdavids/ and
www.math.unl.edu/~adonsigl/.

The applications have been chosen from both classical and modern topics of in-
terest in applied mathematics and related fields. Our goal is to discuss the theoretical
underpinnings of these applied areas, showing the role of the fundamental princi-
ples of analysis. This is not a methods course, although some familiarity with the
computational or methods-oriented aspects of these topics may help the student ap-
preciate how the topics are developed. In each application, we have attempted to
get to a number of substantial results, and to show how these results depend on the
theory.

This book began in 1984 when the first author wrote a short set of course notes
(120 pages) for a real analysis class at the University of Waterloo designed for stu-
dents who came primarily from applied math and computer science. The idea was to
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viii Preface

get to the basic results of analysis quickly, and then illustrate their role in a variety
of applications. At that time, the applications were limited to polynomial approxi-
mation, Newton’s method, differential equations, and Fourier series.

A plan evolved to expand these notes into a textbook suitable for a one- or two-
semester course. We expanded both the theoretical section and the choice of appli-
cations in order to make the text more flexible. As a consequence, the text is not
uniformly difficult. The material is arranged by topic, and generally each chapter
gets more difficult as one progresses through it. The instructor can omit some more
difficult topics in the early chapters if they will not be needed later.

We emphasize the role of normed vector spaces in analysis, since they provide a
natural framework for most of the applications. So some knowledge of linear algebra
is needed. Of course, the reader also should have a reasonable working knowledge
of differential and integral calculus. While multivariable calculus is an asset because
of the increased level of sophistication and the incorporation of linear algebra, it is
not essential. Some of this background material is outlined in the review chapter.

By and large, the various applications are independent of each other. However,
there are references to material in other chapters. For example, in the wavelets chap-
ter (Chapter 15), it seems essential to make comparisons with the classical approxi-
mation results for Fourier series and for polynomials.

It is possible to use an application chapter on its own for a student seminar or
topics course. We have included several modern topics of interest in addition to
the classical subjects of applied mathematics. The chapter on discrete dynamical
systems (Chapter 11) introduces the notions of chaos and fractals and develops a
number of examples. The chapter on wavelets (Chapter 15) illustrates the ideas with
the Haar wavelet. It continues with a construction of wavelets of compact support,
and gives a complete treatment of a somewhat easier continuous wavelet. In the final
chapter (Chapter 16), we study convex optimization and convex programming. Both
of these latter chapters require more linear algebra than the others.

We would like to thank various people who worked with early versions of this
book for their helpful comments, in particular, Robert André, John Baker, Jon Bor-
wein, Ola Bratteli, Brian Forrest, John Holbrook, Stephen Krantz, Michael Lam-
oureux, Leo Livshits, Mike McAsey, Robert Manning, John Orr, Justin Peters,
Gabriel Prajitura, David Seigel, Ed Vrscay, and Frank Zorzitto. We also thank our
students Geoffrey Crutwell, Colin Davidson, Sean Desaulniers, Masoud Kamgar-
pour, Michael Lipnowski, and Alex Wright for working through parts of the book
and solving many of the exercises. We also thank the students in various classes at
the University of Waterloo and at the University of Nebraska, where early versions
of the text were used and tested.

We welcome comments on this book.

Waterloo, ON & Lincoln, NE Kenneth R. Davidson
March, 2009 Allan P. Donsig
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Chapter 1
Review

Since we use results from calculus and linear algebra regularly, we review the key
definitions and theorems here. If something seems unfamiliar, reviewing this mate-
rial would be wise. We list a few good books in each subject in the bibliography. For
the theoretical part of calculus, there is a detailed development in Chapter 6 and in
the supplementary materials for this book available online. Finally, we give a brief
treatment of equivalence relations.

1.1 Calculus

To read and understand this book, you are expected to have taken and understood a
full course on calculus, although it need not be a proof-oriented course. In general,
you should have an understanding of functions, and the mechanics of differentiation
and integration. We will make use of these tools to analyze examples before we
get to Chapter 6, where the theory of differentiation and integration is developed
carefully, with complete proofs.

The first part of this book is a careful treatment of the basic ideas of real analysis.
These ideas are illustrated by a wide variety of examples, most of which are based
on knowledge of calculus. In particular, we expect the reader to be familiar with
the standard functions such as logarithm, exponential, trigonometric and inverse
trigonometric functions. We rely on your ability to sketch graphs of functions and
compute extrema, asymptotes, and inflection points as needed.

The basic theory that underlies calculus is generally not taught in a first course,
because the ideas are difficult and subtle. The basic structure of the real numbers and
various formulations that express the important property of completeness are only
tacitly assumed. A couple of centuries ago, serious mathematicians did the same
thing, but developments in the nineteenth century forced them to examine the basics
and put them on a better footing. This is what we do in the next chapter.

K.R. Davidson and A.P. Donsig, Real Analysis and Applications: Theory in Practice, 3
Undergraduate Texts in Mathematics, DOI 10.1007/978-0-387-98098-0 1,
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4 1 Review

This treatment of the real numbers goes hand in hand with a careful discussion
of limits. Although the material is developed from scratch, it is useful for the reader
to have a working knowledge of how to compute basic limits.

The theory of the derivative is developed in Chapter 6. We assume a working
knowledge of differentiation, and do not spend time on methods or applications
here. This includes various methods for calculating derivatives. You should also
understand the relationship between the derivative and tangent lines.

We also develop the theory of integration. We don’t spend time on the techniques
of integration using the various tricks of the trade such as substitution and integra-
tion by parts. We assume that the reader is comfortable with these methods. They are
used when the need arises throughout the book. If you have seen a proof-oriented
development of calculus, then most of Chapter 6 may safely be omitted.

There are two ideas from calculus that you need to be aware of now, to understand
some exercises and material in the first few chapters.

One central fact from differential calculus that we make use of frequently is the
Mean Value Theorem (6.2.2). Intuitively, this says that if f is a differentiable func-
tion on (a,b), then the line through the endpoints is parallel to a tangent line to the
curve at some interior point.

1.1.1. MEAN VALUE THEOREM.
Suppose that f is a function that is continuous on [a,b] and differentiable on (a,b).
Then there is a point ¢ € (a,b) such that

oy T =)
b—a

In a calculus course, most integrals are actually computed by finding anti-
derivatives. But if you think that integration is antidifferentiation, then Chapter 6
will show you that integration really is the computation of area. The connection
to antidifferentiation is a theorem. This is the Fundamental Theorem of Calculus,
Theorems 6.4.2 and 6.4.3, which connects the notions of tangent line and area in a
surprising way. You should be aware that integrals can be computed even when no
simple antiderivative exists.

1.1.2. FUNDAMENTAL THEOREM OF CALCULUS, PART 1.
Let f be an integrable function on [a,b]. If F(x) = [} f(¢t)dt for a <x < b, then F
is a continuous function. If f is continuous at xo, then F is differentiable at xo and

F'(x0) = f(xo)-
1.1.3. FUNDAMENTAL THEOREM OF CALCULUS, PART 2.

Let f be integrable on [a,b]. If there is a continuous function g on [a,b] that is

differentiable with g'(x) = f(x) on (a,b), then

[ ro9as=(0) ~sta).
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1.2 Linear Algebra

Many of our applications are naturally set up in the context of normed vector spaces.
So it is worth reviewing carefully the definition of a vector space and the basic
results about them. We use v for vectors and r for real numbers.

1.2.1. DEFINITION. A (real) vector space consists of a set V with elements
called vectors and two operations with the following properties:

vector addition: for each pair u,v € V, there is a vector u+ v € V. This satisfies

(1) commutativity: u+v=v+u forall u,veV

(2) associativity: u+ (v+w) = (u+v)+w forall u,v,weV

(3) zero: thereisavector0 € Vsuchthat0+u=u=u+0 forallueV
(4) inverses: for each u € V, there is a vector —u such that u+ (—u) =0

scalar multiplication: for each vector v € V and real number r € R, there is a vector
rv € V. This satisfies, for allu,v € V and all r,s € R,

(D) (r+s)v=rv+sv 4 1v=v
(2) r(sv)=(rs)v 5) ov=0
3) r(u+v)=ra+rv ©) (-)v=—-v

1.2.2. DEFINITION. A subspace of a vector space V is a nonempty subset W
of V that is a vector space using the operations of V.

A nonempty subset of a vector space is a subspace if and only if it is closed
under addition and scalar multiplication, that is, for all wi,w, € W and r € R, we
have w| +wy,rw; € W.

1.2.3. DEFINITION. If S is a subset of a vector space V, the span of S is the
smallest subspace containing S, denoted by spanS. A vector w is a linear combina-
tion of S if there are vy,...,vy € Sand ry,...,rg such that w = rj vy + - + 1 vg.

Phrases like the smallest are dangerous, because they assume that there is a
unique smallest subspace. After making such a definition, we should prove that
there is such a subspace; this process of showing that the definition of an object
makes sense is known as showing that the object is well defined. It comes up often.

For a nonempty set S C V, itis a theorem that span S is exactly the set of all linear
combinations of elements of S.

1.2.4. DEFINITION. A subset S of a vector space V is linearly independent if
whenever vectors vi,...,V; € S and scalars ry, ..., r, € Rsatisfy rivy +---+rvp =
0, this implies that r; = --- = r; = 0. We say S is linearly dependent if it is not
linearly independent. A basis for a vector space V is a linearly independent set that
spans V.
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Saying that B = {vy,...,v,} is a basis for V means that each element of V can
be written uniquely as a finite linear combination of elements of B. For example,
let P be the vector space of polynomials over the real numbers. Then the infinite
set B={1}U{x/: j > 1} is a basis for P. However, if we enlarge our vector space
by adding in even very nice power series, like 1 4+x/2 +x /44 - +x" /2" ...
then B is no longer a basis. This power series is not a finite linear combination of
elements of B.

1.2.5. THEOREM. LetV be a vector space with a basis having finitely many
elements. Then every basis for V has the same (finite) number of elements, called
the dimension of V and denoted by dimV. We say V is finite-dimensional.

A linear transformation A from a vector space V to a vector space W is a func-
tion A : V. — W satisfying

A(rlvl + erg) =riAvy +rAvy, forall vi,vy; € Vand r;,rp € R.

We use Z(V,W) to denote the set of all linear transformations from V to W and
Z(V) for Z(V,V).

A linear transformation is determined by what it does to a basis. If eq,...,e,, is
a basis for V, then each element of V has the form rye; + - - - + r;,e,,, and A applied
to such an element yields rjAe; + --- + rpAe,. If £1,... f, is a basis for W and
Aej = ayf) +---+ayjf,, then

Jj=

The n x m matrix [a;;] is the matrix representation of A with respect to the bases
er,...,eyand fy,... f,.

The space £ (V,W) is a vector space with the two operations A + B and rA for A
and B in .Z(V,W) and scalars r, defined by (A + B)v =Av+ Bv and (rA)v = r(Av)
forve V. In Z(V) we also have a multiplication: for A,B € .Z(V), define BA €
Z (V) by (BA)(v) = B(Av). The matrix representation of BA is the product of the
matrix representations of B and A.

1.2.6. DEFINITION. The kernel of a linear transformation A € £ (V,W) is
kerA = {v € V : Av = 0}, which is a subspace of V. The range of A is ranA =
{Av : v €V}, which is a subspace of W. The rank of A is rankA = dimranA.

1.2.7. THEOREM. Let V,W be vector spaces with V finite-dimensional. For
A€ Z(V,W), dimkerA +rankA = dimV.

1.2.8. COROLLARY. For A € Z(V), for V as before, A is invertible if and
only if A is one-to-one (i.e., kerA = {0}) if and only if A is onto (i.e., ranA =V).
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1.3 Appendix: Equivalence Relations

Equivalence relations occur frequently in mathematics and will appear occasionally
later in this book.

1.3.1. DEFINITION. Let X be a set, and let R be a subset of X x X. Then R is a
relation on X. Let us write x ~ y if (x,y) € R. We say that R or ~ is an equivalence
relation if it is

(1) (reflexive) x ~ x for all x € X.
(2) (symmetric) if x ~ y for any x,y € X, then y ~ x.
(3) (transitive) if x ~y and y ~ z for any x,y,z € X, then x ~ z.

If ~ is an equivalence relation on X and x € X, then the equivalence class [x] is the
set {y € X : y ~x}. By X/~ we mean the collection of all equivalence classes.

1.3.2. EXAMPLES.
(1) Equality is an equivalence relation on any set. Verify this.

(2) Consider the integers Z. Say thatm =n (mod 12) if 12 divides m —n. Note that
12 divides n —n = 0 for any n, and thus n =n (mod 12). So it is reflexive. Also if
12 divides m — n, then it divides n —m = —(m —n). Som=n (mod 12) implies that
n=m (mod 12) (i.e., symmetry). Finally, if/ =m (mod 12) and m=n (mod 12),
then we may write / —m = 12a and m —n = 12b for certain integers a,b. Thus
I—n=(—-m)+ (m—n)=12(a+b) is also a multiple of 12. Therefore, / = n
(mod 12), which is transitivity.

There are twelve equivalence classes [r] for 0 < r < 12 determined by the re-
mainder r obtained when 7 is divided by 12. So [r] = {12a+r:a € Z}.

(3) Consider the set R with the relation x < 'y. This relation is reflexive (x < x) and
transitive (x < y and y < z implies x < z). However, it is antisymmetric: x <y and
y < x both occur if and only if x = y. This is not an equivalence relation.

When dealing with functions defined on equivalence classes, we often define
the function on an equivalence class in terms of a representative. In order for the
function to be well defined, that is, for the definition of the function to make sense,
we must check that we get same value regardless of which representative is used.

1.3.3. EXAMPLES.

(1) Consider the set of real numbers R. Say that x =y (mod 27) if x —y is an
integer multiple of 27. Verify that this is an equivalence relation. Define a function
F([x]) = (cosx,sinx). We are really defining a function F (x) = (cosx, sinx) on R and
asserting that F'(x) = F(y) whenx =y (mod 27). Indeed, we then have y =x+27n
for some n € Z. Since sin and cos are 27-periodic, we have

F(y) = (cosy,siny) = (cos(x+27n),sin(x+27n)) = (cosx,sinx) = F(x).
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It follows that the function f([x]) = F(x) yields the same answer for every y € [x]. So
f is well defined. One can imagine the function f as wrapping the real line around
the circle infinitely often, matching up equivalent points.

(2) Consider R modulo 27 again, and look at f([x]) = ¢*. Then 0 =27 (mod 27)
but e” = 1 # " So f is not well defined on equivalence classes.

(3) Now consider Example 1.3.2 (2). We wish to define multiplication modulo 12
by [n][m] = [nm]. To check that this is well defined, consider two representatives
ni,ny € [n] and two representatives mj,my € [m|. Then there are integers a and b
such that ny = ny + 12a and my = m; + 12b. Then

nomy = (ny + 12a)(my + 12b) = nymy + 12(am; +n1b+ 12ab).

Therefore, nymy =nym; (mod 12), and multiplication modulo 12 is well defined.

Exercises for Section 1.3

A. Putarelation on C[0,1] by f ~ g if £(k/10) = g(k/10) for k with 0 < k < 10.

(a) Verify that this is an equivalence relation.

(b) Describe the equivalence classes.

(c) Show that [f]+[g] = [f + g] is a well-defined operation.

(d) Show that ¢[f] = [tf] is well defined for all 7 € R and f € C[0, 1].

(e) Show that these operations make C[0, 1]/~ into a vector space of dimension 11.

B. Consider the set of all infinite decimal expansions x = agp.ajazas ..., where qy is any integer
and q; are digits between 0 and 9 for i > 1. Say that x ~ y if x and y represent the same real
number. That is, if y = by.b1b2b3 ..., then x ~ y if (1) x =y, or (2) there is an integer m > 1
such that a; = b; fori<m—1,a,,_1 =b,,_1+1,b; =9 for i > m and a; = 0 for i > m, or (3)
there is an integer m > 1 such that ¢; = b; fori <m—1, a1 +1=by_1,a; =9 fori >m
and b; = 0 for i > m. Prove that this is an equivalence relation.

C. Define a relation on the set PC[0, 1] of all piecewise continuous functions on [0, 1] (see Defi-
nition 5.2.3) by f = gif {x € [0,1]: f(x) # g(x)} is finite.

(a) Prove that this is an equivalence relation.
(b) Decide which of the following functions are well defined.

) (1f1) = £(0) @i = [ 10)a (i) 7([f]) = lim f(x)

D. Letd > 2 be an integer. Define a relation on Z by m =n (mod d) if d divides m — n.

(a) Verity that this is an equivalence relation, and describe the equivalence classes.

(b) Show that [m] + [n] = [m+n] is a well-defined addition.

(c) Show that [m][n] = [mn] is a well-defined multiplication.

(d) Let Z, denote the equivalence classes modulo d. Prove the distributive law:
K[+ [n]) = [k] ] + (k][]

E. Say that two real vector spaces V and W are isomorphic if there is an invertible linear map 7'
of V onto W.

(a) Prove that this is an equivalence relation on the collection of all vector spaces.
(b) When are two finite-dimensional vector spaces isomorphic?



Chapter 2
The Real Numbers

2.1 An Overview of the Real Numbers

Doing analysis in a rigorous way starts with understanding the properties of the
real numbers. Readers will be familiar, in some sense, with the real numbers from
studying calculus. A completely rigorous development of the real numbers requires
checking many details. We attempt to justify one definition of the real numbers
without carrying out the proofs.

Intuitively, we think of the real numbers as the points on a line stretching off to
infinity in both directions. However, to make any sense of this, we must label all the
points on this line and determine the relationship between them from different points
of view. First, the real numbers form an algebraic object known as a field, meaning
that one may add, subtract, and multiply real numbers and divide by nonzero real
numbers. There is also an order on the real numbers compatible with these algebraic
properties, and this leads to the notion of distance between two points.

All of these nice properties are shared by the set of rational numbers:

Q:{%:a,bez,b;«éo}.

The ancient Greeks understood how to construct all fractions geometrically and
knew that they satisfied all of the properties mentioned above. However, they were
also aware that there were other points on the line that could be constructed but
were not rational, such as /3. While the Greeks were focussed on those numbers
that could be obtained by geometric construction, we have since found other reason-
able numbers that do not fit this restrictive definition. The most familiar example is
perhaps 7, the area of a circle of radius one. Like the Greeks, we accept the fact that
v/3 and 7 are bona fide numbers that must be included on our real line.

We will define the real numbers to be objects with an infinite decimal expansion.
A subtle point is that an infinite decimal expansion is used only as a name for a point
and does mean the sum of an infinite series. It is crucial that we do not use limits to
define the real numbers because we deduce properties of limits from the definition.

K.R. Davidson and A.P. Donsig, Real Analysis and Applications: Theory in Practice, 9
Undergraduate Texts in Mathematics, DOI 10.1007/978-0-387-98098-0 2,
© Springer Science + Business Media, LLC 2010
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This construction of the real numbers appears to be strongly dependent on the
choice of 10 as the base. We are left with the nagging possibility that the number
line we construct depends on the number of digits on our hands. For this reason,
some purists prefer a base-independent method of defining the real numbers, albeit
a more abstract one. (See Exercise 2.8.L..) Our construction does yield the same
object, independent of choice of base; but the proof requires considerable work.

2.2 The Real Numbers and Their Arithmetic

We define a real number using an infinite decimal expansion such as

] =0.33333333333333333333333333333333333333333333333333...

.73205080756887729352744634150587236694280525381038 . ...

3
V3=1
T = 3.14159265358979323846264338327950288419716939937510.. ..

In general, an infinite decimal expansion has the form

X = dg.ajazdazaqdsdedrdgagdiodlidi2dlodlldl2aizdisdisaied17a18 - - - -

Formally, an infinite decimal expansion is a function x(n) = a, from {0} UN into
7Z such that for alln > 1, a, € {0,1,...,9}.

Be warned that, by this construction, the point usually thought of as —5/4 will
be denoted by 2.75, for example, because we think of this as —2 + .75. The notation
is simpler if we do this. After we have finished the construction, we will revert to
the standard notation for negative decimals.

To relate infinite decimal expansions to our geometric idea of the real line, start
with a line and mark two points on it; and call the left one O and the right one 1.
Then we can construct points for every integer Z, equally spaced along the line. Now
divide each interval from an integer n to n+ 1 into 10 equal pieces, marking the cuts
asn.1, n.2, ..., n.9. Proceed in this way, cutting each interval of length 10~* into
10 equal intervals of length 107%~! and mark the endpoints by the corresponding
number with k4 1 decimals. In this way, all finite decimals are placed on the line.

To obtain a geometric version of the line, we postulate that for every infinite
decimal x = ag.ajazas.. ., there will be a point (also called x) on this line with
the property that for each positive integer k, x lies in the interval between the two
rational numbers y = ag.ay ... a; and y+ 107, For example,

3.141592653589 < 1w < 3.141592653590.

One difficulty with using infinite decimal expansions to define the real num-
bers is that some points have two names. For example consider the expansions
1.000000000. .. and 0.999999999. ... Call them 1 and z, respectively. Clearly these
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are different infinite decimal expansions. However, for each positive integer &,

1 — 10 =0.99999999999999 < 7 < 1.
N—_——
k

Thus the difference between z and 1 is arbitrarily small. It would create quite an un-
intuitive line if we decided to make z and 1 different real numbers. To fit in with our
intuition, we must agree that z = 1. That means that some real numbers (precisely
all those numbers with a finite decimal expansion) have two different expansions,
one ending in an infinite string of zeros, and the other ending with an infinite string
of nines. For example, 0.12500... and 0.12499999... are the same number.

Formally, this defines an equivalence relation on the set of infinite decimals by
pairing off each decimal expansion ending in a string of zeros with the correspond-
ing decimal expansion ending in a string of nines:

ao.alaz...ak_lakOOO... = ao.alaz...ak_l(ak - 1)999. ey

where a; # 0. Each real number is an equivalence class of infinite decimal expan-
sions given by this identification. The set of all real numbers is denoted by R.

To recognize the rationals as a subset of the reals, we need a function F that
sends a fraction a/b to an infinite decimal expansion. This is accomplished by long
division, as you learned in grade school. For example, to compute 27/14, divide 14
into 27 to obtain

F(3) = 1.9285714285714285714285714285714...

Notice that this decimal expansion is eventually periodic because after the initial
1.9, the six-digit sequence 285714 is repeated ad infinitum. In the exercises, hints
are provided to show that an infinite decimal represents a rational number if and
only if it is eventually periodic.

We have a built-in order on the real line given by the placement of the points
which extends the natural order on the finite decimals. When two infinite decimals
x=agp.aiay ... andy =bo.b1b; ... represent distinct real numbers, we say that x <y
if there is some integer k > 0 such that a; = b; for i < k and a;, < by. For example, if

x =2.7342118284590452354000064338325028841971693993 ...,
vy =2.7342118284590452353999928747135224977572470936. . .,

then y < x because
y < 2.734211828459045235399993 < 2.734211828459045235400000 < x.

For two real numbers x and y, either x <y, x =y, or x > y.

Next we extend the addition and multiplication operations on Q to all of R. The
basic idea is to extend addition and multiplication on finite decimals to R respecting
the order properties. That is, if w <xand y < z, then w+y < x+z, and if x > 0, then
xy < xz. Some of the subtleties are explored in the exercises.
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A basic fact about the order and these operations is known as the Archimedean
property of R: for x,y > 0, there is always some n € N with nx > y. It is not hard
to show this is equivalent to the following almost-obvious fact: if z > 0, then there
is some integer k > 0 so that 10~% < z. To see this fact, observe that a decimal
expansion of 7 = z9.z1z2 ... has a first nonzero digit, z;_; and, since z;_; > 1, we
have z > 10~ > 107%,

Finally, consider the distance between two points. The absolute value function
is |x| = max{x, —x}. Define the distance between x and y to be |x — y|. This is always
nonnegative, and |x —y| = 0 only if x —y = 0, namely x = y.

Exercises for Section 2.2

A. Why, in defining the order on R, did we insist that x and y be distinct real numbers?
HINT: consider a real number with two decimal expansions.

B. Prove that |xy| = |x|[y| and |x x| 7"

C. (a) Prove the triangle inequality: |x+y| < |x|+ |y|.
HINT: Consider x and y of the same sign and different signs as separate cases.
(b) Prove by induction that |xj +xz + -+ x| < |xp |+ |[x2] + -+ + %]
(c) Prove the reverse triangle inequality: ||x| — |y|| < [x—y|.
D. (a) Prove that if x <y, then there is a rational number » with a finite decimal expansion and
an integer k so that x < r < r+107%F < y.
(b) Prove that if x < y, then there is an irrational number z such that x < z <.
HINT: Use (a) and add a small multiple of V2tor.

E. (a) Explain how x+y is worked out for

107 nines 1019 repetitions

x =2.1357999999...9999990123456789...012345678934524 .. .,
v =3.8642999999...9999999876543210...987654321039736....

107 nines 1019 repetitions
(b) How many digits of x and y must we know to determine the first 6 digits of x + y?
(c) How many digits of x and y must we know to determine the first 108 digits of x +y?

F.  Describe an algorithm for adding two infinite decimals. You should work from ‘left to right’,
determining the decimal expansion in order, as much as possible. When are you assured that
you know the integer part of the sum? In what circumstance does it remain ambiguous?
HINT: Given infinite decimals a and b, define a carry function y: {0} UN — {0, 1} and then
define the decimal expansion of a + b in terms of a(n) + b(n) + y(n).

G. Show that if x and y are known up to k decimal places, then the x +y is known to within
2.107%, i.e., there is a finite decimal r with r <x+y<r+42- 107%,
H. Aninfinite decimal x = ag.aja; ... is eventually periodic if there are positive integers n and k

such that a;; = a; for all i > n. Show that any decimal expansion which is eventually periodic
represents a rational number.  HINT: Compute 10" x — 10"x.

L. Prove that the decimal expansion of a rational number p/q is eventually periodic. We will use
the Pigeonhole Principle, which states that if n+ 1 items are divided into n categories, then at
least two of the items are in the same category.

(a) Assume g > 0. Let r; be the remainder when 10F is divided by ¢. Use the Pigeonhole
Principle to find two different exponents k < k + d with the same remainder.

(b) Express p/q=10"*(a+b/(10¢ — 1)) with0 <b < 107 — 1.

(c) Write b as a d-digit number b = b by ... b, even if it starts with some zeros. Show that the
decimal expansion of p/q ends with the infinitely repeated string b1b; .. .by.



2.3 The Least Upper Bound Principle 13

J. Explain how the associative property of addition for real numbers: x + (y +z) = (x+y) +z
follows from knowing it for for finite decimals.

K. Show that if r is rational and x is irrational, then r +x and, if r # 0, rx are irrational.

L. Show that the two formulations of the Archimedean property of R are equivalent.

2.3 The Least Upper Bound Principle

After defining the least upper bound of a set of real numbers, we prove the Least
Upper Bound Principle (2.3.3). This result depends crucially on our construction of
the real numbers. It will be the basis for the deeper properties of the real line.

2.3.1. DEFINITION. A setS C R is bounded above if there is a real number
M such that s < M for all s € S. We call M an upper bound for S. Similarly, S is
bounded below if there is a real number m such that s > m for all s € S, and we call
m a lower bound for S. A set that is bounded above and below is called bounded.

Suppose a nonempty subset S of R is bounded above. Then L is the supremum
or least upper bound for S if L is an upper bound for S that is smaller than all other
upper bounds, i.e., for all s € S, s < L, and if M is another upper bound for S, then
L < M. It is denoted by supS.

Similarly, if S is a nonempty subset of R which is bounded below, the infimum
or greatest lower bound, denoted by infS, is the number L such that L is an lower
bound and whenever M is another lower bound for S, then L > M.

The supremum of a set, if it exists, is unique. We have not defined suprema
or infima for sets that are not bounded above or bounded below, respectively. For
example, R itself has neither a supremum nor an infimum. For a nonempty set S C R,
sometimes we write sup S = o0 if § is not bounded above and inf§ = —eo if §'is not
bounded below. Finally, by convention, sup @ = —eo and inf @ = +oo.

Note that supS = L € R if and only if L is a upper bound for S and for all K < L,
there is x € S with K < x < L. There is an equivalent characterization for infS.

Recall that the maximum of a set § C R, if it exists, is an element m € S such
that s < m for all s € S. Thus, when the maximum of a set exists, it is the least upper
bound. The situation for the minimum of a set and its infimum is the same. We use
max $ and min S to denote the maximum and minimum of S.

2.3.2. EXAMPLES.

(1) IfA={4,-2,5,7}, then any L < —2 is a lower bound for A and any M > 7 is
an upper bound. So, infA = minA = —2 and supA = maxA =7.

(2) If B={2,4,6,...}, theninfB = minB = 2 and sup B = +oo.

(3) If C={n/n:n e N}, then supC = maxC = 7. However, for any element of
C, say w/n, we have a smaller element of C, such as 7/(2n). So C does not have a
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minimum. Clearly, 0 is a lower bound and for all x > 0, there is some 7/n € C with
7/n < x, showing that O is the greatest lower bound.

4) fD={(—1)"n/(n+1) : n € N}, then D has neither a maximum nor a min-
imum. However, D has upper and lower bounds, and infD = —1 and supD = 1.
Neither 1 nor —1 belongs to D.

In proving the Least Upper Bound Principle, the definition of the real numbers
as all infinite decimals is essential. The principle is not true for some subsets of the
rational numbers. For example, {s € Q : s> < 2} is bounded above but has no least
upper bound in Q.

2.3.3. LEAST UPPER BOUND PRINCIPLE.
Every nonempty subset S of R that is bounded above has a supremum. Similarly,
every nonempty subset S of R that is bounded below has an infimum.

PROOF. We prove the second statement first, since it is more convenient. Let M be
some lower bound for S with decimal expansion M = mgy.mym; . ... Let s be some
element of S with decimal expansion s = s¢.5152 .. .. Notice that since my < M, we
have that m is a lower bound for S. On the other hand, s < sg+ 2. So 59+ 2 is not a
lower bound. There are only finitely many integers between mg and so + 1. Pick the
largest of these that is still a lower bound for S, and call it ag. Since ap+ 1 is not a
lower bound, we may also choose an element xg in S such that xo < ap+ 1.

Next pick the greatest integer a; such that y; = ag + 10~ !4, is a lower bound for
S. Since a; = 0 works and a; = 10 does not, a; belongs to {0,1,...,9}. To verify
our choice, pick an element x; in S such that ag.a; < x; < ag.a; +0.1. Continue in
this way recursively. Figure 2.1 shows how a; and x, would be chosen.

X2
| | | | | | | | [ | |
| T T T T T T T I T |
ap.aq ap.ajap ao.(a1+1)
FI1G. 2.1 The second stage (k = 2) in the proof.
At the kth stage, we have a lower bound y;_| = ag.a; ...a;—; and an element

Xk € S such that y,_; < xe_1 < ye_1 4+ 10" 7%, Select the largest integer a; in
{0,1,...,9} such that y, = ap.ajay...ay is a lower bound for S. Since y; + 107%
is not a lower bound, we also pick an element x; in S such that x; < y; + 107 % to
verify our choice.

We claim that L = ag.aja ... is infS. If L = y; for some k, then L is a lower
bound for S. Otherwise, L > y; for all k and, in particular, for each k there is [ > k
with y; > yi. If s = 59.5152... is in S, then it follows that s > y; for each k. By the
definition of the order, either s; = a; for 1 <i <k or there is some j, 0 < j <k, with
s;=a; for 1 <i< jands; > aj. If the latter occurs for some k, then s > L; if the
former occurs for every k, then s = L. Either way, L is a lower bound for S.
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To see that L is the greatest lower bound, suppose M = by.b1b, ... > L. By the
definition of the ordering, there is some first integer k such that b; > a; and b; = g;
for all i with 0 < i < k. But then

M >ap.ay...ap_1by >y + 107F > X

So M is not a lower bound for S. Hence L is the greatest lower bound.

A simple trick handles upper bounds. Notice that S C R is bounded above if
and only if —S = {—s: s € S} is bounded below and that L is an upper bound for S
precisely when —L is a lower bound for —S. Further, M < L if and only if —M > —L,
so M is an upper bound of § less than L exactly when —M is a lower bound of —S
greater than —L. Thus sup S = —inf(—S), so sup S exists. [ |

Exercises for Section 2.3

A. Suppose that S C R is bounded above. When does S have a maximum? Your answer should
be expressed in terms of supS.

B. A more elegant way to develop the arithmetic properties of the real numbers is to prove the
results of this section first and then define addition and multiplication using suprema. Let &
denote the set of all finite decimals.

(a) Let x,y € R. Prove that x+y =sup{a+b:a,b€ P, a<x, b <y}
(b) Suppose that x,y € R are positive. Show that xy =sup{ab:a,b€ 7, 0<a<x, 0<b <y}.
(c) How do we define multiplication in general?

C. With 2 as in the previous exercise, show that sup{a € 7 : a> < 3} = /3.

D. For the following sets, find the supremum and infimum. Which have a max or min?
(@ A={a+a':acQ, a>0}.
(b) B={a+(a)':acQ, 0.1 <a<5}.
() C={xe*:xeR}.

E. Show that the decimal expansion for the L in the proof of the Least Upper Bound Principle
does not end in a tail of all 9’s.

2.4 Limits

The notion of a limit is the basic notion of analysis. Limits are the culmination of
an infinite process. It is the concern with limits in particular that separates analysis
from algebra. Intuitively, to say that a sequence a, converges to a limit L means that
eventually all the terms of the (tail of the) sequence approximate the limit value L
to any desired accuracy. To make this precise, we introduce a subtle definition.

2.4.1. DEFINITION OF THE LIMIT OF A SEQUENCE. A real number
L is the limit of a sequence of real numbers (a,);_, if for every € > 0, there is an
integer N = N(¢&) > 0 such that

|ay—L| <& forall n>N.

We say that the sequence (ay,),_, converges to L, and we write lim a, = L.

n—oo
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The important issue in this definition is that for any desired accuracy, there is a
point in the sequence such that every element after that point approximates the limit
L to the desired accuracy. It suffices to consider only values for € of the form %lO_k.
The statement |a, — L| < %10”‘ means that a, and L agree to at least k decimal
places. Thus a sequence converges to L precisely when for every k, no matter how
large, eventually all the terms of the sequence agree with L to at least k decimals of
accuracy.

2.4.2. EXAMPLE. Consider the sequence (an) = (n/(n+ 1));" |» which we
claim converges to 1. Observe that ‘n_’f_ ] 1‘ = Soife =1 10 , we can choose

N =2-10%. Then for all n > N,

n+1

n . 1 1
P R

1 —k
—1|= <5107 =¢
n+1 n+l1 = 2-10k+1 2

We could also choose N = 73 - 10%. It is not necessary to find the best choice for N.
But in practice, better estimates can lead to better algorithms for computation.

2.4.3. EXAMPLE. Consider the sequence (a,) with @, = (—1)". Since this flips
back and forth between two values that are always distance 2 apart, intuition says
that it does not converge. To show this using our definition, we need to show that
the definition of limit fails for any choice of L. However, for each choice of L, we
need find only one value of € that violates the definition. Observe that

jan —an1] = |(=1)" = (=1 =2

for all n, no matter how large. So let L be any real number. We notice that L cannot
be close to both 1 and —1. To avoid cases, we use a trick. For any real number L,

‘an _L| + |an+1 _L| > ‘(an _L) - (an-‘rl _L)| = |an _an+1| =2
Thus, for every n € N,
max{|a, — L|,|an+1 —L|} > 1. (2.4.4)

Now take € = 1. If this sequence did converge, there would be an integer N such
that |a, — L| < 1 for all n > N. In particular, |ay — L| and |ay,1 — L| are both less
than 1, contradicting (2.4.4). Consequently, this sequence does not converge.

2.4.5. EXAMPLE. Consider the sequence ((sinn)/n);._,.The numerator oscil-

lates, but it remains bounded between +1 while the denominator goes off to infinity.

‘We obtain the estimates )

<P <
n

S\H
S =

We know that lim 1/n =0 = lim —1/n, since this is exactly like Example 2.4.2.
n—o0 Nn—o0
Therefore, the limit can be computed using a familiar principle from calculus:
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2.4.6. THE SQUEEZE THEOREM.
Suppose that three sequences (ay), (by), and (c,) satisfy

an <b,<c, forall n>1 and lima, = limc¢, = L.

n—oo0 n—o0

Then limb,, = L.
Nn—oco

PROOF. Let € > 0. Since lima, = L, there is some N; such that

friwont
|an—L| <& forall n>Nj,

or equivalently, L — € < a, < L+ ¢ for all n > N;. There is also some N, such that
e, —L|<e forall n>N,

or L—& < c¢, <L+¢€forall n > N,. Then, if n > max{N;, N, }, we have
L—e<a,<b,<c,<L+E.

Thus |b, — L| < € for n > max{N;, N, }, as required. [ ]

oo

Returning to our example (sinn/n),_,,

PN RTINS
we have r}glolﬁ = }E}olo—n = 0. By the
Squeeze Theorem,
. sinn
lim —— =0.
n—oo n

2.4.7. EXAMPLE. For a more sophisticated example, consider the sequence
(n sin(%)):zl. To apply the Squeeze Theorem, we need to obtain an estimate for
sin@ when the angle 6 is small. Consider a sector of the circle of radius 1 with
angle 0 and the two triangles as shown in Figure 2.2.

o A
F1G. 2.2 Sector OAB between AOAB and AOAC.
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Since AOAB C sector OAB C AOAC, we have the same relationship for their

areas: ] )
sin@ 6 tan0O sin O

< =< = .
2 2 2 2cos 6
A manipulation of these inequalities yields

c0s9<¥<1.

In particular, cos % < nsin% < 1. Moreover,
0= 1 _sin?(L (2o L
cos(1) =y/1—sin*(1) > /1= (1)">1 5.
n

1
lim 1 — — =1=lim L.

n—oo n n—oo

However,

Therefore, by the Squeeze Theorem, lim n sin% =1
n—oo

Exercises for Section 2.4

A. In each of the following, compute the limit. Then, using € = 107°, find an integer N that
satisfies the limit definition.

FI—) n 2
. sinn . 1 .3 . n“+2n+1 . o)
@ fim = O i e ogn ©imyy @lmas— @ fmvet -

n

Show that lim sin % does not exist using the definition of limit.
n—oo
Prove that if a,, < b, forn > 1, L = lima,, and M = limb,,, then L < M.
n—oo n—soo

Prove that if L = lima,, then L = limay, and L = lima,,.
n—oo n—oo N—s00

"2 0F

Sometimes, a limit is defined informally as follows: “As n goes to infinity, a, gets closer and
closer to L.” Find as many faults with this definition as you can.

(a) Can a sequence satisfy this definition and still fail to converge?
(b) Can a sequence converge yet fail to satisfy this definition?

Define a sequence (a,);,_; such that lima,, exists but lima, does not exist.
n—oo Nn—o0
Suppose that lima, = L and L # 0. Prove there is some N such that a,, # 0 for all n > N.
n—oo
H. Give a careful proof, using the definition of limit, that lima, = L and lim b, = M imply that
n—oo Nn—soo
lim 2a, +3b, = 2L+ 3M.
n—oo

1 L . -
7> has a limit, and compute it when it exists.
1 —+ X"/ n=1

J. Letag and a| be positive real numbers, and set a, > = \/d, 1 +/a, forn > 0.
(a) Show that there is NV such that foralln > N, a, > 1.

(b) Let &, = |a, —4|. Show that &,12 < (&,41+&,)/3 forn > N.
(c) Prove that this sequence converges.

I.  Foreach x € R, determine whether (

K. Show that the sequence (logn);,_; does not converge.
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2.5 Basic Properties of Limits

2.5.1. PROPOSITION. If (a,);._, is a convergent sequence of real numbers,
then the set {a, : n € N} is bounded.

PROOF. Let L = lima,,. If we set € = 1, then by the definition of limit, there is some
n—oc0
N > 0 such that |a, — L| < 1 for all n > N. In other words,

L—1<a,<L+1 forall n>N.

Let M = max{a,az,...,ay_1,L+ 1} and m = min{a;,az,...,ay_1,L — 1}.
Clearly, for all n, we have m < a,, <M. |

It is also crucial that limits respect the arithmetic operations. Proving this is
straightforward. The details are left as exercises.

2.5.2. THEOREM. If lima, =L, limb, = M, and o € R, then
Nn—o0

n—oo

() lima,+b,=L+M,
Nn—oo

2) limoaa, = L,

Nn—oo
3) lima,b, = LM, and

n—oo

. ap L .
4) lim— =— ifM#N0.
@ fim = M7

=

In the sequence (a,/by),_,. we ignore terms with b, = 0. There is no problem
doing this because M # 0 implies that b, # 0 for all sufficiently large n (see Exer-
cise 2.4.G). (We use “for all sufficiently large n” as shorthand for saying there is
some N so that this holds for all n > N.)

Exercises for Section 2.5

A. Prove Theorem 2.5.2. HINT: For part (4), first bound the denominator away from 0.
B. Compute the following limits.
2100451 csci 2arctann

®) lim oo © lim =

n
22

n

(a) lim —
n—psin

n logn
C. If lima, =L >0, prove that lim \/a, = V/L. Be sure to discuss the issue of when ./a,, makes
n—soo n—oo
sense. HINT: Express |\/a, —V/L| in terms of |a, — L|.

D. Let (a,);,_, and (b,),_, be two sequences of real numbers such that |a, — b, | < % Suppose
that L = lima,, exists. Show that (b,),,_; converges to L also.
n—oo

E. Find lim

n—oo

F. (a) Letx, = {/n— 1. Use the fact that (1+x,)" = n to show that xﬁ <2/n.
HINT: Use the Binomial Theorem and throw away most terms.

log(2+3" n
M. HINT: log(2 +3") =log3" +log%
n
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(b) Hence compute limn!/",
n—oo

G. Show that the set of rational numbers is dense in R, meaning that every real number is a limit
of rational numbers.

H. (a) Show that % <logh<b—1. HINT: Integrate 1/x from 1 to b.
(b) Apply this to b = {/a to show that loga < n({/a—1) < {/aloga.
(¢) Hence evaluate limn(y/a—1).
n—oo
L. Suppose that lima, = L. Show that lim Gttt L.
n—oo

n—oo n

J.  Show that the set S = {n+mv/2 : m,n € Z} is dense in R.  HINT: Find infinitely many
elements of S in [0, 1]. Use the Pigeonhole Principle to find two that are close within 107%.

2.6 Monotone Sequences

We now consider some consequences of the Least Upper Bound Principle (2.3.3).
A sequence (aj,) is (strictly) monotone increasing if a, < a,+1 (a, < a,+1) for
all n > 1. Similarly, we define (strictly) monotone decreasing sequences.

2.6.1. MONOTONE CONVERGENCE THEOREM.
A monotone increasing sequence that is bounded above converges.
A monotone decreasing sequence that is bounded below converges.

PROOF. Suppose (a,),_, is an increasing sequence that is bounded above. Then by
the Least Upper Bound Principle, there is a number L = sup{a, : n € N}. We will
show that lima, = L.

n—oo

Let € > 0 be given. Since L — € is not an upper bound for A, there is some integer
N such that ay > L — €. Then because the sequence is monotone increasing,

L—e<ay<a,<L forall n>N.

So |a, —L| < € for all n > N as required. Therefore, lima, = L.

n—o0

If (a,) is decreasing and bounded below by B, then the sequence (—ay,) is
increasing and bounded above by —B. Thus the sequence (—a,);,_; has a limit
L = lim — a,,. Therefore —L = lim a,, exists. [ |

n—oo n—oo

2.6.2. EXAMPLE. Consider the sequence given recursively by

ay=1 and a4 =4/2++/a, forall n>1.

Evaluating a;,as,... a9, we obtain 1.7320508076, 1.8210090645, 1.8301496356,
1.8310735189, 1.831166746, 1.8311761518, 1.8311771007, 1.8311771965. It ap-
pears that this sequence increases to some limit.
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To prove this, first we show by induction that
1<a,<ayy1 <2 forall n>1.

Since 1 = a; < /3 = ap < 2, this is valid for n = 1. Suppose that it holds for some
n. Then

aptr = \/2+\/an+1 > \/2+\/€Tn=an+1 > 1,

ap42 = 1/2+\/an+1 < \/2+\/§<2

This verifies our claim for n+ 1. Hence by induction, it is valid for each n > 1.
Therefore, (a,) is a monotone increasing sequence. So by the Monotone Con-
vergence Theorem (2.6.1), it follows that there is a limit L = lima,. It is not clear

n—oo

and

that there is a nice expression for L. However, once we know that the sequence
converges, it is not hard to find a formula for L. Notice that

L= lima,,| = limy/2+\/a, = \/2+ /lima, = \/2+ﬁ.

We used the fact that the limit of square roots is the square root of the limit (see
Exercise 2.5.C). Squaring both sides gives L? — 2 = /L, and further squaring yields

0=L*—41> —L+4=(L—1)(L>+1*-3L—4).

Since L > 1, it must be a root of the cubic p(x) = x*> + x> — 3x — 4 in the interval
(1,2). There is only one such root. Indeed,

P(x)=3x"4+2x—3=3(x*—1)+2x

is positive on [1,2]. So p is strictly increasing. Since p(1) = —5 and p(2) =2, p has
exactly one root in between. (See the Intermediate Value Theorem (5.6.1).)
For the amusement of the reader, we give an explicit algebraic formula:

1
I — 3 (6/79+\2/2241 n &3/79—\2/2241 _ 1>.

Notice that we proved first that the sequence converged and then evaluated the
limit afterward. This is important, for consider the sequence given by a; = 2 and
apt1 = (a,zl +1)/2. This is a monotone increasing sequence. Suppose we let L denote
the limit and compute

L=lima,; = lim(a2+1)/2=(L*+1)/2.
n—oo n—oo

Thus (L— 1) =0, which means that L = 1. This is an absurd conclusion because this
sequence is monotone increasing and greater than 2. The fault lay in assuming that
the limit L actually exists, because instead it diverges to +oo (see Exercise 2.6.A).



22 2 The Real Numbers

The following easy corollary of the Monotone Convergence Theorem is again a
reflection of the completeness of the real numbers. This is just the tool needed to es-
tablish the key result of the next section, the Bolzano—Weierstrass Theorem (2.7.2).

Again, the corresponding result for intervals of rational numbers is false. See
Example 2.7.6. The result would also be false if we changed closed intervals to
open intervals. For example, (> (0, %) =0.

2.6.3. NESTED INTERVALS LEMMA.
Suppose that I, = [a,,b,] = {x € R:a, < x < b,} are nonempty closed intervals
such that Iy C I, for each n > 1. Then the intersection (> I is nonempty.

PROOF. Notice that since I, is contained in I, it follows that
ap < ap4 < bn+1 < by.

Thus (a,) is a monotone increasing sequence bounded above by b;; and likewise

(b,) is a monotone decreasing sequence bounded below by «;. Hence by Theo-

rem 2.6.1, a = lima, exists, as does b = lim b,,. By Exercise 2.4.C, a < b. Thus
n—s00 Nn—o00

a, <a<b<b.

Consequently, the point a belongs to /; for each k > 1. ]

Exercises for Section 2.6

A. Say that lima, = oo if for every R € R, there is an integer N such that a, > R for alln > N.
n—sco
Show that a divergent monotone increasing sequence converges to oo in this sense.

B. Leta; =0anda,+; =+/5+2a, forn > 1. Show that lim a, exists and find the limit.
n—oo
C. IsS={xeR:0<sin({) < 1} bounded above (below)? If so, find sup S (inf ).
D. Evaluate lim /3" +5".
n—seo
E. Suppose (a,) is a sequence of positive real numbers such that a, | —2a, + a,—; > 0 for all
n > 1. Prove that the sequence either converges or tends to +co.
F. Leta,b be positive real numbers. Set xo = a and x,.1 = (x,; ' +b)~! forn > 0.

(a) Prove that x,, is monotone decreasing.
(b) Prove that the limit exists and find it.

G. Leta,=(X};_,1/k)—logn for n > 1. Euler’s constant is defined as y = lim a,. Show that

(an),_ is decreasing and bounded below by zero, and so this limit exists.
HINT: Prove that 1/(n+1) <log(n+1)—logn < 1/n.

H. Letx,,—\/+\/2+ 3+ “+/n

(a) Show that x, < xj41.
(b) Show that xﬁ <1+ V/2x,. HINT: Square x,; | and factor a 2 out of the square root.
(c) Hence show that x;, is bounded above by 2. Deduce that limx, exists.

n=os
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I.  (a) Let (ay),_, be a bounded sequence and define a sequence b, = sup{ay : k > n} forn > 1.
Prove that (b, ) converges. This is the limit superior of (a,), denoted by limsupa,.
(b) Without redoing the proof, conclude that the limit inferior of a bounded sequence (a,),
defined as liminfa, := r}gl; (insz,, ak) , always exists.

(c) Extend the definitions of limsupa, and liminfa, to unbounded sequences. Provide an
example with limsupa, = 4o and liminfa, = —oco.
J. Show that (a,);_, converges to L € R if and only if limsupa, = liminfa, = L.
K. If a sequence (a,) is not bounded above, show that sup{a, : n > k} = +oo for all k. What
should limsupa, be? Formulate and prove a similar statement if (a,) is not bounded below.
L. Suppose (a,);,_, and (b,),_, are sequences of nonnegative real numbers and lima, € R
oo
exists. Prove that limsupa,b, = lima, (limsupb,).
f—soo
M. Suppose that (a,);_; has a, > 0 for all n. Show that limsupa, ! = (liminfa,,) -

N.  Suppose (a,);,_; and (by),_, are sequences of positive real numbers and limsupa, /b, < eo.
Prove that there is a constant M such that a,, < Mb,, forall n > 1.

2.7 Subsequences

Given one sequence, we can build a new sequence, called a subsequence of the
original, by picking out some of the entries. Perhaps surprisingly, when the original
sequence does not converge, it is often possible to find a subsequence that does.

2.7.1. DEFINITION. A subsequence of a sequence (a,),_, is a sequence
(ank)k:1 = (n,,any,apy,...), Where ny <np <nz <---.

For example, (ax);_, and (a;3);_, are subsequences, where ny = 2k and n; =
k3, respectively. Notice that if we pick n; = k for each k, then we get the original
sequence; so (ay ), is a subsequence of itself.

It is easy to verify that if (a,), , converges to a limit L, then (ank )::1 also
converges to the same limit. On the other hand, the sequence (1,2,3,...) does not
have a limit, nor does any subsequence, because any subsequence must diverge to
+oo. However, we will show that as long as a sequence remains bounded, it has
subsequences that converge.

2.7.2. BOLZANO—WEIERSTRASS THEOREM.
Every bounded sequence of real numbers has a convergent subsequence.

PROOF. Let (a,) be a sequence bounded by B. Thus the interval [—B, B] contains the
whole (infinite) sequence. Now if / is an interval containing infinitely many points
of the sequence (a,), and I = J; UJ; is the union of two smaller intervals, then at
least one of them contains infinitely many points of the sequence, too.

So let I} = [—B, B]. Split it into two closed intervals of length B, namely [—B, 0]
and [0, B]. One of these halves contains infinitely many points of (a,); call it L.
Similarly, divide I, into two closed intervals of length B/2. Again pick one, called
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I3, that contains infinitely many points of our sequence. Recursively, we construct a
decreasing sequence I, of closed intervals of length 22~¥B such that each contains
infinitely many points of our sequence. Figure 2.3 shows the choice of /5 and /4,
where the terms of the sequence are indicated by vertical lines.

I
S——
| | 1] LUl | |
I [ T 1 [ I
—B 0 A B
I

F1G. 2.3 Choice of intervals I3 and I4.

By the Nested Interval Lemma (2.6.3), we know that ()~ [ contains a number
L. Choose an increasing sequence ny such that a,, belongs to I;. This is possible
since each I contains infinitely many numbers in the sequence, and only finitely
many have index less than n;_;. We claim that klim ay, = L. Indeed, both a,, and L

—>00

belong to Iy, and hence
|an, — L| < |It] =275 (4B).

The right-hand side tends to 0, and thus klim ay, = L. |

oo

2.7.3. EXAMPLE. Consider the sequence (a,) = (sign(sinn)),_,, where the
sign function takes values £1 depending on the sign of x except for sign0 = 0. With-
out knowing anything about the properties of the sine function, we can observe that
the sequence (a,) takes at most three different values. At least one of these values is
taken infinitely often. Thus it is possible to deduce the existence of a subsequence
that is constant and therefore converges.

Using our knowledge of sine allows us to get somewhat more specific. Now
sinx = 0 exactly when x is an integer multiple of 7. Since 7 is irrational, k7 is never
an integer for k > 0. Therefore, a, takes only the values 1. Note that sinx > 0 if
there is an integer k such that 2k < x < (2k+ 1)7; and sinx < 0 if there is an integer
k such that (2k — 1) < x < 2k7. Observe that n increases by steps of length 1, while
the intervals on which sinx takes positive or negative values has length 7= ~ 3.14.
Consequently, a, takes the value +1 for three or four terms in a row, followed by
three or four terms taking the value —1. Consequently, both 1 and —1 are limits of
certain subsequences of (ay).

2.7.4. EXAMPLE. Consider the sequence (a,) = (sinn),_,. As the angles n
radians for n > 1 are marked on a circle, they appear gradually to fill in a dense
subset. If this can be demonstrated, we should be able to show that sin 6 is a limit
of a subsequence of our sequence for every 0 in [0,27].

The key is to approximate the angle 0 modulo 27 by integers. Let m be a posi-
tive integer and let € > 0. Choose an integer N so large that Ne > 27. Divide the



2.7 Subsequences 25

circle into N arcs of length 27/N radians each. Then consider the N + 1 points
0,m,2m,...,Nm modulo 27 on the circle. Since there are N + 1 points distributed
into only N arcs, the Pigeonhole Principle implies that at least one arc contains two
points, say im and jm, where i < j. Then n = jm — im represents an angle of abso-
lute value at most 27/N < € radians up to a multiple of 2x. That is, n = ¥ + 27s
for some integer s and real number |y| < €. In particular, |sinn| < € and n > m.
Moreover, since 7 is not rational, 7 is not an exact multiple of 27.

So given 0 € [0,27], construct a subsequence as follows. Let n; = 1. Recursively
we construct an increasing sequence 7y, such that

1
[sinny —sin 6| < T

Once ny, is defined, take € = ﬁ and m = ny + 1. As in the previous paragraph, there
is an integer n > ny such that n = Y+ 27s and |y| < ﬁ Thus there is a positive
integer ¢ such that |0 —ry] < ,ﬁ%l Therefore

1

|sin(tn) —sin(0)| = |sin(ry) —sin(0)| < [ty — 0] < Tk (2.7.5)

Set ny; = tn. This completes the induction. The result is a subsequence such that

lim sin(n) = sin 6.

k—o0

To verify equation (2.7.5), recall the Mean Value Theorem (6.2.2). There is a
point & between ¢ty and 6 such that

sin(ry) —sin(0)
ty—6

’:|cos!§‘ <.

Rearranging yields |sin(fy) —sin(0)| < |ty — 0.

Therefore, we have shown that every value in the interval [—1,1] is the limit of
some subsequence of the sequence (sinn),_,.
2.7.6. EXAMPLE. Consider the sequence b; = 3 and b, = (b, + 8/b,)/2.
Notice that

B g b2+164 (64/b2)—32 b2 — 16+ (64/b2)
n+1 - 4 - 4
(bn - 8/bn)2 (b% - 8)2

4 4b2
It follows that b2 > 8 for all n > 2, and b? — 8 = 1 > 0 also. Thus

(bp—8)?

0<bi —8< =
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Iterating this, we obtain b% —8< 3271, b% —8<3273 and bﬁ —8<32 7. In general,
we establish by induction that

0<b2—8<32172"",
Since b, is positive and b> — 8 = (b — /8) (b ++/8), it follows that

b8 <321—2”’1
by +vV8  2V8

Lastly, using the fact that 322 = 1024 > 103, we obtain

0<b,—V8

<6(3272" ).

0<by,—/8<10-10732"".

In particular, lim b, = /8. In fact, the convergence is so rapid that b approximates
Nn—s00

/8 to more than 750 digits of accuracy. See Example 11.2.2 for a more general
analysis in terms of Newton’s method.

Let a, = 8/b,. Then a, is monotone increasing to v/8. Both a,, and b,, are rational,
but +/8 is irrational. Thus the sets J, = {x€Q:a, <x<by,} form a decreasing
sequence of nonempty intervals of rational numbers with empty intersection.

Exercises for Section 2.7

>

n el
Show that (a,) = (M> 1 has a convergent subsequence.
n=

V/n2+2n
Does the sequence (b,) = (n+ cos(nm)vn? + 1):’:1 have a convergent subsequence?
Does the sequence (a,,) = (coslogn);_, converge?

Show that every sequence has a monotone subsequence.

HoQFF

Use trig identities to show that | sinx —siny| < [x —y|.
HINT: Leta = (x+y)/2 and b = (x—y)/2. Use the addition formula for sin(a £ b).

=

Define x; =2 and x4 | = %(xn+5/x,,) forn>1.

(a) Find a formula for xfl 41 — 5 in terms of xﬁ —5.

(b) Hence evaluate lim x,,.
n—oo
(c) Compute the first ten terms on a computer or a calculator.
(d) Show that the tenth term approximates the limit to over 600 decimal places.

G. Let (x,),_, be a sequence of real numbers. Suppose that there is a real number L such that
L = limx3,_| = limx3,4; = limx3,. Show that limx, exists and equals L.
n—soo n—soo n—soo n—soo

H. Let (x,),_; be a sequence in R. Suppose there is a number L such that every subsequence

(n )5 has a subsubsequence (x,, ), with lim x,,,,, = L. Show that the whole sequence

converges to L. HINT: If not, you could find a subsequence bounded away from L.
L. Suppose (x,);,_; is a sequence in R, and that L; are real numbers with ,}im Ly = L. If for

each k > 1, there is a subsequence of (x,);._; converging to L, show that some subsequence
converges to L. HINT: Find an increasing sequence n such that |x, —L| < 1/k.
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J. (a) Suppose that (xn):’:] is a sequence of real numbers. If L = liminfx,, show that there is a

subsequence (x, ), such that ]}im xn, = L.

=

(b) Similarly, prove that there is a subsequence (Xn, ) I

| such that llim Xp, = limsupx;,.

K. Let (x,),_, be an arbitrary sequence. Prove that there is a subsequence (xnk)w

1 Which con-
verges or lim x,, = o or lim x,, = —oo.
k—oo k—oo

L. Construct a sequence (x,),_, such that for every real number L, there is a subsequence
(xnk)k:1 with klim Xp, = L.

2.8 Cauchy Sequences

Can we decide whether a sequence converges without first finding the value of the
limit? To do this, we need an intrinsic property of a sequence which is equivalent to
convergence that does not make use of the value of the limit. This intrinsic property
shows which sequences are ‘supposed’ to converge. This leads us to the notion of
a subset of R being complete if all sequences in the subset that are ‘supposed’ to
converge actually do. As we shall see, this completeness property has been built into
the real numbers by our construction of infinite decimals.

To obtain an appropriate condition, notice that if a sequence (a,) converges to L,
then as the terms get close to the limit, they are getting close to each other.

2.8.1. PROPOSITION. Let (an),_, be a sequence converging to L. For every
€ >0, there is an integer N such that

|an —am| < € forall mn>N.

PROOF. Fix € > 0 and use the value £/2 in the definition of limit. Then there is an
integer N such that |a, —L| < €/2 for all n > N. Thus if m,n > N, we obtain

an = an| <o — L] +1L—an| < 5+ =&.
2 2 [
In order for N to work in the conclusion, for every m > N, a,, must be within &
of ay. It is not enough to just have ay and ay close (see Exercise 2.8.B).
We make the conclusion of this proposition into a definition. This definition re-
tains the flavour of the definition of a limit, in that it has the same logical structure:
For all € > 0, there is an integer N . ...

2.8.2. DEFINITION. A sequence (a,),_, of real numbers is called a Cauchy
sequence provided that for every € > 0, there is an integer N such that

|awm —a,| < € forall m,n>N.
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2.8.3. PROPOSITION. Every Cauchy sequence is bounded.

PROOF. The proof is basically the same as Proposition 2.5.1. Let (a,), _, be a
Cauchy sequence. Taking € = 1, find N so large that

|an —an| <1 forall n>N.
It follows that the sequence is bounded by max{|ai|,...,|an—_1], |ay|+ 1}. |

Since the definition of a Cauchy sequence does not require the use of a potential
limit L, it permits the following definition.

2.8.4. DEFINITION. A subset S of R is said to be complete if every Cauchy
sequence (a,) in S (that is, a, € S) converges to a point in S.

This brings us to an important conclusion about the real numbers themselves,
another property that distinguishes the real numbers from the rational numbers.

2.8.5. COMPLETENESS THEOREM.
Every Cauchy sequence of real numbers converges. So R is complete.

PROOF. Suppose that (a,),_, is a Cauchy sequence. By Proposition 2.8.3, {a, :
n > 1} is bounded. By the Bolzano—Weierstrass Theorem (2.7.2), this sequence has
a convergent subsequence, say

lim a,, = L.

koo

Let € > 0. From the definition of Cauchy sequence for €/2, there is an integer N
such that e
| — an| < 3 forall m,n>N.

And from the definition of limit using € /2, there is an integer K such that
€
lan, —L| < 3 forall k>K.

Pick any k > K such that n; > N. Then for every n > N,

)
2
So lima, = L. [ |

n—o0

oS
lan —L| < |ap — ap, | + |an, —L| < EJF — €.

2.8.6. REMARK. This theorem is not true for the rational numbers. Define the
sequence (ay), _; by

611:1.47 a2:1.41, a3:1.414, 61421.414-27 a5:1.41421,...
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and in general, a,, is the first 7+ 1 digits in the decimal expansion of v/2. If n and m
are greater than N, then a,, and a,, agree for at least first N + 1 digits. Thus

lan —an| < 107N forall m,n>N.

This shows that (ay,),_, is a Cauchy sequence of rational numbers. (Why?)

However, this sequence has no limit in the rationals. In our terminology, Q is
not complete. Of course, this sequence does converge to a real number, namely /2.
This is one way to see the essential difference between R and Q: the set of real
numbers is complete and Q is not.

2.8.7. EXAMPLE. Let « be an arbitrary real number. Define a, = [na]/n,
where [x] is the nearest integer to x. Then |[na] —na| < 1/2. So

— 1
|an_a|:|["04w!<2n,

We claim lim a, = «. Indeed, given € > 0, choose N so large that % < €. Then for

n—oo

n>N, |a, — a| < €/2. Moreover, if m,n > N,
€

=E.
2

€
lan — am| < |a, — al+ | —ay| < EJr
Thus this sequence is Cauchy.

2.8.8. EXAMPLE. Consider the infinite continued fraction
1

2+
2+
2

L
24+

To make sense of this, it has to be interpreted as the limit of the finite fractions

ay = 3, ay = = 1) asz = 1 =

1 1 2 1 5
2 245 5 2+ 12

We need a better way of defining the general term. In this case, there is a recursive
formula for obtaining one term from the preceding one:

1

ar =z, ap+1 = )

> for n>1.

+ay

In order to establish convergence, we will show that (a,) is Cauchy. Consider
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1 1 o Ap+1 —dp
24a, 2+a  (2+a)2+an)’

Apt1 —dpy2 =

Now a; > 0, and it is readily follows that @, > 0 for all n > 2 by induction. Hence
the denominator (2+a,)(2+ a1 ) is greater than 4. So we obtain

|an *an+l|

1 forall n>1.

|an+l - an+2| <

Since |a; —ap| = 1/10, we may iterate this inequality to estimate

1

|anfan+1| < W = %(4—")

1
e

ay—az| < —
la2 = as| 10 4
The general formula estimating the difference may be verified by induction.

Now it is straightforward to estimate the difference between arbitrary terms a,,
and a, form < n:

|am—an|:|(am—am+1)—|—(am+1—am+2)—|—~--—|—(an,1—an)|
< |am_am+l‘+|am+l_am+2‘+"'+|an—l_an|
2.47m 8
%(4—m+4—m 1+ +41 n) : — 2 gm gm
S(1=3) 13

This tells us that our sequence is Cauchy. Indeed, if € > 0, choose N such that
4N < &. Then

|am—an|<4_”’§4_N<8 forall m,n>N.

Therefore by the Completeness Theorem 2.8.5, it follows that (ay,),_, converges;
say, lima, = L. To calculate L, use the recurrence relation
n—oo

=1 l li ! 71
= lima, = lima,; = lim .
n—eo mH = n—e2+a, 2+4+L

It follows that L> +2L — 1 = 0. Solving yields L = 4-1/2 — 1. Since L > 0, we see
that L = /2 — 1.

We have accumulated five different results for R that distinguish it from Q.

(1) the Least Upper Bound Principle (2.3.3),

(2) the Monotone Convergence Theorem (2.6.1),
(3) the Nested Intervals Lemma (2.6.3),

(4) the Bolzano—Weierstrass Theorem (2.7.2),
(5) the Completeness Theorem (2.8.5).

It turns out that they are all equivalent. Indeed, each of the proofs of items (2) to (5)
relies only on the previous item in our list. To show how the Completeness Theorem
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implies the Least Upper Bound Principle, go through our proof to obtain an increas-
ing sequence of lower bounds, y, and a decreasing sequence of elements x; € S
with x; < yx + 107, Show that the sequence x1,y1,x2,y2, ... is Cauchy. The limit L
will be the greatest lower bound. Fill in the details yourself (Exercise 2.8.G).

Exercises for Section 2.8

Let (x,) be Cauchy with a subsequence (x,, ) such that gim Xy, = a. Show that lim x, = a.
o0 n—oo

Give a sequence (aj,) such that lim |a, —a,+1| = 0, but the sequence does not converge.
frasees)

N
n=1

Let (ay) be a sequence such that Al/im Yo lan — any1| < oo. Show that (a,) is Cauchy.

If (x,),,_; is Cauchy, show that it has a subsequence (x,, ) such that Y37 | |x,, — X, | < ee.

#29 0 F »

Suppose that (a,) is a sequence such that az, < az,+2 < a2p+3 < azyt for all n > 0. Show
that this sequence is Cauchy if and only if lim|a, — a,+1| = 0.
n—seo

=

Give an example of a sequence (a,) such that az, < aspi2 < azps3 < azy4g for all n >0
which does not converge.

G. Fillin the details of how the Completeness Theorem implies the Least Upper Bound Principle.

H. Letay=0and seta,; = cos(a,) for n > 0. Try this on your calculator (use radian mode!).

(a) Show that ay, < azpi2 < azp43 < appyy foralln > 0.
(b) Use the Mean Value Theorem to find an explicit number » < 1 such that

|any2 — any1| < rla, — ay1| for all n > 0. Hence show that this sequence is Cauchy.
(c) Describe the limit geometrically as the intersection point of two curves.

I.  Evaluate the continued fraction 1

1

L
14 -

1+
1+
1

J.  Letxp =0 and x,;; = v/5—2x, for n > 0. Show that this sequence converges and compute
the limit.  HINT: Show that the even terms increase and the odd terms decrease.

K. Consider an infinite binary expansion (0.eje2e3. .. )pase 2, Where each e; € {0, 1}. Show that
a, =Y 2 'e; is Cauchy for every choice of zeros and ones.

L. One base-independent construction of the real numbers uses Cauchy sequences of rational
numbers. This exercise asks for the definitions that go into such a proof.

(a) Find a way to decide when two Cauchy sequences should determine the same real number
without using their limits. ~ HINT: Combine the two sequences into one.

(b) Your definition in (a) should be an equivalence relation. Is it? (See Appendix 1.3.)

(c) How are addition and multiplication defined?

(d) How is the order defined?

2.9 Countable Sets

Cardinality measures the size of a set in the crudest of ways—by counting the num-
bers of elements. Obviously, the number of elements in a set could be 0, 1, 2, 3, 4,
or some other finite number. Or a set can have infinitely many elements. Perhaps
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surprisingly, not all infinite sets have the same cardinality. We distinguish only be-
tween sets having the smallest infinite cardinality (countably infinite sets) and all
larger cardinalities (uncountable sets). We use the term countable for sets that are
either countably infinite or finite.

2.9.1. DEFINITION. Two sets A and B have the same cardinality if there is a
bijection f from A onto B. Write |A| = |B| in this case. We say that the cardinality
of A is at most that of B (write |A| < |B|) if there is an injection f from A into B.

The definition says simply that if all of the elements of A can be paired, one-to-
one, with all of the elements of B, then A and B have the same size. If A fits inside
B in a one-to-one manner, then A is smaller than or equal to B. It is natural to ask
whether |A| < |B] and |B| < |A| imply |A| = |B|. The answer is yes, but this is not
obvious for infinite sets. The Schroeder—Bernstein Theorem establishes this, but we
do not include a proof.

2.9.2. EXAMPLES.

(1) The cardinality of any finite set is the number of elements, and this number
belongs to {0,1,2,3,4,...}. This property is, essentially, the definition of finite set.

(2) Many sets encountered in analysis are infinite, meaning that they are not fi-
nite. The sets of natural numbers N, integers Z, rational numbers Q, and real num-
bers R are all infinite. Moreover, we have the containments N C Z C Q C R.
Therefore |N| < |Z| < |Q] < |R|. Notice that the integers can be written as a
list 0,1,—1,2,—2,3,—3,.... This amounts to defining a bijection f : N — Z by
f(2n—1)=1—nand f(2n) =n for n > 1. Therefore, |N| = |Z|.

2.9.3. DEFINITION. A set A is a countable set is it is finite or if |A| = |N|. If
|A| = |N|, we say that A is countably infinite. The cardinal |N| is also denoted by
X, pronounced aleph nought. Aleph is the first letter of the Hebrew alphabet.

An infinite set that is not countable is called an uncountable set.

Equivalently, A is countable if the elements of A may be listed as aj,a»,as,....
Indeed, the list itself determines a bijection f from N to A by f(k) = a,. It is a basic
fact that countable sets are the smallest infinite sets.

Notice that two uncountable sets might have different cardinalities.

2.9.4. LEMMA. Every infinite subset of N is countable. Moreover, if A is an
infinite set such that |A| < |N|, then |A| = |N|.

PROOF. Any nonempty subset X of N has a smallest element. This follows from
induction: if X does not have a smallest element, then 1 ¢ X and 1,...,n all not in
X imply n+ 1 ¢ X. By induction, X is empty, a contradiction.
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Let B be an infinite subset of N. List the elements of B in increasing order as
by < by < b3 < ---. This is done by choosing the smallest element by, then the
smallest of the remaining set B\ {b; }, then the smallest of B\ {b;,b,}, and so on.
The result is an infinite list of elements of B in increasing order. It must include
every element b € B because {n € B: n < b} is finite, containing say k elements.
Then by = b. As noted before the proof, this implies that |B| = |N].

Now consider an infinite set A with |A| < |N|. By definition, there is an injection
f of Ainto N. Let B = f(A). Note that f is a bijection of A onto B. Thus B is an
infinite subset of N. So |A| = |B| = |N]|. [ |

2.9.5. PROPOSITION. The set N x N is countable.

PROOF. Rather than starting with the formula of a bijection from N to N x N, note
that each ‘diagonal set’ D,, = {(i,j) e NxN:i+ j=n+1},n> 1, s finite. Thus, if
we work through these sets in some methodical way, any pair (i, j) will be reached
in finitely many steps. See Figure 2.4.

Noting that |D,| =nand 1+2+...+n=n(n+1)/2, we define our bijection
for m € N by first picking n such that n(n —1)/2 < m < n(n+1)/2. Letting k =
m—n(n—1)/2, we define @ (m) to be (k,n+ 1 — k). It is routine, if tedious, to verify
that ¢ is a bijection, i.e., one-to-one and onto. [ |

as,
as
as

as

aii 12 d13 dija ars

FIG. 2.4 The ordering on N x N.

2.9.6. COROLLARY. The countable union of countable sets is countable.

PROOF. Let Aj,A>,A3,... be countable sets. To avoid repetition, let B = A and
Bi=A;\ U;;llAk. Each B; is countable, so list its elements as b; 1,b;,b;3,.... Map
A =U;>1A; = U1 B; into N x N by f(b;;) = (i, ). This is an injection; therefore
|A| < |N x N| = |NJ. Hence the union is countable. |

2.9.7. COROLLARY. The set Q of rational numbers is countable.



34 2 The Real Numbers

PROOF. Observe that Z x N is countable, since we can take the bijection f : N — Z
of Example 2.9.2 (2) and use it to define g : N x N — Z x N by g(n,m) = (f(n),m),
which you can check is a bijection.

Define a map from Q into Z x N by a(r) = (a,b) if r = a/b, where a and b are
integers with no common factor and » > 0. These conditions uniquely determine the
pair (a,b) for each rational r, and so £ is a function. Clearly, A is injective since r is
recovered from (a,b) by division. Therefore, % is an injection of @ into a countable
set. Hence (Q is an infinite set with |Q| < |NJ. So Q is countable by Lemma 2.9.4. B

There are infinite sets that are not countable. The proof uses a diagonalization
argument due to Cantor.

2.9.8. THEOREM. The set R of real numbers is uncountable.

PROOF. Suppose to the contrary that R is countable. Then all real numbers may be
written as a list x1,x,x3,.... Express each x; as an infinite decimal, which we write
as x; = Xj0.Xj1XpX;3 . . ., where xjo is an integer and x;; is an integer from O to 9 for
each k > 1. Our goal is to write down another real number that does not appear in
this (supposedly exhaustive) list. Let ap = 0 and define a; = 7 if x4 € {0,1,2,3,4}
and ap =2 if x € {5,6,7,8,9}. Define a real number a = ag.ajazas. ...

Since a is a real number, it must appear somewhere in this list, say a = x;. How-
ever, the kth decimal place a; of a and x; of x; differ by between 3 and 7. This
cannot be accounted for by the fact that certain real numbers have two decimal ex-
pansions, one ending in zeros and the other ending in nines because this changes any
digit by either 1 or 9. So a # xi, and hence a does not occur in this list. It follows
that there is no such list, and thus R is uncountable. [ ]

Exercises for Section 2.9

A. Prove that the set Z", consisting of all n-tuples a = (aj,az, . ..,a,), where a; € Z, is countable.
B. Show that (0,1) and [0, 1] have the same cardinality as R.

C. Show thatif |A| < |B| and |B| <|C|, then |A| < |C|.
D

Prove that the set of all infinite sequences of integers is uncountable.
HINT: Modify the diagonalization argument.

=

A real number « is called an algebraic number if there is a polynomial with integer coeffi-
cients with & as a root. Prove that the set of all algebraic numbers is countable.
HINT: First count the set of all polynomials with integer coefficients.

F. A real number that is not algebraic is called a transcendental number. Prove that the set of
transcendental numbers has the same cardinality as R.

G. Show that the set of all finite subsets of N is countable.

H. Prove Cantor’s Theorem: that for any set X, the power set P(X) of all subsets of X satisfies
|X| #|P(X)|. HINT: If fis an injection from X into P(X), consider A ={x € X : x & f(x)}.
I. If Ais an infinite set, show that A has a countable infinite subset.
HINT: Use recursion to choose a sequence a, of distinct points in A.

J. Show that A is infinite if and only if there is a proper subset B of A such that |B| = |A]|.
HINT: Use the previous exercise and let B=A\ {a; }.



Chapter 3
Series

3.1 Convergent Series

We turn now to the problem of adding up an infinite series of numbers. As we shall
quickly see, this is really no different from dealing with the sequence of partial sums
of the series. However, there are tests for convergence that are more conveniently
expressed for series than for sequences.

3.1.1. DEFINITION. If (a,),_, is a sequence of numbers, the infinite series

with terms a,, is the formal expression Y a,. Define a sequence of partial sums
n=1
(8$n)y_y by $p = ): ay. This series converges, or equivalently is summable, if the

sequence of partlal sums converges. If L = hm 5,7, then we write L = Z ay. If the
n=1
series does not converge, then it is said to dlverge.

It can be fairly difficult or even impossible to find the sum of a series. However, it
is not nearly as hard to determine whether a series converges. We devote this chapter
to examples of series and to tests for convergence of series. While these tests may
be familiar to you from calculus, the proofs may not be.

1
3.1.2. EXAMPLE. Consider ): , which is known as the harmonic series. We
=1k
will show that this series diverges. The idea is to group the terms cleverly. Suppose

that n satisfies 28 < n < 281 Then

1 1 1 1
S”:s2k21+2+(3+4)++(2k1+1+ +2k>

1 1 1 k
>l —42— 442 =142
- 2 4 2k 2
Thus lim s,, = +oo.
Nn—oo
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There is another way to estimate the terms s,, that gives a more precise idea of the
rate of divergence of the harmonic series. Consider the graph of y = 1/x, as given in
Figure 3.1.

1 2 3 4 5 *

F1G. 3.1 The graph of 1/x with bounding rectangles.

It is clear that

1 k+1 1 k+1 1 k+1 1 1
— = dx < / —dx < / —dx =
k+1 /k TS R A A
Notice that s, is the upper Riemann sum estimate for the integral of 1/x from 1 to
n+ 1 using the integer partition

k+1 1

sn—Z Z/ —dx = fdleogx’lﬂrl

Similarly, s, — 1 is the lower Riemann sum estimate for the integral of 1/x from
1 to n using the integer partition

}’ll n
s —1=Y - / fdx:/ Jdx=1lo x‘ — logn.
Z kZQk 3 gx| =log

—1X

=log(n+1).

Therefore, log(n+1) < s, < 1+logn forall n > 1. Hence s, diverges to infinity
roughly at the same rate as the log function.

o 1
3.1.3. EXAMPLE. On the other hand, consider Y ——. First observe that
nm1n(n+3)

3 1 1

nn+3) n n+3’
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and so we have an example of a telescoping sum (so named because of the conve-
nient cancellation in the following sum):

35, = §—I—i—i- T+ &
4 10 n(n+3)
e
4 n n+3
<1+1—|— -+ ) <1+1+ -+ ! )
2 4 5 n+3
_1+1+1_ 11 .
2 3 n+l n+2 n+3
Thus, _
Z *11mn71+1/2+1/3 E
Sn(n+3) noe 3 18

The harmonic series shows that a series Y, a, can diverge even if the a, go to
n=1

zero. However, if a series Z a, does converge, then lim a, must be zero.
n=1 oo

3.1.4. THEOREM. Ifthe series Z a, is convergent, then hma,, =0.
n=

PROOF. If (s,);_, is the sequence of partial sums, then a, = s, — s,—1 for n > 2.

Using the properties of limits, we have lims, = lims,_1, and thus

n—oo n—oo

lima, = hmsn Sp—1 = lims, — lims,_; =0.
n—oo n—oo n—oo .

The rigorous €-N definition of convergence and the Cauchy criterion have a nice
form for series.

3.1.5. CAUCHY CRITERION FOROQSERIES.

The following are equivalent for a series Y, ay.
n=1

(1) The series converges.

Y ak‘ <E.
k=n+1
m
) ak’ < E.
k=n+1

PROOF. Let s, be the sequence of partial sums of the series. If the series converges
to a limit L, then for every € > 0 there is an integer N such that

|IL—s,| <€ forall n>N.
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Since
L—s,= lim s, —s, = lim Z ay = Z ay,

mee M k=nt 1 k=n+1

this shows that (1) implies (2).

If (2) holds, y ak‘ <& 1fmn>N,
k=n+1
then the reverse triangle inequality shows that
m o o oo oo
Z a;| < Z ag| — Z ar|| < max Z agl, Z ay| ¢ <E.
k=n+1 k=n+1 k=m-+1 k=n+1 k=m+1

So (3) holds.

m
Finally, if (3) holds, since |s,;, — s,| = ‘ Y al|, then (s,) is a Cauchy sequence.
k=t 1

Therefore the series converges, by the completeness of the real numbers. |

Exercises for Section 3.1

A. Sum the series
,,):1 nn+2)°

1
in(n+1)(n+3)(n+4)

12 2,2 U
n(n+1)(n+3)(n+4) n n+l n+3 n+4d’

B. Sum the series ):

HINT: Show that

C. Prove thatif p > 1 and kZI t 1s a convergent series of nonnegative numbers, kZl tk converges.

D. Let (ay),_, be asequence such that lim |a,| = 0. Prove that there is a subsequence (a, ) such
e

that Y a,, converges.
k=1

i 1 . n+1—+/n
E. Compute . HINT: Multiply the nth term by 1 = .
Pue Y e D)Vt avai il Y nr - Jn
F. Let|a]<1landsetS, = )n: a* and T, = f (k+1)a*
k=0 k=0

(a) Show that §2 = Y (k+1)a* + z (n+1—k)a"*,
k=0

(b) Hence show that |T;, — §2| < 2ttD ”“ g+,
(c) Show that hm T, = (r}g'[olo S,,) . Hence obtain a formula for this sum.
(d) Evaluate k):o %1
G. Letxg=1andx,; 1 =x,+1/x,.
(a) Find lim x,,.
(b) Let y:: ;mxﬁ — 2n. Find a recurrence formula for y, in terms of y, only.

(c) Show that y, is monotone increasing and y, < 2+ logn.
(d) Hence show that lim x,, —v/2n = 0.
n—soo
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3.2 Convergence Tests for Series

We start by considering infinite series with positive terms. If each a, > 0, then
Sp+1 = Sp + au+1 > Sy, so the sequence of partial sums is monotone increasing. So
the Monotone Convergence Theorem (2.6.1) shows that (s,) converges if and only
if it is bounded above. We have established the following proposition.

n

3.2.1. PROPOSITION. Ifap > 0fork>1ands, =Y, ay, then either
k=1

(1) (sn),_, is bounded above, in which case Y. a, converges,
n=1
or

(2) (sn),—, is unbounded, in which case Y, a, diverges.
n=1

A sequence (“n)::o is a geometric sequence with ratio r if a, | = ra, for all
n > 0 or, equivalently, a, = aor" for all n > 0. Finding the sum of a geometric

sequence is a standard result from calculus, so we leave the proof as an exercise.

3.2.2. GEOMETRIC SERIES. =
A geometric series converges if [r| < 1. Moreover, Y, ar" = 1L.

n= -

Of course, if @ # 0 and |r| > 1, then the terms ar" do not converge to 0. In this
case, the geometric sequence (a,,):zo is not summable.
Another test often used in calculus is the Comparison Test.

3.2.3. THE COMPARISON TEST.
Consider two sequences of real numbers (a,) and (b,) with |a,| < by, for alln > 1.
If (b,) is summable, then (ay,) is summable and

Y a|< Y b
n=1 n=1

If (a,) is not summable, then (b,) is not summable.

PROOF. Let € > 0 be given. Since (b,) is summable, Lemma 3.1.5 yields an integer
N such that

m
Y bi<e foral N<n<m.

k=n+1
Therefore,
m m m
Y al< Y wls Y n<e
k=n+1 k=n+1 k=n+1

Applying Lemma 3.1.5 again shows that ) ,”_; a, converges.
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If (ay) is not summable, then neither is (b,), by the contrapositive. (The summa-
bility of (b,) would imply that (a,) was also summable.) [ |

The Root Test can decide the summability of sequences that are dominated by a
geometric sequence “at infinity.”

3.2.4. THE ROOT TEST. _
Suppose a, > 0 for all n, and let { = limsup /a,. If { < 1, then Y. a, converges;
n=1

and if { > 1, then Y, a, diverges.
1

n=

NOTE: If limsup /a, = 1, the series may or may not converge (see Exercise 3.2.L).

PROOF. Suppose that limsup /a,, = ¢ < 1. To show that the series converges, we
need to show that the sequence of partial sums is bounded above. Pick a number r
with £ < r < 1 and let € = r—£. Since € > 0, we can find an integer N > 0 such that

anl/" <l+e=r forall n>N.
Therefore, a, < " for all n > N. Consider the sequence (b,);,_, given by
b,=a,, 1<n<N, and b,=/" for n>N.
This sequence is summable by Theorem 3.2.2. Indeed,

oo N-1 0o N-1 N
Yo=Y bat Y bu= Y bt
n=1 n=1 n=N n=1 -r

Since |a,| < b, for n > 1, the Comparison Test (3.2.3) shows that (ay), _; is
summable.

Conversely, if limsup /a, = £ > 1, then let € = £ — 1. From the definition of

n—o0

limsup, there is a subsequence n; < np < --- such that
ankl/”k >(—e=1 forall k>1.

Therefore, the terms a, do not converge to 0 and thus the series diverges. |

3.2.5. DEFINITION. A sequence is alternating if it has the form ((—1)"a,)
or ((—1)"*a,), where a, > 0 for all n > 1.

3.2.6. LEIBNIZ ALTERNATING SERIES TEST.
Suppose that (ay),,_, is a monotone decreasing sequence ay > a > az > --- > 0,

and lima, = 0. Then the alternating series Y. (—1)"a, converges.
n—ee n=1
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PROOF. Let s, = Y. (—1)*a;. Intuitively, (s,) behaves as in Figure 3.2.
k=1

S1 $3 85 L S6 S4 52

FI1G. 3.2 Behaviour of partial sums.

Making this formal, we claim that

(1) s22>254>862>""",
(2) s1<s3<s5<---,and
3) syn_1 <89, for all m,n > 1.

To prove (1), notice that sy, — $2,—2 = a2, —az,—1 < 0, since ay, < ay,—1. For (2),
$2n4+1 — San—1 = aop — aop+1 > 0. For (3), note that if m and n are integers, then for
N = max{m,n}, we have

Som—1 < Soy—1 < Son < 82y

Since the decreasing sequence (s2,54,...) is bounded below by sy, it converges to
some number L by the Monotone Convergence Theorem (2.6.1). Similarly, since
(s1,$3,...) is increasing and bounded above by s,, it converges to some number M.
Finally,

L—M = lim sy, — hm Sop—1 = hm N $2p = $2n-1 = hm N Ay = 0.
n—oo .

3.2.7. EXAMPLE. Consider the alternating harmonic series

= (—1)! 11 1
=] == — ...
n; n 2+3 4Jr

This series is alternating and % is monotone decreasing to 0, so the series must
converge. Note that the harmonic series has the same terms without the sign changes.

It is possible to sum this series in several ways. All rely on calculus in some way.
Notice that

2n (_l)kfl 1 1 1
= =1—= _

2 k; k PR
—(1+1+ - +i)— (1+1+ +i)
a 2 2n—1 2 2 4 2

2n n 1 2n1 n 1 n 1
:g’% gik a k=1%_k§1% B jmintk
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We can recognize this as a Riemann sum approximating an integral. Indeed, con-

21
sider the integral / — dx. Partition the interval [1,2] into n equal pieces. Then from
1 X

FIG. 3.3 Riemann sum for [? Lax.

1
Figure 3.3, we see that the Riemann (lower) sum for integrating f(x) = — is
X

PWIEHED e
= = 52,,.
= YoEaintk
From the calculus, we obtain
=) (71)1171 . 2 1 2
Z ——— = limsy, :/ fdleogx‘ =log?2.
- n n—oo 1 X 1
n=1
Exercises for Section 3.2
A. Prove Theorem 3.2.2.
B. Show that if (|a,|);_, is summable, then so is (ay,);._; .
C. Euler proposed that 1 —2+4 -84 .. = )D:o‘, (=2 = 17(172) = 1. What is wrong with this?
n=0
D.

Let (a,);,_, be a monotone decreasing sequence of positive real numbers. Show that the series

Y. a, converges if and only if the series Y, 2Xa, converges.
n=1 k=0

= 1
E. Apply Exercise D to the series ). - for p > 0. For which values of p does this converge?
n=1MN
F. If ¥ af and ) bi both converge, prove that Y aib; converges.
k=1 k=1 k=1
G. Find two convergent series Y. a; and Y, by such that Y ayby diverges.
k=1 k=1 k=1
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H.

(THE LIMIT COMPARISON TEST) Show that if Z a, and Z b, are series with b, > 0 such

n=1 n=1

that lim sup — < o and ): b, < oo, then the series Z a, converges.

n—oo n n=1 n=
(THE RATlo TEST) Suppose that (ay,),._, is a sequence of posmve terms. Show that if

hmsup <1, then Z a, converges. Conversely, show that if liminf 2+ > 1, then ): an
n—soo ap n=1 n—ee  dp n=1

diverges. HINT: Imitate the proof of the Root Test (i.e., find a suitable r and integer N > 0
and compare a,, with ayr~N for all n > N).

Ap+1
an

Show that the Root Test implies the Ratio Test by proving that if hm = r, then

lim (a,)'/" = r.
n—oo

. .. s Ap+1
Construct a convergent series of positive terms with limsup I —

n—oo n
(a) Find a convergent series Y, a,, with positive entries, such that hm Wa, = 1.
n=1
(b) Find a divergent series with the same property.

If a,, > 0 for all n, prove that ): a, converges if and only if Z e
n=1 n=1

converges
(THE INTEGRAL TEST) Let f(x) be a positive, monotone decreasmg function on [1,e0).
Show that the sequence (f(n)) is summable if and only if / F(x)dx < eo.

Ji

k
HINT: Show that Z fn) < 1k+lf(x) dx < Zf(n)
k n=1

n=2

= 1
Apply the previous exercise to the series n§2 W

Determine whether the following series converge or diverge.

for p > 0.

w = (—1)"logn
(a )niz ng +1 (b) ng 27 (©) n)::2 —
) z Vnt1-yn © i, e ) il sin(n7/4)
(&) L (~1)"sin(1/n) ()Z m (i)ngl(\%?fl)”
\/n+ vntl—yn (=" = (="
nzz " ()Z \ Vnlogn (l)n);2 T
P — 2 (o) ¥ () arctan(n)
n=2 (10gn) n=1Nn n=1
) z i @ X (1) 1) (1) 2 (=" n
\fJF( 1) n=1 n= (”Jrl)
1 = sin(mn/3)
(s) Z 1+n2 ()nZIW (CY) nglf
10 )
v) Z w) ¥ (x) ):

n=1 10" n=2 (IOgn)n n=2 nlOgn
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3.3 Absolute and Conditional Convergence

In this section, we show that the sums of certain series, and even their convergence,
depend on the order of terms. The Alternating Series Test shows that badly behaved
series such as the harmonic series become more tractable when we introduce ap-
propriate signs to the terms to keep the partial sums close together. However, the
following variant on Example 3.2.7 shows that considerable care must be taken
when adding this type of series.

3.3.1. EXAMPLE. Consider the series

where asz, » = ﬁ, az,—| = —ﬁ and as, = —4—1n. This has exactly the same

terms as the alternating harmonic series except that the negative terms are coming
twice as fast as the positive ones.
First let’s convince ourselves that this series converges. Notice that

1 1 1 1
A L e B e 4n(2n—1)

n

Therefore, 53, = Y,

1
R m The terms of this series are dominated by the series

o

1
Yy e This latter series converges by the Integral Test (Exercise 3.2.N), since
k=1

R MRS T R
LT Tyl T

=

. 1
Therefore, r}grolOSj;n = kgl m

However, |s3, — s3p41] < ﬁ Hence

converges by the Comparison Test (3.2.3).

limssz,—; = lims3, 11 = limss, = lims,.
n—o0 n—oo n—oo

n—oo

We can actually sum this series exactly because

I -
e(2k—1) 2\2k—1 2k/’

Therefore,

1 2n —1)n+l

S3n = = i
k

2k=1
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By Example 3.2.7, we conclude that the series converges to %log 2. Since the alter-
nating harmonic series has the limit log 2, these two series have different sums even
though they have the same terms.

3.3.2. DEFINITION. A series ¥ a, is called absolutely convergent if the

oo n=1
series Y. |a,| converges. A series that converges but is not absolutely convergent is
=1

n—
called conditionally convergent.

Example 3.2.7 shows that a convergent series need not be absolutely convergent.
The next simple fact is that absolute convergence is a stronger notion than conver-
gence (Exercise 3.2.B).

3.3.3. PROPOSITION. An absolutely convergent series is convergent.

3.3.4. DEFINITION. A rearrangement of a series Y a, is another series with
n=1
the same terms in a different order. This can be described by a permutation 7 of the

natural numbers N determining the series } dg(y)-
n=1

For absolutely convergent series, we get the best possible behaviour under a rear-
rangement. Example 3.3.1 shows that this fails for conditionally convergent series.

3.3.5. THEOREM. Every rearrangement of an absolutely convergent series
converges to the same limit.

PROOF. Let Y a, be an absolutely convergent series that converges to L. Suppose
n=1

that 7 is a permutation of N and that € > 0 is given. By the Cauchy Criterion (3.1.5),

there is an integer N such that Y. |ax| < €/2. Since the rearrangement contains
k=N-+1

exactly the same terms in a different order, the first N terms ay,...,ay eventually

occur in the rearranged series. Thus there is an integer M such that all of these terms

occur in the first M terms of the rearrangement. Hence for m > M,

m m N N oy
Zan(k)—L‘ < ‘ Zan’(k)_ Zak‘—&-‘ Zak—L‘ <2 Z lax| < €.
k=1 k=1 k=1 k=1 k=N+1

=

Therefore, Y azu) = L. |
k=1
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o (1 n+1
3.3.6. EXAMPLE. Consider the series Y. ~——2—. This series is absolutely
n=1 n
convergent since ). — converges by Exercise 3.2.E. Hence we may manipulate
n

n—=
the terms freely. Therefore,

> =1 =1 =1
D I e e o

Using techniques from Fourier series (see Chapter 14), we will be able to show that

)n+1

OO\\]

Z 1/n* = */90. Tt follows that the preceding summation equals 77*/720.

n—

On the other hand, the worst possible scenario holds for the rearrangements of
conditionally convergent series. First, we need the following dichotomy.

3.3.7. REARRANGEMENT THEOREM.

If Y. a, is a conditionally convergent series, then for every real number L, there is
n=1

a rearrangement that converges to L.

PROOF. Write the positive terms of this series as by, by, ... and the negative terms
ascy,ca,.... By Theorem 3.1.4, lima, =0; so limb,, =0 and lim ¢, = 0. We claim
n—oo n—oo n—o0
that . .
Y b=+  and Y ekl = +ee.
k=1

Indeed, if both series converged, then Y a, would converge absolutely. Suppose
n=1

that the first series diverges, but Y. |cx| = L < eo. Then for any R > 0, there is an N
k=1

N
such that ) by > R+ L. Therefore once M is so large that by,...,by are contained
k=1

inap,...,ay, we have

.Mg
\\Mz

Il
-

Z lex| > (R+L)—L=R.

Since R is arbitrary, the series diverges, contrary to our hypothesis. A similar con-
tradiction occurs if the first series converges. Hence both series must diverge.

Fix L € R. Choose the least integer m; such that u; = by +---+b,,, > L. Then
choose the least integer n; such that vi = u; +c¢; +---+¢,, < L. Then choose the
least mp > my such that up = uy + vy + by 41 + -+ + by, > L. We continue in this
way, adding just enough of the positive terms to make the total greater than L and
then switching to negative terms until the total is less than L. In this way, we define
increasing sequences my and n to be the least positive integers greater than my_
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and ny_ 1, respectively, such that

my N1 my

Zb +ZCJ>L>Zb Jchvak
We will show that this rearranged series,

bictFbmy + 1 FCny bt by + Copi Gy

converges to L. By the construction, u#; — by, <L <wu;andv; <L <v;— Cnj- There-
fore,
Ltcn; <vj<L<u < L+by,.

Since limL+ b, = limL + ¢, = L, the Squeeze Theorem (2.4.6) shows that the

n—oo n—o0

sequences of the u; and of the v; both converge to L. Finally, if s; is the kth partial
sum of the new series, then for k between m; and m; +ny, u; > s > vy, while for k
between m +ny and my +ny, vi < s < up. In general, we have

Vict <sp <w; for mi_y+ni—; <k<mi+niy,

and
vi<siy <u; for mi+ni_y <k<mi+n;

Using the Squeeze Theorem shows that the rearranged series converges to L. |

Exercises for Section 3.3

A. Find the series in Exercise 3.2.P that converge conditionally but not absolutely.

B. Decide which of the following series converge absolutely, conditionally, or not at all.

o (=" = (=" = (=1)"sin(y)
(a) () © Y ——*
,,);'1 nlog(n+1) ,,)21 24+ (=DMn ,,);1 n
C. Compute th f the series 3. —— venthat 3 L = %
. Compute the sum of the series ¥ ————— giventhat ¥ — = —.
P w1 n2(2n—1) & mint 6
1 _ 4 1
HINT: o) = W)

7[2

05( 2nm )

D. Show that Z ————— converges absolutely. Find the sum, given that Z
n=1 n? n=1

(See Example 13.5.5.)

E. Show that a conditionally convergent series has a rearrangement converging to +oo.

(-1

1
P

for (k— 1)2 < n<k?and k > 1. Decide whether the series Y a, converges.

n=1

F.  Leta,=



Chapter 4
Topology of R”

The space R”" is the right setting for many problems in real analysis. For example,
in many situations, functions of interest depend on several variables. This puts us
into the realm of multivariable calculus, which is naturally set in R"”. We will study
normed vector spaces further in Chapter 7, building on the properties and concepts
we study here. The space R” is the most important normed vector space, after the
real numbers themselves.

4.1 n-Dimensional Space

The space R” is the set of n-vectors x = (x1,x2,...,x,) with arbitrary real coeffi-
cients x; for 1 <i < n. Generally, vectors in R” will be referred to as points. This
space has a lot of structure, most of which should be familiar from advanced calcu-
lus or linear algebra courses. In particular, we should mention that the zero vector
is (0,0,...,0), which we denote by 0.

First, it is a vector space. Recall the basic property that vectors may be added and
also multiplied by (real) scalars. Indeed, for any x and y in R" and scalars € R,

X+y: (x17x27"'axn)+(y17y25"'7yn) = (-xl +ylax2 +y27'-~axn +yn)

and
X =1(x1,X0,. .. Xn) = (EX1,0X0, ..., 1Xp).

We assume that you know the basics of linear algebra. Instead, we concentrate on
the properties of R” that build on the ideas of distance and convergence.
There is the notion of length of a vector, given by

n
— _ 2y1/2
x| = [ Geroxa, o)l = () )
i=1
This is called the Euclidean norm on R”, and ||x|| is the norm of x. This conforms
to our usual notion of distance in the plane and in space. Moreover, it is the natural
K.R. Davidson and A.P. Donsig, Real Analysis and Applications: Theory in Practice, 48
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consequence of the Euclidean distance in the plane using the Pythagorean formula
and induction on the number of variables. (See Exercise 4.1.A.) The distance be-
tween two points X and y is then determined by

n 1/2
Ix=yll= (L b—xf) "
i=1

An important property of distance is the triangle inequality: The distance from
point A to point B and then on to a point C is at least as great as the direct distance
from A to C. This is interpreted geometrically as saying that the sum of the lengths
of two sides of a triangle is greater than the length of the third side (Figure 4.1).
(Equality can occur if the triangle has no area.)

x+y y

FI1G. 4.1 The triangle inequality.

To verify this algebraically, we need an inequality involving the dot product,
which is useful in its own right. Recall that the dot product or inner product of
two vectors X and y is given by

wwﬂmwwmmwwmzimb

There is a close connection between the inner product and the Euclidean norm be-
cause of the evident identity (x,x) = [|x||>. The inner product is linear in both vari-
ables:

rx+sy,z) = r(x,z) +s{y,z) forall x,y,z€ R"andr,seR
(rx+sy,z) = r(x,z) +s(y,z) y

and
(x,s5y +1z) = s(x,y) +t(x,z) forall x,y,z€R"ands,recR.

4.1.1. SCHWARZ INEQUALITY.
Forall x and y in R",

[ < [yl
Equality holds if and only if x and 'y are collinear.
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PROOF. Letx = (xq,...,x,) and y = (y1,...,¥). Then

)
~Y Y 2uy

i=1j=1

2/|x|Pfiyl? -2l y) P =2} ]

~.
Il
=

e=
1=
=
=
'\<

1
[t
-

=

~ N
<
~. N
_|_
\..RN
=
“‘I\)

I
1=
1=

=
~ N
:<N

ley]x]yl+x]yl

I
<.
Il

(xiyj—xvi)* > 0.

I
-
D=

I
<.
Il

This establishes the inequality because a sum of squares is positive.

Equality holds precisely when x;y; — x;y; = 0 for all i and j. If both x and y
equal 0, there is nothing to prove. So we may suppose that at least one coefficient is
nonzero. There is no harm in assuming that x; # 0, since the proof is the same in all

other cases. Then

yj:)ixj forall 1<j<n.
xi

Hence y = i—ix [ |

4.1.2. TRIANGLE INEQUALITY.
The triangle inequality holds for the Euclidean norm on R":

Ix+yll <Ix[[+lyll forall x,yeR"

Moreover, equality holds if and only if either x =0 or'y = cx with ¢ > 0.
PROOF. Use the relationship between the inner product and norm to compute

Ix+¥[* = (x+y,x+y) = (x,x) +(x,y) + (¥, %) + (y.)
< (x,%) + [, 9) [+ [{y,x)[ + (¥, ¥)

2
< Il + Il 1+ Dy 1+ 111 = (el =+ )™

If equality holds, then we must have (x,y) = ||x||||y||. In particular, the Schwarz
inequality holds. So either x = 0 or y = ¢x. Substituting y = cx into (x,y) = ||x]| ||y||
gives c = [|y||/||x[| > 0.

Collinearity does not imply equality for the triangle inequality in all cases be-
cause (x,y) could be negative. For example, x and —x are collinear for any nonzero
vector X, but

= [Ix+ (=)l < [Ix[+ [ = x| = 2{[x]-
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When we write elements of R” in vector notation, we are implicitly using the
standard basis {e; : 1 <i < n}, where e; is the vector with a single 1 in the ith
position and zeros in the other coordinates. A set {vy,...,v,,} in R" is orthonormal
if (vi,vj) = &; for 1 <i,j <m, where §; =0 when i # j and &; = 1. If, in addition,
{V1,...,Vn} spans R", it is called an orthonormal basis. In particular, {ej,...,e,}
is an orthonormal basis for R".

4.1.3. LEMMA. Let {vi,...,v,} be an orthonormal set in R". Then

m m 1/2
’ ZaiVi = (Z|ai|2) :
i=1 i=1

An orthonormal set in R”" is linearly independent. So an orthonormal basis for R"
is a basis and has exactly n elements.

PROOF. Use the inner product to compute
m 2 m m m 5
‘ Za,-v,-’ :Z (aivi,ajvj>=ZZaiaj5ij=Z|a,-\ .

i=1 i=1j=1 i=1j=1 i=1
m m
In particular, if ¥ a;v; =0, we find that ¥ |a;|> =0 and thus ¢; = 0 for 1 <i < m.
i=1 i=1

This shows that {vi,...,v,,} is linearly independent. Finally, a basis for R” is a
linearly independent set of vectors that spans R”. An orthonormal basis spans by
definition and is independent, as shown. A basic result of linear algebra shows that

every basis for R” has exactly n elements. |

m

Exercises for Section 4.1

A. Establish the Pythagorean formula: If x and y are orthogonal vectors, prove that
1/2
Ix+yl = (x> + llylI*) .
B. (a) Suppose x = {:I x;e; is a vector in R with nonzero coefficients only in the first j posi-
tions. Apply the Pythagorean formula to the orthogonal vectors x andy = x; €.
(b) Show by induction that the Pythagorean formula yields the norm in all dimensions.

C. Show that [|x+y|? +|[x —y||> = 2||x||> +2||y||? for all vectors x and y in R". This is called
the paral