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Preface

This book provides an introduction both to real analysis and to a range of important
applications that depend on this material. Three-fifths of the book is a series of
essentially independent chapters covering topics from Fourier series and polynomial
approximation to discrete dynamical systems and convex optimization. Studying
these applications can, we believe, both improve understanding of real analysis and
prepare for more intensive work in each topic. There is enough material to allow a
choice of applications and to support courses at a variety of levels.

This book is a substantial revision of Real Analysis with Real Applications, which
was published in 2001 by Prentice Hall. The major change in this version is a greater
emphasis on the latter part of the book, focussed on applications. A few of these
chapters would make a good second course in real analysis through the optic of one
or more applied areas. Any single chapter can be used for a senior seminar.

The first part of the book contains the core results of a first course in real analysis.
This background is essential to understanding the applications. In particular, the
notions of limit and approximation are two sides of the same coin, and this interplay
is central to the whole book. Several topics not needed for the applications are not
included in the book but are available online, at both this book’s official website
www.springer.com/978-0-387-98097-3 and our own personal websites,
www.math.uwaterloo.ca/∼krdavids/ and
www.math.unl.edu/∼adonsig1/.

The applications have been chosen from both classical and modern topics of in-
terest in applied mathematics and related fields. Our goal is to discuss the theoretical
underpinnings of these applied areas, showing the role of the fundamental princi-
ples of analysis. This is not a methods course, although some familiarity with the
computational or methods-oriented aspects of these topics may help the student ap-
preciate how the topics are developed. In each application, we have attempted to
get to a number of substantial results, and to show how these results depend on the
theory.

This book began in 1984 when the first author wrote a short set of course notes
(120 pages) for a real analysis class at the University of Waterloo designed for stu-
dents who came primarily from applied math and computer science. The idea was to
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viii Preface

get to the basic results of analysis quickly, and then illustrate their role in a variety
of applications. At that time, the applications were limited to polynomial approxi-
mation, Newton’s method, differential equations, and Fourier series.

A plan evolved to expand these notes into a textbook suitable for a one- or two-
semester course. We expanded both the theoretical section and the choice of appli-
cations in order to make the text more flexible. As a consequence, the text is not
uniformly difficult. The material is arranged by topic, and generally each chapter
gets more difficult as one progresses through it. The instructor can omit some more
difficult topics in the early chapters if they will not be needed later.

We emphasize the role of normed vector spaces in analysis, since they provide a
natural framework for most of the applications. So some knowledge of linear algebra
is needed. Of course, the reader also should have a reasonable working knowledge
of differential and integral calculus. While multivariable calculus is an asset because
of the increased level of sophistication and the incorporation of linear algebra, it is
not essential. Some of this background material is outlined in the review chapter.

By and large, the various applications are independent of each other. However,
there are references to material in other chapters. For example, in the wavelets chap-
ter (Chapter 15), it seems essential to make comparisons with the classical approxi-
mation results for Fourier series and for polynomials.

It is possible to use an application chapter on its own for a student seminar or
topics course. We have included several modern topics of interest in addition to
the classical subjects of applied mathematics. The chapter on discrete dynamical
systems (Chapter 11) introduces the notions of chaos and fractals and develops a
number of examples. The chapter on wavelets (Chapter 15) illustrates the ideas with
the Haar wavelet. It continues with a construction of wavelets of compact support,
and gives a complete treatment of a somewhat easier continuous wavelet. In the final
chapter (Chapter 16), we study convex optimization and convex programming. Both
of these latter chapters require more linear algebra than the others.

We would like to thank various people who worked with early versions of this
book for their helpful comments, in particular, Robert André, John Baker, Jon Bor-
wein, Ola Bratteli, Brian Forrest, John Holbrook, Stephen Krantz, Michael Lam-
oureux, Leo Livshits, Mike McAsey, Robert Manning, John Orr, Justin Peters,
Gabriel Prajitura, David Seigel, Ed Vrscay, and Frank Zorzitto. We also thank our
students Geoffrey Crutwell, Colin Davidson, Sean Desaulniers, Masoud Kamgar-
pour, Michael Lipnowski, and Alex Wright for working through parts of the book
and solving many of the exercises. We also thank the students in various classes at
the University of Waterloo and at the University of Nebraska, where early versions
of the text were used and tested.

We welcome comments on this book.

Waterloo, ON & Lincoln, NE Kenneth R. Davidson
March, 2009 Allan P. Donsig
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Chapter 1
Review

Since we use results from calculus and linear algebra regularly, we review the key
definitions and theorems here. If something seems unfamiliar, reviewing this mate-
rial would be wise. We list a few good books in each subject in the bibliography. For
the theoretical part of calculus, there is a detailed development in Chapter 6 and in
the supplementary materials for this book available online. Finally, we give a brief
treatment of equivalence relations.

1.1 Calculus

To read and understand this book, you are expected to have taken and understood a
full course on calculus, although it need not be a proof-oriented course. In general,
you should have an understanding of functions, and the mechanics of differentiation
and integration. We will make use of these tools to analyze examples before we
get to Chapter 6, where the theory of differentiation and integration is developed
carefully, with complete proofs.

The first part of this book is a careful treatment of the basic ideas of real analysis.
These ideas are illustrated by a wide variety of examples, most of which are based
on knowledge of calculus. In particular, we expect the reader to be familiar with
the standard functions such as logarithm, exponential, trigonometric and inverse
trigonometric functions. We rely on your ability to sketch graphs of functions and
compute extrema, asymptotes, and inflection points as needed.

The basic theory that underlies calculus is generally not taught in a first course,
because the ideas are difficult and subtle. The basic structure of the real numbers and
various formulations that express the important property of completeness are only
tacitly assumed. A couple of centuries ago, serious mathematicians did the same
thing, but developments in the nineteenth century forced them to examine the basics
and put them on a better footing. This is what we do in the next chapter.

3
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4 1 Review

This treatment of the real numbers goes hand in hand with a careful discussion
of limits. Although the material is developed from scratch, it is useful for the reader
to have a working knowledge of how to compute basic limits.

The theory of the derivative is developed in Chapter 6. We assume a working
knowledge of differentiation, and do not spend time on methods or applications
here. This includes various methods for calculating derivatives. You should also
understand the relationship between the derivative and tangent lines.

We also develop the theory of integration. We don’t spend time on the techniques
of integration using the various tricks of the trade such as substitution and integra-
tion by parts. We assume that the reader is comfortable with these methods. They are
used when the need arises throughout the book. If you have seen a proof-oriented
development of calculus, then most of Chapter 6 may safely be omitted.

There are two ideas from calculus that you need to be aware of now, to understand
some exercises and material in the first few chapters.

One central fact from differential calculus that we make use of frequently is the
Mean Value Theorem (6.2.2). Intuitively, this says that if f is a differentiable func-
tion on (a,b), then the line through the endpoints is parallel to a tangent line to the
curve at some interior point.

1.1.1. MEAN VALUE THEOREM.
Suppose that f is a function that is continuous on [a,b] and differentiable on (a,b).
Then there is a point c ∈ (a,b) such that

f ′(c) =
f (b)− f (a)

b−a
.

In a calculus course, most integrals are actually computed by finding anti-
derivatives. But if you think that integration is antidifferentiation, then Chapter 6
will show you that integration really is the computation of area. The connection
to antidifferentiation is a theorem. This is the Fundamental Theorem of Calculus,
Theorems 6.4.2 and 6.4.3, which connects the notions of tangent line and area in a
surprising way. You should be aware that integrals can be computed even when no
simple antiderivative exists.

1.1.2. FUNDAMENTAL THEOREM OF CALCULUS, PART 1.
Let f be an integrable function on [a,b]. If F(x) =

∫ x
a f (t)dt for a ≤ x ≤ b, then F

is a continuous function. If f is continuous at x0, then F is differentiable at x0 and
F ′(x0) = f (x0).

1.1.3. FUNDAMENTAL THEOREM OF CALCULUS, PART 2.
Let f be integrable on [a,b]. If there is a continuous function g on [a,b] that is
differentiable with g′(x) = f (x) on (a,b), then∫ b

a
f (x)dx = g(b)−g(a).
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1.2 Linear Algebra

Many of our applications are naturally set up in the context of normed vector spaces.
So it is worth reviewing carefully the definition of a vector space and the basic
results about them. We use v for vectors and r for real numbers.

1.2.1. DEFINITION. A (real) vector space consists of a set V with elements
called vectors and two operations with the following properties:

vector addition: for each pair u,v ∈V , there is a vector u+v ∈V . This satisfies

(1) commutativity: u+v = v+u for all u,v ∈V
(2) associativity: u+(v+w) = (u+v)+w for all u,v,w ∈V
(3) zero: there is a vector 0 ∈V such that 0+u = u = u+0 for all u ∈V
(4) inverses: for each u ∈V , there is a vector −u such that u+(−u) = 0

scalar multiplication: for each vector v∈V and real number r ∈R, there is a vector
rv ∈V . This satisfies, for all u,v ∈V and all r,s ∈ R,

(1) (r + s)v = rv+ sv (4) 1v = v
(2) r(sv) = (rs)v (5) 0v = 0
(3) r(u+v) = ru+ rv (6) (−1)v =−v

1.2.2. DEFINITION. A subspace of a vector space V is a nonempty subset W
of V that is a vector space using the operations of V .

A nonempty subset of a vector space is a subspace if and only if it is closed
under addition and scalar multiplication, that is, for all w1,w2 ∈W and r ∈ R, we
have w1 +w2,rw1 ∈W .

1.2.3. DEFINITION. If S is a subset of a vector space V , the span of S is the
smallest subspace containing S, denoted by spanS. A vector w is a linear combina-
tion of S if there are v1, . . . ,vk ∈ S and r1, . . . ,rk such that w = r1v1 + · · ·+ rkvk.

Phrases like the smallest are dangerous, because they assume that there is a
unique smallest subspace. After making such a definition, we should prove that
there is such a subspace; this process of showing that the definition of an object
makes sense is known as showing that the object is well defined. It comes up often.

For a nonempty set S⊂V , it is a theorem that spanS is exactly the set of all linear
combinations of elements of S.

1.2.4. DEFINITION. A subset S of a vector space V is linearly independent if
whenever vectors v1, . . . ,vk ∈ S and scalars r1, . . . ,rk ∈R satisfy r1v1 + · · ·+ rkvk =
0, this implies that r1 = · · · = rk = 0. We say S is linearly dependent if it is not
linearly independent. A basis for a vector space V is a linearly independent set that
spans V .
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Saying that B = {v1, . . . ,vn} is a basis for V means that each element of V can
be written uniquely as a finite linear combination of elements of B. For example,
let P be the vector space of polynomials over the real numbers. Then the infinite
set B = {1}∪{x j : j ≥ 1} is a basis for P. However, if we enlarge our vector space
by adding in even very nice power series, like 1+ x/2+ x2/4+ · · ·+ xn/2n+1 + · · · ,
then B is no longer a basis. This power series is not a finite linear combination of
elements of B.

1.2.5. THEOREM. Let V be a vector space with a basis having finitely many
elements. Then every basis for V has the same (finite) number of elements, called
the dimension of V and denoted by dimV . We say V is finite-dimensional.

A linear transformation A from a vector space V to a vector space W is a func-
tion A : V →W satisfying

A(r1v1 + r2v2) = r1Av1 + r2Av2 for all v1,v2 ∈V and r1,r2 ∈ R.

We use L (V,W ) to denote the set of all linear transformations from V to W and
L (V ) for L (V,V ).

A linear transformation is determined by what it does to a basis. If e1, . . . ,em is
a basis for V , then each element of V has the form r1e1 + · · ·+ rmem, and A applied
to such an element yields r1Ae1 + · · ·+ rmAem. If f1, . . . , fn is a basis for W and
Ae j = a1 jf1 + · · ·+an jfn, then

A

(
m

∑
j=1

r je j

)
=

m

∑
j=1

r j

(
n

∑
i=1

ai jfi

)
=

n

∑
i=1

( m

∑
j=1

ai jr j

)
fi.

The n×m matrix
[
ai j
]

is the matrix representation of A with respect to the bases
e1, . . . ,em and f1, . . . , fn.

The space L (V,W ) is a vector space with the two operations A+B and rA for A
and B in L (V,W ) and scalars r, defined by (A+B)v = Av+Bv and (rA)v = r(Av)
for v ∈ V . In L (V ) we also have a multiplication: for A,B ∈ L (V ), define BA ∈
L (V ) by (BA)(v) = B(Av). The matrix representation of BA is the product of the
matrix representations of B and A.

1.2.6. DEFINITION. The kernel of a linear transformation A ∈ L (V,W ) is
kerA = {v ∈ V : Av = 0}, which is a subspace of V . The range of A is ranA =
{Av : v ∈V}, which is a subspace of W . The rank of A is rankA = dimranA.

1.2.7. THEOREM. Let V,W be vector spaces with V finite-dimensional. For
A ∈L (V,W ), dimkerA+ rankA = dimV .

1.2.8. COROLLARY. For A ∈ L (V ), for V as before, A is invertible if and
only if A is one-to-one (i.e., kerA = {0}) if and only if A is onto (i.e., ranA = V ).
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1.3 Appendix: Equivalence Relations

Equivalence relations occur frequently in mathematics and will appear occasionally
later in this book.

1.3.1. DEFINITION. Let X be a set, and let R be a subset of X×X . Then R is a
relation on X . Let us write x∼ y if (x,y) ∈ R. We say that R or ∼ is an equivalence
relation if it is

(1) (reflexive) x∼ x for all x ∈ X .
(2) (symmetric) if x∼ y for any x,y ∈ X , then y∼ x.
(3) (transitive) if x∼ y and y∼ z for any x,y,z ∈ X , then x∼ z.

If ∼ is an equivalence relation on X and x ∈ X , then the equivalence class [x] is the
set {y ∈ X : y∼ x}. By X/∼ we mean the collection of all equivalence classes.

1.3.2. EXAMPLES.
(1) Equality is an equivalence relation on any set. Verify this.

(2) Consider the integers Z. Say that m≡ n (mod 12) if 12 divides m−n. Note that
12 divides n−n = 0 for any n, and thus n ≡ n (mod 12). So it is reflexive. Also if
12 divides m−n, then it divides n−m =−(m−n). So m≡ n (mod 12) implies that
n≡m (mod 12) (i.e., symmetry). Finally, if l ≡m (mod 12) and m≡ n (mod 12),
then we may write l −m = 12a and m− n = 12b for certain integers a,b. Thus
l − n = (l −m) + (m− n) = 12(a + b) is also a multiple of 12. Therefore, l ≡ n
(mod 12), which is transitivity.

There are twelve equivalence classes [r] for 0 ≤ r < 12 determined by the re-
mainder r obtained when n is divided by 12. So [r] = {12a+ r : a ∈ Z}.

(3) Consider the set R with the relation x≤ y. This relation is reflexive (x≤ x) and
transitive (x ≤ y and y ≤ z implies x ≤ z). However, it is antisymmetric: x ≤ y and
y≤ x both occur if and only if x = y. This is not an equivalence relation.

When dealing with functions defined on equivalence classes, we often define
the function on an equivalence class in terms of a representative. In order for the
function to be well defined, that is, for the definition of the function to make sense,
we must check that we get same value regardless of which representative is used.

1.3.3. EXAMPLES.
(1) Consider the set of real numbers R. Say that x ≡ y (mod 2π) if x− y is an
integer multiple of 2π . Verify that this is an equivalence relation. Define a function
f ([x]) = (cosx,sinx). We are really defining a function F(x) = (cosx,sinx) on R and
asserting that F(x) = F(y) when x≡ y (mod 2π). Indeed, we then have y = x+2πn
for some n ∈ Z. Since sin and cos are 2π-periodic, we have

F(y) = (cosy,siny) = (cos(x+2πn),sin(x+2πn)) = (cosx,sinx) = F(x).
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It follows that the function f ([x]) = F(x) yields the same answer for every y∈ [x]. So
f is well defined. One can imagine the function f as wrapping the real line around
the circle infinitely often, matching up equivalent points.

(2) Consider R modulo 2π again, and look at f ([x]) = ex. Then 0≡ 2π (mod 2π)
but e0 = 1 6= e2π . So f is not well defined on equivalence classes.

(3) Now consider Example 1.3.2 (2). We wish to define multiplication modulo 12
by [n][m] = [nm]. To check that this is well defined, consider two representatives
n1,n2 ∈ [n] and two representatives m1,m2 ∈ [m]. Then there are integers a and b
such that n2 = n1 +12a and m2 = m1 +12b. Then

n2m2 = (n1 +12a)(m1 +12b) = n1m1 +12(am1 +n1b+12ab).

Therefore, n2m2 ≡ n1m1 (mod 12), and multiplication modulo 12 is well defined.

Exercises for Section 1.3

A. Put a relation on C[0,1] by f ∼ g if f (k/10) = g(k/10) for k with 0≤ k ≤ 10.

(a) Verify that this is an equivalence relation.
(b) Describe the equivalence classes.
(c) Show that [ f ]+ [g] = [ f +g] is a well-defined operation.
(d) Show that t[ f ] = [t f ] is well defined for all t ∈ R and f ∈C[0,1].
(e) Show that these operations make C[0,1]/∼ into a vector space of dimension 11.

B. Consider the set of all infinite decimal expansions x = a0.a1a2a3 . . . , where a0 is any integer
and ai are digits between 0 and 9 for i ≥ 1. Say that x ∼ y if x and y represent the same real
number. That is, if y = b0.b1b2b3 . . . , then x ∼ y if (1) x = y, or (2) there is an integer m ≥ 1
such that ai = bi for i < m−1, am−1 = bm−1 +1, bi = 9 for i≥m and ai = 0 for i≥m, or (3)
there is an integer m ≥ 1 such that ai = bi for i < m− 1, am−1 + 1 = bm−1, ai = 9 for i ≥ m
and bi = 0 for i≥ m. Prove that this is an equivalence relation.

C. Define a relation on the set PC[0,1] of all piecewise continuous functions on [0,1] (see Defi-
nition 5.2.3) by f ≈ g if {x ∈ [0,1] : f (x) 6= g(x)} is finite.

(a) Prove that this is an equivalence relation.
(b) Decide which of the following functions are well defined.

(i) ϕ([ f ]) = f (0) (ii) ψ([ f ]) =
∫ 1

0
f (t)dt (iii) γ([ f ]) = lim

x→1−
f (x)

D. Let d ≥ 2 be an integer. Define a relation on Z by m≡ n (mod d) if d divides m−n.

(a) Verify that this is an equivalence relation, and describe the equivalence classes.
(b) Show that [m]+ [n] = [m+n] is a well-defined addition.
(c) Show that [m][n] = [mn] is a well-defined multiplication.
(d) Let Zd denote the equivalence classes modulo d. Prove the distributive law:

[k]([m]+ [n]) = [k][m]+ [k][n].

E. Say that two real vector spaces V and W are isomorphic if there is an invertible linear map T
of V onto W .

(a) Prove that this is an equivalence relation on the collection of all vector spaces.
(b) When are two finite-dimensional vector spaces isomorphic?



Chapter 2
The Real Numbers

2.1 An Overview of the Real Numbers

Doing analysis in a rigorous way starts with understanding the properties of the
real numbers. Readers will be familiar, in some sense, with the real numbers from
studying calculus. A completely rigorous development of the real numbers requires
checking many details. We attempt to justify one definition of the real numbers
without carrying out the proofs.

Intuitively, we think of the real numbers as the points on a line stretching off to
infinity in both directions. However, to make any sense of this, we must label all the
points on this line and determine the relationship between them from different points
of view. First, the real numbers form an algebraic object known as a field, meaning
that one may add, subtract, and multiply real numbers and divide by nonzero real
numbers. There is also an order on the real numbers compatible with these algebraic
properties, and this leads to the notion of distance between two points.

All of these nice properties are shared by the set of rational numbers:

Q =
{a

b
: a,b ∈ Z,b 6= 0

}
.

The ancient Greeks understood how to construct all fractions geometrically and
knew that they satisfied all of the properties mentioned above. However, they were
also aware that there were other points on the line that could be constructed but
were not rational, such as

√
3. While the Greeks were focussed on those numbers

that could be obtained by geometric construction, we have since found other reason-
able numbers that do not fit this restrictive definition. The most familiar example is
perhaps π , the area of a circle of radius one. Like the Greeks, we accept the fact that√

3 and π are bona fide numbers that must be included on our real line.
We will define the real numbers to be objects with an infinite decimal expansion.

A subtle point is that an infinite decimal expansion is used only as a name for a point
and does mean the sum of an infinite series. It is crucial that we do not use limits to
define the real numbers because we deduce properties of limits from the definition.

9
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This construction of the real numbers appears to be strongly dependent on the
choice of 10 as the base. We are left with the nagging possibility that the number
line we construct depends on the number of digits on our hands. For this reason,
some purists prefer a base-independent method of defining the real numbers, albeit
a more abstract one. (See Exercise 2.8.L.) Our construction does yield the same
object, independent of choice of base; but the proof requires considerable work.

2.2 The Real Numbers and Their Arithmetic

We define a real number using an infinite decimal expansion such as

1
3

= 0.33333333333333333333333333333333333333333333333333 . . .
√

3 = 1.73205080756887729352744634150587236694280525381038 . . .

π = 3.14159265358979323846264338327950288419716939937510 . . .

In general, an infinite decimal expansion has the form

x = a0.a1a2a3a4a5a6a7a8a9a10a11a12a10a11a12a13a14a15a16a17a18 . . . .

Formally, an infinite decimal expansion is a function x(n) = an from {0}∪N into
Z such that for all n≥ 1, an ∈ {0,1, . . . ,9}.

Be warned that, by this construction, the point usually thought of as −5/4 will
be denoted by 2.75, for example, because we think of this as −2 + .75. The notation
is simpler if we do this. After we have finished the construction, we will revert to
the standard notation for negative decimals.

To relate infinite decimal expansions to our geometric idea of the real line, start
with a line and mark two points on it; and call the left one 0 and the right one 1.
Then we can construct points for every integer Z, equally spaced along the line. Now
divide each interval from an integer n to n+1 into 10 equal pieces, marking the cuts
as n.1, n.2, . . . , n.9. Proceed in this way, cutting each interval of length 10−k into
10 equal intervals of length 10−k−1 and mark the endpoints by the corresponding
number with k +1 decimals. In this way, all finite decimals are placed on the line.

To obtain a geometric version of the line, we postulate that for every infinite
decimal x = a0.a1a2a3 . . ., there will be a point (also called x) on this line with
the property that for each positive integer k, x lies in the interval between the two
rational numbers y = a0.a1 . . .ak and y+10−k. For example,

3.141592653589≤ π ≤ 3.141592653590.

One difficulty with using infinite decimal expansions to define the real num-
bers is that some points have two names. For example consider the expansions
1.000000000 . . . and 0.999999999 . . . . Call them 1 and z, respectively. Clearly these



2.2 The Real Numbers and Their Arithmetic 11

are different infinite decimal expansions. However, for each positive integer k,

1−10−k = 0.99999999999999︸ ︷︷ ︸
k

≤ z≤ 1.

Thus the difference between z and 1 is arbitrarily small. It would create quite an un-
intuitive line if we decided to make z and 1 different real numbers. To fit in with our
intuition, we must agree that z = 1. That means that some real numbers (precisely
all those numbers with a finite decimal expansion) have two different expansions,
one ending in an infinite string of zeros, and the other ending with an infinite string
of nines. For example, 0.12500 . . . and 0.12499999 . . . are the same number.

Formally, this defines an equivalence relation on the set of infinite decimals by
pairing off each decimal expansion ending in a string of zeros with the correspond-
ing decimal expansion ending in a string of nines:

a0.a1a2 . . .ak−1ak000 . . . = a0.a1a2 . . .ak−1(ak−1)999 . . . ,

where ak 6= 0. Each real number is an equivalence class of infinite decimal expan-
sions given by this identification. The set of all real numbers is denoted by R.

To recognize the rationals as a subset of the reals, we need a function F that
sends a fraction a/b to an infinite decimal expansion. This is accomplished by long
division, as you learned in grade school. For example, to compute 27/14, divide 14
into 27 to obtain

F
( 27

14

)
= 1.9285714285714285714285714285714 . . . .

Notice that this decimal expansion is eventually periodic because after the initial
1.9, the six-digit sequence 285714 is repeated ad infinitum. In the exercises, hints
are provided to show that an infinite decimal represents a rational number if and
only if it is eventually periodic.

We have a built-in order on the real line given by the placement of the points
which extends the natural order on the finite decimals. When two infinite decimals
x = a0.a1a2 . . . and y = b0.b1b2 . . . represent distinct real numbers, we say that x < y
if there is some integer k≥ 0 such that ai = bi for i < k and ak < bk. For example, if

x = 2.7342118284590452354000064338325028841971693993 . . . ,

y = 2.7342118284590452353999928747135224977572470936 . . . ,

then y < x because

y < 2.734211828459045235399993 < 2.734211828459045235400000 < x.

For two real numbers x and y, either x < y, x = y, or x > y.
Next we extend the addition and multiplication operations on Q to all of R. The

basic idea is to extend addition and multiplication on finite decimals to R respecting
the order properties. That is, if w≤ x and y≤ z, then w+y≤ x+z, and if x≥ 0, then
xy≤ xz. Some of the subtleties are explored in the exercises.
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A basic fact about the order and these operations is known as the Archimedean
property of R: for x,y > 0, there is always some n ∈ N with nx > y. It is not hard
to show this is equivalent to the following almost-obvious fact: if z > 0, then there
is some integer k ≥ 0 so that 10−k < z. To see this fact, observe that a decimal
expansion of z = z0.z1z2 . . . has a first nonzero digit, zk−1 and, since zk−1 ≥ 1, we
have z≥ 10−(k−1) > 10−k.

Finally, consider the distance between two points. The absolute value function
is |x|= max{x,−x}. Define the distance between x and y to be |x−y|. This is always
nonnegative, and |x− y|= 0 only if x− y = 0, namely x = y.

Exercises for Section 2.2

A. Why, in defining the order on R, did we insist that x and y be distinct real numbers?
HINT: consider a real number with two decimal expansions.

B. Prove that |xy|= |x| |y| and |x−1|= |x|−1.

C. (a) Prove the triangle inequality: |x+ y| ≤ |x|+ |y|.
HINT: Consider x and y of the same sign and different signs as separate cases.

(b) Prove by induction that |x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.
(c) Prove the reverse triangle inequality:

∣∣|x|− |y|∣∣≤ |x− y|.
D. (a) Prove that if x < y, then there is a rational number r with a finite decimal expansion and

an integer k so that x < r < r +10−k < y.
(b) Prove that if x < y, then there is an irrational number z such that x < z < y.

HINT: Use (a) and add a small multiple of
√

2 to r.

E. (a) Explain how x+ y is worked out for

x = 2.1357

107 nines︷ ︸︸ ︷
999999 . . .999999

1019 repetitions︷ ︸︸ ︷
0123456789 . . .012345678934524 . . . ,

y = 3.8642999999 . . .999999︸ ︷︷ ︸
107 nines

9876543210 . . .9876543210︸ ︷︷ ︸
1019 repetitions

39736 . . . .

(b) How many digits of x and y must we know to determine the first 6 digits of x+ y?
(c) How many digits of x and y must we know to determine the first 108 digits of x+ y?

F. Describe an algorithm for adding two infinite decimals. You should work from ‘left to right’,
determining the decimal expansion in order, as much as possible. When are you assured that
you know the integer part of the sum? In what circumstance does it remain ambiguous?
HINT: Given infinite decimals a and b, define a carry function γ : {0}∪N→ {0,1} and then
define the decimal expansion of a+b in terms of a(n)+b(n)+ γ(n).

G. Show that if x and y are known up to k decimal places, then the x + y is known to within
2 ·10−k, i.e., there is a finite decimal r with r ≤ x+ y≤ r +2 ·10−k.

H. An infinite decimal x = a0.a1a2 . . . is eventually periodic if there are positive integers n and k
such that ai+k = ai for all i > n. Show that any decimal expansion which is eventually periodic
represents a rational number. HINT: Compute 10n+kx−10nx.

I. Prove that the decimal expansion of a rational number p/q is eventually periodic. We will use
the Pigeonhole Principle, which states that if n+1 items are divided into n categories, then at
least two of the items are in the same category.
(a) Assume q > 0. Let rk be the remainder when 10k is divided by q. Use the Pigeonhole

Principle to find two different exponents k < k +d with the same remainder.
(b) Express p/q = 10−k

(
a+b/(10d −1)

)
with 0≤ b < 10d −1.

(c) Write b as a d-digit number b = b1b2 . . .bd even if it starts with some zeros. Show that the
decimal expansion of p/q ends with the infinitely repeated string b1b2 . . .bd .
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J. Explain how the associative property of addition for real numbers: x +(y + z) = (x + y)+ z
follows from knowing it for for finite decimals.

K. Show that if r is rational and x is irrational, then r + x and, if r 6= 0, rx are irrational.

L. Show that the two formulations of the Archimedean property of R are equivalent.

2.3 The Least Upper Bound Principle

After defining the least upper bound of a set of real numbers, we prove the Least
Upper Bound Principle (2.3.3). This result depends crucially on our construction of
the real numbers. It will be the basis for the deeper properties of the real line.

2.3.1. DEFINITION. A set S ⊂ R is bounded above if there is a real number
M such that s ≤ M for all s ∈ S. We call M an upper bound for S. Similarly, S is
bounded below if there is a real number m such that s≥m for all s ∈ S, and we call
m a lower bound for S. A set that is bounded above and below is called bounded.

Suppose a nonempty subset S of R is bounded above. Then L is the supremum
or least upper bound for S if L is an upper bound for S that is smaller than all other
upper bounds, i.e., for all s ∈ S, s ≤ L, and if M is another upper bound for S, then
L≤M. It is denoted by supS.

Similarly, if S is a nonempty subset of R which is bounded below, the infimum
or greatest lower bound, denoted by infS, is the number L such that L is an lower
bound and whenever M is another lower bound for S, then L≥M.

The supremum of a set, if it exists, is unique. We have not defined suprema
or infima for sets that are not bounded above or bounded below, respectively. For
example, R itself has neither a supremum nor an infimum. For a nonempty set S⊆R,
sometimes we write supS = +∞ if S is not bounded above and infS =−∞ if S is not
bounded below. Finally, by convention, sup∅ =−∞ and inf∅ = +∞.

Note that supS = L ∈R if and only if L is a upper bound for S and for all K < L,
there is x ∈ S with K < x < L. There is an equivalent characterization for infS.

Recall that the maximum of a set S ⊂ R, if it exists, is an element m ∈ S such
that s≤m for all s ∈ S. Thus, when the maximum of a set exists, it is the least upper
bound. The situation for the minimum of a set and its infimum is the same. We use
maxS and minS to denote the maximum and minimum of S.

2.3.2. EXAMPLES.
(1) If A = {4,−2,5,7}, then any L ≤−2 is a lower bound for A and any M ≥ 7 is
an upper bound. So, infA = minA =−2 and supA = maxA = 7.

(2) If B = {2,4,6, . . .}, then infB = minB = 2 and supB = +∞.

(3) If C = {π/n : n ∈ N}, then supC = maxC = π . However, for any element of
C, say π/n, we have a smaller element of C, such as π/(2n). So C does not have a
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minimum. Clearly, 0 is a lower bound and for all x > 0, there is some π/n ∈C with
π/n < x, showing that 0 is the greatest lower bound.

(4) If D = {(−1)nn/(n + 1) : n ∈ N}, then D has neither a maximum nor a min-
imum. However, D has upper and lower bounds, and infD = −1 and supD = 1.
Neither 1 nor −1 belongs to D.

In proving the Least Upper Bound Principle, the definition of the real numbers
as all infinite decimals is essential. The principle is not true for some subsets of the
rational numbers. For example, {s ∈ Q : s2 < 2} is bounded above but has no least
upper bound in Q.

2.3.3. LEAST UPPER BOUND PRINCIPLE.
Every nonempty subset S of R that is bounded above has a supremum. Similarly,
every nonempty subset S of R that is bounded below has an infimum.

PROOF. We prove the second statement first, since it is more convenient. Let M be
some lower bound for S with decimal expansion M = m0.m1m2 . . . . Let s be some
element of S with decimal expansion s = s0.s1s2 . . . . Notice that since m0 ≤ M, we
have that m0 is a lower bound for S. On the other hand, s < s0 +2. So s0 +2 is not a
lower bound. There are only finitely many integers between m0 and s0 +1. Pick the
largest of these that is still a lower bound for S, and call it a0. Since a0 + 1 is not a
lower bound, we may also choose an element x0 in S such that x0 < a0 +1.

Next pick the greatest integer a1 such that y1 = a0 +10−1a1 is a lower bound for
S. Since a1 = 0 works and a1 = 10 does not, a1 belongs to {0,1, . . . ,9}. To verify
our choice, pick an element x1 in S such that a0.a1 ≤ x1 < a0.a1 +0.1. Continue in
this way recursively. Figure 2.1 shows how a2 and x2 would be chosen.

x2

a0.a1 a0.a1a2 a0.(a1 +1)

FIG. 2.1 The second stage (k = 2) in the proof.

At the kth stage, we have a lower bound yk−1 = a0.a1 . . .ak−1 and an element
xk−1 ∈ S such that yk−1 ≤ xk−1 < yk−1 + 101−k. Select the largest integer ak in
{0,1, . . . ,9} such that yk = a0.a1a2 . . .ak is a lower bound for S. Since yk + 10−k

is not a lower bound, we also pick an element xk in S such that xk < yk + 10−k to
verify our choice.

We claim that L = a0.a1a2 . . . is infS. If L = yk for some k, then L is a lower
bound for S. Otherwise, L > yk for all k and, in particular, for each k there is l > k
with yl > yk. If s = s0.s1s2 . . . is in S, then it follows that s > yk for each k. By the
definition of the order, either si = ai for 1≤ i≤ k or there is some j, 0≤ j ≤ k, with
si = ai for 1 ≤ i < j and s j > a j. If the latter occurs for some k, then s > L; if the
former occurs for every k, then s = L. Either way, L is a lower bound for S.
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To see that L is the greatest lower bound, suppose M = b0.b1b2 . . . > L. By the
definition of the ordering, there is some first integer k such that bk > ak and bi = ai
for all i with 0≤ i < k. But then

M ≥ a0.a1 . . .ak−1bk ≥ yk +10−k > xk.

So M is not a lower bound for S. Hence L is the greatest lower bound.
A simple trick handles upper bounds. Notice that S ⊂ R is bounded above if

and only if −S = {−s : s ∈ S} is bounded below and that L is an upper bound for S
precisely when−L is a lower bound for−S. Further, M < L if and only if−M >−L,
so M is an upper bound of S less than L exactly when −M is a lower bound of −S
greater than −L. Thus supS =− inf(−S), so supS exists. �

Exercises for Section 2.3
A. Suppose that S ⊂ R is bounded above. When does S have a maximum? Your answer should

be expressed in terms of supS.

B. A more elegant way to develop the arithmetic properties of the real numbers is to prove the
results of this section first and then define addition and multiplication using suprema. Let D
denote the set of all finite decimals.
(a) Let x,y ∈ R. Prove that x+ y = sup{a+b : a,b ∈D , a≤ x, b≤ y}.
(b) Suppose that x,y∈R are positive. Show that xy = sup{ab : a,b∈D , 0≤ a≤ x, 0≤ b≤ y}.
(c) How do we define multiplication in general?

C. With D as in the previous exercise, show that sup{a ∈D : a2 ≤ 3}=
√

3.

D. For the following sets, find the supremum and infimum. Which have a max or min?
(a) A = {a+a−1 : a ∈Q, a > 0}.
(b) B = {a+(2a)−1 : a ∈Q, 0.1≤ a≤ 5}.
(c) C = {xe−x : x ∈ R}.

E. Show that the decimal expansion for the L in the proof of the Least Upper Bound Principle
does not end in a tail of all 9’s.

2.4 Limits

The notion of a limit is the basic notion of analysis. Limits are the culmination of
an infinite process. It is the concern with limits in particular that separates analysis
from algebra. Intuitively, to say that a sequence an converges to a limit L means that
eventually all the terms of the (tail of the) sequence approximate the limit value L
to any desired accuracy. To make this precise, we introduce a subtle definition.

2.4.1. DEFINITION OF THE LIMIT OF A SEQUENCE. A real number
L is the limit of a sequence of real numbers (an)

∞

n=1 if for every ε > 0, there is an
integer N = N(ε) > 0 such that

|an−L|< ε for all n≥ N.

We say that the sequence (an)
∞

n=1 converges to L, and we write lim
n→∞

an = L.
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The important issue in this definition is that for any desired accuracy, there is a
point in the sequence such that every element after that point approximates the limit
L to the desired accuracy. It suffices to consider only values for ε of the form 1

2 10−k.
The statement |an − L| < 1

2 10−k means that an and L agree to at least k decimal
places. Thus a sequence converges to L precisely when for every k, no matter how
large, eventually all the terms of the sequence agree with L to at least k decimals of
accuracy.

2.4.2. EXAMPLE. Consider the sequence (an) = (n/(n+1))∞

n=1, which we
claim converges to 1. Observe that

∣∣ n
n+1 −1

∣∣= 1
n+1 . So if ε = 1

2 10−k, we can choose
N = 2 ·10k. Then for all n≥ N,∣∣∣ n

n+1
−1
∣∣∣= 1

n+1
≤ 1

2 ·10k +1
< 1

2 10−k = ε.

We could also choose N = 73 ·10k. It is not necessary to find the best choice for N.
But in practice, better estimates can lead to better algorithms for computation.

2.4.3. EXAMPLE. Consider the sequence (an) with an = (−1)n. Since this flips
back and forth between two values that are always distance 2 apart, intuition says
that it does not converge. To show this using our definition, we need to show that
the definition of limit fails for any choice of L. However, for each choice of L, we
need find only one value of ε that violates the definition. Observe that

|an−an+1|= |(−1)n− (−1)n+1|= 2

for all n, no matter how large. So let L be any real number. We notice that L cannot
be close to both 1 and −1. To avoid cases, we use a trick. For any real number L,

|an−L|+ |an+1−L| ≥ |(an−L)− (an+1−L)|= |an−an+1|= 2.

Thus, for every n ∈ N,

max{|an−L|, |an+1−L|} ≥ 1. (2.4.4)

Now take ε = 1. If this sequence did converge, there would be an integer N such
that |an−L| < 1 for all n ≥ N. In particular, |aN −L| and |aN+1−L| are both less
than 1, contradicting (2.4.4). Consequently, this sequence does not converge.

2.4.5. EXAMPLE. Consider the sequence ((sinn)/n)∞

n=1.The numerator oscil-
lates, but it remains bounded between±1 while the denominator goes off to infinity.
We obtain the estimates

−1
n
≤ sinn

n
≤ 1

n
.

We know that lim
n→∞

1/n = 0 = lim
n→∞

−1/n, since this is exactly like Example 2.4.2.
Therefore, the limit can be computed using a familiar principle from calculus:
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2.4.6. THE SQUEEZE THEOREM.
Suppose that three sequences (an), (bn), and (cn) satisfy

an ≤ bn ≤ cn for all n≥ 1 and lim
n→∞

an = lim
n→∞

cn = L.

Then lim
n→∞

bn = L.

PROOF. Let ε > 0. Since lim
n→∞

an = L, there is some N1 such that

|an−L|< ε for all n≥ N1,

or equivalently, L− ε < an < L+ ε for all n≥ N1. There is also some N2 such that

|cn−L|< ε for all n≥ N2

or L− ε < cn < L+ ε for all n≥ N2. Then, if n≥max{N1,N2}, we have

L− ε < an ≤ bn ≤ cn < L+ ε.

Thus |bn−L|< ε for n≥max{N1,N2}, as required. �

Returning to our example (sinn/n)∞

n=1, we have lim
n→∞

1
n = lim

n→∞

−1
n = 0. By the

Squeeze Theorem,

lim
n→∞

sinn
n

= 0.

2.4.7. EXAMPLE. For a more sophisticated example, consider the sequence(
nsin

( 1
n

))∞

n=1. To apply the Squeeze Theorem, we need to obtain an estimate for
sinθ when the angle θ is small. Consider a sector of the circle of radius 1 with
angle θ and the two triangles as shown in Figure 2.2.

O A

B

C

θ

FIG. 2.2 Sector OAB between 4OAB and 4OAC.
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Since 4OAB ⊂ sector OAB ⊂ 4OAC, we have the same relationship for their
areas:

sinθ

2
<

θ

2
<

tanθ

2
=

sinθ

2cosθ
.

A manipulation of these inequalities yields

cosθ <
sinθ

θ
< 1.

In particular, cos 1
n < nsin 1

n < 1. Moreover,

cos
( 1

n

)
=
√

1− sin2( 1
n

)
>

√
1−
( 1

n

)2
> 1− 1

n2 .

However,

lim
n→∞

1− 1
n2 = 1 = lim

n→∞
1.

Therefore, by the Squeeze Theorem, lim
n→∞

nsin 1
n = 1.

Exercises for Section 2.4
A. In each of the following, compute the limit. Then, using ε = 10−6, find an integer N that

satisfies the limit definition.

(a) lim
n→∞

sinn2
√

n
(b) lim

n→∞

1
loglogn

(c) lim
n→∞

3n

n!
(d) lim

n→∞

n2 +2n+1
2n2−n+2

(e) lim
n→∞

√
n2 +n−

n

B. Show that lim
n→∞

sin nπ

2 does not exist using the definition of limit.

C. Prove that if an ≤ bn for n≥ 1, L = lim
n→∞

an, and M = lim
n→∞

bn, then L≤M.

D. Prove that if L = lim
n→∞

an, then L = lim
n→∞

a2n and L = lim
n→∞

an2 .

E. Sometimes, a limit is defined informally as follows: “As n goes to infinity, an gets closer and
closer to L.” Find as many faults with this definition as you can.

(a) Can a sequence satisfy this definition and still fail to converge?
(b) Can a sequence converge yet fail to satisfy this definition?

F. Define a sequence (an)
∞

n=1 such that lim
n→∞

an2 exists but lim
n→∞

an does not exist.

G. Suppose that lim
n→∞

an = L and L 6= 0. Prove there is some N such that an 6= 0 for all n≥ N.

H. Give a careful proof, using the definition of limit, that lim
n→∞

an = L and lim
n→∞

bn = M imply that

lim
n→∞

2an +3bn = 2L+3M.

I. For each x ∈ R, determine whether
( 1

1+ xn

)∞

n=1
has a limit, and compute it when it exists.

J. Let a0 and a1 be positive real numbers, and set an+2 =
√

an+1 +
√

an for n≥ 0.

(a) Show that there is N such that for all n≥ N, an ≥ 1.
(b) Let εn = |an−4|. Show that εn+2 ≤ (εn+1 + εn)/3 for n≥ N.
(c) Prove that this sequence converges.

K. Show that the sequence (logn)∞

n=1 does not converge.
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2.5 Basic Properties of Limits

2.5.1. PROPOSITION. If (an)
∞

n=1 is a convergent sequence of real numbers,
then the set {an : n ∈ N} is bounded.

PROOF. Let L = lim
n→∞

an. If we set ε = 1, then by the definition of limit, there is some

N > 0 such that |an−L|< 1 for all n≥ N. In other words,

L−1 < an < L+1 for all n≥ N.

Let M = max{a1,a2, . . . ,aN−1,L + 1} and m = min{a1,a2, . . . ,aN−1,L − 1}.
Clearly, for all n, we have m≤ an ≤M. �

It is also crucial that limits respect the arithmetic operations. Proving this is
straightforward. The details are left as exercises.

2.5.2. THEOREM. If lim
n→∞

an = L, lim
n→∞

bn = M, and α ∈ R, then

(1) lim
n→∞

an +bn = L+M,

(2) lim
n→∞

αan = αL,

(3) lim
n→∞

anbn = LM, and

(4) lim
n→∞

an

bn
=

L
M

if M 6= 0.

In the sequence (an/bn)
∞

n=1, we ignore terms with bn = 0. There is no problem
doing this because M 6= 0 implies that bn 6= 0 for all sufficiently large n (see Exer-
cise 2.4.G). (We use “for all sufficiently large n” as shorthand for saying there is
some N so that this holds for all n≥ N.)

Exercises for Section 2.5

A. Prove Theorem 2.5.2. HINT: For part (4), first bound the denominator away from 0.

B. Compute the following limits.

(a) lim
n→∞

tan π

n

nsin2 2
n

(b) lim
n→∞

2100+5n

e4n−10 (c) lim
n→∞

csc 1
n

n
+

2arctann
logn

C. If lim
n→∞

an = L > 0, prove that lim
n→∞

√
an =

√
L. Be sure to discuss the issue of when

√
an makes

sense. HINT: Express |√an−
√

L| in terms of |an−L|.

D. Let (an)
∞

n=1 and (bn)
∞

n=1 be two sequences of real numbers such that |an−bn|< 1
n . Suppose

that L = lim
n→∞

an exists. Show that (bn)
∞

n=1 converges to L also.

E. Find lim
n→∞

log(2+3n)
2n

. HINT: log(2+3n) = log3n + log 2+3n

3n

F. (a) Let xn = n
√

n−1. Use the fact that (1+ xn)n = n to show that x2
n ≤ 2/n.

HINT: Use the Binomial Theorem and throw away most terms.
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(b) Hence compute lim
n→∞

n1/n.

G. Show that the set of rational numbers is dense in R, meaning that every real number is a limit
of rational numbers.

H. (a) Show that b−1
b ≤ logb≤ b−1. HINT: Integrate 1/x from 1 to b.

(b) Apply this to b = n
√

a to show that loga≤ n( n
√

a−1)≤ n
√

a loga.
(c) Hence evaluate lim

n→∞
n
(

n
√

a−1
)
.

I. Suppose that lim
n→∞

an = L. Show that lim
n→∞

a1 +a2 + · · ·+an

n
= L.

J. Show that the set S = {n + m
√

2 : m,n ∈ Z} is dense in R. HINT: Find infinitely many
elements of S in [0,1]. Use the Pigeonhole Principle to find two that are close within 10−k.

2.6 Monotone Sequences

We now consider some consequences of the Least Upper Bound Principle (2.3.3).
A sequence (an) is (strictly) monotone increasing if an ≤ an+1 (an < an+1) for

all n≥ 1. Similarly, we define (strictly) monotone decreasing sequences.

2.6.1. MONOTONE CONVERGENCE THEOREM.
A monotone increasing sequence that is bounded above converges.
A monotone decreasing sequence that is bounded below converges.

PROOF. Suppose (an)
∞

n=1 is an increasing sequence that is bounded above. Then by
the Least Upper Bound Principle, there is a number L = sup{an : n ∈ N}. We will
show that lim

n→∞
an = L.

Let ε > 0 be given. Since L−ε is not an upper bound for A, there is some integer
N such that aN > L− ε . Then because the sequence is monotone increasing,

L− ε < aN ≤ an ≤ L for all n≥ N.

So |an−L|< ε for all n≥ N as required. Therefore, lim
n→∞

an = L.

If (an) is decreasing and bounded below by B, then the sequence (−an) is
increasing and bounded above by −B. Thus the sequence (−an)

∞

n=1 has a limit
L = lim

n→∞
−an. Therefore −L = lim

n→∞
an exists. �

2.6.2. EXAMPLE. Consider the sequence given recursively by

a1 = 1 and an+1 =
√

2+
√

an for all n≥ 1.

Evaluating a2,a3, . . . ,a9, we obtain 1.7320508076, 1.8210090645, 1.8301496356,
1.8310735189, 1.831166746, 1.8311761518, 1.8311771007, 1.8311771965. It ap-
pears that this sequence increases to some limit.
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To prove this, first we show by induction that

1≤ an < an+1 < 2 for all n≥ 1.

Since 1 = a1 <
√

3 = a2 < 2, this is valid for n = 1. Suppose that it holds for some
n. Then

an+2 =
√

2+
√

an+1 >
√

2+
√

an = an+1 ≥ 1,

and

an+2 =
√

2+
√

an+1 <

√
2+

√
2 < 2.

This verifies our claim for n+1. Hence by induction, it is valid for each n≥ 1.
Therefore, (an) is a monotone increasing sequence. So by the Monotone Con-

vergence Theorem (2.6.1), it follows that there is a limit L = lim
n→∞

an. It is not clear
that there is a nice expression for L. However, once we know that the sequence
converges, it is not hard to find a formula for L. Notice that

L = lim
n→∞

an+1 = lim
n→∞

√
2+

√
an =

√
2+
√

lim
n→∞

an =
√

2+
√

L.

We used the fact that the limit of square roots is the square root of the limit (see
Exercise 2.5.C). Squaring both sides gives L2−2 =

√
L, and further squaring yields

0 = L4−4L2−L+4 = (L−1)(L3 +L2−3L−4).

Since L > 1, it must be a root of the cubic p(x) = x3 + x2 − 3x− 4 in the interval
(1,2). There is only one such root. Indeed,

p′(x) = 3x2 +2x−3 = 3(x2−1)+2x

is positive on [1,2]. So p is strictly increasing. Since p(1) =−5 and p(2) = 2, p has
exactly one root in between. (See the Intermediate Value Theorem (5.6.1).)

For the amusement of the reader, we give an explicit algebraic formula:

L =
1
3

(
3
√

79+
√

2241
2 + 3

√
79−

√
2241

2 −1
)
.

Notice that we proved first that the sequence converged and then evaluated the
limit afterward. This is important, for consider the sequence given by a1 = 2 and
an+1 = (a2

n +1)/2. This is a monotone increasing sequence. Suppose we let L denote
the limit and compute

L = lim
n→∞

an+1 = lim
n→∞

(a2
n +1)/2 = (L2 +1)/2.

Thus (L−1)2 = 0, which means that L = 1. This is an absurd conclusion because this
sequence is monotone increasing and greater than 2. The fault lay in assuming that
the limit L actually exists, because instead it diverges to +∞ (see Exercise 2.6.A).
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The following easy corollary of the Monotone Convergence Theorem is again a
reflection of the completeness of the real numbers. This is just the tool needed to es-
tablish the key result of the next section, the Bolzano–Weierstrass Theorem (2.7.2).

Again, the corresponding result for intervals of rational numbers is false. See
Example 2.7.6. The result would also be false if we changed closed intervals to
open intervals. For example,

⋂
n≥1(0, 1

n ) = ∅.

2.6.3. NESTED INTERVALS LEMMA.
Suppose that In = [an,bn] = {x ∈ R : an ≤ x ≤ bn} are nonempty closed intervals
such that In+1 ⊆ In for each n≥ 1. Then the intersection

⋂
n≥1 In is nonempty.

PROOF. Notice that since In+1 is contained in In, it follows that

an ≤ an+1 ≤ bn+1 ≤ bn.

Thus (an) is a monotone increasing sequence bounded above by b1; and likewise
(bn) is a monotone decreasing sequence bounded below by a1. Hence by Theo-
rem 2.6.1, a = lim

n→∞
an exists, as does b = lim

n→∞
bn. By Exercise 2.4.C, a≤ b. Thus

ak ≤ a≤ b≤ bk.

Consequently, the point a belongs to Ik for each k ≥ 1. �

Exercises for Section 2.6
A. Say that lim

n→∞
an = +∞ if for every R ∈R, there is an integer N such that an > R for all n≥ N.

Show that a divergent monotone increasing sequence converges to +∞ in this sense.

B. Let a1 = 0 and an+1 =
√

5+2an for n≥ 1. Show that lim
n→∞

an exists and find the limit.

C. Is S = {x ∈ R : 0 < sin( 1
x ) < 1

2} bounded above (below)? If so, find supS (infS).

D. Evaluate lim
n→∞

n
√

3n +5n.

E. Suppose (an) is a sequence of positive real numbers such that an+1−2an + an−1 > 0 for all
n≥ 1. Prove that the sequence either converges or tends to +∞.

F. Let a,b be positive real numbers. Set x0 = a and xn+1 = (x−1
n +b)−1 for n≥ 0.

(a) Prove that xn is monotone decreasing.
(b) Prove that the limit exists and find it.

G. Let an = (∑n
k=1 1/k)− logn for n ≥ 1. Euler’s constant is defined as γ = lim

n→∞
an. Show that

(an)
∞

n=1 is decreasing and bounded below by zero, and so this limit exists.
HINT: Prove that 1/(n+1)≤ log(n+1)− logn≤ 1/n.

H. Let xn =

√
1+

√
2+
√

3+ · · ·+
√

n.

(a) Show that xn < xn+1.
(b) Show that x2

n+1 ≤ 1+
√

2xn. HINT: Square xn+1 and factor a 2 out of the square root.
(c) Hence show that xn is bounded above by 2. Deduce that lim

n→∞
xn exists.
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I. (a) Let (an)
∞

n=1 be a bounded sequence and define a sequence bn = sup{ak : k ≥ n} for n≥ 1.
Prove that (bn) converges. This is the limit superior of (an), denoted by limsupan.

(b) Without redoing the proof, conclude that the limit inferior of a bounded sequence (an),
defined as liminfan := lim

n→∞

(
infk≥n ak

)
, always exists.

(c) Extend the definitions of limsupan and liminfan to unbounded sequences. Provide an
example with limsupan = +∞ and liminfan =−∞.

J. Show that (an)
∞

n=1 converges to L ∈ R if and only if limsupan = liminfan = L.

K. If a sequence (an) is not bounded above, show that sup{an : n ≥ k} = +∞ for all k. What
should limsupan be? Formulate and prove a similar statement if (an) is not bounded below.

L. Suppose (an)
∞

n=1 and (bn)
∞

n=1 are sequences of nonnegative real numbers and lim
n→∞

an ∈ R

exists. Prove that limsupanbn = lim
n→∞

an
(

limsupbn
)
.

M. Suppose that (an)
∞

n=1 has an > 0 for all n. Show that limsupa−1
n =

(
liminfan

)−1.

N. Suppose (an)
∞

n=1 and (bn)
∞

n=1 are sequences of positive real numbers and limsupan/bn < ∞.
Prove that there is a constant M such that an ≤Mbn for all n≥ 1.

2.7 Subsequences

Given one sequence, we can build a new sequence, called a subsequence of the
original, by picking out some of the entries. Perhaps surprisingly, when the original
sequence does not converge, it is often possible to find a subsequence that does.

2.7.1. DEFINITION. A subsequence of a sequence (an)
∞

n=1 is a sequence(
ank

)∞

k=1 = (an1 ,an2 ,an3 , . . .), where n1 < n2 < n3 < · · · .

For example, (a2k)
∞

k=1 and (ak3)∞

k=1 are subsequences, where nk = 2k and nk =
k3, respectively. Notice that if we pick nk = k for each k, then we get the original
sequence; so (an)

∞

n=1 is a subsequence of itself.
It is easy to verify that if (an)

∞

n=1 converges to a limit L, then
(
ank

)∞

k=1 also
converges to the same limit. On the other hand, the sequence (1,2,3, . . .) does not
have a limit, nor does any subsequence, because any subsequence must diverge to
+∞. However, we will show that as long as a sequence remains bounded, it has
subsequences that converge.

2.7.2. BOLZANO–WEIERSTRASS THEOREM.
Every bounded sequence of real numbers has a convergent subsequence.

PROOF. Let (an) be a sequence bounded by B. Thus the interval [−B,B] contains the
whole (infinite) sequence. Now if I is an interval containing infinitely many points
of the sequence (an), and I = J1 ∪ J2 is the union of two smaller intervals, then at
least one of them contains infinitely many points of the sequence, too.

So let I1 = [−B,B]. Split it into two closed intervals of length B, namely [−B,0]
and [0,B]. One of these halves contains infinitely many points of (an); call it I2.
Similarly, divide I2 into two closed intervals of length B/2. Again pick one, called
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I3, that contains infinitely many points of our sequence. Recursively, we construct a
decreasing sequence Ik of closed intervals of length 22−kB such that each contains
infinitely many points of our sequence. Figure 2.3 shows the choice of I3 and I4,
where the terms of the sequence are indicated by vertical lines.

−B B0

I3

I4

FIG. 2.3 Choice of intervals I3 and I4.

By the Nested Interval Lemma (2.6.3), we know that
⋂

k≥1 Ik contains a number
L. Choose an increasing sequence nk such that ank belongs to Ik. This is possible
since each Ik contains infinitely many numbers in the sequence, and only finitely
many have index less than nk−1. We claim that lim

k→∞
ank = L. Indeed, both ank and L

belong to Ik, and hence
|ank −L| ≤ |Ik|= 2−k(4B).

The right-hand side tends to 0, and thus lim
k→∞

ank = L. �

2.7.3. EXAMPLE. Consider the sequence (an) = (sign(sinn))∞

n=1, where the
sign function takes values±1 depending on the sign of x except for sign0 = 0. With-
out knowing anything about the properties of the sine function, we can observe that
the sequence (an) takes at most three different values. At least one of these values is
taken infinitely often. Thus it is possible to deduce the existence of a subsequence
that is constant and therefore converges.

Using our knowledge of sine allows us to get somewhat more specific. Now
sinx = 0 exactly when x is an integer multiple of π . Since π is irrational, kπ is never
an integer for k > 0. Therefore, an takes only the values ±1. Note that sinx > 0 if
there is an integer k such that 2kπ < x < (2k+1)π; and sinx < 0 if there is an integer
k such that (2k−1)π < x < 2kπ . Observe that n increases by steps of length 1, while
the intervals on which sinx takes positive or negative values has length π ≈ 3.14.
Consequently, an takes the value +1 for three or four terms in a row, followed by
three or four terms taking the value −1. Consequently, both 1 and −1 are limits of
certain subsequences of (an).

2.7.4. EXAMPLE. Consider the sequence (an) = (sinn)∞

n=1. As the angles n
radians for n ≥ 1 are marked on a circle, they appear gradually to fill in a dense
subset. If this can be demonstrated, we should be able to show that sinθ is a limit
of a subsequence of our sequence for every θ in [0,2π].

The key is to approximate the angle 0 modulo 2π by integers. Let m be a posi-
tive integer and let ε > 0. Choose an integer N so large that Nε > 2π . Divide the
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circle into N arcs of length 2π/N radians each. Then consider the N + 1 points
0,m,2m, . . . ,Nm modulo 2π on the circle. Since there are N + 1 points distributed
into only N arcs, the Pigeonhole Principle implies that at least one arc contains two
points, say im and jm, where i < j. Then n = jm− im represents an angle of abso-
lute value at most 2π/N < ε radians up to a multiple of 2π . That is, n = ψ + 2πs
for some integer s and real number |ψ| < ε . In particular, |sinn| < ε and n ≥ m.
Moreover, since π is not rational, n is not an exact multiple of 2π .

So given θ ∈ [0,2π], construct a subsequence as follows. Let n1 = 1. Recursively
we construct an increasing sequence nk such that

|sinnk− sinθ |< 1
k
.

Once nk is defined, take ε = 1
k+1 and m = nk +1. As in the previous paragraph, there

is an integer n > nk such that n = ψ + 2πs and |ψ| < 1
k+1 . Thus there is a positive

integer t such that |θ − tψ|< 1
k+1 . Therefore

|sin(tn)− sin(θ)|= |sin(tψ)− sin(θ)| ≤ |tψ−θ |< 1
k +1

. (2.7.5)

Set nk+1 = tn. This completes the induction. The result is a subsequence such that

lim
k→∞

sin(nk) = sinθ .

To verify equation (2.7.5), recall the Mean Value Theorem (6.2.2). There is a
point ξ between tψ and θ such that∣∣∣∣ sin(tψ)− sin(θ)

tψ−θ

∣∣∣∣= ∣∣cosξ
∣∣≤ 1.

Rearranging yields |sin(tψ)− sin(θ)| ≤ |tψ−θ |.
Therefore, we have shown that every value in the interval [−1,1] is the limit of

some subsequence of the sequence (sinn)∞

n=1.

2.7.6. EXAMPLE. Consider the sequence b1 = 3 and bn+1 = (bn + 8/bn)/2.
Notice that

b2
n+1−8 =

b2
n +16+(64/b2

n)−32
4

=
b2

n−16+(64/b2
n)

4

=
(bn−8/bn)2

4
=

(b2
n−8)2

4b2
n

.

It follows that b2
n > 8 for all n≥ 2, and b2

1−8 = 1 > 0 also. Thus

0 < b2
n+1−8 <

(b2
n−8)2

32
.
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Iterating this, we obtain b2
2−8 < 32−1, b2

3−8 < 32−3, and b2
4−8 < 32−7. In general,

we establish by induction that

0 < b2
n−8 < 321−2n−1

.

Since bn is positive and b2−8 = (b−
√

8)(b+
√

8), it follows that

0 < bn−
√

8 =
b2

n−8
bn +

√
8

<
321−2n−1

2
√

8
< 6(32−2n−1

).

Lastly, using the fact that 322 = 1024 > 103, we obtain

0 < bn−
√

8 < 10 ·10−3·2n−2
.

In particular, lim
n→∞

bn =
√

8. In fact, the convergence is so rapid that b10 approximates
√

8 to more than 750 digits of accuracy. See Example 11.2.2 for a more general
analysis in terms of Newton’s method.

Let an = 8/bn. Then an is monotone increasing to
√

8. Both an and bn are rational,
but

√
8 is irrational. Thus the sets Jn = {x ∈ Q : an ≤ x ≤ bn} form a decreasing

sequence of nonempty intervals of rational numbers with empty intersection.

Exercises for Section 2.7

A. Show that (an) =
(

ncosn(n)√
n2+2n

)∞

n=1
has a convergent subsequence.

B. Does the sequence (bn) =
(
n+ cos(nπ)

√
n2 +1

)∞

n=1 have a convergent subsequence?

C. Does the sequence (an) = (cos logn)∞
n=1 converge?

D. Show that every sequence has a monotone subsequence.

E. Use trig identities to show that |sinx− siny| ≤ |x− y|.
HINT: Let a = (x+ y)/2 and b = (x− y)/2. Use the addition formula for sin(a±b).

F. Define x1 = 2 and xn+1 = 1
2 (xn +5/xn) for n≥ 1.

(a) Find a formula for x2
n+1−5 in terms of x2

n−5.
(b) Hence evaluate lim

n→∞
xn.

(c) Compute the first ten terms on a computer or a calculator.
(d) Show that the tenth term approximates the limit to over 600 decimal places.

G. Let (xn)
∞

n=1 be a sequence of real numbers. Suppose that there is a real number L such that
L = lim

n→∞
x3n−1 = lim

n→∞
x3n+1 = lim

n→∞
x3n. Show that lim

n→∞
xn exists and equals L.

H. Let (xn)
∞

n=1 be a sequence in R. Suppose there is a number L such that every subsequence(
xnk

)∞

k=1 has a subsubsequence
(
xnk(l)

)∞

l=1 with lim
l→∞

xnk(l) = L. Show that the whole sequence

converges to L. HINT: If not, you could find a subsequence bounded away from L.

I. Suppose (xn)
∞

n=1 is a sequence in R, and that Lk are real numbers with lim
k→∞

Lk = L. If for

each k ≥ 1, there is a subsequence of (xn)
∞

n=1 converging to Lk, show that some subsequence
converges to L. HINT: Find an increasing sequence nk such that |xnk −L|< 1/k.
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J. (a) Suppose that (xn)
∞

n=1 is a sequence of real numbers. If L = liminfxn, show that there is a
subsequence

(
xnk

)∞

k=1 such that lim
k→∞

xnk = L.

(b) Similarly, prove that there is a subsequence
(
xnl

)∞

l=1 such that lim
l→∞

xnl = limsupxn.

K. Let (xn)
∞

n=1 be an arbitrary sequence. Prove that there is a subsequence
(
xnk

)∞

k=1 which con-
verges or lim

k→∞
xnk = ∞ or lim

k→∞
xnk =−∞.

L. Construct a sequence (xn)
∞

n=1 such that for every real number L, there is a subsequence(
xnk

)∞

k=1 with lim
k→∞

xnk = L.

2.8 Cauchy Sequences

Can we decide whether a sequence converges without first finding the value of the
limit? To do this, we need an intrinsic property of a sequence which is equivalent to
convergence that does not make use of the value of the limit. This intrinsic property
shows which sequences are ‘supposed’ to converge. This leads us to the notion of
a subset of R being complete if all sequences in the subset that are ‘supposed’ to
converge actually do. As we shall see, this completeness property has been built into
the real numbers by our construction of infinite decimals.

To obtain an appropriate condition, notice that if a sequence (an) converges to L,
then as the terms get close to the limit, they are getting close to each other.

2.8.1. PROPOSITION. Let (an)
∞

n=1 be a sequence converging to L. For every
ε > 0, there is an integer N such that

|an−am|< ε for all m,n≥ N.

PROOF. Fix ε > 0 and use the value ε/2 in the definition of limit. Then there is an
integer N such that |an−L|< ε/2 for all n≥ N. Thus if m,n≥ N, we obtain

|an−am| ≤ |an−L|+ |L−am|<
ε

2
+

ε

2
= ε.

�

In order for N to work in the conclusion, for every m ≥ N, am must be within ε

of aN . It is not enough to just have aN and aN+1 close (see Exercise 2.8.B).
We make the conclusion of this proposition into a definition. This definition re-

tains the flavour of the definition of a limit, in that it has the same logical structure:
For all ε > 0, there is an integer N . . . .

2.8.2. DEFINITION. A sequence (an)
∞

n=1 of real numbers is called a Cauchy
sequence provided that for every ε > 0, there is an integer N such that

|am−an|< ε for all m,n≥ N.
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2.8.3. PROPOSITION. Every Cauchy sequence is bounded.

PROOF. The proof is basically the same as Proposition 2.5.1. Let (an)
∞

n=1 be a
Cauchy sequence. Taking ε = 1, find N so large that

|an−aN |< 1 for all n≥ N.

It follows that the sequence is bounded by max{|a1|, . . . , |aN−1|, |aN |+1}. �

Since the definition of a Cauchy sequence does not require the use of a potential
limit L, it permits the following definition.

2.8.4. DEFINITION. A subset S of R is said to be complete if every Cauchy
sequence (an) in S (that is, an ∈ S) converges to a point in S.

This brings us to an important conclusion about the real numbers themselves,
another property that distinguishes the real numbers from the rational numbers.

2.8.5. COMPLETENESS THEOREM.
Every Cauchy sequence of real numbers converges. So R is complete.

PROOF. Suppose that (an)
∞

n=1 is a Cauchy sequence. By Proposition 2.8.3, {an :
n≥ 1} is bounded. By the Bolzano–Weierstrass Theorem (2.7.2), this sequence has
a convergent subsequence, say

lim
k→∞

ank = L.

Let ε > 0. From the definition of Cauchy sequence for ε/2, there is an integer N
such that

|am−an|<
ε

2
for all m,n≥ N.

And from the definition of limit using ε/2, there is an integer K such that

|ank −L|< ε

2
for all k ≥ K.

Pick any k ≥ K such that nk ≥ N. Then for every n≥ N,

|an−L| ≤ |an−ank |+ |ank −L|< ε

2
+

ε

2
= ε.

So lim
n→∞

an = L. �

2.8.6. REMARK. This theorem is not true for the rational numbers. Define the
sequence (an)

∞

n=1 by

a1 = 1.4, a2 = 1.41, a3 = 1.414, a4 = 1.4142, a5 = 1.41421, . . .
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and in general, an is the first n+1 digits in the decimal expansion of
√

2. If n and m
are greater than N, then an and am agree for at least first N +1 digits. Thus

|an−am|< 10−N for all m,n≥ N.

This shows that (an)
∞

n=1 is a Cauchy sequence of rational numbers. (Why?)
However, this sequence has no limit in the rationals. In our terminology, Q is

not complete. Of course, this sequence does converge to a real number, namely
√

2.
This is one way to see the essential difference between R and Q: the set of real
numbers is complete and Q is not.

2.8.7. EXAMPLE. Let α be an arbitrary real number. Define an = [nα]/n,
where [x] is the nearest integer to x. Then

∣∣[nα]−nα
∣∣≤ 1/2. So

|an−α|=
∣∣[nα]−nα

∣∣
n

≤ 1
2n

.

We claim lim
n→∞

an = α . Indeed, given ε > 0, choose N so large that 1
N < ε . Then for

n≥ N, |an−α|< ε/2. Moreover, if m,n≥ N,

|an−am| ≤ |an−α|+ |α−am|<
ε

2
+

ε

2
= ε.

Thus this sequence is Cauchy.

2.8.8. EXAMPLE. Consider the infinite continued fraction

1

2+
1

2+
1

2+
1

2+ · · ·

To make sense of this, it has to be interpreted as the limit of the finite fractions

a1 =
1
2
, a2 =

1

2+ 1
2

=
2
5
, a3 =

1

2+ 1
2+ 1

2

=
5
12

, · · · .

We need a better way of defining the general term. In this case, there is a recursive
formula for obtaining one term from the preceding one:

a1 =
1
2
, an+1 =

1
2+an

for n≥ 1.

In order to establish convergence, we will show that (an) is Cauchy. Consider
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an+1−an+2 =
1

2+an
− 1

2+an+1
=

an+1−an

(2+an)(2+an+1)
.

Now a1 > 0, and it is readily follows that an > 0 for all n ≥ 2 by induction. Hence
the denominator (2+an)(2+an+1) is greater than 4. So we obtain

|an+1−an+2|<
|an−an+1|

4
for all n≥ 1.

Since |a1−a2|= 1/10, we may iterate this inequality to estimate

|a2−a3|<
1

10 ·4
, |a3−a4|<

1
10 ·42 , |an−an+1|<

1
10 ·4n−1 = 2

5 (4−n).

The general formula estimating the difference may be verified by induction.
Now it is straightforward to estimate the difference between arbitrary terms am

and an for m < n:

|am−an|=
∣∣(am−am+1)+(am+1−am+2)+ · · ·+(an−1−an)

∣∣
≤ |am−am+1|+ |am+1−am+2|+ · · ·+ |an−1−an|

< 2
5 (4−m +4−m−1 + · · ·+41−n) <

2 ·4−m

5(1− 1
4 )

=
8
15

4−m < 4−m.

This tells us that our sequence is Cauchy. Indeed, if ε > 0, choose N such that
4−N < ε . Then

|am−an|< 4−m ≤ 4−N < ε for all m,n≥ N.

Therefore by the Completeness Theorem 2.8.5, it follows that (an)
∞

n=1 converges;
say, lim

n→∞
an = L. To calculate L, use the recurrence relation

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

1
2+an

=
1

2+L
.

It follows that L2 + 2L− 1 = 0. Solving yields L = ±
√

2− 1. Since L > 0, we see
that L =

√
2−1.

We have accumulated five different results for R that distinguish it from Q.

(1) the Least Upper Bound Principle (2.3.3),
(2) the Monotone Convergence Theorem (2.6.1),
(3) the Nested Intervals Lemma (2.6.3),
(4) the Bolzano–Weierstrass Theorem (2.7.2),
(5) the Completeness Theorem (2.8.5).

It turns out that they are all equivalent. Indeed, each of the proofs of items (2) to (5)
relies only on the previous item in our list. To show how the Completeness Theorem
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implies the Least Upper Bound Principle, go through our proof to obtain an increas-
ing sequence of lower bounds, yk, and a decreasing sequence of elements xk ∈ S
with xk < yk +10−k. Show that the sequence x1,y1,x2,y2, . . . is Cauchy. The limit L
will be the greatest lower bound. Fill in the details yourself (Exercise 2.8.G).

Exercises for Section 2.8

A. Let (xn) be Cauchy with a subsequence (xnk ) such that lim
k→∞

xnk = a. Show that lim
n→∞

xn = a.

B. Give a sequence (an) such that lim
n→∞

|an−an+1|= 0, but the sequence does not converge.

C. Let (an) be a sequence such that lim
N→∞

∑
N
n=1 |an−an+1|< ∞. Show that (an) is Cauchy.

D. If (xn)
∞

n=1 is Cauchy, show that it has a subsequence (xnk ) such that ∑
∞
k=1 |xnk − xnk+1 |< ∞.

E. Suppose that (an) is a sequence such that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n ≥ 0. Show
that this sequence is Cauchy if and only if lim

n→∞
|an−an+1|= 0.

F. Give an example of a sequence (an) such that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n ≥ 0
which does not converge.

G. Fill in the details of how the Completeness Theorem implies the Least Upper Bound Principle.

H. Let a0 = 0 and set an+1 = cos(an) for n≥ 0. Try this on your calculator (use radian mode!).

(a) Show that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n≥ 0.
(b) Use the Mean Value Theorem to find an explicit number r < 1 such that

|an+2−an+1| ≤ r|an−an+1| for all n≥ 0. Hence show that this sequence is Cauchy.
(c) Describe the limit geometrically as the intersection point of two curves.

I. Evaluate the continued fraction
1+

1

1+
1

1+
1

1+ · · · .

J. Let x0 = 0 and xn+1 =
√

5−2xn for n ≥ 0. Show that this sequence converges and compute
the limit. HINT: Show that the even terms increase and the odd terms decrease.

K. Consider an infinite binary expansion (0.e1e2e3 . . .)base 2, where each ei ∈ {0,1}. Show that
an = ∑

n
i=1 2−iei is Cauchy for every choice of zeros and ones.

L. One base-independent construction of the real numbers uses Cauchy sequences of rational
numbers. This exercise asks for the definitions that go into such a proof.

(a) Find a way to decide when two Cauchy sequences should determine the same real number
without using their limits. HINT: Combine the two sequences into one.

(b) Your definition in (a) should be an equivalence relation. Is it? (See Appendix 1.3.)
(c) How are addition and multiplication defined?
(d) How is the order defined?

2.9 Countable Sets
Cardinality measures the size of a set in the crudest of ways—by counting the num-
bers of elements. Obviously, the number of elements in a set could be 0, 1, 2, 3, 4,
or some other finite number. Or a set can have infinitely many elements. Perhaps
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surprisingly, not all infinite sets have the same cardinality. We distinguish only be-
tween sets having the smallest infinite cardinality (countably infinite sets) and all
larger cardinalities (uncountable sets). We use the term countable for sets that are
either countably infinite or finite.

2.9.1. DEFINITION. Two sets A and B have the same cardinality if there is a
bijection f from A onto B. Write |A| = |B| in this case. We say that the cardinality
of A is at most that of B (write |A| ≤ |B|) if there is an injection f from A into B.

The definition says simply that if all of the elements of A can be paired, one-to-
one, with all of the elements of B, then A and B have the same size. If A fits inside
B in a one-to-one manner, then A is smaller than or equal to B. It is natural to ask
whether |A| ≤ |B| and |B| ≤ |A| imply |A| = |B|. The answer is yes, but this is not
obvious for infinite sets. The Schroeder–Bernstein Theorem establishes this, but we
do not include a proof.

2.9.2. EXAMPLES.
(1) The cardinality of any finite set is the number of elements, and this number
belongs to {0,1,2,3,4, . . .}. This property is, essentially, the definition of finite set.

(2) Many sets encountered in analysis are infinite, meaning that they are not fi-
nite. The sets of natural numbers N, integers Z, rational numbers Q, and real num-
bers R are all infinite. Moreover, we have the containments N ⊂ Z ⊂ Q ⊂ R.
Therefore |N| ≤ |Z| ≤ |Q| ≤ |R|. Notice that the integers can be written as a
list 0,1,−1,2,−2,3,−3, . . . . This amounts to defining a bijection f : N → Z by
f (2n−1) = 1−n and f (2n) = n for n≥ 1. Therefore, |N|= |Z|.

2.9.3. DEFINITION. A set A is a countable set is it is finite or if |A|= |N|. If
|A| = |N|, we say that A is countably infinite. The cardinal |N| is also denoted by
ℵ0, pronounced aleph nought. Aleph is the first letter of the Hebrew alphabet.

An infinite set that is not countable is called an uncountable set.

Equivalently, A is countable if the elements of A may be listed as a1,a2,a3, . . . .
Indeed, the list itself determines a bijection f from N to A by f (k) = ak. It is a basic
fact that countable sets are the smallest infinite sets.

Notice that two uncountable sets might have different cardinalities.

2.9.4. LEMMA. Every infinite subset of N is countable. Moreover, if A is an
infinite set such that |A| ≤ |N|, then |A|= |N|.

PROOF. Any nonempty subset X of N has a smallest element. This follows from
induction: if X does not have a smallest element, then 1 /∈ X and 1, . . . ,n all not in
X imply n+1 /∈ X . By induction, X is empty, a contradiction.
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Let B be an infinite subset of N. List the elements of B in increasing order as
b1 < b2 < b3 < · · · . This is done by choosing the smallest element b1, then the
smallest of the remaining set B \ {b1}, then the smallest of B \ {b1,b2}, and so on.
The result is an infinite list of elements of B in increasing order. It must include
every element b ∈ B because {n ∈ B : n ≤ b} is finite, containing say k elements.
Then bk = b. As noted before the proof, this implies that |B|= |N|.

Now consider an infinite set A with |A| ≤ |N|. By definition, there is an injection
f of A into N. Let B = f (A). Note that f is a bijection of A onto B. Thus B is an
infinite subset of N. So |A|= |B|= |N|. �

2.9.5. PROPOSITION. The set N×N is countable.

PROOF. Rather than starting with the formula of a bijection from N to N×N, note
that each ‘diagonal set’ Dn = {(i, j)∈N×N : i+ j = n+1}, n≥ 1, is finite. Thus, if
we work through these sets in some methodical way, any pair (i, j) will be reached
in finitely many steps. See Figure 2.4.

Noting that |Dn| = n and 1 + 2 + . . .+ n = n(n + 1)/2, we define our bijection
for m ∈ N by first picking n such that n(n− 1)/2 < m ≤ n(n + 1)/2. Letting k =
m−n(n−1)/2, we define ϕ(m) to be (k,n+1−k). It is routine, if tedious, to verify
that ϕ is a bijection, i.e., one-to-one and onto. �

a1,1

a2,1

a3,1

a4,1

a5,1

a1,2 a1,3 a1,4 a1,5

FIG. 2.4 The ordering on N×N.

2.9.6. COROLLARY. The countable union of countable sets is countable.

PROOF. Let A1,A2,A3, . . . be countable sets. To avoid repetition, let B1 = A1 and
Bi = Ai \∪i−1

k=1Ak. Each Bi is countable, so list its elements as bi,1,bi,2,bi,3, . . . . Map
A = ∪i≥1Ai = ∪i≥1Bi into N×N by f (bi j) = (i, j). This is an injection; therefore
|A| ≤ |N×N|= |N|. Hence the union is countable. �

2.9.7. COROLLARY. The set Q of rational numbers is countable.
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PROOF. Observe that Z×N is countable, since we can take the bijection f : N→ Z
of Example 2.9.2 (2) and use it to define g : N×N→ Z×N by g(n,m) = ( f (n),m),
which you can check is a bijection.

Define a map from Q into Z×N by h(r) = (a,b) if r = a/b, where a and b are
integers with no common factor and b > 0. These conditions uniquely determine the
pair (a,b) for each rational r, and so h is a function. Clearly, h is injective since r is
recovered from (a,b) by division. Therefore, h is an injection of Q into a countable
set. Hence Q is an infinite set with |Q| ≤ |N|. So Q is countable by Lemma 2.9.4. �

There are infinite sets that are not countable. The proof uses a diagonalization
argument due to Cantor.

2.9.8. THEOREM. The set R of real numbers is uncountable.

PROOF. Suppose to the contrary that R is countable. Then all real numbers may be
written as a list x1,x2,x3, . . . . Express each xi as an infinite decimal, which we write
as xi = xi0.xi1xi2xi3 . . . , where xi0 is an integer and xik is an integer from 0 to 9 for
each k ≥ 1. Our goal is to write down another real number that does not appear in
this (supposedly exhaustive) list. Let a0 = 0 and define ak = 7 if xkk ∈ {0,1,2,3,4}
and ak = 2 if xkk ∈ {5,6,7,8,9}. Define a real number a = a0.a1a2a3 . . . .

Since a is a real number, it must appear somewhere in this list, say a = xk. How-
ever, the kth decimal place ak of a and xkk of xk differ by between 3 and 7. This
cannot be accounted for by the fact that certain real numbers have two decimal ex-
pansions, one ending in zeros and the other ending in nines because this changes any
digit by either 1 or 9. So a 6= xk, and hence a does not occur in this list. It follows
that there is no such list, and thus R is uncountable. �

Exercises for Section 2.9
A. Prove that the set Zn, consisting of all n-tuples a = (a1,a2, . . . ,an), where ai ∈Z, is countable.

B. Show that (0,1) and [0,1] have the same cardinality as R.

C. Show that if |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|.
D. Prove that the set of all infinite sequences of integers is uncountable.

HINT: Modify the diagonalization argument.

E. A real number α is called an algebraic number if there is a polynomial with integer coeffi-
cients with α as a root. Prove that the set of all algebraic numbers is countable.
HINT: First count the set of all polynomials with integer coefficients.

F. A real number that is not algebraic is called a transcendental number. Prove that the set of
transcendental numbers has the same cardinality as R.

G. Show that the set of all finite subsets of N is countable.

H. Prove Cantor’s Theorem: that for any set X , the power set P(X) of all subsets of X satisfies
|X | 6= |P(X)|. HINT: If f is an injection from X into P(X), consider A = {x∈ X : x 6∈ f (x)}.

I. If A is an infinite set, show that A has a countable infinite subset.
HINT: Use recursion to choose a sequence an of distinct points in A.

J. Show that A is infinite if and only if there is a proper subset B of A such that |B|= |A|.
HINT: Use the previous exercise and let B = A\{a1}.



Chapter 3
Series

3.1 Convergent Series

We turn now to the problem of adding up an infinite series of numbers. As we shall
quickly see, this is really no different from dealing with the sequence of partial sums
of the series. However, there are tests for convergence that are more conveniently
expressed for series than for sequences.

3.1.1. DEFINITION. If (an)
∞

n=1 is a sequence of numbers, the infinite series
with terms an is the formal expression

∞

∑
n=1

an. Define a sequence of partial sums

(sn)
∞

n=1 by sn =
n
∑

k=1
ak. This series converges, or equivalently is summable, if the

sequence of partial sums converges. If L = lim
n→∞

sn, then we write L =
∞

∑
n=1

an. If the

series does not converge, then it is said to diverge.

It can be fairly difficult or even impossible to find the sum of a series. However, it
is not nearly as hard to determine whether a series converges. We devote this chapter
to examples of series and to tests for convergence of series. While these tests may
be familiar to you from calculus, the proofs may not be.

3.1.2. EXAMPLE. Consider
∞

∑
k=1

1
k

, which is known as the harmonic series. We

will show that this series diverges. The idea is to group the terms cleverly. Suppose
that n satisfies 2k ≤ n < 2k+1. Then

sn = s2k = 1+
1
2

+
(

1
3

+
1
4

)
+ · · ·+

(
1

2k−1 +1
+ · · ·+ 1

2k

)
≥ 1+

1
2

+2
1
4

+ · · ·+2k−1 1
2k = 1+

k
2
.

Thus lim
n→∞

sn = +∞.
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There is another way to estimate the terms sn that gives a more precise idea of the
rate of divergence of the harmonic series. Consider the graph of y = 1/x, as given in
Figure 3.1.

x

y

1

1 2 3 4 5

FIG. 3.1 The graph of 1/x with bounding rectangles.

It is clear that

1
k +1

=
∫ k+1

k

1
k +1

dx <
∫ k+1

k

1
x

dx <
∫ k+1

k

1
k

dx =
1
k
.

Notice that sn is the upper Riemann sum estimate for the integral of 1/x from 1 to
n+1 using the integer partition

sn =
n

∑
k=1

1
k

>
n

∑
k=1

∫ k+1

k

1
x

dx =
∫ n+1

1

1
x

dx = logx
∣∣∣n+1

1
= log(n+1).

Similarly, sn−1 is the lower Riemann sum estimate for the integral of 1/x from
1 to n using the integer partition

sn−1 =
n

∑
k=2

1
k

<
n

∑
k=2

∫ k

k−1

1
x

dx =
∫ n

1

1
x

dx = logx
∣∣∣n
1
= logn.

Therefore, log(n+1) < sn < 1+ logn for all n≥ 1. Hence sn diverges to infinity
roughly at the same rate as the log function.

3.1.3. EXAMPLE. On the other hand, consider
∞

∑
n=1

1
n(n+3)

. First observe that

3
n(n+3)

=
1
n
− 1

n+3
,
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and so we have an example of a telescoping sum (so named because of the conve-
nient cancellation in the following sum):

3sn =
3
4

+
3

10
+ · · ·+ 3

n(n+3)

=
(

1− 1
4

)
+
(

1
2
− 1

5

)
+ · · ·+

(
1
n
− 1

n+3

)
=
(

1+
1
2

+ · · ·+ 1
n

)
−
(

1
4

+
1
5

+ · · ·+ 1
n+3

)
= 1+

1
2

+
1
3
− 1

n+1
− 1

n+2
− 1

n+3
.

Thus,
∞

∑
n=1

1
n(n+3)

= lim
n→∞

sn =
1+1/2+1/3

3
=

11
18

.

The harmonic series shows that a series
∞

∑
n=1

an can diverge even if the an go to

zero. However, if a series
∞

∑
n=1

an does converge, then lim
n→∞

an must be zero.

3.1.4. THEOREM. If the series
∞

∑
n=1

an is convergent, then lim
n→∞

an = 0.

PROOF. If (sn)
∞

n=1 is the sequence of partial sums, then an = sn − sn−1 for n ≥ 2.
Using the properties of limits, we have lim

n→∞
sn = lim

n→∞
sn−1, and thus

lim
n→∞

an = lim
n→∞

sn− sn−1 = lim
n→∞

sn− lim
n→∞

sn−1 = 0.
�

The rigorous ε–N definition of convergence and the Cauchy criterion have a nice
form for series.

3.1.5. CAUCHY CRITERION FOR SERIES.
The following are equivalent for a series

∞

∑
n=1

an.

(1) The series converges.

(2) For every ε > 0, there is an N ∈ N such that for all n≥ N,
∣∣∣ ∞

∑
k=n+1

ak

∣∣∣< ε .

(3) For every ε > 0, there is an N ∈ N such that if n,m≥ N,
∣∣∣ m

∑
k=n+1

ak

∣∣∣< ε .

PROOF. Let sn be the sequence of partial sums of the series. If the series converges
to a limit L, then for every ε > 0 there is an integer N such that

|L− sn|< ε for all n≥ N.
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Since

L− sn = lim
m→∞

sm− sn = lim
m→∞

m

∑
k=n+1

ak =
∞

∑
k=n+1

ak,

this shows that (1) implies (2).

If (2) holds, then there is N such that for all n ≥ N,
∣∣∣ ∞

∑
k=n+1

ak

∣∣∣ < ε . If m,n ≥ N,

then the reverse triangle inequality shows that∣∣∣∣∣ m

∑
k=n+1

ak

∣∣∣∣∣≤
∣∣∣∣∣
∣∣∣∣∣ ∞

∑
k=n+1

ak

∣∣∣∣∣−
∣∣∣∣∣ ∞

∑
k=m+1

ak

∣∣∣∣∣
∣∣∣∣∣≤max

{∣∣∣∣∣ ∞

∑
k=n+1

ak

∣∣∣∣∣ ,
∣∣∣∣∣ ∞

∑
k=m+1

ak

∣∣∣∣∣
}

< ε.

So (3) holds.

Finally, if (3) holds, since |sm− sn|=
∣∣∣∣ m

∑
k=n+1

ak

∣∣∣∣, then (sn) is a Cauchy sequence.

Therefore the series converges, by the completeness of the real numbers. �

Exercises for Section 3.1

A. Sum the series
∞

∑
n=1

1
n(n+2)

.

B. Sum the series
∞

∑
n=1

1
n(n+1)(n+3)(n+4)

.

HINT: Show that
12

n(n+1)(n+3)(n+4)
=

1
n
− 2

n+1
+

2
n+3

− 1
n+4

.

C. Prove that if p > 1 and
∞

∑
k=1

tk is a convergent series of nonnegative numbers,
∞

∑
k=1

t p
k converges.

D. Let (an)
∞

n=1 be a sequence such that lim
n→∞

|an|= 0. Prove that there is a subsequence (ank ) such

that
∞

∑
k=1

ank converges.

E. Compute
∞

∑
n=1

1
(n+1)

√
n+n

√
n+1

. HINT: Multiply the nth term by 1 =
√

n+1−
√

n√
n+1−

√
n

.

F. Let |a|< 1 and set Sn =
n
∑

k=0
ak and Tn =

n
∑

k=0
(k +1)ak.

(a) Show that S2
n =

n
∑

k=0
(k +1)ak +

n
∑

k=1
(n+1− k)an+k.

(b) Hence show that |Tn−S2
n| ≤

n(n+1)
2 |a|n+1.

(c) Show that lim
n→∞

Tn =
(

lim
n→∞

Sn
)2. Hence obtain a formula for this sum.

(d) Evaluate
∞

∑
k=0

n+1
3n .

G. Let x0 = 1 and xn+1 = xn +1/xn.

(a) Find lim
n→∞

xn.

(b) Let yn = x2
n−2n. Find a recurrence formula for yn+1 in terms of yn only.

(c) Show that yn is monotone increasing and yn < 2+ logn.
(d) Hence show that lim

n→∞
xn−

√
2n = 0.
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3.2 Convergence Tests for Series

We start by considering infinite series with positive terms. If each an ≥ 0, then
sn+1 = sn + an+1 ≥ sn, so the sequence of partial sums is monotone increasing. So
the Monotone Convergence Theorem (2.6.1) shows that (sn) converges if and only
if it is bounded above. We have established the following proposition.

3.2.1. PROPOSITION. If ak ≥ 0 for k ≥ 1 and sn =
n
∑

k=1
ak, then either

(1) (sn)
∞

n=1 is bounded above, in which case
∞

∑
n=1

an converges,
or
(2) (sn)

∞

n=1 is unbounded, in which case
∞

∑
n=1

an diverges.

A sequence
(
an
)∞

n=0 is a geometric sequence with ratio r if an+1 = ran for all
n ≥ 0 or, equivalently, an = a0rn for all n ≥ 0. Finding the sum of a geometric
sequence is a standard result from calculus, so we leave the proof as an exercise.

3.2.2. GEOMETRIC SERIES.
A geometric series converges if |r|< 1. Moreover,

∞

∑
n=0

arn =
a

1− r
.

Of course, if a 6= 0 and |r| ≥ 1, then the terms arn do not converge to 0. In this
case, the geometric sequence

(
an
)∞

n=0 is not summable.
Another test often used in calculus is the Comparison Test.

3.2.3. THE COMPARISON TEST.
Consider two sequences of real numbers (an) and (bn) with |an| ≤ bn for all n ≥ 1.
If (bn) is summable, then (an) is summable and∣∣∣ ∞

∑
n=1

an

∣∣∣≤ ∞

∑
n=1

bn.

If (an) is not summable, then (bn) is not summable.

PROOF. Let ε > 0 be given. Since (bn) is summable, Lemma 3.1.5 yields an integer
N such that

m

∑
k=n+1

bk < ε for all N ≤ n≤ m.

Therefore, ∣∣∣ m

∑
k=n+1

ak

∣∣∣≤ m

∑
k=n+1

|ak| ≤
m

∑
k=n+1

bk < ε.

Applying Lemma 3.1.5 again shows that ∑
∞
n=1 an converges.
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If (an) is not summable, then neither is (bn), by the contrapositive. (The summa-
bility of (bn) would imply that (an) was also summable.) �

The Root Test can decide the summability of sequences that are dominated by a
geometric sequence “at infinity.”

3.2.4. THE ROOT TEST.
Suppose an ≥ 0 for all n, and let ` = limsup n

√
an. If ` < 1, then

∞

∑
n=1

an converges;

and if ` > 1, then
∞

∑
n=1

an diverges.

NOTE: If limsup n
√

an = 1, the series may or may not converge (see Exercise 3.2.L).

PROOF. Suppose that limsup n
√

an = ` < 1. To show that the series converges, we
need to show that the sequence of partial sums is bounded above. Pick a number r
with ` < r < 1 and let ε = r−`. Since ε > 0, we can find an integer N > 0 such that

an
1/n < `+ ε = r for all n≥ N.

Therefore, an < rn for all n≥ N. Consider the sequence (bn)
∞

n=1 given by

bn = an, 1≤ n < N, and bn = rn for n≥ N.

This sequence is summable by Theorem 3.2.2. Indeed,

∞

∑
n=1

bn =
N−1

∑
n=1

bn +
∞

∑
n=N

bn =
N−1

∑
n=1

bn +
rN

1− r
.

Since |an| ≤ bn for n ≥ 1, the Comparison Test (3.2.3) shows that (an)
∞

n=1 is
summable.

Conversely, if limsup
n→∞

n
√

an = ` > 1, then let ε = `− 1. From the definition of

limsup, there is a subsequence n1 < n2 < · · · such that

ank
1/nk > `− ε = 1 for all k ≥ 1.

Therefore, the terms an do not converge to 0 and thus the series diverges. �

3.2.5. DEFINITION. A sequence is alternating if it has the form ((−1)nan)
or ((−1)n+1an), where an ≥ 0 for all n≥ 1.

3.2.6. LEIBNIZ ALTERNATING SERIES TEST.
Suppose that (an)

∞

n=1 is a monotone decreasing sequence a1 ≥ a2 ≥ a3 ≥ ·· · ≥ 0,

and lim
n→∞

an = 0. Then the alternating series
∞

∑
n=1

(−1)nan converges.
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PROOF. Let sn =
n
∑

k=1
(−1)kak. Intuitively, (sn) behaves as in Figure 3.2.

s1 s3 s5 s2s4s6L

FIG. 3.2 Behaviour of partial sums.

Making this formal, we claim that

(1) s2 ≥ s4 ≥ s6 ≥ ·· · ,
(2) s1 ≤ s3 ≤ s5 ≤ ·· · , and
(3) s2m−1 ≤ s2n for all m,n≥ 1.

To prove (1), notice that s2n−s2n−2 = a2n−a2n−1 ≤ 0, since a2n ≤ a2n−1. For (2),
s2n+1− s2n−1 = a2n−a2n+1 ≥ 0. For (3), note that if m and n are integers, then for
N = max{m,n}, we have

s2m−1 ≤ s2N−1 ≤ s2N ≤ s2n.

Since the decreasing sequence (s2,s4, . . .) is bounded below by s1, it converges to
some number L by the Monotone Convergence Theorem (2.6.1). Similarly, since
(s1,s3, . . .) is increasing and bounded above by s2, it converges to some number M.
Finally,

L−M = lim
n→∞

s2n− lim
n→∞

s2n−1 = lim
n→∞

s2n− s2n−1 = lim
n→∞

a2n = 0.
�

3.2.7. EXAMPLE. Consider the alternating harmonic series

∞

∑
n=1

(−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+ · · · .

This series is alternating and 1
n is monotone decreasing to 0, so the series must

converge. Note that the harmonic series has the same terms without the sign changes.
It is possible to sum this series in several ways. All rely on calculus in some way.

Notice that

s2n =
2n

∑
k=1

(−1)k−1

k
= 1− 1

2
+ · · ·+ 1

2n−1
− 1

2n

=
(

1+
1
2

+ · · ·+ 1
2n−1

+
1

2n

)
−2
(1

2
+

1
4

+ · · ·+ 1
2n

)
=

2n

∑
k=1

1
k
−2

n

∑
k=1

1
2k

=
2n

∑
k=1

1
k
−

n

∑
k=1

1
k

=
n

∑
k=1

1
n+ k

.
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We can recognize this as a Riemann sum approximating an integral. Indeed, con-

sider the integral
∫ 2

1

1
x

dx. Partition the interval [1,2] into n equal pieces. Then from

x

y

1

1 2

FIG. 3.3 Riemann sum for
∫ 2

1
1
x dx.

Figure 3.3, we see that the Riemann (lower) sum for integrating f (x) =
1
x

is

1
n

n

∑
k=1

f
(
1+ k

n

)
=

n

∑
k=1

1
n+ k

= s2n.

From the calculus, we obtain

∞

∑
n=1

(−1)n−1

n
= lim

n→∞
s2n =

∫ 2

1

1
x

dx = logx
∣∣∣2
1
= log2.

Exercises for Section 3.2

A. Prove Theorem 3.2.2.

B. Show that if (|an|)∞

n=1 is summable, then so is (an)
∞

n=1.

C. Euler proposed that 1−2+4−8+ · · ·=
∞

∑
n=0

(−2)n = 1
1−(−2) = 1

3 . What is wrong with this?

D. Let (an)
∞

n=1 be a monotone decreasing sequence of positive real numbers. Show that the series
∞

∑
n=1

an converges if and only if the series
∞

∑
k=0

2ka2k converges.

E. Apply Exercise D to the series
∞

∑
n=1

1
np for p > 0. For which values of p does this converge?

F. If
∞

∑
k=1

a2
k and

∞

∑
k=1

b2
k both converge, prove that

∞

∑
k=1

akbk converges.

G. Find two convergent series
∞

∑
k=1

ak and
∞

∑
k=1

bk such that
∞

∑
k=1

akbk diverges.
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H. (THE LIMIT COMPARISON TEST) Show that if
∞

∑
n=1

an and
∞

∑
n=1

bn are series with bn ≥ 0 such

that limsup
n→∞

|an|
bn

< ∞ and
∞

∑
n=1

bn < ∞, then the series
∞

∑
n=1

an converges.

I. (THE RATIO TEST) Suppose that (an)
∞

n=1 is a sequence of positive terms. Show that if

limsup
n→∞

an+1

an
< 1, then

∞

∑
n=1

an converges. Conversely, show that if liminf
n→∞

an+1

an
> 1, then

∞

∑
n=1

an

diverges. HINT: Imitate the proof of the Root Test (i.e., find a suitable r and integer N > 0
and compare an with aNrn−N for all n≥ N).

J. Show that the Root Test implies the Ratio Test by proving that if lim
n→∞

an+1

an
= r, then

lim
n→∞

(an)1/n = r.

K. Construct a convergent series of positive terms with limsup
n→∞

an+1

an
= ∞.

L. (a) Find a convergent series
∞

∑
n=1

an, with positive entries, such that lim
n→∞

n
√

an = 1.

(b) Find a divergent series with the same property.

M. If an ≥ 0 for all n, prove that
∞

∑
n=1

an converges if and only if
∞

∑
n=1

an

1+an
converges.

N. (THE INTEGRAL TEST) Let f (x) be a positive, monotone decreasing function on [1,∞).

Show that the sequence
(

f (n)
)

is summable if and only if
∫

∞

1
f (x)dx < ∞.

HINT: Show that
k+1
∑

n=2
f (n) <

∫ k+1

1
f (x)dx <

k

∑
n=1

f (n).

O. Apply the previous exercise to the series
∞

∑
n=2

1
n(logn)p for p > 0.

P. Determine whether the following series converge or diverge.

(a)
∞

∑
n=2

3n
n3 +1

(b)
∞

∑
n=1

n
2n (c)

∞

∑
n=2

(−1)n logn
n

(d)
∞

∑
n=1

√
n+1−

√
n (e)

∞

∑
n=1

e−n2
(f)

∞

∑
n=1

sin(nπ/4)

(g)
∞

∑
n=1

(−1)n sin(1/n) (h)
∞

∑
n=1

1√
n3 +4

(i)
∞

∑
n=1

( n
√

n−1)n

(j)
∞

∑
n=2

√
n+1−

√
n

n
(k)

∞

∑
n=2

(−1)n
√

n logn
(l)

∞

∑
n=2

(−1)n

n
√

n

(m)
∞

∑
n=2

1
(logn)k (n)

∞

∑
n=1

n!
nn (o)

∞

∑
n=1

(−1)n arctan(n)
n

(p)
∞

∑
n=2

(−1)n
√

n+(−1)n (q)
∞

∑
n=1

(−1)n(e1/n−1) (r)
∞

∑
n=1

(−1)n n42

(n+1)!

(s)
∞

∑
n=1

1
1+n2 (t)

∞

∑
n=1

1
log(en + e−n)

(u)
∞

∑
n=1

sin(πn/3)
n

(v)
∞

∑
n=1

n10

10n (w)
∞

∑
n=2

1
(logn)n (x)

∞

∑
n=2

1
n logn
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3.3 Absolute and Conditional Convergence

In this section, we show that the sums of certain series, and even their convergence,
depend on the order of terms. The Alternating Series Test shows that badly behaved
series such as the harmonic series become more tractable when we introduce ap-
propriate signs to the terms to keep the partial sums close together. However, the
following variant on Example 3.2.7 shows that considerable care must be taken
when adding this type of series.

3.3.1. EXAMPLE. Consider the series

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+ · · · ,

where a3n−2 = 1
2n−1 , a3n−1 = − 1

4n−2 and a3n = − 1
4n . This has exactly the same

terms as the alternating harmonic series except that the negative terms are coming
twice as fast as the positive ones.

First let’s convince ourselves that this series converges. Notice that

a3n−2 +a3n−1 +a3n =
1

2n−1
− 1

4n−2
− 1

4n
=

1
4n(2n−1)

.

Therefore, s3n =
n
∑

k=1

1
4k(2k−1)

. The terms of this series are dominated by the series

∞

∑
k=1

1
4k2 . This latter series converges by the Integral Test (Exercise 3.2.N), since

∫
∞

1

1
4x2 dx =− 1

4x

∣∣∣∞
1

=
1
4

< ∞.

Therefore, lim
n→∞

s3n =
∞

∑
k=1

1
4k(2k−1)

converges by the Comparison Test (3.2.3).

However, |s3n− s3n±1|< 1
2n . Hence

lim
n→∞

s3n−1 = lim
n→∞

s3n+1 = lim
n→∞

s3n = lim
n→∞

sn.

We can actually sum this series exactly because

1
4k(2k−1)

=
1
2

( 1
2k−1

− 1
2k

)
.

Therefore,

s3n =
1
2

2n

∑
k=1

(−1)n+1

k
.
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By Example 3.2.7, we conclude that the series converges to 1
2 log2. Since the alter-

nating harmonic series has the limit log2, these two series have different sums even
though they have the same terms.

3.3.2. DEFINITION. A series
∞

∑
n=1

an is called absolutely convergent if the

series
∞

∑
n=1

|an| converges. A series that converges but is not absolutely convergent is

called conditionally convergent.

Example 3.2.7 shows that a convergent series need not be absolutely convergent.
The next simple fact is that absolute convergence is a stronger notion than conver-
gence (Exercise 3.2.B).

3.3.3. PROPOSITION. An absolutely convergent series is convergent.

3.3.4. DEFINITION. A rearrangement of a series
∞

∑
n=1

an is another series with

the same terms in a different order. This can be described by a permutation π of the

natural numbers N determining the series
∞

∑
n=1

aπ(n).

For absolutely convergent series, we get the best possible behaviour under a rear-
rangement. Example 3.3.1 shows that this fails for conditionally convergent series.

3.3.5. THEOREM. Every rearrangement of an absolutely convergent series
converges to the same limit.

PROOF. Let
∞

∑
n=1

an be an absolutely convergent series that converges to L. Suppose

that π is a permutation of N and that ε > 0 is given. By the Cauchy Criterion (3.1.5),

there is an integer N such that
∞

∑
k=N+1

|ak| < ε/2. Since the rearrangement contains

exactly the same terms in a different order, the first N terms a1, . . . ,aN eventually
occur in the rearranged series. Thus there is an integer M such that all of these terms
occur in the first M terms of the rearrangement. Hence for m≥M,∣∣∣ m

∑
k=1

aπ(k)−L
∣∣∣≤ ∣∣∣ m

∑
k=1

aπ(k)−
N

∑
k=1

ak

∣∣∣+ ∣∣∣ N

∑
k=1

ak−L
∣∣∣≤ 2

∞

∑
k=N+1

|ak|< ε.

Therefore,
∞

∑
k=1

aπ(k) = L. �
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3.3.6. EXAMPLE. Consider the series
∞

∑
n=1

(−1)n+1

n4 . This series is absolutely

convergent since
∞

∑
n=1

1
n4 converges by Exercise 3.2.E. Hence we may manipulate

the terms freely. Therefore,

∞

∑
n=1

(−1)n+1

n4 =
∞

∑
n=1

1
n4 −2

∞

∑
n=1

1
(2n)4 =

7
8

∞

∑
n=1

1
n4 .

Using techniques from Fourier series (see Chapter 14), we will be able to show that
∞

∑
n=1

1/n4 = π4/90. It follows that the preceding summation equals 7π4/720.

On the other hand, the worst possible scenario holds for the rearrangements of
conditionally convergent series. First, we need the following dichotomy.

3.3.7. REARRANGEMENT THEOREM.
If

∞

∑
n=1

an is a conditionally convergent series, then for every real number L, there is

a rearrangement that converges to L.

PROOF. Write the positive terms of this series as b1,b2, . . . and the negative terms
as c1,c2, . . . . By Theorem 3.1.4, lim

n→∞
an = 0; so lim

n→∞
bn = 0 and lim

n→∞
cn = 0. We claim

that
∞

∑
k=1

bk = +∞ and
∞

∑
k=1

|ck|= +∞.

Indeed, if both series converged, then
∞

∑
n=1

an would converge absolutely. Suppose

that the first series diverges, but
∞

∑
k=1

|ck|= L < ∞. Then for any R > 0, there is an N

such that
N
∑

k=1
bk > R+L. Therefore once M is so large that b1, . . . ,bN are contained

in a1, . . . ,aM , we have

M

∑
i=1

ai ≥
N

∑
k=1

bk−
∞

∑
k=1

|ck|> (R+L)−L = R.

Since R is arbitrary, the series diverges, contrary to our hypothesis. A similar con-
tradiction occurs if the first series converges. Hence both series must diverge.

Fix L ∈ R. Choose the least integer m1 such that u1 = b1 + · · ·+ bm1 > L. Then
choose the least integer n1 such that v1 = u1 + c1 + · · ·+ cn1 < L. Then choose the
least m2 > m1 such that u2 = u1 + v1 + bm1+1 + · · ·+ bm2 > L. We continue in this
way, adding just enough of the positive terms to make the total greater than L and
then switching to negative terms until the total is less than L. In this way, we define
increasing sequences mk and nk to be the least positive integers greater than mk−1
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and nk−1, respectively, such that

uk =
mk

∑
i=1

bi +
nk−1

∑
j=1

c j > L >
mk

∑
i=1

bi +
nk

∑
j=1

c j = vk.

We will show that this rearranged series,

b1+· · ·+bm1 + c1+· · ·+cn1 +bm1+1+· · ·+bm2 + cn1+1+· · ·+cn2 + · · · ,

converges to L. By the construction, ui−bmi ≤ L < ui and v j < L≤ v j−cn j . There-
fore,

L+ cn j ≤ v j < L < ui ≤ L+bmi .

Since lim
n→∞

L + bn = lim
n→∞

L + cn = L, the Squeeze Theorem (2.4.6) shows that the
sequences of the ui and of the v j both converge to L. Finally, if sk is the kth partial
sum of the new series, then for k between m1 and m1 +n1, u1 ≥ sk ≥ v1, while for k
between m1 +n1 and m2 +n1, v1 ≤ sk ≤ u2. In general, we have

vi−1 ≤ sk ≤ ui for mi−1 +ni−i ≤ k ≤ mi +ni−1,

and
vi ≤ sk ≤ ui for mi +ni−1 ≤ k ≤ mi +ni.

Using the Squeeze Theorem shows that the rearranged series converges to L. �

Exercises for Section 3.3

A. Find the series in Exercise 3.2.P that converge conditionally but not absolutely.

B. Decide which of the following series converge absolutely, conditionally, or not at all.

(a)
∞

∑
n=1

(−1)n

n log(n+1)
(b)

∞

∑
n=1

(−1)n

(2+(−1)n)n
(c)

∞

∑
n=1

(−1)n sin( 1
n )

n

C. Compute the sum of the series
∞

∑
n=1

1
n2(2n−1)

given that
∞

∑
n=1

1
n2 =

π2

6
.

HINT: 1
n2(2n−1) = 4

2n(2n−1) −
1
n2 .

D. Show that
∞

∑
n=1

cos( 2nπ

3 )
n2 converges absolutely. Find the sum, given that

∞

∑
n=1

1
n2 =

π2

6
.

(See Example 13.5.5.)

E. Show that a conditionally convergent series has a rearrangement converging to +∞.

F. Let an =
(−1)k

n
for (k−1)2 < n≤ k2 and k ≥ 1. Decide whether the series

∞

∑
n=1

an converges.



Chapter 4
Topology of Rn

The space Rn is the right setting for many problems in real analysis. For example,
in many situations, functions of interest depend on several variables. This puts us
into the realm of multivariable calculus, which is naturally set in Rn. We will study
normed vector spaces further in Chapter 7, building on the properties and concepts
we study here. The space Rn is the most important normed vector space, after the
real numbers themselves.

4.1 n-Dimensional Space

The space Rn is the set of n-vectors x = (x1,x2, . . . ,xn) with arbitrary real coeffi-
cients xi for 1 ≤ i ≤ n. Generally, vectors in Rn will be referred to as points. This
space has a lot of structure, most of which should be familiar from advanced calcu-
lus or linear algebra courses. In particular, we should mention that the zero vector
is (0,0, . . . ,0), which we denote by 0.

First, it is a vector space. Recall the basic property that vectors may be added and
also multiplied by (real) scalars. Indeed, for any x and y in Rn and scalars t ∈ R,

x+y = (x1,x2, . . . ,xn)+(y1,y2, . . . ,yn) = (x1 + y1,x2 + y2, . . . ,xn + yn)

and
tx = t(x1,x2, . . . ,xn) = (tx1, tx2, . . . , txn).

We assume that you know the basics of linear algebra. Instead, we concentrate on
the properties of Rn that build on the ideas of distance and convergence.

There is the notion of length of a vector, given by

‖x‖= ‖(x1,x2, . . . ,xn)‖=
( n

∑
i=1
|xi|2

)1/2
.

This is called the Euclidean norm on Rn, and ‖x‖ is the norm of x. This conforms
to our usual notion of distance in the plane and in space. Moreover, it is the natural
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consequence of the Euclidean distance in the plane using the Pythagorean formula
and induction on the number of variables. (See Exercise 4.1.A.) The distance be-
tween two points x and y is then determined by

‖x−y‖=
( n

∑
i=1
|xi− yi|2

)1/2
.

An important property of distance is the triangle inequality: The distance from
point A to point B and then on to a point C is at least as great as the direct distance
from A to C. This is interpreted geometrically as saying that the sum of the lengths
of two sides of a triangle is greater than the length of the third side (Figure 4.1).
(Equality can occur if the triangle has no area.)

x

yx+y

FIG. 4.1 The triangle inequality.

To verify this algebraically, we need an inequality involving the dot product,
which is useful in its own right. Recall that the dot product or inner product of
two vectors x and y is given by

〈x,y〉= 〈(x1, . . . ,xn),(y1, . . . ,yn)〉=
n

∑
i=1

xiyi.

There is a close connection between the inner product and the Euclidean norm be-
cause of the evident identity 〈x,x〉= ‖x‖2. The inner product is linear in both vari-
ables:

〈rx+ sy,z〉= r〈x,z〉+ s〈y,z〉 for all x,y,z ∈ Rn and r,s ∈ R

and
〈x,sy+ tz〉= s〈x,y〉+ t〈x,z〉 for all x,y,z ∈ Rn and s, t ∈ R.

4.1.1. SCHWARZ INEQUALITY.
For all x and y in Rn,

|〈x,y〉| ≤ ‖x‖‖y‖.

Equality holds if and only if x and y are collinear.
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PROOF. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn). Then

2‖x‖2‖y‖2−2|〈x,y〉|2 = 2
n

∑
i=1

n

∑
j=1

x2
i y2

j −2
( n

∑
i=1

xiyi

)2

=
n

∑
i=1

n

∑
j=1

x2
i y2

j + x2
j y

2
i −

n

∑
i=1

n

∑
j=1

2xiyix jy j

=
n

∑
i=1

n

∑
j=1

x2
i y2

j −2xiy jx jyi + x2
j y

2
i

=
n

∑
i=1

n

∑
j=1

(xiy j− x jyi)2 ≥ 0.

This establishes the inequality because a sum of squares is positive.
Equality holds precisely when xiy j − x jyi = 0 for all i and j. If both x and y

equal 0, there is nothing to prove. So we may suppose that at least one coefficient is
nonzero. There is no harm in assuming that x1 6= 0, since the proof is the same in all
other cases. Then

y j =
y1

x1
x j for all 1≤ j ≤ n.

Hence y = y1
x1

x. �

4.1.2. TRIANGLE INEQUALITY.
The triangle inequality holds for the Euclidean norm on Rn:

‖x+y‖ ≤ ‖x‖+‖y‖ for all x,y ∈ Rn.

Moreover, equality holds if and only if either x = 0 or y = cx with c≥ 0.

PROOF. Use the relationship between the inner product and norm to compute

‖x+y‖2 = 〈x+y,x+y〉= 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
≤ 〈x,x〉+ |〈x,y〉|+ |〈y,x〉|+ 〈y,y〉

≤ ‖x‖2 +‖x‖‖y‖+‖x‖‖y‖+‖y‖2 =
(
‖x‖+‖y‖

)2
.

If equality holds, then we must have 〈x,y〉= ‖x‖‖y‖. In particular, the Schwarz
inequality holds. So either x = 0 or y = cx. Substituting y = cx into 〈x,y〉= ‖x‖‖y‖
gives c = ‖y‖/‖x‖ ≥ 0. �

Collinearity does not imply equality for the triangle inequality in all cases be-
cause 〈x,y〉 could be negative. For example, x and −x are collinear for any nonzero
vector x, but

0 = ‖x+(−x)‖< ‖x‖+‖−x‖= 2‖x‖.
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When we write elements of Rn in vector notation, we are implicitly using the
standard basis {ei : 1 ≤ i ≤ n}, where ei is the vector with a single 1 in the ith
position and zeros in the other coordinates. A set {v1, . . . ,vm} in Rn is orthonormal
if 〈vi,v j〉= δi j for 1≤ i, j≤m, where δi j = 0 when i 6= j and δii = 1. If, in addition,
{v1, . . . ,vm} spans Rn, it is called an orthonormal basis. In particular, {e1, . . . ,en}
is an orthonormal basis for Rn.

4.1.3. LEMMA. Let {v1, . . . ,vm} be an orthonormal set in Rn. Then∥∥∥ m

∑
i=1

aivi

∥∥∥=
( m

∑
i=1
|ai|2

)1/2
.

An orthonormal set in Rn is linearly independent. So an orthonormal basis for Rn

is a basis and has exactly n elements.

PROOF. Use the inner product to compute∥∥∥ m

∑
i=1

aivi

∥∥∥2
=

m

∑
i=1

m

∑
j=1
〈aivi,a jv j〉=

m

∑
i=1

m

∑
j=1

aia jδi j =
m

∑
i=1
|ai|2.

In particular, if
m
∑

i=1
aivi = 0, we find that

m
∑

i=1
|ai|2 = 0 and thus ai = 0 for 1 ≤ i ≤ m.

This shows that {v1, . . . ,vm} is linearly independent. Finally, a basis for Rn is a
linearly independent set of vectors that spans Rn. An orthonormal basis spans by
definition and is independent, as shown. A basic result of linear algebra shows that
every basis for Rn has exactly n elements. �

Exercises for Section 4.1

A. Establish the Pythagorean formula: If x and y are orthogonal vectors, prove that
‖x+y‖=

(
‖x‖2 +‖y‖2

)1/2.

B. (a) Suppose x = ∑
j
i=1 xiei is a vector in Rn with nonzero coefficients only in the first j posi-

tions. Apply the Pythagorean formula to the orthogonal vectors x and y = x j+1e j+1.
(b) Show by induction that the Pythagorean formula yields the norm in all dimensions.

C. Show that ‖x + y‖2 +‖x−y‖2 = 2‖x‖2 + 2‖y‖2 for all vectors x and y in Rn. This is called
the parallelogram law. What does it mean geometrically?

D. Prove that if x and y are vectors in Rn, then
∣∣‖x‖−‖y‖

∣∣≤ ‖x−y‖.

E. Prove by induction that ‖x1 + · · ·+xk‖ ≤ ‖x1‖+ · · ·+‖xk‖ for vectors xi in Rn.

F. Suppose that x and y are unit vectors in Rn. Show that if
∥∥ x+y

2

∥∥= 1, then x = y.

G. Let x and y be two nonzero vectors in R2, and let the angle between them be θ . Prove that
〈x,y〉 = ‖x‖‖y‖cosθ . HINT: If x makes the angle α with the positive x-axis, then x =
(‖x‖cosα,‖x‖sinα).

H. For nonzero vectors x and y in Rn, define θ by ‖x‖‖y‖cosθ = 〈x,y〉, and call this the angle
between them.
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(a) Prove the cosine law: If x and y are vectors and θ is the angle between them, then
‖x+y‖2 = ‖x‖2 +2‖x‖‖y‖cosθ +‖y‖2.

(b) Prove that 〈x,y〉 can be defined using only the norms of related vectors.

I. Suppose that U is a linear transformation from Rn into Rm that is isometric, meaning that
‖Ux‖= ‖x‖ for all x ∈ Rn.

(a) Prove that 〈Ux,Uy〉= 〈x,y〉 for all x,y ∈ Rn.
(b) If {v1, . . . ,vk} is an orthonormal set in Rn, show that {Uv1, . . . ,Uvk} is also orthonormal.

J. (a) Let U be an isometric linear transformation of Rn onto itself. Show that the n columns of
the matrix of U form an orthonormal basis for Rn.

(b) Conversely, if {v1, . . . ,vn} is an orthonormal basis for Rn, show that the linear transfor-
mation Ux = ∑

n
i=1 xivi is isometric.

K. Let M be a subspace of Rn with an orthonormal basis {v1, . . . ,vk}. Define a linear transfor-
mation on Rn by Px = ∑

k
i=1〈x,vi〉vi.

(a) Show that Px belongs to M, and Py = y for all y ∈M. Hence show that P2 = P.
(b) Show that 〈Px,x−Px〉= 0.
(c) Hence show that ‖x‖2 = ‖Px‖2 +‖x−Px‖2.
(d) If y belongs to M, show that ‖x−y‖2 = ‖y−Px‖2 +‖x−Px‖2.
(e) Hence show that Px is the closest point in M to x.

4.2 Convergence and Completeness in Rn

The notion of norm for points in Rn immediately allows us to discuss convergence
of sequences in this context. The definition of limit of a sequence of points xk in
Rn is virtually identical to the definition of convergence in R. The only change is
to replace absolute value, which is the measure of distance in the reals, with the
Euclidean norm in n-space.

4.2.1. DEFINITION. A sequence of points (xk) in Rn converges to a point a if
for every ε > 0, there is an integer N = N(ε) such that

‖xk−a‖< ε for all k ≥ N.

In this case, we write lim
k→∞

xk = a.

The parallel between the two definitions of convergence allows us to reformulate
the definition of limit of a sequence of points in n-space to the consideration of a
sequence of real numbers, namely the Euclidean norms of the points.

4.2.2. LEMMA. Let (xk) be a sequence in Rn. Then lim
k→∞

xk = a if and only if

lim
k→∞

‖xk−a‖= 0.

The second limit is a sequence of real numbers, and thus it may be understood
using only ideas from Chapter 2.
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Just as important is the relation between convergence in Rn and convergence of
the coefficients. The following lemma is conceptually quite easy (draw a picture in
R2), but the proof requires careful bookkeeping.

4.2.3. LEMMA. A sequence xk = (xk,1, . . . ,xk,n) in Rn converges to a point
a = (a1, . . . ,an) if and only if each coefficient converges:

lim
k→∞

xk = a if and only if lim
k→∞

xk,i = ai for 1≤ i≤ n.

PROOF. First suppose that lim
k→∞

xk = a. Then given ε > 0, we obtain an integer N

such that ‖xk−a‖< ε for all k ≥ N. Then for each 1≤ i≤ n and all k ≥ N,

|xk,i−ai| ≤
( n

∑
j=1
|xk, j−a j|2

)1/2
= ‖xk−a‖< ε.

Therefore, lim
k→∞

xk,i = ai for all 1≤ i≤ n.

Conversely, suppose that each coordinate sequence xk,i converges to a real num-
ber ai for 1≤ i≤ n. Then given ε > 0, use ε/n in the definition of limit and choose
Ni so large that

|xk,i−ai|<
ε

n
for all k ≥ Ni.

Then using N = max{Ni : 1≤ i≤ n}, all n of these inequalities are valid for k ≥ N.
Hence

‖xk−a‖=
( n

∑
i=1
|xk,i−ai|2

)1/2
<
( n

∑
i=1

(ε

n

)2
)1/2

< ε.

Therefore, lim
k→∞

xk = a. �

Following the same route as for the line, we will define Cauchy sequences and
completeness in the higher-dimensional context. For the real line, it was necessary
to build the completeness of R into its construction. However, the completeness of
Rn will be a consequence of the completeness of R.

4.2.4. DEFINITION. A sequence xk in Rn is Cauchy if for every ε > 0, there
is an integer N such that

‖xk−xl‖< ε for all k, l ≥ N.

A set S ⊂ Rn is complete if every Cauchy sequence of points in S converges to a
point in S.

As in Proposition 2.8.1, it is easy to show that a convergent sequence is Cauchy.
Indeed, suppose that lim

k→∞
xk = a and ε > 0. Then, using ε/2 in the definition of limit,

choose an integer N such that ‖xk − a‖ < ε/2 for all k ≥ N. Then for all k, l ≥ N,
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use the triangle inequality to obtain

‖xk−xl‖ ≤ ‖xk−a‖+‖a−xl‖<
ε

2
+

ε

2
= ε.

The converse lies deeper and is more important.

4.2.5. COMPLETENESS THEOREM FOR Rn.
Every Cauchy sequence in Rn converges. Thus, Rn is complete.

PROOF. Let xk be a Cauchy sequence in Rn. The proof is accomplished by reducing
the problem to each coordinate. Let us write the elements of the sequence as xk =
(xk,1, . . . ,xk,n). We will show that the sequences

(
xk,i
)∞

k=1 are Cauchy for each 1 ≤
i≤ n. Indeed, if ε > 0, choose N so large that

‖xk−xl‖< ε for all k, l ≥ N.

Then
|xk,i− xl,i| ≤ ‖xk−xl‖< ε for all k, l ≥ N.

Thus
(
xk,i
)∞

k=1 are Cauchy for 1≤ i≤ n.
By the completeness of R, Theorem 2.8.5, each of these sequences has a limit,

say
lim
k→∞

xk,i = ai for 1≤ i≤ n.

Define a vector a ∈Rn by a = (a1, . . . ,an). By Lemma 4.2.3, lim
k→∞

xk = a, and hence

Rn is complete. �

4.2.6. EXAMPLE. Let v0 = (0,0), and define a sequence vn = (xn,yn) in R2

recursively by

xn+1 =
xn + yn +1

2
, yn+1 =

xn− yn +1
2

.

The first few terms are

(0,0), ( 1
2 , 1

2 ), (1, 1
2 ), ( 5

4 , 3
4 ), ( 3

2 , 3
4 ), ( 13

8 , 7
8 ), ( 7

4 , 7
8 ), . . . .

To get an idea of what the limit might be (if it exists), look for fixed points of the
map

T (x,y) =
(

x+ y+1
2

,
x− y+1

2

)
.

In other words, solve the equation T u = u. This is a linear system:

x = 1
2 x+ 1

2 y+ 1
2 ,

y = 1
2 x− 1

2 y+ 1
2 .
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Solving, we find the solution u = (2,1).
This leads us to consider the distance of vn to u:

‖vn+1−u‖2 = ‖(xn+1−2,yn+1−1)‖2 =
∥∥∥∥(xn + yn−3

2
,

xn− yn−1
2

)∥∥∥∥2

=
(xn + yn−3)2 +(xn− yn−1)2

4
=

2x2
n +2y2

n−8xn−4yn +10
4

=
(xn−2)2 +(yn−1)2

2
=

1
2
‖vn−u‖2.

By induction, it follows that

‖vn−u‖= 2−n/2‖v0−u‖= 2−n/2
√

5.

Hence lim
n→∞

‖vn−u‖= 0, which means that lim
n→∞

vn = (2,1).

Exercises for Section 4.2

A. (a) If (xn)
∞

n=1 is a sequence in Rn with lim
n→∞

xn = a, show that lim
n→∞

‖xn‖= ‖a‖.
(b) Show by example that the converse is false.

B. If a sequence (xn)
∞

n=1 in Rn satisfies ∑n≥1 ‖xn−xn+1‖< ∞, show that it is a Cauchy sequence.

C. (a) Give an example of a Cauchy sequence for which the condition of Exercise B fails.
(b) However, show that every Cauchy sequence (xn)

∞

n=1 has a subsequence (xni )
∞

i=1 such that
∑i≥1 ‖xni −xni+1‖< ∞.

D. Let x0 ∈ Rn and R > 0. Prove that {x ∈ Rn : ‖x−x0‖ ≤ R} is complete.

E. (a) Let M be a subspace of Rn, and let {v1, . . . ,vm} be an orthonormal basis for M. Formulate
an analogue of Lemma 4.2.3 for M and prove it.

(b) Prove that M is complete.

F. Let v0 = (x0,y0) with 0 < x0 < y0. Define vn+1 = (xn+1,yn+1) =
(√

xnyn,
xn+yn

2

)
for all n≥ 0.

(a) Show by induction that 0 < xn < xn+1 < yn+1 < yn.
(b) Then estimate yn+1− xn+1 in terms of yn− xn.
(c) Thereby show that there is a number c such that lim

n→∞
vn = (c,c). This value c is known as

the arithmetic–geometric mean of x0 and y0.

G. Let v0 = (x0,y0) = (0,0), and for n≥ 0 define

vn+1 = (xn+1,yn+1) =
(√ x2

n +2y2
n

4
,

xn + yn +1
3

)
.

(a) Show that xn and yn are increasing sequences that are bounded above.
(b) Prove that lim

n→∞
vn exists, and find the limit.

H. Let T =
[

5/4 −1/4
3/4 1/4

]
. Set xn = T n(1,0) for n≥ 1.

(a) Prove that (xn) converges and find the limit y.
(b) Find an explicit N such that ‖xn−y‖< 1

2 10−100 for all n≥ N.

HINT: Show by induction that xn =
( 3−2−n

2 , 3(1−2−n)
2

)
.
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4.3 Closed and Open Subsets of Rn

Two classes of subsets play a crucial role in analysis: the closed sets, which contain
all of their limit points, and the open sets, which contain small balls around each
point. These notions will be made precise in this section. From the point of view thus
far, closed sets seem more natural because they are directly connected to limiting
procedures. Later, however, we shall see that open sets play at least as important a
role when we consider continuous functions. These two types of sets are intimately
related in any case. We develop closed sets first.

4.3.1. DEFINITION. A point x is a limit point of a subset A of Rn if there is
a sequence (an)

∞

n=1 with an ∈ A such that x = lim
n→∞

an. A set A ⊂ Rn is closed if it
contains all of its limit points.

NOTE: Be warned that some other books define limit point to be a slightly more
complicated concept, which we call a cluster point (see Exercise 4.3.N).

4.3.2. EXAMPLES.
(1) [a,b] = {x ∈ R : a≤ x≤ b} is closed.

(2) ∅ and Rn are both closed.

(3) [0,+∞) is closed in R.

(4) (0,1] and (0,1) are not closed.

(5) {x ∈ Rn : ‖x‖ ≤ 1} is closed.

(6) {x ∈ Rn : ‖x‖< 1} is not closed.

(7) {(x,y) ∈ R2 : xy≥ 1} is closed.

(8) Finite sets of real numbers are closed in R.

In the following proposition, I denotes an arbitrary index set. This may be an
infinite set of very large cardinality (such as the real line) or a countably infinite set
(like N) or even a finite set.

4.3.3. PROPOSITION. If A,B⊂ Rn are closed, then A∪B is closed.
If {Ai : i ∈ I} is a family of closed subsets of Rn, then

⋂
i∈I Ai is closed.

PROOF. Suppose that (xn)
∞

n=1 is a sequence in A∪B with limit x. Clearly, either
infinitely many of the xn’s belong to A or infinitely many belong to B. Without loss
of generality, we may suppose that A has this property. Hence there is a subsequence
(xni)

∞

i=1 of (xn)
∞

n=1 such that each xni belongs to A. But this subsequence has limit
x. Since A is closed, we deduce that x belongs to A, and thus belongs to A∪B. So
A∪B is closed.
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Now suppose that (xn)
∞

n=1 is a sequence in
⋂

i∈I Ai with limit x. For each i ∈ I,
the sequence (xn)

∞

n=1 belongs to Ai, which is closed. Therefore, the limit x also
belongs to Ai. Since this holds for every i ∈ I, it follows that x also belongs to the
intersection. Hence the intersection is closed. �

Since a closed set has the very useful property of containing all of its limit points,
it is natural to want to construct closed sets from other, less well behaved sets. This
is the motivation for the following definition.

4.3.4. DEFINITION. If A is a subset of Rn, the closure of A is the set A con-
sisting of all limit points of A.

To justify the name, we establish some basic properties of the closure operation.

4.3.5. PROPOSITION. Let A be a subset of Rn. Then A is the smallest closed
set containing A. In particular, A = A.

PROOF. First notice that for each a in A, we may consider the sequence xn = a for
all n≥ 1. This has limit a, and thus A is contained in A.

To show that A is closed, consider a sequence (xn)
∞

n=1, where each xn belongs to A
with limit x = lim

n→∞
xn. For each n, there is a sequence of points in A converging to xn.

Hence we may choose an element an ∈A from this sequence such that ‖xn−an‖< 1
n .

Then

lim
n→∞

an = lim
n→∞

xn +(an−xn) = lim
n→∞

xn + lim
n→∞

an−xn = x+0 = x.

Thus x is also a limit of points in A, whence it belongs to A. So A is closed.
If C is a closed set containing A, then it also contains all limits of sequences in A

and therefore contains A. So A is the smallest closed set containing A. Now A is the
smallest closed set containing A. Since A is already closed, A = A. �

4.3.6. DEFINITION. The ball about a in Rn of radius r is the set

Br(a) = {x ∈ Rn : ‖x−a‖< r}.

A subset U of Rn is open if for every a ∈U , there is some r = r(a) > 0 such that
the ball Br(a) is contained in U .

4.3.7. EXAMPLES.
(1) (a,b) = {x ∈ R : a < x < b} is open.

(2) ∅ and Rn are both open.

(3) (0,+∞) is open in R.
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(4) (0,1] and [0,1] are not open.

(5) Br(a) is open.

(6) Br(a) = {x ∈ Rn : ‖x−a‖ ≤ r} is not open.

(7) {(x,y) ∈ R2 : xy < 1} is open.

(8) {(x,0) ∈ R2 : 0 < x < 1} is not open.

Figure 4.2 illustrates the definitions of open and closed sets.

a x1

x2 x3 lim
k→∞

xk

FIG. 4.2 Open and closed sets

It is important to remember that while a door must be either open or closed, a set
can be neither. The following connection between open and closed sets makes the
relation clear.

4.3.8. THEOREM. A set A ⊂ Rn is open if and only if the complement of A,
A′ = {x ∈ Rn : x /∈ A}, is closed.

PROOF. Let A be open. Let (xn)
∞

n=1 be a sequence in A′ with limit x. If a is any
point in A, there is a positive number r > 0 such that Br(a) is contained in A. Hence
‖a−xn‖ ≥ r for all n≥ 1. Therefore,

‖a−x‖= lim
n→∞

‖a−xn‖ ≥ r.

In particular, x 6= a. This is true for every point in A, and hence x belongs to A′. That
is, A′ is closed.

Conversely, suppose that A is not open. Then there is some a ∈ A such that for
every r > 0, the ball Br(a) is not contained in A. In particular, if we let r = 1

n , we can
find xn ∈ A′ such that ‖a−xn‖< 1

n . Then a = lim
n→∞

xn is a limit point of A′ belonging

to A. Hence A′ is not closed. �

We have the following proposition, which is dual to Proposition 4.3.3. The proof
is left as an exercise.
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4.3.9. PROPOSITION. If U and V are open subsets of Rn, then U ∩V is open.
If {Ui : i ∈ I} is a family of open subsets of Rn, then

⋃
i∈I Ui is open.

There is also a notion for open sets that is dual to the closure. The interior of a
set X , denoted by intX , is the largest open set contained inside X (see the exercises).
If the interior of X is the empty set, then we say that X has empty interior.

4.3.10. EXAMPLE. Let A = {(x,y) : x ∈ Q, y > x3}. This set is neither open
nor closed. Indeed, (0,0) = lim

n→∞
(0, 1

n ) is a limit point of A not contained in A; so

A is not closed. The point (0,1) = lim
n→∞

(
√

2/n,1) belongs to A, yet it is the limit of

points in A′. So A is not open either.
The closure of A is the set A = {(x,y) : y≥ x3}. To see this, let (x,y) be given such

that y≥ x3. Let xn be an increasing sequence of rationals converging to x (such as the
finite decimal approximations of x). Set yn = y+ 1

n . Then it is clear that yn > x3 ≥ x3
n

and thus an = (xn,yn) belongs to A. Now

lim
n→∞

xn = x and lim
n→∞

yn = lim
n→∞

y+ 1
n = y.

Hence lim
n→∞

an = (x,y). Therefore, A contains {(x,y) : y≥ x3}. Conversely, if (x,y) =

lim
n→∞

an for any sequence an = (xn,yn) in A, it follows that

y = lim
n→∞

yn ≥ lim
n→∞

x3
n = x3.

Thus {(x,y) : y≥ x3} contains A.
In this case, A has empty interior. The reason is that every open ball contains

points with irrational coordinates, and A does not.
The interior of A is the set U = {(x,y) : y > x3}. First we show that U is open. If

a = (x,y) belongs to U , then s = y−x3 > 0. We need to determine a value for r such
that Br(a) is contained in U . Some calculation is needed to determine the proper
choice. Suppose that a point (u,v) satisfies ‖(u,v)− (x,y)‖ < r. Then in particular,
|u− x|< r and |v− y|< r. Hence

v−u3 > (y− r)− (x+ r)3 = y− r− (x3 +3rx2 +3r2x+ r3)

= y− x3− r−3rx2−3r2x− r3 = s− (r +3rx2 +3r2x+ r3).

To make the right-hand side positive, which we require, a choice must be made for
r so that r + 3rx2 + 3r2x + r3 ≤ s. Let us decide first that we will choose r ≤ 1, so
that rn ≤ r. Then

r +3rx2 +3r2x+ r3 ≤ r(2+3x2 +3|x|).

Define r = min{1,s/(2+3x2 +3|x|)}, which is consistent with our choice that r≤ 1.
Then it follows that
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v−u3 > s− (r +3rx2 +3r2x+ r3) > 0.

This shows that Br(a) is contained in U . Thus U is open.
Now suppose that a = (x,y) belongs to A but is not in U . Then y ≥ x3 but y 6>

x3, whence y = x3. To see that a is not in the interior of A, it must be shown that
whenever r > 0, the ball Br(a) intersects A′. This is easy, since the point (x,x3−r/2)
belongs to this ball and does not belong to A. So intA = U .

Exercises for Section 4.3

A. Find the closure of the following sets:
(a) Q (b) {(x,y)∈R2 : xy < 1} (c) {(x,sin( 1

x )) : x > 0} (d) {(x,y)∈Q2 : x2 +y2 < 1}.

B. Let (an)
∞

n=1 be a sequence in Rk with lim
n→∞

an = a. Show that {an : n≥ 1}∪{a} is closed.

C. Show that U = {(x,y) ∈ R2 : x2 + 4y2 < 4} is open by explicitly finding a ball around each
point that is contained in U .

D. If A is a bounded subset of R, show that supA and infA belong to A.

E. Show that the interior satisfies intA = (A′)′.

F. Find the interior of A∪B, where A = {(x,y) : x ∈Q, y2 ≥ x} and B = {(x,y) : x /∈Q, y≥ x2}.

G. If a subset A of Rn has no interior, must it be closed?

H. Show that a subset of Rn is complete if and only if it is closed.

I. Prove Proposition 4.3.9 using Theorem 4.3.8 and Proposition 4.3.3.

J. Show that if U is open and A is closed, then U \A = {x ∈U : x /∈ A} is open. What can be
said about A\U?

K. Suppose that A and B are closed subsets of R.

(a) Show that the product set A×B = {(x,y) ∈ R2 : x ∈ A and y ∈ B} is closed.
(b) Likewise show that if both A and B are open, then A×B is open.

L. A set A is dense in B if B is contained in A.

(a) Show that the set of irrational numbers is dense in R.
(b) Hence show that Q has empty interior.

M. Suppose that A is a dense subset of Rn.

(a) Show that if U is open in Rn, then A∩U is dense in U .
(b) Show by example that this may fail for sets that are not open.

N. A point x is a cluster point of a subset A of Rn if there is a sequence (an)
∞

n=1 with an ∈ A\{x}
such that x = lim

n→∞
an. Thus, every cluster point is a limit point but not conversely.

(a) Show that if x is a limit point of A, then either x is a cluster point of A or x ∈ A.
(b) Hence show that a set is closed if it contains all of its cluster points.
(c) Find all cluster points of (i) Q, (ii) Z, (iii) (0,1).

O. Starting with a subset A of Rn, form all the possible sets that may be obtained by repeated use
of the operations of closure and complement. Up to 14 different sets can be obtained in this
way. Find such a subset of R.
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4.4 Compact Sets and the Heine–Borel Theorem

Now we turn to the notion of compactness. At this stage, compactness seems like a
convenience and may not appear to be much more useful than completeness. How-
ever, when we study continuous functions, compactness will be very useful and then
its full power will become apparent.

4.4.1. DEFINITION. A subset A of Rn is compact if every sequence (ak)
∞

k=1
of points in A has a convergent subsequence

(
aki

)∞

i=1 with limit a = lim
i→∞

aki in A.

Recall that the Bolzano–Weierstrass Theorem (2.7.2) states that every bounded
sequence has a convergent subsequence. Using this new language, we may deduce
that every subset of R that is both closed and bounded is compact. This rephrasing
naturally suggests the question, which subsets of Rn are compact? Before answering
this question, we consider a few examples.

4.4.2. EXAMPLES. Consider the set (0,1]. The sequence 1,1/2,1/3, . . . is in
this set but converges to 0, which is not in the set. Since any subsequence will
also converge to zero, there is no subsequence of 1,1/2,1/3, . . . that converges to a
number in (0,1]. So this set is not compact.

Next, consider the set N. The sequence 1,2,3, . . . is in N. However, no subse-
quence converges (because each subsequence is unbounded and being bounded is a
necessary condition for convergence by Proposition 2.5.1). So N is not compact.

A subset S of Rn is called bounded if there is a real number R such that S is
contained in the ball BR(0). Equivalently, S is bounded if sup

x∈S
‖x‖ < ∞. Notice that

when n = 1, this definition of bounded agrees with our old definition of bounded
subsets of R.

The previous examples suggest that sets that are not closed or not bounded cannot
be compact. This is true, and the proofs are an abstraction of the arguments for these
examples.

4.4.3. LEMMA. A compact subset of Rn is closed and bounded.

PROOF. Let C be a compact subset of Rn. Suppose that x is a limit point of C, say
x = lim

n→∞
cn for a sequence (cn) in C. Then this sequence has a subsequence (cni)

converging to a point c in C. Therefore,

x = lim
n→∞

cn = lim
i→∞

cni = c ∈C.

Thus C is closed.
To show that C is bounded, suppose that it were unbounded. That means that

there is a sequence cn ∈C such that ‖cn‖> n for each n≥ 1. Consider the sequence
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(cn). If there were a convergent subsequence (cni) with limit c, it would follow that

‖c‖= lim
i→∞

‖cni‖ ≥ lim
i→∞

ni = +∞.

This is an absurd conclusion, and thus C must be bounded. �

To establish the converse, we build up a couple of partial results.

4.4.4. LEMMA. If C is a closed subset of a compact subset of Rn, then C is
compact.

PROOF. Let K be the compact set containing C. Suppose (xn)
∞

n=1 is a sequence in C.
To show that C is compact, we must find a subsequence that converges to an element
of C.

However, (xn)
∞

n=1 is contained in the compact set K. So it has a subsequence that
converges to a number x in K, say x = lim

k→∞
xnk . Since

(
xnk

)∞

k=1 is contained in C and

C is closed, it follows that x belongs to C as required. �

4.4.5. LEMMA. The cube [a,b]n is a compact subset of Rn.

PROOF. Let xk = (xk,1, . . . ,xk,n) for k ≥ 1 be a sequence in Rn such that the co-
efficients satisfy a ≤ xk,i ≤ b for all k ≥ 1 and 1 ≤ i ≤ n. Consider the sequence(
xk,1
)∞

k=1 of first coordinates. By the Bolzano–Weierstrass Theorem (2.7.2), there is
a subsequence

(
xk j ,1

)∞

j=1 converging to a point z1 in [a,b],

lim
j→∞

xk j ,1 = z1.

Next consider the sequence y j = xk j ,2 for j≥ 1. This sequence is contained in the
closed interval [a,b]. Thus a second application of the Bolzano–Weierstrass The-
orem yields a subsequence (y jl ) = (xk jl ,2

) such that lim
l→∞

xk jl ,2
= z2. We still have

lim
l→∞

xk jl ,1
= z1, since every subsequence of a convergent sequence has the same limit.

Proceeding in this way, finding n consecutive subsubsequences, we obtain a sub-
sequence p1 < p2 < · · · and zi in [a,b] such that

lim
j→∞

xp j ,i = zi for 1≤ i≤ n.

Thus lim
j→∞

xp j = z := (z1, . . . ,zn) by Lemma 4.2.3. �

4.4.6. THE HEINE–BOREL THEOREM.
A subset of Rn is compact if and only if it is closed and bounded.
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PROOF. The easy direction is given by Lemma 4.4.3. For the other direction, sup-
pose that C is a closed and bounded subset of Rn. Since it is bounded, there is some
M > 0 such that ‖x‖ ≤ M for all x ∈ C. In particular, C is contained in the cube
[−M,M]n. Now [−M,M]n is compact by Lemma 4.4.5. So C is a closed subset of a
compact set and therefore is compact by Lemma 4.4.4. �

This leads to an important generalization of the Nested Interval Theorem.

4.4.7. CANTOR’S INTERSECTION THEOREM.
If A1 ⊃ A2 ⊃ A3 ⊃ ·· · is a decreasing sequence of nonempty compact subsets of
Rn, then

⋂
k≥1 Ak is not empty.

PROOF. Since An is not empty, we may choose a point an in An for each n ≥ 1.
Then the sequence (an)

∞

n=1 belongs to the compact set A1. By compactness, there is
a subsequence

(
ank

)∞

k=1 that converges to a limit point x. For each i, the terms ank
belong to Ai for all k ≥ i. Thus x is the limit of points in Ai, whence x belongs to Ai
for all i≥ 1. Therefore, x belongs to their intersection. �

4.4.8. THE CANTOR SET. We now give a more subtle example of a compact
set in R. The Cantor set is a fractal subset of the real line. Let S0 = [0,1], and
construct Si+1 from Si recursively by removing the middle third from each interval
in Si. For example, the first three terms are

S1 = [0,1/3]∪ [2/3,1],
S2 = [0,1/9]∪ [2/9,1/3]∪ [2/3,7/9]∪ [8/9,1],
S3 = [0,1/27]∪ [2/27,1/9]∪ [2/9,7/27]∪ [8/27,1/3]

∪ [2/3,19/27]∪ [20/27,7/9]∪ [8/9,25/27]∪ [26/27,1].

By Proposition 4.3.3, the intersection C = ∩i≥1Si is a closed set. It is bounded and
hence compact. By Cantor’s Intersection Theorem, this intersection is not empty.
Figure 4.3 shows an approximation to the Cantor set, namely S5.

0 1

FIG. 4.3 The set S5 in the construction of the Cantor set.

Every endpoint of an interval in one of the sets Sn belongs to C. But in fact, C
contains many other points. Each point in C is determined by a binary decision tree.
At the first stage, pick one of the two intervals of S1 of length 1/3, which we label
0 and 2. This interval is split into two in S2 by removing the middle third. Choose
either the left (label 0) or right (label 2) to obtain an interval labeled 00, 02, 20, or 22.
Continuing in this way, we choose a decreasing sequence of intervals determined by
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an infinite sequence of 0’s and 2’s. By Cantor’s Intersection Theorem 4.4.7, every
choice determines a point of intersection. There is only one point in each of these
intersections because the length of the intervals tends to 0. Describe the subset of
decision trees that correspond to left or right endpoints. Since this is a proper subset,
there are points in C that are not endpoints.

The Cantor set has empty interior. For if C contained an open interval (a,b) with
a < b, it would also be contained in each Sn. This forces b− a ≤ 3−n for every n,
whence a = b. So the interior of C is empty. A set whose closure has no interior is
nowhere dense.

Yet C has no isolated points. A point x of a set A is isolated if there is an ε > 0
such that the ball Bε(x) intersects A only in the singleton {x}. In fact, C is a perfect
set, meaning that every point of C is the limit of a sequence of other points in C.
In other words, every point is a cluster point. To see this, suppose first that x is
not the right endpoint of one of the intervals of some Sn. For each n, let xn be the
right endpoint of the interval of Sn containing x. Then xn 6= x and |xn− x| ≤ 3−n. So
x = lim

n→∞
xn. If x is the right endpoint of one of these intervals, use the left endpoints

instead to define the sequence xn.
The set C is very large, the same size as [0,1], in the sense of cardinality from

Section 2.9. Consider the numbers in [0,1] expanded as infinite “decimals” in base
3 (the ternary expansion). That is, each number may be expressed as

x = (x0.x1x2x3 . . .)base 3 = ∑
k≥0

3−kxk,

where xi belongs to {0,1,2} for i ≥ 1. Note that S1 consists of all numbers in [0,1]
that have an expansion with the first digit equal to 0 or 2. In particular,

1
3 = (.1)base 3 = (.02222222 . . .)base 3 and 1 = (.22222222 . . .)base 3.

Likewise, Si consists of all numbers in [0,1] such that the first i terms of some ternary
expansion are all 0’s and 2’s. Since C is the intersection of all the Si, it consists of
precisely all numbers in [0,1] that have a ternary expansion using only 0’s and 2’s.

Since C is a subset of [0,1], it is clear that C can have no more points than [0,1].
To see that [0,1] can have no more points than C, we construct a one-to-one map
from [0,1] into C. Think of the points in [0,1] in terms of their binary expansion
(base 2). These are all the “decimal” expansions

y = (y0.y1y2y3 . . .)base 2 = ∑
k≥0

2−kyk,

where yk ∈ {0,1}. For each point, pick one binary expansion. (Some numbers such
as 1

2 have two possible expansions, one ending in an infinite string of 0’s and the
other ending in an infinite string of 1’s. In this case, pick the expansion ending in
0’s.) Send it to the corresponding point in base 3 using 0’s and 2’s by changing each
1 to 2. Since this corresponding point is in C, we have a map of [0,1] into C. This
map is one-to-one because the only duplication of ternary expansions comes from
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a sequence ending in all 0s corresponding to another ending with all 2s. But we do
not send any number to a ternary expansion ending in all 2s.

Warning: This map is not onto because of numbers with two expansions in base
2 such as 1

2 , which in base two equals both (.1)base 2 and (.01111 . . .)base 2. We used
only the first one, which we send to (.2)base 3, namely 2

3 . But the other expansion
would go to (.02222 . . .)base 3, which equals (.1)base 3 = 1

3 .
At this point, it seems obvious that there are as many points in C as in [0,1]—it

can’t have any more, and it can’t have any less. However, with infinite sets, prov-
ing this is a subtle business. The Schroeder–Bernstein Theorem could be invoked
to obtain a bijection between C and [0,1]. However, the special nature of our setup
allows a bijection between C and [0,1] to be constructed fairly easily; see Exer-
cise 4.4.K. Therefore, C and [0,1] have the same cardinality, which is uncountable
by Theorem 2.9.8.

On the other hand, using a different notion of “size,” the Cantor set is very small.
We can measure how much of the interval has been removed at each step. The set
Sn contains 2n intervals of length 3−n. The middle third of length 3−n−1 is removed
from each of these 2n intervals to obtain Sn+1. The total length of the pieces removed
is computed by adding an infinite geometric series

∞

∑
n=0

2n

3n+1 =
1/3

1− (2/3)
= 1.

Thus the Cantor set has measure zero, meaning that it can be covered by a count-
able collection open intervals with arbitrarily small total length. In some sense, C
squeezes its very large number of points into a very small space.

Exercises for Section 4.4

A. Which of the following sets are compact?

(a) {(x,y) ∈ R2 : 2x2− y2 ≤ 1}
(b) {x ∈ Rn : 2≤ ‖x‖ ≤ 4}
(c) {(e−x cosx,e−x sinx) : x≥ 0}∪{(x,0) : 0≤ x≤ 1}
(d) {(e−x cosθ ,e−x sinθ) : x≥ 0, 0≤ θ ≤ 2π}

B. Give an example to show that Cantor’s Intersection Theorem would not be true if compact
sets were replaced by closed sets.

C. Show that the union of finitely many compact sets is compact.

D. Show that the intersection of any family of compact sets is compact.

E. (a) Show that the sum of a closed subset and a compact subset of Rn is closed. Recall that
A+B = {a+b : a ∈ A and b ∈ B}.

(b) Is this true for the sum of two compact sets and a closed set?
(c) Is this true for the sum of two closed sets?

F. Let (xn)
∞

n=1 be a sequence in a compact set K ⊂ Rn that is not convergent. Show that there
are two subsequences of this sequence that are convergent to different limit points.

G. Prove that a set S ⊂ R has no cluster points if and only if S∩ [−n,n] is a finite set for each
n≥ 1.
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H. Describe all subsets of Rn that have no cluster points at all.

I. Let A and B be disjoint closed subsets of Rn. Define

d(A,B) = inf{‖a−b‖ : a ∈ A, b ∈ B}.

(a) If A = {a} is a singleton, show that d(A,B) > 0.
(b) If A is compact, show that d(A,B) > 0.
(c) Find an example of two disjoint closed sets in R2 with d(A,B) = 0.

J. The Sierpiński triangle is constructed in the plane as follows. Start with a solid equilateral
triangle. Remove the open middle triangle with vertices at the midpoint of each side of the
larger triangle, leaving three solid triangles with half the side length of the original. From
each of these three, remove the open middle triangle, leaving nine triangles of one-fourth the
original side lengths. Proceed in this process ad infinitum. Let S denote the intersection of all
the finite stages.

FIG. 4.4 The third stage in constructing the Sierpiński triangle.

(a) Show that S is a nonempty compact set.
(b) Show that S has no interior.
(c) Show that the boundaries of the triangles at the nth stage belong to S. Hence show that

there is a path in S from the top vertex of the original triangle that gets as close as desired
(within ε) to any point in S.

(d) Compute the area of the material removed from the triangle to leave S behind.
(e) Construct a decision tree for S. Does each decision tree correspond to exactly one point in

the set? Show that S is uncountable.

K. Show that there is a bijection from [0,1] onto the Cantor set.
HINT: Adjust the map constructed in the text by redefining it on a countable sequence to
include the missing points in the range.

L. Prove that a countable compact set cannot be perfect.
HINT: For the case X = {xn : n ≥ 1} in Rn, find a decreasing family Xn of closed nonempty
subsets of X with xn 6∈ Xn.



Chapter 5
Functions

The main purpose of this chapter is to introduce the notion of a continuous function.
Continuity is a basic notion of analysis. It is only with continuous functions that
there can be any reasonable approximation or estimation of values at specific points.
Most physical phenomena are continuous over most of their domain. The ideas we
study in this chapter are sufficiently powerful that even discrete phenomena are
sometimes best understood using continuous approximations where these ideas can
be used.

5.1 Limits and Continuity

In this chapter, and indeed in most of this book, functions will be defined on some
subset S of Rn with range contained in Rm. Everything is based on the notion of
limit, which is a natural variant of the definition for limit of a sequence.

5.1.1. DEFINITION OF THE LIMIT OF A FUNCTION. Let S⊂Rn and
let f be a function from S into Rm. If a is a limit point of S\{a}, then a point v∈Rm

is the limit of f at a if for every ε > 0, there is an r > 0 such that

‖ f (x)−v‖< ε whenever 0 < ‖x−a‖< r and x ∈ S.

We write lim
x→a

f (x) = v.

Geometrically, we have a picture like Figure 5.1. Note that f (a) itself need not
be defined. Certainly, saying that lim

x→a
f (x) = v does not tell us anything about f (a).

Consider the case of a function f defined on an interval (a,b), and let c ∈ (a,b).
Then limx→c f (x) = L means that for every ε > 0, there is an r > 0 such that

| f (x)−L|< ε for all 0 < |x− c|< r.
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x

y
y = f (x)

aa− r a+ r

v

v− ε

v+ ε

FIG. 5.1 Limit for a function f : R→ R.

5.1.2. DEFINITION. Let S ⊂ Rn and let f be a function from S into Rm. We
say that f is continuous at a ∈ S if for every ε > 0, there is an r > 0 such that for
all x ∈ S with ‖x−a‖< r, we have ‖ f (x)− f (a)‖< ε . Moreover, f is continuous
on S if it is continuous at each point a ∈ S.

If f is not continuous at a, we say that f is discontinuous at a.

Continuity can sometimes be described using a limit. If a is not an isolated point,
i.e., a is a limit point of S\{a}, then lim

x→a
f (x) makes sense and f is continuous at a

if and only if limx→a f (x) = f (a). Note that if a is an isolated point of S, then f is
always continuous at a.

5.1.3. EXAMPLE. Consider f : Rn \ {0} → R given by f (x) = 1/‖x‖. Let us
show that this is continuous on its domain. Fix a point a ∈ Rn \{0}. Then

| f (x)− f (a)|=
∣∣∣∣ 1
‖x‖

− 1
‖a‖

∣∣∣∣=
∣∣‖a‖−‖x‖

∣∣
‖x‖‖a‖

.

Our goal is to make this difference small by controlling the distance ‖x−a‖.
To estimate the numerator, use the triangle inequality.

‖x‖ ≤ ‖a‖+‖x−a‖ and ‖a‖ ≤ ‖x‖+‖x−a‖.

Manipulating these inequalities yields∣∣‖x‖−‖a‖
∣∣≤ ‖x−a‖.

Now consider the denominator ‖x‖‖a‖. Since ‖a‖ is a positive constant, it creates
no problems. However, ‖x‖must be kept away from 0 to keep the quotient in control.
The previous paragraph shows that if ‖a−x‖< ‖a‖/2, then
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‖x‖ ≥ ‖a‖−‖a−x‖> ‖a‖/2.

Putting this together, choose r ≤ ‖a‖/2 and consider any x such that ‖x− a‖ < r.
Then

| f (x)− f (a)|=
∣∣‖a‖−‖x‖

∣∣
‖x‖‖a‖

≤ ‖x−a‖
‖a‖2/2

<
2r
‖a‖2 .

To make this less than ε , we need r ≤ ε‖a‖2/2. Hence ‖ f (x)− f (a)‖< ε , provided

‖x−a‖< r = min{‖a‖/2,ε‖a‖2/2}.

This shows that f is a continuous function. Notice that the function goes to in-
finity as x approaches 0. So the limit at 0 does not exist.

5.1.4. EXAMPLE. A function does not need to have a simple analytic expres-
sion to be continuous. However, extra care needs to be taken at the interface. Con-
sider the function graphed in Figure 5.2, given by

f (x) =

{
0 if x≤ 0
e−1/x if x > 0.

x

y
1

3

FIG. 5.2 Graph of y = e−1/x for x > 0.

When a < 0 and ε > 0, we may take r = |a|. For if |x−a|< |a|, then x < 0 and

| f (x)− f (a)|= |0−0|= 0 < ε.

Hence f is continuous at a.
If a > 0, finding an appropriate r for each ε is similar to the previous example.

e−1/x is the composition of the simpler functions g(x) = ex and h(x) =−1/x, so that
f (x) = g(h(x)). We shall see shortly that the composition of continuous functions is
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continuous. This simplifies the exercise to showing that both g and h are continuous.
We leave the details to the reader.

Finally, we must consider a = 0 separately because the function f has different
definitions on each side of 0. Fix ε > 0. Recall that ex is an increasing function such
that lim

x→−∞
ex = 0. Hence there is a large negative number −N such that e−N < ε .

Therefore, if 0 < x < 1/N, it follows that −1/x <−N and thus

0 < f (x) = e−1/x < e−N < ε.

So take r = 1/N. We obtain

| f (x)− f (0)|=

{
0 if − r < x≤ 0
e−1/x if 0 < x < r.

Since both 0 and e−1/x are less than ε , f is continuous at 0.

Now we treat an important class of functions that are automatically continuous.

5.1.5. DEFINITION. A function f from S ⊂ Rn into Rm is called a Lipschitz
function if there is a constant C such that

‖ f (x)− f (y)‖ ≤C‖x−y‖ for all x,y ∈ S.

The Lipschitz constant of f is the smallest C for which this condition holds.

The following easy result will have several important consequences.

5.1.6. PROPOSITION. Every Lipschitz function is continuous.

PROOF. Let f be a Lipschitz function with constant C. Given ε > 0, let r = ε/C.
Then if ‖x−y‖< r,

‖ f (x)− f (y)‖ ≤C‖x−y‖< Cr = ε.

Therefore, f is continuous. �

5.1.7. COROLLARY. Every linear map A from Rn to Rm is Lipschitz, and
therefore is continuous.

PROOF. Recall that every linear transformation is given by an m× n matrix
[
ai j
]
,

which we also call A, so that

A(x1,x2, . . . ,xn) =
( n

∑
j=1

a1 jx j, . . . ,
n

∑
j=1

am jx j

)
.
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Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,ym). Compute

‖Ax−Ay‖= ‖A(x−y)‖=
( m

∑
i=1

( n

∑
j=1

ai j(x j− y j)
)2)1/2

.

Apply the Schwarz inequality (4.1.1) to obtain that∣∣∣ n

∑
j=1

ai j(x j− y j)
∣∣∣2 ≤ n

∑
j=1
|ai j|2

n

∑
j=1
|x j− y j|2 =

n

∑
j=1
|ai j|2 ‖x−y‖2.

Setting C = (∑m
i=1 ∑

n
j=1 |ai j|2)1/2, we get

‖Ax−Ay‖ ≤
( m

∑
i=1

n

∑
j=1
|ai j|2

)1/2
‖x−y‖= C‖x−y‖.

Therefore, linear maps are Lipschitz, and hence are continuous. �

There are two basic linear functions, called coordinate functions, which we will
use regularly. The map π j(x1, . . . ,xn) = x j of Rn into R reads off the jth coordinate.
And εi(t) = tei maps R into Rm by sending R onto the ith coordinate axis. By
Exercise 5.1.L, every linear map is a linear combination of the maps εiπ j.

Exercises for Section 5.1

A. Use the ε–r definition of the limit of a function to show that lim
x→2

x2 = 4.

B. Let f (x) = x/sinx for 0 < |x| < π/2 and f (0) = 1. Show that f is continuous at 0. Find an
r > 0 such that | f (x)−1|< 10−6 for all |x|< r. HINT: Use inequalities from Example 2.4.7.

C. Show that the sawtooth function f is continuous, where f is given by

f (x) =

{
x−2n if 2n≤ x≤ 2n+1, n ∈ Z,

2n− x if 2n−1≤ x≤ 2n, n ∈ Z.

D. Prove that f is continuous at (0,y0), where f is defined on R2 by

f (x,y) =

{
(1+ xy)1/x if x 6= 0,

ey if x = 0.

E. Consider a function defined on R2 by

f (x,y) =

{
0 if y≤ 0 or if y≥ x2,

sin
(

πy
x2

)
if 0 < y < x2.

(a) Show that f is not continuous at the origin.
(b) Show that the restriction of f to any straight line through the origin is continuous.

F. (a) Show that the definition of limit can be reformulated using open balls instead of norms
as follows: A function f mapping a subset S ⊂ Rn into Rm has limit v as x approaches a
provided that for every ε > 0, there is an r > 0 such that f

(
Br(a)∩S\{a}

)
⊂ Bε (v).
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(b) Provide a similar reformulation of the statement that f is continuous at a.

G. Suppose that f : Rn → R is continuous. If there are x ∈ Rn and C ∈ R such that f (x) < C,
then prove that there is r > 0 such that for all y ∈ Br(x), f (y) < C.

H. Suppose that functions f ,g,h mapping S ⊂ Rn into R satisfy f (x) ≤ g(x) ≤ h(x) for
x ∈ S. Suppose that c is a limit point of S and limx→c f (x) = limx→c h(x) = L. Show that
limx→c g(x) = L.

I. Define a function on the set S = {0}∪{ 1
n : n ≥ 1} by f ( 1

n ) = an and f (0) = L. Prove that f
is continuous on S if and only if lim

n→∞
an = L.

J. Show that if f : [a,b]→ R is a differentiable function such that | f ′(x)| ≤ M on [a,b], then f
is Lipschitz. HINT: Mean Value Theorem.

K. Find a bounded continuous function on R that is not Lipschitz. HINT: The derivative should
blow up somewhere.

L. (a) Show that a linear map A : Rn →Rm with matrix
[
ai j
]

can be written as A =
m
∑

i=1

n
∑
j=1

ai jεiπ j .

(b) Show that εiπ j is Lipschitz with constant 1.
(c) Hence deduce that A is Lipschitz with constant ∑

n
i=1 ∑

m
j=1 |ai j|.

M. Consider the linear transformation A on R4 given by the matrix A = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

(a) Compute the Lipschitz constant obtained in Corollary 5.1.7.
(b) Show that ‖Ax‖ = ‖x‖ for all x ∈ R4. Deduce that the optimal Lipschitz constant is 1.

HINT: The columns of A form an orthonormal basis for R4.

N. At some point, you may have been told that a continuous function is one that can be drawn
without lifting your pencil off the paper. Is this actually true?

5.2 Discontinuous Functions

The purpose of this section is to show, through a variety of examples, some of the
pathologies that can occur in discontinuous functions. We make no serious attempt
to classify discontinuities, although we give names to some of the simpler kinds.

5.2.1. EXAMPLE. Define a function f on R by f (0) = 1 and f (x) = 0 for all
x 6= 0. This function is discontinuous at 0 because limx→0 f (x) = 0 6= 1 = f (0). This
is the simplest kind of discontinuity, known as a removable singularity because
the function may be altered at the point of discontinuity in order to fix the problem.
Changing f (0) to 0 makes the function continuous.

5.2.2. EXAMPLE. Consider the Heaviside function, which is much used in
engineering. Define H on R by H(x) = 0 for all x < 0 and H(x) = 1 for all x≥ 0.

We claim that limx→0 H(x) does not exist. Suppose that limx→0 H(x) = L. Then
for any ε > 0, there would be some r > 0 such that |H(x)−L| < ε whenever 0 <
|x− 0| < r. Take ε = 1/2 and let r be any positive real number. The values ±r/2
both satisfy |± r/2−0| = r/2 < r. But for any choice of L, the triangle inequality
yields
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∣∣+ ∣∣H(−r/2)−L

∣∣≥ ∣∣H(r/2)−H(−r/2)
∣∣= 1.

Therefore, max
{∣∣H(r/2)−L

∣∣, ∣∣H(−r/2)−L
∣∣}≥ 1

2 = ε . So no limit exists.
There is no way to “remove” this discontinuity by redefining H at the origin.

However, it is not difficult to understand this function’s behaviour.

5.2.3. DEFINITION. The limit of f as x approaches a from the right exists
and equals L if for every ε > 0, there is an r > 0 such that

| f (x)−L|< ε for all a < x < a+ r.

We write lim
x→a+

f (x) = L. Define limits from the left similarly, writing lim
x→a−

f (x) = L.

When a function f on R has different limits from the left and right at a, we say
that f has a jump discontinuity at a. A function on an interval is called piecewise
continuous if on every finite subinterval, it has only a finite number of discontinu-
ities, all of which are jump discontinuities.

The restrictions of H to (−∞,0) and (0,∞) are constant and therefore continuous.
What happens at a = 0 is that limx→0+ H(x) = 1 = H(0), and limx→0− H(x) = 0.
Thus H is piecewise continuous with a jump discontinuity at 0.

Piecewise continuity allows a function to have infinitely many jump disconti-
nuities provided the set of jump discontinuities does not have a cluster point (see
Exercise 4.3.N). For example, the ceiling function on R, defined by letting dxe be
the least integer greater than or equal to x, is piecewise continuous on R.

We also consider what it means to have an infinite limit.

5.2.4. DEFINITION. The limit of a function f (x) as x approaches a is +∞ if
for every positive integer N, there is an r > 0 such that

f (x) > N for all 0 < |x−a|< r.

We write lim
x→a

f (x) = +∞. We define the limit lim
x→a

f (x) =−∞ similarly.

5.2.5. EXAMPLE. Recall, from Example 5.1.3, the function f on Rn \{0} de-
fined by f (x) = 1/‖x‖. Define f (0) to be 0. Example 5.1.3 showed that f is contin-
uous on Rn \{0}. However,

lim
x→0

f (x) = +∞.

Indeed, for each positive integer N, take r = 1/N. Then for 0 < ‖x‖< 1/N, we have
f (x) > N as desired. No redefinition of f (0) can make f continuous.

Nevertheless, this is straightforward behaviour compared to the next examples.
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5.2.6. EXAMPLE. Consider the function defined on R2 by

f (x,y) =


x2

x2 + y2 if (x,y) 6= (0,0),

0 if (x,y) = (0,0).

It is easy to verify that f is continuous on R2 \ {(0,0)}. However, at the origin, f
behaves in a nasty fashion. To understand it, we convert to polar coordinates.

Recall that a vector (x,y) 6= (0,0) is determined by its length r =
√

x2 + y2 and
the angle θ that the vector makes with the positive real axis determined up to a
multiple of 2π by x = r cosθ and y = r sinθ . With this notation, we may compute

f (x,y) =
x2

x2 + y2 =
r2 cos2 θ

r2 = cos2
θ .

Now it is clear that this function is constant on rays from the origin (those points
with a fixed angle in polar coordinates). Even though the function remains bounded,
its value, f (x,y), oscillates between 0 and 1 as (x,y) progresses around the circle.
Thus, for each r > 0 and every number L ∈ [0,1], there is (x,y) ∈ Br((0,0)) with
f (x,y) = L. Shrinking r does not change this, so there is no limit at (0,0).

5.2.7. EXAMPLE. A similar phenomenon can be seen in functions on the real
line. Consider the function given by

f (x) =

{
sin 1

x if x 6= 0,

0 if x = 0.

First think about the problem of graphing this function. Evidently, f (−x) =− f (x),
so it suffices to consider x > 0 and then rotate about the origin to obtain the graph
of f (x) for x < 0. Now as x tends to +∞, the reciprocal 1/x tends monotonically to
zero. Since sinθ ≈ θ for small values of θ , our function is asymptotic to the curve
y = 1/x as x tends to +∞, meaning lim

x→∞
| f (x)−1/x|= 0.

On the other hand, as x tends to 0+, 1/x goes off to +∞. Indeed, it passes through
values from 2kπ to 2(k+1)π as x passes from 1

2kπ
to 1

2(k+1)π . Hence sin takes values
running from 0 up to 1, down to −1, and back up to 0. This happens infinitely often
as x approaches the origin. So the curve oscillates rapidly up and down between 1
and−1. No limit is possible. There is a partial graph in Figure 5.3, not including the
graph in the interval (−0.01,0.01).

General arguments show that this function is continuous on R\{0}. However, it
has a nasty discontinuity at 0. Let us show that every value in [−1,1] is a limit value
along some subsequence. Consider a number t = sinθ . Notice that
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FIG. 5.3 A partial graph of sin(1/x).

f (x) = t if and only if sin 1
x = sinθ

if and only if 1
x = θ +2kπ or (π−θ)+2kπ, k ∈ Z

if and only if x = 1
θ+2kπ

or 1
(π−θ)+2kπ

, k ∈ Z.

In particular, lim
k→∞

f ( 1
θ+2kπ

) = sinθ = t. This shows that every point (0, t) for |t| ≤ 1

lies in the closure of the graph of f . It is not difficult to see that the closure of the
graph is precisely this line segment together with the graph itself.

Finally, we look at a couple of bizarre examples.

5.2.8. EXAMPLE. For any subset A of Rn, the characteristic function of A is

χA(x) =

{
1 if x ∈ A
0 if x /∈ A.

The behaviour of χA depends on the character of the set A. See Exercise 5.2.A.
Let us take A to be the set Q of rationals in R. The function χQ takes the values

0 and 1 on every open interval, no matter how small, because the sets of the rational
and the irrational numbers are both dense in the line. Thus for every a ∈ R and any
r > 0 there is a point x with |x−a|< r such that | f (x)− f (a)|= 1. This function is
not continuous at any point!

5.2.9. EXAMPLE. This last example is perhaps the strangest of all. Let

f (x) =

{
0 if x /∈Q,
1
q if x = p

q in lowest terms and q > 0,

meaning that p,q are integers with no common factor. Figure 5.4 shows part of
the graph of this function. We will show that this function is continuous at every
irrational point, and discontinuous at every rational point.

First, we show that limx→a f (x) = 0 for all a ∈ R. Let ε > 0 and fix an integer
M > |a|. There is an integer N sufficiently large that 1/N < ε . The set
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FIG. 5.4 Partial graph of function f (p/q) = 1/q.

S =
{ p

q
: 1≤ q≤ N, −Mq≤ p≤Mq,

}
\{a}

is finite and thus is closed. Since S′ is open and a ∈ S′, there is a real number r > 0
such that Br(a) ⊂ S′ ∩ (−M,M). Now if x ∈ (−M,M) is not in S, then either it is
irrational, whence f (x) = 0, or it is a rational p/q with q > N, whence f (x) < 1

N < ε .
Hence

| f (x)−0|= | f (x)|< ε for all |x−a|< r.

This shows that limx→a f (x) = 0.
Thus, for a an irrational number, limx→a f (x) = 0 = f (a) and so f is continuous

at a. For a a rational number, say a = p/q in lowest terms, limx→a f (x) = 0 6= 1/q =
f (a) and so f has a removable singularity at a. The surprising fact is that f has a
limit at every point in R, yet is discontinuous on a dense set.

Exercises for Section 5.2

A. Let A be a subset of Rn. Show that the characteristic function χA is continuous on the interior
of A and of its complement A′, but is discontinuous on the boundary ∂A = A∩A′.

B. Show that f (x) = x logx2 for x ∈ R\{0} has a removable singularity at x = 0.

C. Give an example of a bounded function f : [−1,1]→R that has only jump discontinuities but
is not piecewise continuous.

D. What is the nature of the singularity at x = 1 of the function f (x) = x
1

1−x defined on the set
[0,∞)\{1}? HINT: lim

x→1

logx
x−1 is a derivative.

E. Let f (x) = arcsin(sinx), where arcsin(y) is the unique value θ ∈ [− π

2 , π

2 ] such that sinθ = y.

(a) Show that f ′ has limits from the left and the right at every point.
(b) Where is f ′ discontinuous?

F. Prove that L = lim
x→a

f (x) if and only if both lim
x→a−

f (x) = L and lim
x→a+

f (x) = L.

G. (A monotone convergence test for functions.) Suppose that f is an increasing function on
(a,b) that is bounded above. Prove that the one-sided limit lim

x→b−
f (x) exists.

H. Define f on R by f (x) = xχQ(x). Show that f is continuous at 0 and that this is the only point
where f is continuous.
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5.3 Properties of Continuous Functions

We start with several properties equivalent to continuity. Then we will record various
consequences of continuity, most of which are easy to verify. Since the domain of
a function is often a proper subset of Rn, we introduce another topological notion.
A subset V ⊂ S ⊂ Rn is open in S or relatively open (with respect to S) if there is
an open set U in Rn such that U ∩S = V . In other words, V is open in S if for every
v ∈V , there is an ε > 0 such that Bε(v)∩S ⊂V .

5.3.1. THEOREM. For a function f mapping S ⊂ Rn into Rm, the following
are equivalent:

(1) f is continuous on S.
(2) For every convergent sequence (xk)∞

k=1 with lim
k→∞

xk = a in S, lim
k→∞

f (xk) = f (a).

(3) For every open set U in Rm, the set f−1(U) = {x ∈ S : f (x) ∈U} is open in S.

PROOF. If we assume (1), that is, f is continuous on S, then combining this with
the definition of the limit of sequence gives (2). We leave the details as an exercise.
Conversely, assume that (1) is false, and f is not continuous at some point a ∈ S.
Then reversing the definition of continuity, we can find some positive number ε > 0
for which the definition fails, meaning that there is no value of r > 0 that works.
That is, fixing this ε , for every r > 0 there is some point x∈ S (depending on r) such
that

‖x−a‖< r and ‖ f (x)− f (a)‖ ≥ ε.

So take r = 1/k and find an xk ∈ S with

‖xk−a‖< 1
k and ‖ f (xk)− f (a)‖ ≥ ε.

It follows that limk→∞ xk = a and f (xk) does not converge to f (a). This shows that
if (1) fails, then (2) is false also. Therefore, (1) and (2) are equivalent.

Suppose that f is continuous and U is an open subset of Rm. Pick any point a in
f−1(U). Since U is open and contains u = f (a), there is an ε > 0 such that Bε(u) is
contained in U . From the continuity of f , there is a real number r > 0 such that

‖ f (x)−u‖< ε for all x ∈ S, ‖x−a‖< r.

This means that f
(
Br(a)∩ S

)
is contained in Bε(u) and thus in U . Hence f−1(U)

contains Br(a)∩S. Consequently, f−1(U) is open in S.
Conversely, suppose that (3) holds. Fix a in S and ε > 0. Using the open set

U = Bε( f (a)), we obtain an open set f−1(U) in S containing a. Therefore, there is
a real number r > 0 such that

Br(a)∩S ⊂ f−1(U).

Thus, ‖ f (x)− f (a)‖< ε for all x ∈ S such that ‖x−a‖< r, so (1) holds. �
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Property (2) could be called the sequential characterization of continuity. It
will often be more convenient to work with a sequence and this property rather than
finding some r for each ε , as in the original definition. Property (3) could be called
the topological characterization of continuity. This is a formulation that readily
generalizes to settings in which there is no appropriate distance function. In certain
ways, this version is more powerful than the others. However, it is valid only for
continuity on a set, not continuity at a point.

The next two results show that limits and continuity repect the usual arith-
metic operations. The proofs are straightforward adaptations of the proof of The-
orem 2.5.2. An alternative is to use Exercise 5.3.D and Theorem 2.5.2.

5.3.2. THEOREM. If f ,g are functions from a common domain S ⊂ Rn into
Rm and a ∈ S such that lim

x→a
f (x) = u and lim

x→a
g(x) = v, then

(1) lim
x→a

f (x)+g(x) = u+v,

(2) lim
x→a

α f (x) = αu for any α ∈ R.

When the range is contained in R, say lim
x→a

f (x) = u and lim
x→a

g(x) = v, then

(3) lim
x→a

f (x)g(x) = uv, and

(4) lim
x→a

f (x)
g(x)

=
u
v

provided that v 6= 0.

5.3.3. THEOREM. If f ,g are functions from a common domain S into Rm that
are continuous at a ∈ S, and α ∈ R, then
(1) f +g is continuous at a,
(2) α f is continuous at a,

and when the range is contained in R,
(3) f g is continuous at a, and
(4) f /g is continuous at a provided that g(a) 6= 0.

5.3.4. EXAMPLE. Observe that the function f (x) = x is continuous at every
a ∈ R, since lim

x→a
f (x) = lim

x→a
x = a. By Theorem 5.3.3 (2), products of this function

are continuous, so g(x) = x2, h(x) = x3, and in general k(x) = xn for every positive
integer n are all continuous functions. By Theorem 5.3.3 (1) and (3), linear combi-
nations of these functions are continuous, and so we conclude that every polynomial
is continuous on R.

If f is a rational function—that is, f (x) = p(x)/q(x), where p and q are
polynomials—then f is continuous at all a ∈ R, where q(a) 6= 0. This follows from
the previous paragraph and Theorem 5.3.3 (4).

Recall that if f maps a domain S ⊂ Rn into a set T ⊂ Rm, and g maps T into
Rl , then the composition of g and f , denoted by g ◦ f , is the function that sends
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x to g( f (x)). For example, if f (x,y) = x2 + y2 is defined on R2 and g(x) =
√

x for
x ∈ [0,∞), then g◦ f (x,y) =

√
x2 + y2.

5.3.5. THEOREM. Suppose that f maps a domain S contained in Rn into a
subset T of Rm, and g maps T into Rl . If f is continuous at a∈ S and g is continuous
at f (a)∈ T , then the function g◦ f is continuous at a. Thus if f and g are continuous,
then so is g◦ f .

PROOF. We will use the sequential characterization of continuity. Let (xk)
∞

k=1 be any
sequence of points in S with limk→∞ xk = a. Since f is continuous at a, we know
that limk→∞ f (xk) = f (a). Thus ( f (xk))

∞

k=1 is a sequence in T with limit f (a), and
since g is continuous at f (a), we conclude that

lim
k→∞

g( f (xk)) = g( f (a)).

Therefore, by Theorem 5.3.1, g◦ f is continuous at a. �

5.3.6. EXAMPLE. If f maps S ⊂ Rn into Rm, then fi, the ith coordinate of
f (x), is a real-valued function on S. Using this notation, we may write

f (x) = ( f1(x), . . . , fm(x)).

We claim that f is continuous if and only if each fi is continuous for 1≤ i≤ m.
One way to see this is to argue exactly as in Lemma 4.2.3. Instead, we will

use Corollary 5.1.7 and the (continuous) coordinate functions πi and εi given by
πi(x1, . . . ,xm) = xi and εi(t) = tei. Notice that fi(x) = πi ◦ f (x). Thus if f is con-

tinuous, each fi is continuous. Conversely, f (x) =
m
∑

i=1
εi ◦ fi(x). Hence if each fi

is continuous, then each εi ◦ fi is continuous by Theorem 5.3.5; and their sum is
continuous by Theorem 5.3.3 (1).

Exercises for Section 5.3

A. Show that the function defined on R2 \{(0,0)} by f (x,y) =
sin(log(x2 + y2))

cos2 y+ y2ex is continuous.

B. Prove that (1) implies (2) in Theorem 5.3.1.

C. Use Lemma 4.2.3 and the sequential characterization of continuity to give a second proof for
Example 5.3.6.

D. Consider f mapping S ⊂ Rn into Rm and two points: a a limit point of S and v ∈ Rm. Show
that lim

x→a
f (x) = v iff for each sequence (xk)∈ S\{a} with lim

k→∞
xk = a, we have lim

k→∞
f (xk) = v.

E. Suppose that f mapping S⊂Rn into Rm is given by f (x) = ( f1(x), . . . , fm(x)) with fi : S→R
for each i. Show that limx→a f (x) = (u1, . . . ,um) if and only if limx→a fi(x) = ui for each i.

F. Let f and g be continuous maps of S ⊂ Rn into Rm. Show that the inner product h(x) =
〈 f (x),g(x)〉 is continuous.
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G. Finish the proof of Theorem 5.3.2.

H. Suppose f is continuous on [a,b] and g is continuous on [b,c] with f (b) = g(b). Show that

h(x) =

{
f (x) if a≤ x≤ b,

g(x) if b≤ x≤ c,
is continuous on [a,c].

I. Let f be a continuous real-valued function defined on an open subset U of Rn. Show that
{(x,y) : x ∈U, y > f (x)} is an open subset of Rn+1.

J. (a) Show that m(x,y) = max{x,y} is continuous on R2.
(b) Hence show that if f and g are continuous real-valued functions on a set S ⊂ Rn, then

h(x) = max{ f (x),g(x)} is continuous on S.
(c) Use induction to show that if fi are continuous real-valued functions on S for 1 ≤ i ≤ k,

then h(x) = max
1≤i≤k

fi(x) is continuous.

K. Show that f : Rn → Rm is continuous iff f−1(C) is closed for every closed set C ⊂ Rm.

L. Suppose that A and B are subsets of Rn. Find necessary and sufficient conditions for there to
be a continuous function f on Rn with f |A = 1 and f |B = 0.
HINT: Consider g(x) = dist(x,A) and h(x) = dist(x,B).

M. Give an example of a continuous function f and an open set U such that f (U) is not open.

N. Suppose that f : R→ R satisfies the functional equation
f (u+ v) = f (u)+ f (v) for all u,v ∈ R.

(a) Prove that f (mx) = m f (x) for all x ∈ R and m ∈ Z. HINT: Use induction for m≥ 1.
(b) Prove that f (x) = cx for all x ∈Q, where c = f (1). HINT: Use (a) to solve for f (p/q).
(c) Use (b) to prove that if f is continuous on R, then f (x) = cx for all x ∈ R.

5.4 Compactness and Extreme Values

In every calculus course, a lot of effort is spent finding the maximum or minimum of
various functions. Sometimes there were physical reasons why such a point should
exist. However, generally it was taken on blind faith and the student dutifully dif-
ferentiated the function to find critical points. Even when the function is not dif-
ferentiable, the function may attain its maximum value. On the other hand, many
very nice functions do not attain maxima. In this section, we will see how our new
topological tools can explain this phenomenon.

First consider a couple of easy examples in which there are no maxima.

5.4.1. EXAMPLE. Consider f (x) = −1/(1 + ‖x‖2) for x ∈ Rn. This function
is bounded above, yet the supremum 0 = lim‖x‖→∞ f (x) is never attained. The func-
tion g(x) = ‖x‖ is unbounded and thus also does not attain its supremum. These
problems can occur whenever the domain of the function is unbounded.

5.4.2. EXAMPLE. Consider f (x) =−x for x ∈ (0,1]. This function is bounded
above yet does not attain its supremum 0 = lim

x→0+
f (x) because the limit point 0

is missing from the domain. Similarly, the function f (x) = 1
x for x ∈ (0,1] is un-
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bounded and thus does not attain its supremum. A modification of this example
would show that the same problem results whenever the domain is not closed.

Both of these difficulties may be avoided if the domain is compact. It turns out
that this is exactly what we need. As in most proofs using compactness, the aim is to
find an appropriate sequence in the compact set C so that a convergent subsequence
can be obtained with good properties.

5.4.3. THEOREM. Let C be a compact subset of Rn, and let f be a continuous
function from C into Rm. Then the image set f (C) is compact.

PROOF. Let (yk)
∞

k=1 be a sequence in f (C). We must find a subsequence converging
to a point in the image. First choose points xk in C such that yk = f (xk). Now
(xk)

∞

k=1 is a sequence in the compact set C. Therefore, there is a subsequence (xki)
that converges to some c in C. By the continuity of f ,

lim
i→∞

yki = lim
i→∞

f (xki) = f
(

lim
i→∞

xki

)
= f (c).

Thus (yki) converges to f (c) ∈ f (C), showing that f (C) is compact. �

This immediately yields a result often used (without proof) in calculus.

5.4.4. EXTREME VALUE THEOREM.
Let C be a compact subset of Rn, and let f be a continuous function from C into R.
Then there are points a and b in C attaining the minimum and maximum values of
f on C. That is,

f (a)≤ f (x)≤ f (b) for all x ∈C.

PROOF. Since C is compact, Theorem 5.4.3 shows that f (C) is compact. Hence it
is closed and bounded in R. Boundedness shows that

m = inf
x∈C

f (x) and M = sup
x∈C

f (x)

are both finite. From the definition of supremum, M is a limit of values in f (C).
Thus since f (C) is closed, M ∈ f (C). This means that there is a point b ∈ C such
that f (b) = M. Similarly, the infimum is attained at some point a ∈C. �

Exercises for Section 5.4

A. If A is a noncompact subset of Rn, show that there is a bounded continuous real-valued func-
tion on A that does not attain its maximum.

B. Find a discontinuous function on [0,1] that is bounded but does not achieve its supremum.

C. Suppose that f is a continuous function on [a,b] with no local maximum or local minimum.
Prove that f is monotone.
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D. Find a linear transformation T on R2 and a closed subset C of R2 such that T (C) is not closed.

E. Show that f mapping a compact set S ⊂ Rn into Rm is continuous iff its graph G( f ) =
{(x, f (x)) : x ∈ S} is compact. HINT: (⇒) use Theorem 5.4.3. (⇐) use Theorem 5.3.1 (2).

F. Give a function defined on [0,1] that has a closed graph but is not continuous.

G. Suppose that f is a positive continuous function on Rn such that lim‖x‖→∞ f (x) = 0 Show
that f attains its maximum.

H. Let f be a periodic function on R, i.e., there is a d > 0 with f (x + d) = f (x) for all x ∈ R.
Show that if f is continuous, then f attains its maximum and minimum on R.

I. (a) Give an example of a continuous function on R2 satisfying f (x + 1,y) = f (x,y) for all
x,y ∈ R that does not attain its maximum.

(b) Find and prove a variant of the previous exercise that is valid for functions on R2.

J. Let A be a compact subset of Rn. Show that for any point x∈Rn, there is a closest point a in A
to x; i.e., a ∈ A satisfies ‖x−a‖ ≤ ‖x−b‖ for all b ∈ A. HINT: Define a useful continuous
function on A.

K. For a function f on [0,∞), we say that limx→∞ f (x) = L if for every ε > 0, there is some N > 0
such that | f (x)−L|< ε for all x > N. Suppose that f is continuous. and limx→∞ f (x) = f (0).
Prove that f attains its maximum and minimum values.

L. Suppose that C is a compact subset of Rn and that f is a continuous, one-to-one function of
C onto D ⊂ Rm. Prove that the inverse function f−1 is continuous. HINT: For d0 ∈ D, let
c0 = f−1(d0). If ε > 0, find r > 0 such that Br(d0) is disjoint from f (C \Bε (c0)).

M. A space-filling curve. Let T be a right triangle with side lengths 3, 4, and 5. Drop a perpendic-
ular line from the right angle to the opposite side, splitting the triangle into two similar pieces.
Label the smaller triangle T (0) and the larger one T (1). Then divide each T (ε) into two pieces
in the same way, labeling the smaller T (ε0) and the larger T (ε1). Recursively divide each
triangle T (ε1 . . .εn) into two smaller similar triangles labeled T (ε1 . . .εn0) and T (ε1 . . .εn1).
Now consider each point x ∈ [0,1] in its base-2 (binary) expansion x = 0.ε1ε2ε3 . . . , where εi
is 0 or 1. Define a function f : [0,1]→ T by defining f (x) to be the point in

⋂
n≥1 T (ε1 . . .εn).

(a) Prove that T (ε1 . . .εn) has diameter at most 5(0.8)n.
(b) If x = 0.ε1 . . .εn−1100000 . . . has a finite binary expansion, then it has a second binary

representation x = 0.ε1 . . .εn−1011111 . . . ending in ones. Prove that both expansions yield
the same value for f (x).

(c) Hence prove that f (x) is well defined for each x ∈ [0,1].
(d) Prove that f is continuous. HINT: If x and y agree to the nth decimal, what do f (x) and

f (y) have in common?
(e) Prove that f maps [0,1] onto T .

N. A space-filling curve II. Adapt the triangle-filling function of the previous exercise to con-
struct a continuous function on R that maps onto the entire plane. HINT: Cover R2 by
triangles.

5.5 Uniform Continuity

Mathematical terminology is not always consistent, but the adjective uniform is (al-
most) always used the same way. A property is uniform on a set if that property
holds at every point in the set with common estimates. Uniform estimates often lead
to more powerful conclusions.
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5.5.1. DEFINITION. A function f from S ⊂ Rn into Rm is uniformly contin-
uous if for every ε > 0, there is a positive real number r > 0 such that

‖ f (x)− f (a)‖< ε whenever ‖x−a‖< r, x,a ∈ S.

Read the definition carefully to note where it differs from continuity at each point
a∈ S. For f to be continuous, we fix both ε > 0 and a∈ S before obtaining the value
of r. So the choice of r might depend on a as well as on ε . Uniform continuity means
that for each ε > 0, the value r > 0 that we obtain can be chosen independently of
the point a. This is a subtle difference, so we look at some examples.

5.5.2. EXAMPLE. Consider the function f (x) = x2 defined on the bounded in-
terval [c,d]. Let us try to obtain a common estimate for r for each ε > 0. Remember
that we are trying to control the difference | f (x)− f (a)| only by controlling |x−a|.
Hence we always look for a method of getting a factor close to |x− a| into our
estimate while gaining some (perhaps crude) control over the rest. Compute

| f (x)− f (a)|= |x2−a2|= |x+a| |x−a|.

In this case, the factor of |x− a| comes out naturally. A bound must be found for
|x + a|. For any x ∈ [c,d], we have |x| ≤ max{|c|, |d|} so let M = max{|c|, |d|}.
Hence

|x+a| ≤ |x|+ |a| ≤ 2M.

If we choose r > 0 and consider |x−a|< r, then

| f (x)− f (a)|= |x+a| |x−a|< 2Mr.

To make this at most ε , it suffices to choose r = ε/(2M), whence

| f (x)− f (a)|< 2Mr = ε for all |x−a|< r, x,a ∈ [c,d].

Hence f is uniformly continuous.
On the other hand, consider f (x) = x2 defined on the whole real line. The pre-

ceding argument doesn’t work because M would be infinite. As Figure 5.5 suggests,
as a goes to infinity, the interval between f (a) and f (a+ r) becomes huge. Indeed,
f (k + 1/k)− f (k) = 2 + k−2 > 2. Therefore there is no r > 0 such that |x− y| < r
implies | f (x)− f (y)|< 1. Therefore, f is not uniformly continuous on R.

5.5.3. EXAMPLE. Consider the function f (x) = 1/x on (0,1]. Notice that the
graph blows up at the origin and becomes very steep. This is the same property that
we just exploited for x2 as x goes off to infinity. Very close values in the domain are
mapped to points that are far apart. Let xk = 1/k. Then

| f (xk+1)− f (xk)|= (k +1)− k = 1.
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x

y

a2a2− r a2 + r

f (a2)

a1a1− r a1 + r

f (a1)

FIG. 5.5 The function f (x) = x2 on R.

However, |xk+1−xk|= 1/(k+k2) tends to 0. So let ε = 1 and consider any r > 0. For
k large enough, |xk+1−xk|< r, but | f (xk+1)− f (xk)|= 1 = ε . So f is not uniformly
continuous.

A number of properties of functions imply uniform continuity.

5.5.4. PROPOSITION. Every Lipschitz function is uniformly continuous.

PROOF. Recall that f is Lipschitz on S means that there is a constant C such that
‖ f (x)− f (y)‖ ≤ C‖x− y‖. Given ε > 0, choose r = ε/C. Then if x,a ∈ S and
‖x−a‖< r,

‖ f (x)− f (a)‖ ≤C‖x−a‖< C
ε

C
= ε.

Thus uniform continuity is established (almost by definition). �

Corollary 5.1.7 shows that every linear transformation is a Lipschitz function and
Exercise 5.1.J shows that every function f : [a,b]→ R with a bounded derivative is
a Lipschitz function. Hence we obtain the following:

5.5.5. COROLLARY. Every linear transformation from Rn to Rm is uniformly
continuous.

5.5.6. COROLLARY. Let f be a differentiable real-valued function on [a,b]
with a bounded derivative. Then f is uniformly continuous on [a,b].
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Before getting to our main result, we look at two more examples. The first is
to show that a function does not need to be unbounded in order to fail uniform
continuity. However, the previous theorem shows us that the function should be
very steep frequently. This suggests returning to one of our favourite functions.

5.5.7. EXAMPLE. Let f (x) = sin 1
x on (0,1]. A computation of the derivative

is not necessary, since the qualitative features of this function have been considered
before in Example 5.2.7. The function oscillates wildly between +1 and −1 as x
approaches 0. In particular,

lim
k→∞

f
( 1

(2k + 1
2 )π

)
= 1 and lim

k→∞
f
( 1

(2k− 1
2 )π

)
=−1.

Letting xk = 1/((2k + 1
2 )π) and ak = 1/((2k− 1

2 )π), then f (xk)− f (ak) = 2, while

lim
k→∞

|xk−ak|= lim
k→∞

1
(4k2− 1

4 )π
= 0.

As before, this means that f is not uniformly continuous.

Finally, let us look at an example in which the derivative is unbounded yet the
function is still uniformly continuous.

5.5.8. EXAMPLE. Let f (x) = xsin 1
x on (0,∞), which we graph in Figure 5.6.

What makes this different from the previous examples is the behaviour at the end-
points. At 0, the Squeeze Theorem shows that

lim
x→0

xsin 1
x = 0.

Thus we may define f (0) = 0 and obtain a continuous function on [0,∞). At infinity,
the substitution y = 1

x yields

lim
x→∞

xsin 1
x = lim

y→0

siny
y

= 1.

This latter limit is established in Example 2.4.7, along with the estimates

1− 1
x2 < xsin 1

x < 1 for x≥ 1.

We will show that f is uniformly continuous. The two limits will be used to deal
with points near 0 and near infinity (sufficiently large). Let 0 < ε < 1 be given. First
consider values near the origin. If |x|< ε/2 and |y|< ε/2, then

| f (x)− f (y)| ≤ |x||sin 1
x |+ |y||sin 1

y | ≤ |x|+ |y|< ε.
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x

y

0.5

0.5

FIG. 5.6 Partial graph of xsin 1
x .

Thus if x ∈ [0,ε/4] and |x− y|< ε/4, then this estimate holds.
Now do the same thing near infinity. Pick an integer N > ε−1/2. If x and y are

greater than N, then

1− ε < 1− 1
N2 < f (x) < 1.

The same is true for y, and thus if x≥ N +1 and |x− y|< 1, then

| f (y)− f (x)|< ε.

These two estimates show that | f (y)− f (x)| < ε if |x− y| < ε/4 and either x or y
lies in either [0,ε/4] or [N +1,∞).

Now consider the case in which both x and y lie in the interval [ε/4,N + 1]. On
this interval, the function f has a continuous derivative

f ′(x) = sin 1
x −

1
x cos 1

x .

An easy estimate shows that

| f ′(x)| ≤ 1+
1
x
≤ 1+

4
ε
,

so we let M = 1+4/ε . Hence, if x and y are in [ε/4,N +1] and |x−y|< ε/M, then
the Mean Value Theorem (6.2.2) implies that | f (x)− f (y)| ≤M|x− y|< ε .

Finally, since ε/M = ε2/(4+ε), we can choose r = min{ε/4,ε2/(4+ε)}. Then
if |x− y|< r, one of the preceding estimates applies to show that | f (y)− f (x)|< ε .
Therefore, f is uniformly continuous.

Having emphasized the differences between continuity and uniform continuity
up to this point, we conclude this section by admiting that in some important situa-
tions, the two notions coincide.

5.5.9. THEOREM. Suppose that C ⊂Rn is compact and f : C →Rm is contin-
uous. Then f is uniformly continuous on C.
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PROOF. Suppose that f were not uniformly continuous. Then there would be some
ε > 0 for which no r > 0 satisfies the definition. That is, for each r = 1/k, there are
points ak and xk in C such that ‖xk−ak‖< 1/k but ‖ f (xk)− f (ak)‖ ≥ ε .

Since C is compact and (ak)
∞

k=1 is a sequence in C, there is a convergent subse-
quence (aki) with

lim
i→∞

aki = a ∈C.

Thus we also have

lim
i→∞

xki = lim
i→∞

aki +(xki −aki) = a+0 = a.

By the continuity of f , we have

lim
i→∞

f (aki) = f (a) and lim
i→∞

f (xki) = f (a).

Consequently,
lim
i→∞

∥∥ f (aki)− f (xki)
∥∥= 0.

This contradicts ‖ f (ak)− f (xk)‖ ≥ ε > 0 for all n. Therefore, the function must be
uniformly continuous. �

Compare how the sequences (ak) and (xk) are used in this proof to how similar
sequences are used to show that specific functions are not uniformly continuous in
Examples 5.5.3, 5.5.2, and 5.5.7.

Exercises for Section 5.5

A. Show that g(x) =
√

x is uniformly continuous on [0,+∞).
HINT: Show that

√
a−b≥

√
a−

√
b and

√
a+b≤

√
a+

√
b.

B. Given a polynomial p(x,y) = ∑
N
m,n=0 amnxmyn in variables x and y and an ε > 0, find an

explicit δ > 0 establishing uniform continuity on the square [−R,R]2.
HINT: Try δ = ε/C, where C = ∑

N
m,n=0 |amn|(m+n)Rm+n−1.

C. (a) Show that f (x) = 1
x sinx for x 6= 0 can be extended to a continuous function on R.

(b) Prove that it is uniformly continuous on R.

D. Show that f (x) = xp is not uniformly continuous on R if p > 1.

E. If f is continuous on (0,1) and limx→0+ f (x) = +∞, show that f is not uniformly continuous.

F. Show that a periodic continuous function on R is bounded and uniformly continuous.

G. Consider a continuous function f = ( f1, . . . , fm) from an open subset S of Rn into Rm with
bounded partial derivatives

∣∣ ∂ fi
∂x j

(x)
∣∣≤M for all x ∈ S. Prove that f is uniformly continuous.

H. Suppose that f is continuous on (a,c) and that a < b < c. Show that if f is uniformly contin-
uous on both (a,b] and [b,c), then f is uniformly continuous on (a,c).

I. Let f (x) be continuous on (0,1]. Show that f is uniformly continuous iff limx→0+ f (x) exists.

J. For which real values of α is the function gα (x) = xα log(x) uniformly continuous on (0,∞)?
HINT: Use Exercises D, E, and H. For 0 < α < 1, consider [0,1] and [1,∞) separately.
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K. A function f : [a,b] → R satisfies a Lipschitz condition of order α > 0 if there is some
positive constant M such that | f (x1)− f (x2)| ≤ M|x1 − x2|α . Let Lipα denote the set of all
functions satisfying a Lipschitz condition of order α .

(a) Prove that if f ∈ Lipα , then f is uniformly continuous.
(b) Prove that if f ∈ Lipα and α > 1, then f is constant.
(c) For α ∈ (0,1), show that f (x) = xα belongs to Lipα .

5.6 The Intermediate Value Theorem

Here is another fundamental result often used in calculus without proof.

5.6.1. INTERMEDIATE VALUE THEOREM.
If f is a continuous real-valued function on [a,b] and z ∈ R satisifies f (a) < z <
f (b), then there exists a point c ∈ (a,b) such that f (c) = z.

x

y

a bc

f (a)

f (b)

FIG. 5.7 Applying the Intermediate Value Theorem to a function f : [a,b]→ R with z = 0.

Figure 5.7 shows the conclusion graphically. Like the Extreme Value Theorem,
this result seems intuitively clear, but its proof depends on the completeness of the
real numbers. For example, the function f : Q → R given by f (x) = x3 − 2 for
x ∈Q satisfies f (1) =−1 < 0 and f (2) = 6 > 0 but there is no rational x for which
f (x) = 0.

PROOF. Define A = {x ∈ [a,b] : f (x) < z}. Since a ∈ A, A is not empty. And since
b is an upper bound for A, the Least Upper Bound Principle allows us to define
c = supA; and it belongs to [a,b]. We claim that f (c) = z.

First, since c is the least upper bound for A, there is a sequence (an) in A such
that c− 1

n < an ≤ c. So c = lim
n→∞

an. Therefore,

f (c) = lim
n→∞

f (an)≤ z.

In particular, c 6= b, and thus c < b. Choose any sequence c < bn ≤ b such that
c = lim

n→∞
bn. Since c is the upper bound for A, it follows that bn 6∈ A and so f (bn)≥ z.
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Consequently,
f (c) = lim

n→∞
f (bn)≥ z.

Putting the two inequalities together yields f (c) = z. �

5.6.2. COROLLARY. If f is a continuous real-valued function on [a,b], then
f ([a,b]) is a closed interval.

PROOF. The Extreme Value Theorem (5.4.4) shows that the range of f is bounded,
and the extrema are attained. Thus there are points c and d in [a,b] such that

f (c) = m := inf
x∈[a,b]

f (x) and f (d) = M := sup
x∈[a,b]

f (x).

Suppose that c ≤ d. (The case c > d is similar.) Let z be any value in (m,M). Then
f (c) = m < z < M = f (d). Since f is continuous on [c,d], there is x ∈ (c,d) such
that f (x) = z. Therefore, f ([a,b]) = [m,M]. �

A path in S ⊂ Rn from a to b, both points in S, is the image of a continuous
function γ from [0,1] into S such that γ(0) = a and γ(1) = b.

5.6.3. COROLLARY. Suppose that S ⊂ Rn and f is a continuous real-valued
function on S. If there is a path from a to b in S and z ∈ R with f (a) < z < f (b),
then there is a point c on the path such that f (c) = z.

PROOF. Let γ : [0,1] → S define the path from a to b. Consider the continuous
function g = f ◦γ . Then g(0) < z < g(1). By the Intermediate Value Theorem, there
is a point x in (0,1) such that g(x) = z. Then c = γ(x) is the desired point. �

We look at the following concept in several of the exercises.

5.6.4. DEFINITION. A subset A of Rn is not connected if there are disjoint
open sets U and V such that A ⊂U ∪V and A∩U 6= ∅ 6= A∩V . Otherwise, the set
A is said to be connected.

Exercises for Section 5.6

A. (a) Show that there is some x ∈ (0,π/2) such that cosx = x.
(b) Prove that this is the only real solution.

B. How many solutions are there to tanx = x in [0,11]?

C. Show that 2sinx+3cosx = x has three solutions.

D. Show that a polynomial of odd degree has at least one real root.
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E. The temperature T (x) at each point x on the surface of Mars (a sphere) is a continuous func-
tion. Show that there is a point x on the surface such that T (x) = T (−x). HINT: Represent
the surface of Mars as {x ∈ R3 : ‖x‖= 1}. Consider the function f (x) = T (x)−T (−x).

F. Let f be a continuous function from a circle into R. Show that f cannot be one-to-one.

G. If f is a continuous real-valued function on (0,1), what are the possibilities for the range of
f ? Give examples for each possibility, and prove that your list is complete.

H. (a) Show that a continuous function on (−∞,+∞) cannot take every real value exactly twice.
(b) Find a continuous function on (−∞,+∞) that takes every real value exactly three times.

I. Show that Q is not connected.

J. Show that [a,b] is connected. HINT: if [a,b] were contained in the disjoint union of open
sets U and V , then the characteristic function of U ∩ [a,b] would be continuous on [a,b].

5.7 Monotone Functions

Most functions we encounter are increasing or decreasing on intervals contained in
their domain. So we explore some of special properties of monotone functions.

5.7.1. DEFINITION. A function f is called increasing on an interval (a,b) if
f (x)≤ f (y) whenever a < x < y < b. It is strictly increasing on (a,b) if f (x) < f (y)
whenever a < x < y < b. Similarly, we define decreasing and strictly decreasing
functions. All of these functions are called monotone.

Sometimes, monotone increasing and monotone decreasing are used as syn-
onyms for increasing and decreasing.

5.7.2. PROPOSITION. If f is an increasing function on the interval (a,b),
then the one-sided limits of f exist at each point c ∈ (a,b), and

lim
x→c−

f (x)≤ f (c)≤ lim
x→c+

f (x).

For decreasing functions, the inequalities are reversed.

PROOF. Consider the case of f increasing. The set F = { f (x) : a < x < c} is a
nonempty set of real numbers bounded above by f (c). Hence L = supa<x<c f (x)
is defined by the Least Upper Bound Principle (2.3.3), and L ≤ f (c). Let ε > 0.
Since L− ε is not an upper bound for F , there is a point x0 with a < x0 < c such
that f (x0) > L− ε . Hence for all x0 < x < c, we have L− ε < f (x0)≤ f (x)≤ L. It
follows that limx→c− f (x) = L≤ f (c).

The limit from the right and the decreasing case are handled similarly. �

For brevity, we use f (x+) for lim
x→c+

f (x) and f (x−) for lim
x→c−

f (x) in this section.

5.7.3. COROLLARY. The only type of discontinuity that a monotone function
on an interval can have is a jump discontinuity.
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PROOF. If f (x−) = f (x+), then lim
x→c

f (x) exists and equals f (c), so f is continuous

at c. If f (x−) < f (x+), f has a jump disconinuity at c, by the definition. �

5.7.4. COROLLARY. If f is a monotone function on [a,b] and the range of f
intersects every nonempty open interval in [ f (a), f (b)], then f is continuous.

PROOF. Suppose that f is increasing and has a jump discontinuity at c, i.e.,
f (c−) < f (c+). Then the range of f intersects the interval ( f (c−), f (c+)) in a sin-
gle point, f (c). Thus either ( f (c−), f (c)) or ( f (c), f (c+)) is a nonempty interval
in [ f (a), f (b)] that is disjoint from the range of f . Consequently, if the range of f
meets every open interval in [ f (a), f (b)], then f must be continuous. �

Here is a stronger conclusion.

5.7.5. THEOREM. A monotone function on [a,b] has at most countably many
discontinuities.

PROOF. Assume f is increasing, and let D = f (b)− f (a). Define the jump of f at
x to be J(x) = f (x+)− f (x−). When J(x) > 0, f is discontinuous at x and J(x) is
the length of the gap ( f (x−), f (x+)) in the range of f . These intervals are disjoint;
hence the sum of all the jumps is at most D.

Let Nk be the number of discontinuities with J(x) ≥ 2−k. Then 2−kNk ≤ D or
Nk ≤ 2kD < ∞. Therefore

{x : J(x) > 0}=
⋃
k≥0

{x : J(x)≥ 2−k}

is a countable union of finite sets, and hence is countable by Corollary 2.9.6. �

A strictly monotone function is one-to-one, and so has an inverse function.

5.7.6. THEOREM. Let f be a continuous strictly increasing function on [a,b].
Then f maps [a,b] one-to-one and onto [ f (a), f (b)]. The inverse function f−1 is
also continuous and strictly increasing.

PROOF. Since f is strictly increasing, it is clearly one-to-one. Since f is monotone,
f (a) < f (x) < f (b) on (a,b). By the Intermediate Value Theorem (5.6.1), the range
of f contains [ f (a), f (b)]. So f maps [a,b] one-to-one and onto [ f (a), f (b)].

Let g be the inverse function. Suppose that f (a)≤ s < t ≤ f (b), and let x = g(s)
and y = g(t). Then x < y because f (x) = s < t = f (y). Hence g is strictly increasing.
The range of g is [a,b]. Thus by Corollary 5.7.4, g is continuous. �

5.7.7. EXAMPLE. Consider the function tanx. This function has period π , so
clearly it is not monotone. However, it is monotone on subintervals of its range.
A natural choice is the interval (−π/2,π/2). Note that tanx is strictly increasing
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on this interval and that limx→−π/2+ tanx =−∞ and limx→π/2− tanx = +∞. So tanx
maps (−π/2,π/2) one-to-one and onto R. The inverse function arctan is the unique
function that assigns to each real y the value x ∈ (−π/2,π/2), satisfying tanx = y.
In particular, lim

y→+∞
arctan(y) = π/2 and lim

y→−∞
arctan(y) =−π/2.

5.7.8. EXAMPLE. We construct a function associated to the Cantor set known
as the Cantor function. Recall from Example 4.4.8 that the Cantor set is constructed
by successively removing the middle thirds from the unit interval and obtaining
the set as the intersection of the sets Sk obtained from this procedure. We define a
function on [0,1] as follows. Set f (0) = 0 and f (1) = 1; next set f (x) = 1/2 on
[1/3,2/3]; then f (x) = 1/4 on [1/9,2/9] and 3/4 on [7/9,8/9]; and so on.

x1

y
1

0

FIG. 5.8 An approximation to the Cantor function.

We can understand this function using ternary (base 3) expansions. Write a num-
ber in [0,1] in base 3 as x = (0.x1x2x3 . . .)base 3 = ∑k≥1 3−kxk, where each xi belongs
to {0,1,2}. If k ≥ 1 is the smallest integer with xk = 1, the point x belongs to one
of the 2k − 1 closed intervals on which f is assigned a value of the form m/2k.
More precisely, if x = (0.x1 . . .xk−11xk+1 . . .)base 3, where xi ∈ {0,2} for 1 ≤ i < k,
we set f (x) = (0. x1

2 . . .
xk−1

2 1000 . . .)base 2. For the remaining points in C that have a
ternary expansion using only 0’s and 2’s, we have f (x) = (0. x1

2 . . . xk
2 . . .)base 2. The

restriction of f to C was considered in Example 4.4.8 in order to show that C was
very large. Some numbers have two ternary expansions. Rather than verify that both
expansions lead to the same function value (which they do), we merely choose the
expansion that contains a 1. This leads to a well-defined function.

Clearly f is increasing. The range of f contains all numbers of the form m/2k

for 0 ≤ m ≤ 2k. Since these are dense in [0,1] = [ f (0), f (1)], the range of f has no
gaps. So f is continuous by Corollary 5.7.4.
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Note that f is constant on each interval removed from C. So the function has a
rather flat appearance. It follows that f (C) = [0,1]. This function f provides another
way to show that the cardinality of C is the same as that of the real line.

Exercises for Section 5.7

A. Let f and g be decreasing functions defined on R.

(a) Is the composition c(x) = f (g(x)) monotone?
(b) Is the sum s(x) = f (x)+g(x) monotone?
(c) Is the product p(x) = f (x)g(x) monotone?

B. Show that if f is continuous on [0,1] and one-to-one, then it is monotone.

C. What is the inverse function of f (x) = x2 on (−∞,0]?

D. (a) Show that the restriction f of cosx to [0,π] has an inverse function, and graph them both.
(b) Why do we choose the interval [0,π]?
(c) Let g be the restriction of cosx to [3π,4π]. What is the relationship between f−1 and g−1?

E. Show that the cubic f (x) = ax3 + bx2 + cx + d, with a 6= 0, is one-to-one and thus has an
inverse function if and only if 3ac≥ b2. HINT: Compute the derivative and its discriminant.

F. Verify that the formula for the Cantor function in terms of the ternary expansion yields the
same answer for both expansions of a point x when two expansions exist.

G. Define f on S = [0,1]∪ (2,3] by f (x) =

{
x for 0≤ x≤ 1,

x−1 for 2 < x≤ 3.

(a) Show that f is continuous and strictly increasing on S.
(b) Show that f maps S one-to-one and onto [0,2].
(c) Show that f−1 is not continuous.
(d) Why is this not a contradiction to Theorem 5.7.6?

H. For x∈ [0,1], express it as a decimal x = x0.x1x2x3 . . . . Use a finite decimal expansion without
repeating 9’s when there is a choice. Then define a function f by f (x) = x0.0x10x20x3 . . . .

(a) Show that f is strictly increasing.
(b) Compute limx→1− f (x).
(c) Show that limx→a+ f (x) = f (a) for 0≤ a < 1.
(d) Find all discontinuities of f .



Chapter 6
Differentiation and Integration

In this chapter, we examine the mathematical foundations of differentiation and in-
tegration. The theorems of this chapter are useful not only to make calculus work
but also for studying functions in many other contexts. We do not spend any time on
the important applications that typically appear in courses devoted to calculus, such
as optimization problems. Rather we will highlight those aspects that either depend
on or apply to results in real analysis.

Since we assume that the reader has already seen calculus, we dive right in with
key definitions, assuming that the motivating examples are familiar.

6.1 Differentiable Functions

6.1.1. DEFINITION. A real-valued function f : (a,b)→R is differentiable at
a point x0 ∈ (a,b) if

lim
h→0

f (x0 +h)− f (x0)
h

= lim
x→x0

f (x)− f (x0)
x− x0

exists. In this case, we write f ′(x0) for this limit.
If a function is defined on a closed interval [a,b], then we say it is differentiable

at a or b if the appropriate one-sided limit exists. The function f is differentiable
on an interval [a,b] if it is differentiable at each point x0 in the interval.

When f is differentiable at x0, we define the tangent line to f at x0 to be the
linear function T (x) = f (x0)+ f ′(x0)(x− x0). See Figure 6.1.

The phrase linear function has two different meanings. In linear algebra, a linear
function is one satisfying f (αx + βy) = α f (x) + β f (y); but in calculus, a linear
function is one whose graph is a line f (x) = mx+b.

An immediate consequence of differentiability is continuity.
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x

y

a

y = f (x)

y = T (x)

FIG. 6.1 The tangent line T to f at a.

6.1.2. PROPOSITION. If f : (a,b)→ R is differentiable at x0 ∈ (a,b), then it
is continuous at x0. So every differentiable function is continuous.

PROOF. We compute

lim
x→x0

f (x) = lim
x→x0

f (x0)+(x− x0)
f (x)− f (x0)

x− x0
= f (x0)+0 f ′(x0) = f (x0).

�

When f is differentiable at x0, the tangent line T passes through the point
(x0, f (x0)) with slope f ′(x0). In fact, T (x) is the best linear approximation to f (x)
for x very close to x0.

6.1.3. LEMMA. Let f be a function on (a,b) that is differentiable at x0. Let T
be the tangent line to f at x0. Then T is the unique linear function with the property
that

lim
x→x0

f (x)−T (x)
x− x0

= 0.

PROOF. First we compute the limit by substituting h = x− x0,

lim
x→x0

f (x)−T (x)
x− x0

= lim
h→0

(
f (x0 +h)− f (x0)

)
− f ′(x0)h

h
= f ′(x0)− f ′(x0) = 0.

If another linear function L(x) satisfies this limit, then by continuity,

f (x0)−L(x0) = lim
x→x0

f (x)−L(x) = lim
x→x0

(x− x0)
f (x)−L(x)

x− x0
= 0.

So L(x) = f (x0)+m(x− x0), where m is its slope, and
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m = L′(x0) = lim
h→0

L(x0+h)− f (x0+h)
h

+
f (x0+h)− f (x0)

h
= f ′(x0).

Thus the line L passes through the point (x0, f (x0)) and has the same slope as T .
Consequently, L = T . �

An immediate consequence is that the tangent line is a good approximant to f
near x0 in the sense of (2) in Corollary 6.1.4.

6.1.4. COROLLARY. For f : (a,b) → R and x0 ∈ (a,b), the following are
equivalent:

(1) f is differentiable at x0.
(2) There are functions T and ε on (a,b) such that f (x) = T (x) + ε(x)(x− x0),

where T is linear, ε is continuous at 0, and ε(0) = 0.
(3) There is a function ϕ on (a,b) such that f (x) = f (x0)+ϕ(x)(x− x0), where ϕ

is continuous at x0.

If these hold, then in (2), T is the tangent line, and in (3), ϕ(x0) = f ′(x0).
Moreover, if f is continuous on (a,b), then so are ε and ϕ .

PROOF. Clearly, we must define ε(x) = f (x)−T (x)
x−x0

and ϕ(x) = f (x)− f (x0)
x−x0

for x 6= x0.
Set ε(x0) = 0 and ϕ(x0) = f ′(x0). Lemma 6.1.3 shows that (1) and (2) are equivalent
and that T is the tangent line. Thus if (2) holds, then ϕ(x) = f ′(x0)+ ε(x) satisfies
f (x) = f (x0)+ϕ(x)(x−x0) and lim

x→x0
ϕ(x) = f ′(x0). So (3) holds. Conversely, if (3)

holds, then T (x) = f (x0)+ϕ(x0)(x− x0), ε(x) = ϕ(x)−ϕ(x0) satisfy (2). �

6.1.5. EXAMPLES. The prototypical example of a continuous function that is
not differentiable everywhere is f (x) = |x|. It is differentiable except at x = 0. Here
it has left and right derivatives±1. Since this function comes to a point at the origin,
it is intuitively clear that no straight line is a good approximant near x = 0.

A more subtle example is g(x) = 3
√

x; see Figure 6.2 (a). This has derivative
g′(x) = x−2/3/3 for x 6= 0. And at x = 0, lim

h→0

g(h)−g(0)
h = lim

h→0
h−2/3 = +∞. This

function is not differentiable because it has a vertical tangent at the origin.
A related example is the function h(x) =

√
|x|; see Figure 6.2 (b). This function

has a cusp, with right derivative +∞ and left derivative −∞.

The familiar differentiation rules like (α f + βg)′(x) = α f ′(x)+ βg′(x) and the
product rule, ( f g)′(x) = f ′(x)g(x)+ f (x)g′(x), are left as exercises. The chain rule
is more subtle, so we provide a proof.

6.1.6. THE CHAIN RULE.
Suppose that f : [a,b] → [c,d] is differentiable at x0 ∈ [a,b] and g : [c,d] → R is
differentiable at f (x0). Then the composition h = g ◦ f is differentiable at x0, and
h′(x0) = g′( f (x0)) f ′(x0).
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FIG. 6.2 (a) The graph of y = 3
√

x. (b) The graph of y =
√
|x|.

PROOF. Using Corollary 6.1.4 part (3), write f (x) = f (x0)+ ϕ(x)(x− x0), where
ϕ(x0) = f ′(x0). Similarly, we can write g(y) = g( f (x0))+ ψ(y)(y− f (x0)), where
ψ( f (x0)) = g′( f (x0)). Then

h(x) = g( f (x0))+ψ( f (x))( f (x)− f (x0)) = g( f (x0))+ψ( f (x))ϕ(x)(x− x0).

Since x 7→ ψ( f (x))ϕ(x) is continuous at x0 (being a composition and product of
maps continuous at x0), Corollary 6.1.4 implies that h is differentiable at x0 and
h′(x0) = ψ( f (x0))ϕ(x0) = g′( f (x0)) f ′(x0). �

We use the chain rule to compute the derivatives of inverse functions. One issue
is that a zero derivative results in a vertical tangent in the inverse function. For
example, g(x) = x3 has g′(0) = 0. The inverse g−1(y) = 3

√
y has a vertical tangent

line at y = 0. See Figure 6.2 (a).

6.1.7. THEOREM. Suppose f : (a,b)→ R is continuous and one-to-one. If f
is differentiable at x0 and f ′(x0) 6= 0, then f−1 is differentiable at y0 = f (x0) and

( f−1)′(y0) =
1

f ′( f−1(y0))
=

1
f ′(x0)

.

PROOF. Since f is differentiable at x0, use Corollary 6.1.4 to obtain a continuous
function ϕ on (a,b) such that ϕ(x0) = f ′(x0) 6= 0 and f (x) = f (x0) + ϕ(x)(x−
x0). For x ∈ (a,b), setting y = f (x) yields x = f−1(y). In particular, x0 = f−1(y0).
Therefore y = y0 +ϕ( f−1(y))( f−1(y)− f−1(y0)). Solving for f−1(y) gives

f−1(y) = f−1(y0)+
1

ϕ( f−1(y))
(y− y0), (6.1.8)

provided ϕ( f−1(y)) 6= 0. Now ϕ( f−1(y0)) = f ′( f−1(y0)) = f ′(x0) 6= 0 and f−1 is
continuous. So there is an interval around y0 where ϕ( f−1(y)) is nonzero, which
follows from Exercise 5.1.G. Thus, (6.1.8) makes sense in this interval. Invoking
Corollary 6.1.4 again yields the conclusion. �
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6.1.9. EXAMPLE. There are functions that are differentiable but do not have a
continuous derivative. Let a > 0. Consider f (x) = xa sin(1/x) for x > 0 and f (0) = 0.
This is evidently continuous R \ {0}. Since |sin(1/x)| ≤ 1 and lim

x→0+
xa = 0, the

Squeeze Theorem (2.4.6) shows that f is also continuous at x = 0.
Consider the derivative of f . For x > 0, we invoke the product and chain rules to

compute f ′(x) = axa−1 sin(1/x)− xa−2 cos(1/x). At x = 0,

f ′(0) = lim
h→0+

ha sin(1/h)
h

= lim
h→0+

ha−1 sin(1/h).

If a > 1, the Squeeze Theorem yields f ′(0) = 0, while for a ≤ 1, the values of
ha−1 sin(1/h) oscillate wildly, and the limit does not exist.

So for 0 < a ≤ 1, f is continuous but not differentiable at x = 0. Our interest is
in the values 1 < a≤ 2. Here, f (x) is differentiable at every point but the derivative
is wildly discontinuous at x = 0. So a function may be differentiable but not C1.

Exercises for Section 6.1

A. If functions f ,g are differentiable at x0, prove that (α f +βg)′(x0) = α f ′(x0)+βg′(x0).

B. If f is differentiable at x0 and a ∈ R, show that lim
h→0

f (x0+ah)− f (x0)
h = a f ′(x0).

C. Explain what goes wrong with the proof of Proposition 6.1.2 if f is not differentiable.

D. Let f and g be differentiable functions on (a,b). Suppose there is a point x0 in (a,b) with
f (x0) = g(x0) and f (x)≤ g(x) for a < x < b. Prove that f ′(x0) = g′(x0).

E. Show that the derivative of an even function is odd, and the derivative of an odd function is
even. Recall that a function f is even if f (−x) = f (x) and is odd if f (−x) =− f (x).

F. Prove the product rule for functions f and g on [a,b] that are differentiable at x0.
HINT: f (x0+h)g(x0+h)− f (x0)g(x0) =

(
f (x0+h)− f (x0)

)
g(x0+h)+ f (x0)

(
g(x0+h)−g(x0)

)
.

G. For each positive integer n, give a function that is Cn but not Cn+1. HINT: Example 6.1.9.

H. Prove the quotient rule: ( f /g)′(x0) = f ′(x0)g(x0)− f (x0)g′(x0)
g(x0)2 for f and g differentiable at x0

provided g(x0) 6= 0. HINT: Let h = f /g and use the product rule on f = gh.

I. Say that f is right-differentiable at x0 if f ′(x0+) := lim
h→0+

[ f (x0 +h)− f (x0)]/h exists.

(a) Define left-differentiable at x0 and assign a meaning to f ′(x0−).
(b) Show that f is differentiable at x0 if and only if it is both left-differentiable and right-

differentiable at x0 and f ′(x0+) = f ′(x0−).

J. Find left and right derivatives of f (x) =
√

1− sinx at every point. Where does f fail to be
differentiable?

K. Suppose f : [a,b]→ R is differentiable on (a,b) and continuous on [a,b]. Does it follow that
f is right-differentiable at a and left-differentiable at b?

L. Find several things wrong with the formula ( f−1)′ = 1/ f ′. Which is the most egregious?

M. The function sinx is 2π-periodic and consequently is definitely not one-to-one.
(a) How do we define the inverse function arcsiny?
(b) How does the choice you make in part (a) affect the graph of arcsiny? What is the effect

on the derivative?
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N. If f is periodic with period T , show that f ′ is also T -periodic.

O. A function f (x) is asymptotic to a curve c(x) as x→+∞ if lim
x→+∞

| f (x)− c(x)|= 0.

(a) Show that if f (x) is asymptotic to a line L(x) = ax+b as x→+∞, then a = lim
x→+∞

f (x)
x and

b = lim
x→+∞

f (x)−ax. (As usual, this includes showing that the limits exist.)

(b) Find all of the asymptotes (including horizontal and vertical ones) for f (x) = (x−2)3

(x+1)2 .
Sketch the graph.

P. Sketch the curve f (x) = xe−
5
x−

2
x2 for x 6= 0. Pay attention to the (a) asymptotic behaviour at

±∞, (b) all critical points, (c) limits of f and f ′ at 0, and (d) points of inflection.

Q. Sketch the curve f (x) = (logx)2+4logx
(1+logx)2 for x > 0. Pay attention to (a) points where f is zero or

undefined, (b) limits of f and f ′ at 0+, (c) all asymptotes and local extrema, and (d) indicate
all points of inflection on the graph, but do not compute the second derivative.

R. Establish the Leibniz formula that the nth derivative of a product f (x)g(x) is given by
∑

n
k=0
(n

k

)
f (k)(x)g(n−k)(x). HINT: Use induction.

S. (a) Suppose that g is continuous at x = 0. Prove that f (x) = xg(x) is differentiable at x = 0.
(b) Conversely, suppose that f (0) = 0 and f is differentiable at x = 0. Prove that there is a

function g that is continuous at x = 0 and satisfies f (x) = xg(x).

6.2 The Mean Value Theorem

The Mean Value Theorem is a fundamental approximation result of differential cal-
culus. The proof depends on the Extreme Value Theorem, putting a valid proof
beyond many calculus courses. The starting point is the following basic result on
which all of calculus relies—the location of possible extrema. Simply stated, ex-
trema of a continuous function occur at the endpoints or at critical points, where the
derivative is either undefined or equal to 0. This result has been credited to Fermat.

6.2.1. FERMAT’S THEOREM.
Let f : [a,b]→R be a continuous function that takes its maximum or minimum value
at a point x0 ∈ (a,b). If f is differentiable at x0, then f ′(x0) = 0.

PROOF. For convenience, assume that x0 is a maximum. Since f (x0 +h)− f (x0)≤
0, the limits from the left and right yield

f ′(x0) = lim
h→0+

f (x0 +h)− f (x0)
h

≤ 0≤ lim
h→0−

f (x0 +h)− f (x0)
h

= f ′(x0).
�

6.2.2. MEAN VALUE THEOREM.
Suppose that f is a function that is continuous on [a,b] and differentiable on (a,b).
Then there is a point c ∈ (a,b) such that

f ′(c) =
f (b)− f (a)

b−a
.
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This theorem provides a connection between the derivative of the function and
its average slope. Figure 6.3 shows the theorem graphically.

x

y

a bc

FIG. 6.3 Graph for the Mean Value Theorem.

PROOF. First we prove a special case known as Rolle’s Theorem. Assume that
f (a) = f (b) = 0. If the maximum value and minimum value of f are both 0, then
f is constant and f ′(c) = 0 for every c ∈ (a,b). Otherwise, either the maximum is
greater than 0 or the minimum is less. For convenience, assume the former.

By the Extreme Value Theorem (5.4.4), there is a point c at which f attains its
maximum value. Evidently, c is an interior point. So by Fermat’s Theorem, we have
f ′(c) = 0, which happens to equal ( f (b)− f (a))/(b−a).

Now a rescaling trick yields the general result. Let L(x) be the linear function
through (a, f (a)) and (b, f (b)), i.e., L(x) = f (a)+

(
( f (b)− f (a))/(b−a)

)
(x− a).

Consider the function g(x) = f (x)− L(x). Then g is continuous on [a,b] and dif-
ferentiable on [a,b], since f and L are. Moreover, g(a) = g(b) = 0. So by Rolle’s
Theorem, there is a point c ∈ (a,b) at which

0 = g′(c) = f ′(c)− f (b)− f (a)
b−a

.

This is the desired point. �

6.2.3. EXAMPLE. Differentiability is necessary at every interior point for the
Mean Value Theorem to be valid. The continuous function f (x) = 1−|x| on [−1,1]
satisfies f (1) = f (−1) = 0, but it does not have any point at which f ′(x) = 0. Of
course, the only point where f is not differentiable is x = 0, but this is where the
maximum occurs, and so Fermat’s Theorem cannot be applied.

The first important consequence is used repeatedly in calculus arguments.
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6.2.4. COROLLARY. Let f be a differentiable function on [a,b].

(1) If f ′ is (strictly) positive, then f is (strictly) increasing.
(2) If f ′ is (strictly) negative, then f is (strictly) decreasing.
(3) If f ′(x) = 0 at every x ∈ (a,b), then f is constant.

PROOF. We prove only (1). For any a≤ x < y≤ b, apply the Mean Value Theorem
on [x,y] to obtain a point c in between such that f (y)− f (x) = f ′(c)(y− x). Since
f ′(c) ≥ 0, we deduce that f (y)− f (x) ≥ 0 and so f is increasing. If f ′ is strictly
positive, then the same argument yields a strict inequality. �

6.2.5. EXAMPLE. We show how the Mean Value Theorem may be used to ob-
tain useful approximations. Consider f (x) = sinx on [0,π/2]. For any x ∈ (0,π/2],
we may apply the theorem on [0,x] to find a point c with 0 < c < x such that

f (x)− f (0)
x−0

=
sinx

x
= f ′(c) = cosc < 1.

Thus we obtain the well-known inequality sinx < x for 0 < x ≤ π/2. It is evidently
valid for x > π/2 as well. Now consider g(x) = 1−x2/2−cosx. Applying the Mean
Value Theorem again, we obtain a (different) point c such that

g(x)−g(0)
x−0

=
1− x2/2− cosx

x
= g′(c) = sinc− c < 0.

So cosx > 1− x2/2 on 0 < x ≤ π/2. Next consider h(x) = sinx− x + x3/6. Once
again, apply the Mean Value Theorem on [0,x] with 0 < x≤ π/2:

sinx− x+ x3/6
x

= h′(c) = cosc−1+
c2

2
> 0.

Hence x− x3/6 < sinx < x on (0,π/2].

Many functions that occur in practice can be differentiated several times. We
define the higher-order derivatives recursively by f (n+1)(x) =

(
f (n))′(x), assuming

that f (n) turns out to be differentiable.
It stands to reason that information about higher-order derivatives should add to

our information about the behaviour of the function f . The simplest example is the
sign of the second derivative. If f ′′(x) ≥ 0 on [a,b], then the derivative f ′(x) is in-
creasing. Thus the graph of f curves upward (even if f ′(x) < 0) and f is said to
be convex or concave up. See Exercise 6.2.L. Likewise, if f ′′(x) ≤ 0, then f ′ is
decreasing and f curves downward. Such functions are called concave or concave
down. Points at which f ′′(x) changes sign are called inflection points to indicate
that the curvature of the graph changes direction. These points are easily identified
by eye, since these are points where the tangent line “crosses” the graph of the func-
tion. Changes in higher derivatives are more subtle, and not so easily recognized.
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Exercises for Section 6.2
A. If f and g are differentiable on [a,b] and f ′(x) = g′(x) for all a < x < b, show that g(x) =

f (x)+ c for some constant c.

B. Suppose that f : (a,b) → R has a continuous derivative on (a,b). If f ′(x0) 6= 0, prove that
there is an interval (c,d) 3 x0 such that f is one-to-one on (c,d).

C. If f is strictly increasing on [a,b], is f ′(x) > 0 for all x ∈ (a,b)?

D. Suppose that f is C3 on (a,b), and f has four zeros in (a,b). Show that f (3) has a zero.

E. Extend Example 6.2.5 to show that 1− x2/2 < cosx < 1− x2/2+ x4/24 on (0,π/2].

F. (a) Show that tanx > x+ x3

3 + 2x5

15 for 0 < x < π

2 .
(b) Show that tanx < x+ x3

3 + 2x5

5 for 0 < x < 1.

G. Suppose that f is continuous on an interval [a,b] and is differentiable at all points of (a,b)
except possibly at a single point x0 ∈ (a,b). If lim

x→x0
f ′(x) exists, show that f ′(x0) exists and

f ′(x0) = lim
x→x0

f ′(x). HINT: Consider the intervals [x0,x0 +h] and [x0−h,x0].

H. (a) Show that the error between a differentiable function f (x) on [a,b] and its tangent line
T (x) at a satisfies | f (x)−T (x)| ≤C|x−a|, where C = supa≤y≤x | f ′(y)− f ′(a)|.

(b) If f is C2, refine this estimate to | f (x)−T (x)| ≤ D|x−a|2, where D = supa≤y≤x | f ′′(y)|.

I. (a) Let f (x) = x2 sin(1/x) for x 6= 0 and f (0) = 0 as in Example 6.1.9. Show that 0 is a critical
point of f that is not a local maximum nor a local minimum nor an inflection point.

(b) Let g(x) = 2x2 + f (x). Show that g does have a global minimum at 0, but g′(x) changes
sign infinitely often on both (0,ε) and (−ε,0) for any ε > 0.

(c) Let h(x) = x+2 f (x). Show that h′(0) > 0 but h is not monotone increasing on any interval
including 0.

J. Suppose g ∈C1[a,b]. Prove that for all ε > 0, there is δ > 0 such that
∣∣g′(c)− g(d)−g(c)

d−c

∣∣< ε

for all points c,d ∈ [a,b] with 0 < |d− c|< δ . HINT: Use the uniform continuity of g′.

K. Suppose that f is differentiable on [a,b] and f ′(a) < 0 < f ′(b).

(a) Show that there are points a < c < d < b such that f (c) < f (a) and f (d) < f (b).
(b) Show that the minimum on [a,b] occurs at an interior point.
(c) Hence show that there is a point x0 in (a,b) such that f ′(x0) = 0.
(d) Prove Darboux’s Theorem: If f is differentiable on [a,b] and f ′(a) < L < f ′(b), then

there is a point x0 in (a,b) at which f ′(x0) = L.

L. A function f is convex on [a,b] if f (tx+(1−t)y)≤ t f (x)+(1−t) f (y) for all x,y∈ [a,b] and
all t ∈ [0,1]; i.e., the graph of f lies below the line segment joining (x, f (x)) and (y, f (y)).

(a) If f is differentiable on [a,b] and f ′ is increasing, then f is convex on [a,b].
HINT: If x < y and z = tx+(1− t)y, apply the Mean Value Theorem to [x,z] and [z,y].

(b) If f ∈C2[a,b] and x0 ∈ [a,b] such that f ′′(x0) > 0, prove that f is convex in an interval
about x0.

(c) If f ∈C2[a,b] and f ′′(x)≥ 0 for all x ∈ (a,b), show that f is convex on [a,b].

M. Suppose that f is differentiable on [0,∞) and f ′ is strictly increasing.

(a) Show that f ′(x) is continuous.
(b) Suppose that f (0) = 0. Set g(0) = f ′(0) and g(x) = f (x)/x for x > 0. Show that g is

continuous and strictly increasing.

N. (a) Suppose that f is a continuous function on R such that lim
h→0

f (x+h)− f (x−h)
h = 0 for every

x ∈ R. Prove that f is constant.
(b) Find a discontinuous function f on R such that lim

h→0

f (x+h)− f (x−h)
h = 0 for every x ∈ R.
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6.3 Riemann Integration

We turn now to integration. A crucial point is that the notion of derivative is not
used. An integral is defined as a limit related to area, not as an antiderivative. In the
next section, we establish the Fundamental Theorem of Calculus, which shows that
integration and differentiation are, in some sense, inverse operations.

Riemann’s idea is simple and geometric: partition the interval into a number of
smaller subintervals, approximate f above and below by functions that are constant
on each subinterval, and the region bounded by f is approximated above and be-
low by the union of a number of rectangles. The areas of these upper and lower
approximations are called upper and lower sums of the partition. For a ‘reasonable’
function, these upper and lower estimates will converge to a common value as the
partition is made finer and finer, called the integral of f from a to b.

6.3.1. DEFINITION. Let f be a bounded function defined on an interval [a,b].
A partition of [a,b] is a finite set P = {a = x0 < x1 < · · ·< xn−1 < xn = b}. Define
∆ j = x j − x j−1. The mesh of P is defined as mesh(P) = max{∆ j : 1 ≤ j ≤ n}. On
each interval [x j−1,x j] of P, define the maximum and minimum of f by

Mj( f ,P) = sup{ f (x) : x j−1 ≤ x≤ x j}, m j( f ,P) = inf{ f (x) : x j−1 ≤ x≤ x j}.

Then define the upper and lower sums of f with respect to the partition P by

U( f ,P) =
n

∑
j=1

Mj( f ,P)∆ j and L( f ,P) =
n

∑
j=1

m j( f ,P)∆ j.

For a partition P, we call X = (x′1,x
′
2, . . . ,x

′
n), with x′j ∈ [x j−1,x j], an evaluation

sequence for P. The associated Riemann sum is I( f ,P,X) =
n
∑
j=1

f (x′j)∆ j.

A partition R is a refinement of a partition P if P ⊂ R. If P and Q are two
partitions, then R is a common refinement of P and Q if P∪Q⊂ R.

Figure 6.4 illustrates upper and lower sums. We always have

L( f ,P)≤ I( f ,P,X)≤U( f ,P).

6.3.2. LEMMA. If P and Q are partitions of [a,b], then L( f ,P)≤U( f ,Q).

PROOF. First suppose that R is a refinement of P. Each interval [x j−1,x j] of P may
be subdivided further by R into x j−1 = tk < · · ·< tl = x j. Hence for k +1≤ i≤ l,

m j( f ,P) = inf
x j−1≤x≤x j

f (x)≤ inf
ti−1≤t≤ti

f (t) = mi( f ,R).
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x

y

a = x0 x1 x2 x3 x4 x5 x6 = b

FIG. 6.4 Example of upper and lower sums.

Thus m j( f ,P)(x j−x j−1)≤
l
∑

i=k+1
mi( f ,R)(ti− ti−1). Summing over all the intervals

of P yields L( f ,P)≤ L( f ,R). Similarly, U( f ,R)≤U( f ,P).
Now consider two arbitrary partitions P and Q. Let R = P∪Q, which refines both

P and Q. Then L( f ,P)≤ L( f ,R)≤U( f ,R)≤U( f ,Q). �

In particular, we see that the set of numbers {L( f ,P)} is bounded above by
any U( f ,Q). Hence by the completeness of R, supP L( f ,P) is defined. Moreover,
supP L( f ,P)≤U( f ,Q) for every partition Q. Therefore, infP U( f ,P) is defined and
supP L( f ,P)≤ infP U( f ,P).

6.3.3. DEFINITION. Define L( f ) = supP L( f ,P) and U( f ) = infP U( f ,P). As
noted, L( f ) ≤U( f ). A bounded function f on [a,b] is called Riemann integrable
if L( f ) = U( f ). In this case, we write

∫ b
a f (x)dx for the common value.

We establish Riemann’s Condition for integrability, which follows easily from
our definition.

6.3.4. RIEMANN’S CONDITION.
Suppose f : [a,b]→ R is bounded. Then f is Riemann integrable if and only if for
each ε > 0, there is a partition P of [a,b] such that U( f ,P)−L( f ,P) < ε .

PROOF. Assume that the ε condition holds. For an ε > 0, there is P such that

L( f ,P)≤ L( f )≤U( f )≤U( f ,P).

Hence 0≤U( f )−L( f )≤U( f ,P)−L( f ,P) < ε for each ε > 0. So U( f ) = L( f ).
If f is Riemann integrable, let L = L( f ) = U( f ). Let ε > 0. We can find two

partitions P1 and P2 such that U( f ,P1) < L + ε/2 and L( f ,P2) > L− ε/2. Let P be
their common refinement, P1∪P2. By Lemma 6.3.2,
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L− ε

2
< L( f ,P)≤U( f ,P) < L+

ε

2
,

and so U( f ,P)−L( f ,P) < ε , as required. �

A typical choice is the uniform partition P = {a+ j(b−a)/n : 0≤ j ≤ n}. But it
is sometimes convenient to choose a partition better suited to the function.

6.3.5. EXAMPLE. Consider the function f (x) = xp on [a,b], where p 6=−1 and
0 < a < b. Take the partition Pn = {a=x0 <x1 < · · ·<xn =b}, where x j = a(b/a) j/n

for 0 ≤ j ≤ n. To keep the notation under control, let R = (b/a)1/n. So, x j = aR j

and ∆ j = x j − x j−1 = aR j−1(R− 1). Since f is monotone increasing when p ≥ 0,
we easily compute

m j( f ,Pn) = xp
j−1 = apRp( j−1) and Mj( f ,Pn) = xp

j = apRp j = Rpm j( f ,Pn).

When p < 0, m j and Mj are reversed. The details of this case are left to the reader.
So for p > 0, we have U( f ,Pn) = RpL( f ,Pn) and

L( f ,Pn) =
n

∑
j=1

m j( f ,Pn)∆ j =
n

∑
j=1

apRp( j−1)aR j−1(R−1) = ap+1(R−1)
n−1

∑
j=0

R(p+1) j.

Summing the geometric series and rearranging, we have

L( f ,Pn) = (R−1)
(aRn)p+1−ap+1

Rp+1−1
= (bp+1−ap+1)

R−1
Rp+1−1

.

To show the role of n clearly, we set r = b/a and h = 1/n, so that R = r1/n = rh.
The key is to recognize the limit as the quotient of two derivatives:

lim
n→∞

r1/n−1
r(p+1)/n−1

= lim
h→0

rh−1
h

h
r(p+1)h−1

=
d
dx (r

x)(0)
d
dx (r

(p+1)x)(0)
=

logr
(p+1) logr

=
1

p+1
.

Hence lim
n→∞

L( f ,Pn) = (bp+1−ap+1)/(p+1).

Since U( f ,Pn) = (a/b)p/nL( f ,Pn) has the same limit, we conclude that

bp+1−ap+1

p+1
≤ L( f )≤U( f )≤ bp+1−ap+1

p+1
.

So this function is Riemann integrable with
∫ b

a xp dx = (bp+1−ap+1)/(p+1).

Next, we give two variations on Riemann’s Condition. Condition (3) is a “δ–ε”
formulation of integrablility. Condition (4) below shows that for suitable partitions
we can use the Riemann sum for arbitrarily chosen points, instead of finding max-
imum and minimum values. So once f is known to be integrable, there are many
choices of partition or evaluation sequence that ‘work’.
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6.3.6. THEOREM. Let f (x) be bounded on [a,b]. The following are equivalent:

(1) f is Riemann integrable.
(2) For each ε > 0, there is a partition P such that U( f ,P)−L( f ,P) < ε.
(3) For every ε > 0, there is a δ > 0 such that every partition Q with mesh(Q) < δ

satisfies U( f ,Q)−L( f ,Q) < ε.
(4) For every ε > 0, there is a δ > 0 such that every partition Q with mesh(Q) < δ

and every evaluation sequence for Q, X satisfies
∣∣I( f ,Q,X)−

∫ b
a f (x)dx

∣∣< ε .

PROOF. We have verified that (1) and (2) are equivalent. Clearly, (3) implies (2).
Let us prove that (1) implies (3). If f is Riemann integrable, let L = L( f ) =U( f ).

Let ε > 0. We can find two partitions P1 and P2 such that U( f ,P1) < L + ε/4 and
L( f ,P2) > L− ε/4. Let P = P1∪P2 be their common refinement, say with n points.
By Lemma 6.3.2,

L− ε

4 < L( f ,P)≤U( f ,P) < L+ ε

4 .

Let δ = ε/(8n‖ f‖∞), where ‖ f‖∞ = sup{| f (x)| : x ∈ [a,b]}.
Now suppose that Q is any partition with mesh(Q) < δ . Define R = P∪Q to be

the common refinement of P and Q. By Lemma 6.3.2 again, we obtain

L− ε

4 < L( f ,R)≤U( f ,R) < L+ ε

4 .

The intervals of R coincide with the intervals of Q except for at most n−1 intervals
of Q, which are split in two by points of P. Thus in the sums determining L( f ,R)
and L( f ,Q), all terms are the same except for terms from these n−1 intervals. On
each such interval, say [x j−1,x j] = [tl−1, tl ]∪ [tl , tl+1], we have −‖ f‖∞ ≤ f ≤ ‖ f‖∞.
So ml( f ,R)−m j( f ,Q) ≤ 2‖ f‖∞. Adding up the differences over the n− 1 such
intervals of Q, the total can be no more than

L( f ,R)−L( f ,Q)≤ (n−1)2‖ f‖∞ mesh(Q) < 2n‖ f‖∞ε

8n‖ f‖∞
= ε

4 .

Hence L( f ,Q) > L− ε

2 . Likewise, U( f ,Q) < L+ ε

2 . So U( f ,Q)−L( f ,Q) < ε .
To see that (3) implies (4), fix a partition Q satisfying (3) and an evaluation

sequence X . Then L( f ,Q)≤ I( f ,Q,X)≤U( f ,Q) < L( f ,Q)+ε. Now we also know
that L( f ,Q)≤

∫ b
a f (x)dx≤U( f ,Q). Hence

∣∣I( f ,Q,X)−
∫ b

a f (x)dx
∣∣< ε.

Conversely, if (4) holds, then every choice of X = (x′1, . . . ,x
′
n) satisfies this in-

equality for ε/3. If x′j satisfy f (x′j) = infx j−1≤x≤x j f (x), then I( f ,Q,X) = L( f ,Q).
Hence

∣∣L( f ,Q)−
∫ b

a f (x)dx
∣∣ < ε/3. If the infimum is not attained, then we can

choose X such that f (x′j) are sufficiently close to this infimum to obtain the in-
equality

∣∣L( f ,Q)−
∫ b

a f (x)dx
∣∣< ε/2. The details are left as an exercise. Similarly,∣∣U( f ,Q)−

∫ b
a f (x)dx

∣∣< ε/2. Hence U( f ,Q)−L( f ,Q) < ε . So (3) holds. �

Using Riemann’s condition, we can now show that many functions are integrable.

6.3.7. THEOREM. Every monotone function on [a,b] is Riemann integrable.
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PROOF. We may assume that f is monotone increasing. Consider the uniform par-
tition P given by x j = a+ j(b−a)

n for 0≤ j ≤ n. Notice that m j( f ,P) = f (x j−1) and
Mj( f ,P) = f (x j). Thus we obtain a telescoping sum

U( f ,P)−L( f ,P) =
n

∑
j=1

f (x j)
b−a

n
−

n

∑
j=1

f (x j−1)
b−a

n
=

(
f (b)− f (a)

)
(b−a)

n
.

For ε > 0, choose n >
(

f (b)− f (a)
)
(b−a)ε−1, so that U( f ,P)−L( f ,P) < ε . This

verifies Riemann’s condition, and therefore f is integrable. �

6.3.8. THEOREM. Every continuous function on [a,b] is Riemann integrable.

PROOF. This result is deeper than the result for monotone functions because we
must use Theorem 5.5.9 to deduce that a continuous function f on [a,b] is uniformly
continuous. Let ε > 0. By uniform continuity, there is a δ > 0 such that for x,y ∈
[a,b] with |x− y| < δ , we have | f (x)− f (y)| < ε/(b− a). Let P be any partition
with mesh(P) < δ . Then for any points x,y in a common interval [x j−1,x j], we
have| f (x)− f (y)|< ε/(b−a). Hence Mj( f ,P)−m j( f ,P)≤ ε/(b−a). Thus,

U( f ,P)−L( f ,P) =
n

∑
j=1

(
Mj( f ,P)−m j( f ,P)

)
∆ j ≤

ε

b−a

n

∑
j=1

∆ j = ε.

Thus Riemann’s condition is satisfied, and f is Riemann integrable. �

6.3.9. EXAMPLE. There do exist functions that are not Riemann integrable.
For example, consider f : [0,1]→ R defined by f (x) = 1 if x ∈ Q and f (x) = 0 if
x /∈ Q. Let P be any partition. Notice that Mj( f ,P) = 1 and m j( f ,P) = 0 for all j.
Thus we see that U( f ,P) = ∑

n
j=1 x j − x j−1 = 1 and L( f ,P) = 0. This holds for all

P. Thus L( f ) = 0 and U( f ) = 1; so f is not Riemann integrable. The reason for this
failure is that f is discontinuous at every point in [0,1].

6.3.10. EXAMPLE. On the other hand, there are discontinuous functions that
are Riemann integrable. The characteristic function χ(.5,1] is Riemann integrable on
[0,1] because it is monotone. However, the discontinuity is rather banal.

Consider f (x) = sin(1/x) on (0,1], and set f (0) = 0. This function has a nasty
discontinuity at the origin, as discussed in Example 5.2.7. See Figure 5.3 on page 75.
Provided the function remains bounded, even a bad discontinuity like this one does
not prevent integrability.

Let ε > 0 be given. We will choose a partition P with x1 = ε/4. Notice that
since f is continuous on [ε/4,1], it is integrable there. Thus there is a partition
Q = {x1 = ε/4 < · · · < xn = 1} of [ε/4,1] with U( f |[x1,1],Q)−L( f |[x1,1],Q) < ε

2 .
Now take P = {0}∪Q as a partition of [0,1]. Then since sin(1/x) oscillates wildly
between ±1 near x = 0, it follows that M1( f ,P) = 1 and m1( f ,P) =−1. So
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U( f ,P) = ε

4 +U( f |[x1,1],Q) and L( f ,P) =− ε

4 +L( f |[x1,1],Q).

Therefore, U( f ,P)−L( f ,P) = ε

2 +U( f |[x1,1],Q)−L( f |[x1,1],Q) < ε. So f is inte-
grable.

In fact, even functions with many bad discontinuities can be integrated. Consider
the function g(x) = sin(csc(1/x)). This function behaves badly at those x where
csc(1/x) is undefined, namely where sin(1/x) = 0. Since sin(t) = 0 for t = nπ ,
these discontinuities occur at x = 1/(nπ) for n≥ 1 and at the endpoint x = 0, where
g is undefined. Moreover, on an interval around one of these discontinuities, say
[1/(xπ),1/((x +1)π)], where x = n+1/2, g has, qualitatively, the same behaviour
as sin(1/x) has around the origin. So we have a sin(1/x)-type discontinuity at a
sequence of points converging to 0. Nonetheless, the function is integrable on [0,1].

x

y1

−1

1

FIG. 6.5 A partial graph of y = sin(csc(1/x)) from 0 to π ..

Exercises for Section 6.3

A. (a) Compute the upper Riemann sum for
∫ b

a
1
x dx using Pn = {x j = a(b/a) j/n : 0≤ j ≤ n}.

(b) Evaluate the integral
∫ b

a
1
x dx. HINT: Recognize lim

n→∞
U( f ,Pn) as a derivative.

B. (a) Compute the upper Riemann sum for f (x) = x2 on [a,b] using the uniform partition Pn =
{x j = a+ j(b−a)/n : 0≤ j ≤ n}. HINT: ∑

n
j=1 j2 = n(n+1)(2n+1)/6.

(b) Hence evaluate the integral
∫ b

a x2 dx.

C. Show that if a function f : [a,b]→ R is Lipschitz with constant C, then for any partition P of
[a,b], we have U( f ,P)−L( f ,P)≤C(b−a)mesh(P).

D. Show that if f and g are Riemann integrable on [a,b], then so is α f +βg; and∫ b

a
α f (x)+βg(x)dx = α

∫ b

a
f (x)dx+β

∫ b

a
g(x)dx.

E. Show that every piecewise continuous function is Riemann integrable.

F. Show that if f is Riemann integrable on [a,b], then so is | f |.
HINT: Show that Mi(| f |,P)−mi(| f |,P)≤Mi( f ,P)−mi( f ,P).

G. Show that f is Riemann integrable if and only if for each ε > 0, there are step functions f1

and f2 on [a,b] with f1(x)≤ f (x)≤ f2(x) such that
∫ b

a f2(x)− f1(x)dx < ε .

H. (a) Show that if f ≥ 0 is Riemann integrable on [a,b], then
∫ b

a f (x)dx≥ 0.
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(b) If f and g are integrable on [a,b] and f (x)≤ g(x), prove that
∫ b

a f (x)dx≤
∫ b

a g(x)dx.
(c) Show that

∣∣∫ b
a f (x)dx

∣∣≤ ∫ b
a | f (x)|dx.

I. Translation invariance. Suppose f is integrable on [a,b] and c∈R. Define g on [a+c,b+c]
by g(x) = f (x− c). Show that g is integrable and

∫ b+c
a+c g(x)dx =

∫ b
a f (x)dx.

J. If f is Riemann integrable on [a,b], show that F(x) = c+
∫ x

a f (t)dt is Lipschitz.

K. Show that if f is integrable on [a,b], then it is integrable on each interval [c,d] ⊂ [a,b] as
well. Moreover, for a < c < b,

∫ b
a f (x)dx =

∫ c
a f (x)dx+

∫ b
c f (x)dx.

L. If b < a, define
∫ b

a f (x)dx =−
∫ a

b f (x)dx. Show that the formula of the previous exercise also
holds for c outside [a,b]. Where must f be integrable for this to make sense?

M. Show that sin(csc(1/x)) is integrable on [0,1].
HINT: mimic Example 6.3.10 near every point where csc(1/x) blows up.

N. If f and g are both Riemann integrable on [a,b], show that f g is also integrable. HINT:
Use the identity f (x)g(x)− f (t)g(t) = f (x)

(
g(x)− g(t)

)
+
(

f (x)− f (t)
)
g(t) to show that

Mi( f g,P)−mi( f g,P) is bounded by ‖ f‖∞

(
Mi(g,P)−mi(g,P)

)
+‖g‖∞

(
Mi( f ,P)−mi( f ,P)

)
.

O. Show that the function of Example 5.2.9 is Riemann integrable, even though it is discontinu-
ous at every rational number. HINT: For ε > 0, there are only finitely many points taking
values greater than ε . Choose a partition that includes those points in very small intervals.

6.4 The Fundamental Theorem of Calculus

Calculating integrals via Riemann sums is of theoretical importance, but it is not a
practical method. Fortunately, there is a crucial connection between integrals and
derivatives that makes evaluating integrals by hand effective and efficient. We stress
that this is not the definition of integral. The word fundamental is used to emphasize
that this is the central result connecting differential and integral calculus.

We split the main theorem into two parts. First, a simple estimate.

6.4.1. LEMMA. Suppose that f is integrable on [a,b] and bounded by M. Then∣∣∣∫ b

a
f (t)dt

∣∣∣≤M(b−a).

PROOF. For the partition {a,b}, clearly U( f ,{a,b})≤M(b−a). Hence
∫ b

a f (t)dt =
infP U( f ,P)≤M(b−a). Similarly, we obtain

∫ b
a f (t)dt ≥−M(b−a). �

6.4.2. FUNDAMENTAL THEOREM OF CALCULUS, PART 1.
Let f be integrable on [a,b]. Define F(x) =

∫ x
a f (t)dt for a ≤ x ≤ b. Then F is

continuous. When f is continuous at x0, F is differentiable at x0 and F ′(x0) = f (x0).

PROOF. Let f be bounded by M. For x,y in [a,b], compute

|F(x)−F(y)|=
∣∣∣∫ x

a
f (t)dt−

∫ y

a
f (t)dt

∣∣∣= ∣∣∣∫ x

y
f (t)dt

∣∣∣≤M|x− y|.
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Thus F is Lipschitz with constant M, and so is continuous by Proposition 5.1.6.
Suppose f is continuous at x0. Given ε > 0, choose δ > 0 such that |y− x0|< δ

implies that | f (y)− f (x0)|< ε . Then for |h|< δ , compute∣∣∣F(x0 +h)−F(x0)
h

− f (x0)
∣∣∣= ∣∣∣1

h

∫ x0+h

x0

f (t)dt− 1
h

∫ x0+h

x0

f (x0)dt
∣∣∣

≤ 1
h

∫ x0+h

x0

| f (t)− f (x0)|dt ≤ ε.

Thus F ′(x0) = lim
h→0

F(x0 +h)−F(x0)
h

= f (x0). �

6.4.3. FUNDAMENTAL THEOREM OF CALCULUS, PART 2.
Let f be integrable on [a,b]. If there is a continuous function g on [a,b] that is
differentiable on (a,b) such that g′(x) = f (x) for a < x < b, then∫ b

a
f (x)dx = g(b)−g(a).

PROOF. Let P = {a = x0 < x1 < · · ·< xn = b} be a partition. On [x j−1,x j], the Mean
Value Theorem supplies a point x′j ∈ [x j−1,x j] such that

g(x j)−g(x j−1) = g′(x′j)(x j− x j−1) = f (x′j)∆ j.

Let X = (x′1, . . . ,x
′
n). Then we obtain a telescoping sum

I( f ,P,X) =
n

∑
j=1

f (x′j)∆ j =
n

∑
j=1

g(x j)−g(x j−1) = g(b)−g(a).

Since P is arbitrary, Theorem 6.3.6 part (4) shows that
∫ b

a f (x)dx = g(b)−g(a). �

6.4.4. REMARK. A jump discontinuity in the integrand f can result in a point
where the integral is not differentiable. For example, take f (x) = 1 for 0 ≤ x ≤ 1
and 2 for 1 < x≤ 2. Then F(x) =

∫ x
0 f (t)dt = x on [0,1] and F(x) = 2x−1 on [1,2].

This function is continuous on [0,2], but is not differentiable at x = 1. It has a left
derivative of 1 and a right derivative of 2.

Nor is it the case that every differentiable function is an integral. An easy way
for this to fail is when the derivative is unbounded. Recall from Example 6.1.9 the
function F(x) = xa sin(1/x) on [0,1] for some constant a in (1,2). Then F ′(x) =
axa−1 sin(1/x)− xa−2 cos(1/x) for x > 0 and F ′(0) = 0. Thus F is differentiable,
but the derivative is an unbounded function and thus is not Riemann integrable.

We can take various formulae for differentiation and, using the Fundamental The-
orem, integrate them to obtain useful integration techniques. We are not concerned
here with the all tricks of the trade, but just a glance at the major methods.
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The product rule translates into integration by parts. We assume that F and G
are C1 to avoid pathology. Since (FG)′(x) = F ′(x)G(x)+F(x)G′(x), we obtain∫ b

a
F ′(x)G(x)+F(x)G′(x)dx = F(b)G(b)−F(a)G(a). (6.4.5)

Using F(x)G(x)
∣∣b
a for the right-hand side, we obtain the usual formulation

∫ b

a
F ′(x)G(x)dx = F(x)G(x)

∣∣∣b
a
−
∫ b

a
F(x)G′(x)dx.

The chain rule (6.1.6) corresponds to the substitution rule, also called the change
of variable formula. Let u be a C1 function on [a,b], and let F be C1 on an interval
[c,d] containing the range of u. Then if G(x) = F(u(x)), the chain rule states that
G′(x) = F ′(u(x))u′(x). Thus if we set f = F ′,∫ b

a
f (u(x))u′(x)dx = G(b)−G(a) = F(u(b))−F(u(a)) =

∫ u(b)

u(a)
f (t)dt. (6.4.6)

We interpret this as making the substitution t = u(x) and think of dt as u′(x)dx.
This change of variables is sometimes formulated somewhat differently. Suppose

that the function u satisfies u′(x) 6= 0 for all x∈ [a,b]. If we set c = u(a) and d = u(b),
we obtain ∫ d

c
f (x)dx =

∫ u−1(d)

u−1(c)
f (u(t))u′(t)dt. (6.4.7)

This corresponds to the substitution x = u(t).
Without any attempt to be complete, we give a couple of examples of integration

technique to refresh the reader’s memory.

6.4.8. EXAMPLE. Consider
∫ 1

0 arctan(x)dx. The derivative of arctan is well
known to be 1/(1 + x2), but the integral is probably not memorized. This suggests
that an integration by parts approach might help. Of course, you need something to
integrate, and so we put in a factor of 1, which integrates to x. Thus∫

arctan(x)dx = xarctan(x)−
∫ x

1+ x2 dx.

Now substitute u = 1+ x2, which has derivative du = 2xdx, to obtain

= xarctan(x)−
∫ du

2u
= xarctan(x)− 1

2
logu = xarctan(x)− 1

2
log(1+ x2).

Thus ∫ 1

0
arctan(x)dx = xarctan(x)− 1

2
log(1+ x2)

∣∣∣∣1
0
=

π

4
− 1

2
log2.
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6.4.9. EXAMPLE. Now consider the integral
∫ 8

0 e
3√x dx. This integrand has a

complicated exponent, 3
√

x, which can be simplified by substituting x = u3. Then
dx = 3u2 du and u = 3

√
x runs from 0 to 2 as x runs from 0 to 8. This now can be

integrated by parts twice by integrating eu and differentiating 3u2:∫ 8

0
e

3√x dx =
∫ 2

0
eu3u2 du = 3u2eu

∣∣∣2
0
−
∫ 2

0
6ueu du

= (3u2−6u)eu
∣∣∣2
0
+
∫ 2

0
6eu du = (3u2−6u+6)eu

∣∣∣2
0
= 6(e2−1).

Exercises for Section 6.4

A. Evaluate the following by recognizing them as Riemann sums.

(a) lim
n→∞

n
∑
j=1

1
n+ jc

for c > 1. (b) lim
n→∞

1
na+1 +

2a

na+1 + · · ·+ (n−1)a

na+1 for a >−1.

B. For x > 0, define L(x) =
∫ x

1 1/t dt. Manipulate integrals to prove L(ab) = L(a)+L(b).

C. (a) Prove the Mean Value Theorem for Integrals: If f is a continuous function on [a,b],
then there is a point c ∈ (a,b) such that 1

b−a
∫ b

a f (x)dx = f (c).
(b) Show by example that this may fail for a discontinuous but integrable function.

D. Let f (x) = sign(x), and F(x) = |x|. Show that f is Riemann integrable on [a,b] and that∫ b
a f (x)dx = F(b)−F(a) for any a < b. Why is F not an antiderivative of f ?

E. Let f be a continuous function on R, and suppose that b(x) is a C1 function. Define G(x) =∫ b(x)
a f (t)dt. Compute G′(x). HINT: Let F(x) =

∫ x
a f (t)dt and note that G(x) = F(b(x)).

F. Compute the following integrals:

(a)
∫ e

1

(
logx

)2 dx (b)
∫

π/2

0

sin3 x√
cosx

dx (c)
∫ 125

1

dt√
t + 3

√
t

G. Let f be a continuous function on R, and fix ε > 0. Define a function G(x) = 1
ε

∫ x+ε

x f (t)dt.
Show that G is C1 and compute G′.

H. Let u be a strictly increasing C1 function on [a,b].

(a) By considering the area under the graph plus the area between the graph and the y-axis,
establish the formula

∫ b
a u(x)dx+

∫ u(b)
u(a) u−1(t)dt = bu(b)−au(a).

(b) Use the substitution formula (6.4.6) using f (x) = u−1(x) and integrate the second expres-
sion by parts to derive the same formula as in part (a).

I. Suppose f is twice differentiable on R, ‖ f‖∞ = A and ‖ f ′′‖∞ =C. Prove that ‖ f ′‖∞ ≤
√

2AC.
HINT: If f ′(x0) = b > 0, show that f ′(x0 + t)≥ b−C|t|. Integrate from x0−b/C to x0 +b/C.

J. Improper Integrals. Say that f is integrable on [a,∞) if lim
b→∞

∫ b
a f (x)dx =:

∫
∞

a f (x)dx exists.

(a) For which real values of p does
∫

∞

e
(logx)p

x dx exist?
(b) Show that

∫
∞

0
sinx

x dx exists. HINT: Consider the alternating series ∑n≥0
∫ (n+1)π

nπ
sinx

x dx.

K. If f is unbounded as it approaches a, define an improper integral by lim
ε→0

∫ b
a+ε

f (x)dx, when

the limit exists. Of course,
∫ b

a f (x)dx is used to denote this limit, so be careful.

(a) For which real values of p does
∫ 1

0 xp dx exist?
(b) Show that lim

ε→0

∫ a−ε

−b f (x)dx+
∫ b

a+ε
f (x)dx can exist even though lim

ε→0

∫ b
a+ε

f (x)dx does not.



Chapter 7
Norms and Inner Products

In this chapter, we generalize to more abstract settings two key properties of Rn: the
Euclidean norm of a vector and the dot product of two vectors. The generalizations,
norms and inner products, respectively, are set in a general vector space. Many of
our applications will be set in this framework.

The basic notions of topology go through with almost no change in the defini-
tions. However, some theorems can be quite different. For example, being closed and
bounded is not sufficient to imply compactness in an infinite-dimensional normed
vector space, such as C[a,b].

7.1 Normed Vector Spaces

The Euclidean norm on Rn, the focus of Chapter 4, is crucial to analysis on Rn. To
apply these ideas to other vector spaces, we need a general definition of a norm,
one that captures the essential properties of the Euclidean norm. Vector spaces over
R are discussed in more detail in Section 1.2; We continue to use boldface letters,
such as x, for elements of Rn, but not for elements of a general vector space. An
exception is the zero vector, which we always write as 0, to distinguish it from the
number 0.

7.1.1. DEFINITION. Let V be a vector space over R. A norm on V is a func-
tion ‖ · ‖ on V taking values in [0,+∞) with the following properties:

(1) (positive definite) ‖x‖= 0 if and only if x = 0,

(2) (homogeneous) ‖αx‖= |α|‖x‖ for all x ∈V and α ∈ R, and

(3) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+‖y‖ for all x,y ∈V .

We call the pair (V,‖ · ‖) a normed vector space.

The first two properties are usually easy to verify. The positive definite property
just says that nonzero vectors have nonzero length. And the homogeneous property
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says that the norm is scalable. The important property, which often requires some
cleverness to verify, is the triangle inequality. It says that the path from point A to
B and on to C is at least as long as the direct route from A to C. As we indicated
in Figure 4.1 in Chapter 4, this algebraic inequality is equivalent to the geometric
statement that the length of one side of a triangle is at most sum of the lengths of
the other two sides.

7.1.2. EXAMPLE. Consider the vector space Rn. In Chapter 4, we showed that
the Euclidean norm

‖x‖= ‖(x1, . . . ,xn)‖2 =
( n

∑
i=1
|xi|2

)1/2

is a norm. Indeed, properties (1) and (2) are evident, and the triangle inequality was
a consequence of Schwarz’s inequality (4.1.1).

Consider two other functions:

‖x‖1 = ‖(x1, . . . ,xn)‖1 =
n

∑
i=1
|xi|,

‖x‖∞ = ‖(x1, . . . ,xn)‖∞ = max
1≤i≤n

|xi|.

Again it is easy to see that they are positive definite and homogeneous. The key is the
triangle inequality. But for these functions, even that is straightforward. Compute

‖x+y‖1 =
n

∑
i=1
|xi + yi| ≤

n

∑
i=1
|xi|+ |yi|= ‖x‖1 +‖y‖1,

‖x+y‖∞ = max
1≤i≤n

|xi + yi| ≤ max
1≤i≤n

|xi|+ max
1≤i≤n

|yi|= ‖x‖∞ +‖y‖∞.

To illustrate the differences between these norms, consider the vectors of norm
at most 1 in R2 for these three norms, as given in Figure 7.1. This set is sufficiently
useful that we give it a name. For any normed vector space (V,‖ · ‖), the unit ball
of V is the set {x ∈V : ‖x‖ ≤ 1}.

The next example is very important for our applications, since it allows us to
apply vector space methods to collections of functions, that is, to think of functions
as vectors.

7.1.3. EXAMPLE. Let K be a compact subset of Rn, and let C(K) denote the
vector space of all continuous real-valued functions on K. If f ,g ∈ C(K) and α ∈
R, then f + g and α f are the functions given by ( f + g)(x) := f (x) + g(x) and
(α f )(x) := α f (x). There are several different possible norms on C(K). The most
natural and most important is the uniform norm, given by

‖ f‖∞ = sup
x∈K

| f (x)|.
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x

y

1−1

1

−1

FIG. 7.1 The unit balls {(x,y) : ‖(x,y)‖p ≤ 1} for p = 1,2,∞.

By the Extreme Value Theorem (5.4.4), | f | achieves its maximum at some point
x0 ∈ K. So using this point x0, we have ‖ f‖∞ = | f (x0)|< ∞.

Clearly, the map f 7→ ‖ f‖∞ is nonnegative. To see that it is really a norm, observe
first that if ‖ f‖∞ = 0, then | f (x)|= 0 for all x ∈ K and so f is the zero function. For
homogeneity, we have

‖α f‖∞ = sup
x∈K

|α f (x)|= |α|sup
x∈K

| f (x)|= |α|‖ f‖∞.

Finally, the triangle inequality is proved as follows:

‖ f +g‖∞ = sup
x∈K

| f (x)+g(x)| ≤ sup
x∈K

| f (x)|+ |g(x)|

≤ sup
x∈K

| f (x)|+ sup
x∈K

|g(x)|= ‖ f‖∞ +‖g‖∞.

We shall see in Chapter 8 that a sequence of functions fn converges to a function
f in

(
C(K),‖ · ‖∞

)
if and only if the sequence converges uniformly. Since uniform

convergence is often the “right” notion of convergence for many applications, we
will use this normed vector space often.

Controlling the derivatives of a function, as well as the function itself, is often
important. Fortunately, this is easy to do, and we will regularly use normed vector
spaces like the one in the following example.

7.1.4. EXAMPLE. For simplicity, we restrict our attention to an interval of R,
but the same idea readily generalizes. Let C3[a,b] denote the vector space of all
functions f : [a,b] → R such that f and its first three derivatives f ′, f ′′, f ′′′ are all
defined and continuous. Using f ( j) for the jth derivative (and f (0) for f ), we can
define a new norm ‖ · ‖C3 by

‖ f‖C3 = max
0≤ j≤3

‖ f ( j)‖∞,
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where ‖ · ‖∞ is the uniform norm on the interval [a,b] introduced in the previous
example.

It is an exercise to verify that this is a norm. For a sequence of functions fn in
C3[a,b] to converge to a function f , the functions and their first three derivatives
f ( j)
n for 0≤ j ≤ 3 must all converge uniformly to the corresponding derivative f ( j).

Clearly, this example can be generalized by considering the first k derivatives, for
any positive integer k instead of just k = 3.

7.1.5. EXAMPLE. For certain applications, we will need the Lp norms on
C[a,b]. Fix a real number p in [1,∞). The Lp[a,b] norm is defined on C[a,b] by

‖ f‖p =
(∫ b

a
| f (x)|p dx

)1/p

.

First notice that ‖ f‖p ≥ 0. Moreover, if f 6= 0, then there is a point x0 ∈ [a,b]
such that f (x0) 6= 0. Take ε = | f (x0)|/2 and use the continuity of f to find an r > 0
such that

| f (x)− f (x0)|<
| f (x0)|

2
for x0− r < x < x0 + r.

Hence

| f (x)| ≥ | f (x0)|− | f (x)− f (x0)|>
| f (x0)|

2
for x0− r < x < x0 + r. We may suppose that r is small enough that a ≤ x0− r and
x0 +r≤ b. (If x0 = a or b, the simple modification is left to the reader.) Consequently,

‖ f‖p ≥
(∫ x0+r

x0−r

( | f (x0)|
2

)p
dx
)1/p

≥ (2r)1/p| f (x0)|
2

> 0.

So the p-norms are positive definite.
Homogeneity is easy to verify from the definition. However, the triangle inequal-

ity is tricky and we prove it only for p equal to 1 or 2. To prove the triangle inequality
for p = 1, suppose f and g are in C[a,b] and compute

‖ f +g‖1 =
∫ b

a
| f (x)+g(x)|dx≤

∫ b

a
| f (x)|+ |g(x)|dx

=
∫ b

a
| f (x)|dx+

∫ b

a
|g(x)|dx = ‖ f‖1 +‖g‖1.

The case p = 2, which follows from results in Section 7.4, is easier because it arises
from an inner product; see Example 7.4.2.

Exercises for Section 7.1

A. Show that ‖(x,y,z)‖= |x|+2
√

y2 + z2 is a norm on R3. Sketch the unit ball.

B. Is ‖(x,y)‖=
(
|x|1/2 + |y|1/2

)2 a norm on R2?
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C. For f in C1[a,b], define ρ( f ) = ‖ f ′‖∞. Show that ρ is nonnegative, homogeneous, and satis-
fies the triangle inequality. Why is it not a norm?

D. If (V,‖ · ‖) is a normed vector space, show that
∣∣‖x‖−‖y‖

∣∣≤ ‖x− y‖ for all x,y ∈V .

E. Show that the unit ball of a normed vector space, (V,‖ ·‖), is convex, meaning that if ‖x‖ ≤ 1
and ‖y‖ ≤ 1, then every point on the line segment between x and y has norm at most 1.
HINT: Describe the line segment algebraically in terms of x and y and a parameter t.

F. Let K be a compact subset of Rn, and let C(K,Rm) denote the vector space of all continuous
functions from K into Rm. Show that for f in C(K,Rm), the quantity ‖ f‖∞ = supx∈K ‖ f (x)‖2
is finite and ‖ · ‖∞ is a norm on C(K,Rm).

G. Define Cp[a,b] for p ∈ N and verify that the Cp[a,b] norm is indeed a norm. Is there a rea-
sonable definition for C0[a,b]?

H. (a) Show that if ‖ · ‖ and ||| · ||| are norms on V , then ‖v‖m := max{‖v‖, |||v|||} is a norm on V .
(b) Take V = R2 and ‖(x,y)‖=

√
x2 + y2 and |||(x,y)|||= 3

2 |x|+ |y|. Then define ‖(x,y)‖m as
in part (a). Draw a sketch of the unit balls for these three norms.

I. Let S be any subset of Rn. Let Cb(S) denote the vector space of all bounded continuous
functions on S. For f ∈C(S), define ‖ f‖∞ = supx∈S | f (x)|.

(a) Show that this is a norm on Cb(S).
(b) When is this a norm on the vector space of all continuous functions on S?

J. (a) Consider C[a,b] and let x1, . . . ,xn+1 be distinct points in [a,b]. Show that there are poly-
nomials pi of degree n such that pi(x j) = δi j for 1≤ i, j ≤ n+1.

(b) Deduce that the polynomials of degree at most n form an (n+1)-dimensional subspace.
(c) Deduce that C[a,b] is infinite-dimensional.

K. (a) Let a = x0 < · · ·< xn = b be distinct points in a compact subset K of R. For 0≤ k≤ n, let
hk : R → R be the piecewise linear function that is 1 at xk and 0 at all other xi, and zero
off [a,b]. That is,

h0(x) =

{
x−x1
a−x1

, a≤x≤x1,

0, x1≤x≤b,
hn(x) =

{
0, a≤x≤xn−1,
x−xn−1
b−xn−1

, xn−1≤x≤b,

and for 1≤ k ≤ n−1, let

hk(x) =


0, a≤ x≤ xk−1 and xk+1 ≤ x≤ b,
x−xk−1
xk−xk−1

, xk−1 ≤ x≤ xk,

xk+1−x
xk+1−xk

, xk ≤ x≤ xk+1.

Describe the linear span of the restrictions to K of h0,h1, . . . ,hn as a subspace of C(K).
(b) Hence show that C(K) is infinite-dimensional if K is an infinite set.

7.2 Topology in Normed Spaces

The point of this section is to show how the notions of convergence and topology,
which we developed in R and in Rn, can be generalized to any normed vector space.
While the definitions and some simple properties correspond exactly to the situation
in Rn, there are significant differences. The most important difference is that the
Heine–Borel Theorem (4.4.6) does not hold in general. For such properties, we will
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have to study specific kinds of normed vector spaces individually using their special
properties. When in doubt, you can test your intuition by looking at such spaces.

The definitions of convergence and Cauchy sequences are almost exactly the
same as our definitions in Rn.

7.2.1. DEFINITION. In a normed vector space (V,‖·‖), we say that a sequence
(vn)

∞

n=1 converges to v ∈V if lim
n→∞

‖vn−v‖= 0. Equivalently, for every ε > 0, there

is an integer N > 0 such that ‖vn− v‖< ε for all n≥ N. This is written lim
n→∞

vn = v.

Call (vn)
∞

n=1 a Cauchy sequence if for every ε > 0, there is an integer N > 0
such that ‖vn− vm‖< ε for all n,m≥ N.

This leads to the notion of completeness in this context.

7.2.2. DEFINITION. Say that (V,‖ · ‖) is complete if every Cauchy sequence
in V converges to some vector in V . A complete normed space is a Banach space.

Completeness is the fundamental property that distinguishes the real numbers
from the rational numbers, and several crucial theorems depend on completeness.
So it should not surprise the reader to find out that this is also a fundamental prop-
erty of bigger normed spaces such as

(
C(K),‖ · ‖∞

)
. That C(K) is complete will be

established in the next chapter; see Theorem 8.2.2.
We can reformulate convergence using open and closed sets, exactly as for Rn.

7.2.3. DEFINITION. For a normed vector space (V,‖ · ‖), we define the open
ball with centre a ∈V and radius r > 0 to be Br(a) = {v ∈V : ‖v−a‖< r}.

A subset U of V is open if for every a ∈U , there is some r > 0 such that Br(a)⊂
U .

A subset C of V is closed if it contains all of its limit points. That is, whenever
(xn) is a sequence in C and x = lim

n→∞
xn, then x belongs to C.

Proposition 4.3.8 works just as well for any normed space. So the open sets are
precisely the complements of closed sets. Here is a sample result in showing the
relationship between convergence and topology.

7.2.4. PROPOSITION. A sequence (xn) in a normed vector space V converges
to a vector x if and only if for each open set U containing x, there is an integer N
such that xn ∈U for all n≥ N.

PROOF. Suppose that x = lim
n→∞

xn and U is an open set containing x. There is an r > 0

such that Br(x)⊂U . From the definition of limit, there is an integer N such that

‖x− xn‖< r for all n≥ N.

This just says that xn ∈ Br(x)⊂U for all n≥ N.
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Conversely, suppose that the latter condition holds. In order to establish that x =
lim
n→∞

xn, let r > 0 be given. Take the open set U = Br(x). By hypothesis, there is an
integer N such that xn ∈U for all n≥ N. As before, this just means that

‖x− xn‖< r for all n≥ N.

Hence lim
n→∞

xn = x. �

There is one more fundamental property that we can define in this general con-
text, compactness. However, the reader should be warned that the main theorem
about compactness in Rn, the Heine–Borel Theorem (4.4.6), is not valid in infinite-
dimensional spaces. The correct characterization of compact sets is given by the
Borel–Lebesgue Theorem (9.2.3), which we will prove in the context of metric
spaces.

7.2.5. DEFINITION. A subset K of a normed vector space V is compact if
every sequence (xn) in K has a subsequence (xni) that converges to a point in K.

Exercises for Section 7.2

A. If x = lim
n→∞

xn and y = lim
n→∞

yn in a normed space V and α = lim
n→∞

αn, show that x+y = lim
n→∞

xn +yn

and αx = lim
n→∞

αnxn.

B. Show that every convergent sequence in a normed space is a Cauchy sequence.

C. If A is a subset of (V,‖ · ‖), let Ā denote its closure. Show that if x ∈ V and α ∈ R, then
x+A = x+ Ā and αĀ = αA.

D. Show that if A is an arbitrary subset of a normed space V and U is an open subset, then
A+U = {a+u : a ∈ A, u ∈U} is open.

E. Prove that if two norms on V have the same unit ball, then the norms are equal.

F. Which of the following sets are open in C2[0,1]? Explain.

(a) A = { f ∈C2[0,1] : f (x) > 0, ‖ f ′‖∞ < 1, | f ′′(0)|> 2}.

(b) B = { f ∈C2[0,1] : f (1) < 0, f ′(1) = 0, f ′′(1) > 0}.

(c) C = { f ∈C2[0,1] : f (x) f ′(x) > 0 for 0≤ x≤ 1}.
HINT: Extreme Value Theorem and Intermediate Value Theorem

(d) D = { f ∈C2[0,1] : f (x) f ′(x) > 0 for 0 < x < 1}.
HINT: Why is this different from the previous example?

G. Prove that a compact subset of a normed vector space is closed and bounded.

H. (a) Prove that a compact subset of a normed vector space is complete.
(b) Prove that a closed subset of a complete normed vector space is complete.

I. Consider the piecewise linear functions in C[−1,1] given by fn(x) = 0 for −1 ≤ x ≤ 0,
fn(x) = nx for 0≤ x≤ 1/n, and fn(x) = 1 for 1/n≤ x≤ 1.

(a) Show that ‖ fn− fm‖∞ ≥ 1
2 if m≥ 2n.

(b) Hence show that no subsequence of ( fn)
∞

n=1 converges.
(c) Conclude that the unit ball of C[−1,1] is not compact.
(d) Show that the unit ball of C[−1,1] is closed and bounded and complete.
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J. Prove that the following are equivalent for a normed vector space (V,‖ · ‖).

(1) (V,‖ · ‖) is complete.
(2) Every decreasing sequence of closed balls has a nonempty intersection. Note that the

balls need not be concentric.
(3) Every decreasing sequence of closed balls with radii ri → 0 has nonempty intersection.
HINT: For (1) =⇒ (2), show that the centres of the balls form a Cauchy sequence.

K. (a) Show that if A is a closed subset of a normed vector space and C is a compact subset, then
A+C = {a+ c : a ∈ A, c ∈C} is closed.

(b) Is it enough for C to be only closed, or is compactness necessary?
(c) If A and C are both compact, show that A+C is compact.

L. Let Xn = { f ∈C[0,1] : f (0) = 0, ‖ f‖∞ ≤ 1, and f (x)≥ 1
2 for x≥ 1

n}.

(a) Show that Xn is a closed bounded subset of C[0,1].
(b) Show that Xn+1 is a proper subset of Xn for n≥ 1, and compute

⋂
n≥1 Xn.

(c) Compare this with Cantor’s Intersection Theorem (4.4.7). Why does the theorem fail in
this context?

M. Let c0 be the vector space of all sequences x = (xn)
∞

n=1 such that lim
n→∞

xn = 0. Define a norm

on c0 by ‖x‖∞ = sup
n≥1

|xn|. Prove that c0 is complete. HINT: Let xk =
(
xk,n
)∞

n=1 be Cauchy.

(a) Show that
(
xk,n
)∞

k=1 is Cauchy for each n≥ 1. Hence define y = (yn) by yn = lim
k→∞

xk,n.

(b) Given ε > 0, apply the Cauchy criterion. Then show that there is an integer K such that
|yn− xk,n| ≤ ε for all n≥ 1 and all k ≥ K.

(c) Conclude that y belongs to c0 and that lim
k→∞

xk = y.

N. Consider the sequence fn in C[−1,1] from Exercise 7.2.I, but use the L1[−1,1] norm.

(a) Show that fn is Cauchy in the L1 norm.
(b) Show that fn converges to χ(0,1], the characteristic function of (0,1], in the L1 norm.
(c) Show that ‖χ(0,1]−h‖1 > 0 for every h in C[−1,1].
(d) Conclude that C[−1,1] is not complete in the L1 norm.

7.3 Finite-Dimensional Normed Spaces

The key point of the last section is that many normed vector spaces have topologies
quite different from Rn with the Euclidean norm. On the other hand, the point of
this section is that a finite-dimensional normed space has the same topology as Rn.
A particularly important result is Theorem 7.3.5, which will be very useful in the
chapters on approximation.

7.3.1. PROPOSITION. If {v1,v2, . . . ,vn} is a linearly independent set in a
normed vector space (V,‖ · ‖), then there exist positive constants 0 < c < C such
that for all a = (a1, . . . ,an) ∈ Rn, we have

c‖a‖2 ≤
∥∥∥ n

∑
i=1

aivi

∥∥∥≤C‖a‖2.
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PROOF. By the triangle inequality and the Schwarz inequality (4.1.1),∥∥∥ n

∑
i=1

aivi

∥∥∥≤ n

∑
i=1
|ai|‖vi‖ ≤

( n

∑
i=1

a2
i

)1/2( n

∑
i=1
‖vi‖2

)1/2
= C‖a‖2,

where C =
( n

∑
i=1
‖vi‖2

)1/2
.

Define a function N on Rn by N(a) =
∥∥∑

n
i=1 aivi

∥∥. If α ∈ R, then N(αa) =
|α|N(a) by the homogenity of the norm. Also, N is Lipschitz, and so a continuous
function, since

|N(x)−N(y)|=
∣∣∣∣∥∥∥ n

∑
i=1

xivi

∥∥∥−∥∥∥ n

∑
i=1

yivi

∥∥∥∣∣∣∣
≤
∥∥∥ n

∑
i=1

(xi− yi)vi

∥∥∥≤C‖x−y‖2.

Let S be {a ∈ Rn : ‖a‖2 = 1}, the unit sphere of Rn. Since the set {v1, . . . ,vn}
is linearly independent, it follows that N(x) > 0 when x 6= 0. So N never vanishes
on the compact set S. By the Extreme Value Theorem (5.4.4), N must achieve its
minimum value c at some point on S, whence c > 0. So if a is an arbitrary vector in
Rn, we obtain ∥∥∥ n

∑
i=1

aivi

∥∥∥= ‖a‖2N
(

a
‖a‖2

)
≥ c‖a‖2. �

0 c

C

FIG. 7.2 Euclidean balls inside and outside the unit ball of V .

The effect of this result is that every finite-dimensional normed space has the
same topology as (Rn,‖ · ‖2), in the sense that they have the “same” convergent
sequences, the “same” open sets, and so on. Let us make this more precise. If
{v1,v2, . . . ,vn} is a basis for an n-dimensional normed space V , define a linear trans-

formation from Rn into V by T a =
n
∑

i=1
aivi. The map T carries Rn one-to-one and

onto V by the definition of a basis. Since every element of V is a unique linear

combination of {v1, . . . ,vn}, we can define the inverse map by T−1
( n

∑
i=1

aivi
)

= a.
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7.3.2. COROLLARY. Suppose that V is an n-dimensional normed space with
basis {v1,v2, . . . ,vn}. Then the maps T and T−1 defined previously are both Lip-
schitz. Further, a set A in V is closed, bounded, open, or compact if and only if
T−1(A) is closed, bounded, open, or compact in Rn.

PROOF. We have for vectors x and y in Rn,

‖T x−T y‖= N(x−y)≤C‖x−y‖2,

where C is the constant from Proposition 7.3.1. So T is Lipschitz with constant C.
Similarly, if u = T x and v = T y are typical vectors in V , then

‖T−1u−T−1v‖2 = ‖T−1(T x)−T−1(T y)‖2 = ‖x−y‖2

≤ 1
c
‖T x−T y‖=

1
c
‖u− v‖,

where c comes from Proposition 7.3.1. So T−1 is Lipschitz with constant 1/c.
This means that if xk is a sequence of vectors in Rn converging to a point x, then

T xk converges to T x because of the continuity of T . And conversely, if vk is a se-
quence of vectors in V converging to a vector v, then T−1vk converges to T−1v in Rn.
This just says that there is a direct correspondence between convergent sequences
in Rn and V . Since closed and compact sets are defined in terms of convergent se-
quences, these sets correspond as well. Open sets are the complements of closed
sets, so open sets correspond. If A ⊂ Rn is bounded by L, the Lipschitz condition
shows that

‖T a‖= ‖T a−T 0‖ ≤C‖a‖2 ≤CL

for every a in A. So T (A) is bounded. Likewise, since T−1 is Lipschitz, if B is a
subset of V bounded by L, it follows that T−1(B) is bounded by L/c in Rn. �

Notice that we may conclude that closed and bounded sets also correspond. Since
the Heine–Borel Theorem (4.4.6) shows that closed and bounded sets are compact
in Rn, we can conclude that this is also true in all finite-dimensional normed spaces.

7.3.3. COROLLARY. A subset of a finite-dimensional normed vector space is
compact if and only if it is closed and bounded.

Another immediate consequence refers to the way a finite-dimensional subspace
sits inside an arbitrary normed space. Arbitrary normed spaces are in general not
complete. However, finite-dimensional subspaces are, because in Rn we have the
Heine–Borel Theorem (4.4.6).

7.3.4. COROLLARY. A finite-dimensional subspace of a normed vector space
is complete, and in particular, it is closed.
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PROOF. Let V be a normed vector space and let W be an n-dimensional subspace.
Let T be a linear invertible map from Rn onto W as just constructed. Suppose that
(wk)

∞

k=1 is a Cauchy sequence in W . Then since T−1 is Lipschitz, the sequence
xk = T−1wk for k ≥ 1 is Cauchy in Rn. (Check this yourself!) Since Rn is complete
(Theorem 4.2.5), the sequence xk converges to a vector x. Again by Corollary 7.3.2,
we see that wk must converge to w = T x. Thus W is complete. In particular, all of
the limit points of W lie in W , so W is closed. �

As an application of these corollaries, we prove the following result, which is
fundamental to approximation theory.

7.3.5. THEOREM. Let (V,‖·‖) be a normed vector space, and let W be a finite-
dimensional subspace of V . Then for any v ∈ V , there is at least one closest point
w∗ ∈W to v. That is, there is w∗ ∈W such that ‖v−w∗‖= inf{‖v−w‖ : w ∈W}.

PROOF. Notice that the zero vector is in W , and so

inf{‖v−w‖ : w ∈W} ≤ ‖v−0‖= ‖v‖.

Let M = ‖v‖. If w satisfies ‖v−w‖ ≤ ‖v‖, then

‖w‖ ≤ ‖w− v‖+‖v‖ ≤M +M = 2M.

Thus if we define K := {w ∈W : ‖w‖ ≤ 2M}, then

inf{‖v−w‖ : w ∈ K}= inf{‖v−w‖ : w ∈W}.

We will show that K is compact. Clearly K is bounded by 2M. The norm function
is Lipschitz, and hence continuous. Thus any convergent sequence of vectors in K
will converge to a vector of norm at most 2M. And since W is complete, this limit
also lies in W , whence the limit lies in K. This shows that K is closed and bounded.
By our corollary, it follows that K is compact.

Now define a function on K by f (w) = ‖v−w‖. This function has Lipschitz
constant 1, since

| f (w)− f (x)|=
∣∣‖v−w‖−‖v− x‖

∣∣≤ ‖w− x‖.

By the Extreme Value Theorem (5.4.4), f achieves its minimum at some point w∗

in K. This is a closest point to v in W . �

It is not true that w∗ is unique; for example, see Exercise 7.3.F.

Exercises for Section 7.3

A. Let V be a finite-dimensional vector space with two norms ‖ ·‖ and ||| · |||. Show that there are
constants 0 < a < A such that a‖v‖ ≤ |||v||| ≤ A‖v‖ for all v ∈V .

B. Let T be the invertible linear map from Corollary 7.3.2.
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(a) Use the Lipschitz property of T and T−1 to show that T (Br(x)) contains a ball about T x
in V , and that T−1(Br(T x)) contains a ball about x in Rn.

(b) Hence show directly that U is open if and only if T (U) is open.

C. Write out a careful proof of Corollary 7.3.3.

D. Suppose that (wk)
∞

k=1 is a Cauchy sequence in a normed space W . If T : W →V is a Lipschitz
map into another normed space V , show that the sequence vk = Twk for k≥ 1 is Cauchy in V .

E. Show that for each integer n and each function f in C[a,b], there is a polynomial of degree at
most n that is closest to f in the max norm on C[a,b].

F. Let Rn have the max norm ‖x‖∞ = max{|xi| : 1 ≤ i ≤ n}. Let K be the unit ball of V and let
v = (2,0, . . . ,0). Find all closest points to v in K.

7.4 Inner Product Spaces

In studying Rn, we constructed the Euclidean norm using the dot product. An inner
product on a vector space is a generalization of the dot product. It is one of the
most important sources of norms, and the norms obtained from inner products are
particularly tractable. For example, the L2 norm on C[a,b] arises in this way.

7.4.1. DEFINITION. An inner product on a vector space V is a function 〈x,y〉
on pairs (x,y) of vectors in V ×V taking values in R satisfying the following prop-
erties:

(1) (positive definiteness) 〈x,x〉 ≥ 0 for all x ∈V and
〈x,x〉= 0 only if x = 0.

(2) (symmetry) 〈x,y〉= 〈y,x〉 for all x,y ∈V .

(3) (bilinearity) For all x,y,z ∈V and scalars α,β ∈ R,

〈αx+βy,z〉= α〈x,z〉+β 〈y,z〉.
An inner product space is a vector space with an inner product.

Given an inner product space, the following definition provides a norm:

‖x‖= 〈x,x〉1/2.

The first two properties of a norm are easy to verify; the triangle inequality is proved
as Corollary 7.4.6.

The dot product on Rn is an inner product and the norm obtained from it is the
usual Euclidean norm.

The bilinearity condition is just given as linearity in the first variable. But as
the term suggests, it really means a twofold linearity because combining it with
symmetry yields linearity in the second variable as well. For x,y in V and scalars
α,β in R,

〈z,αx+βy〉= 〈αx+βy,z〉= α〈x,z〉+β 〈y,z〉= α〈z,x〉+β 〈z,y〉.
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7.4.2. EXAMPLE. The space C[a,b] can be given an inner product

〈 f ,g〉=
∫ b

a
f (x)g(x)dx.

This gives rise to the L2 norm, which we defined in Example 7.1.5. Positive definite-
ness of this norm was established in Example 7.1.5 for arbitrary p, including p = 2.
The other two properties follow from the linearity of the integral and are left as an
exercise for the reader.

7.4.3. EXAMPLE. The space Rn can be given other inner product structures by
weighting the vectors by a matrix A =

[
ai j
]

by

〈x,y〉A = 〈Ax,y〉=
n

∑
i=1

n

∑
j=1

ai jxiy j.

This is easily seen to be bilinear because A is linear and the standard inner product
is bilinear. To be symmetric, we must require that ai j = a ji, so A is a symmetric
matrix. Moreover, we need an additional condition to ensure that the inner product
is positive definite. It turns out that the necessary condition is that the eigenvalues of
A all be strictly positive. The proof of this is an important result from linear algebra
known as the Spectral Theorem for Symmetric Matrices or as the Principal Axis
Theorem.

For the purposes of this example, consider the 2×2 matrix A =
[

3 1
1 2

]
. We noted

that since A is symmetric, the inner product 〈·, ·〉A is symmetric and bilinear. Let us
establish directly that it is positive definite. Take a vector x = (x,y):

〈x,x〉A = 3x2 + xy+ yx+2y2 = 2x2 +(x+ y)2 + y2

From this identity, it is clear that 〈x,x〉A ≥ 0. Moreover, equality requires that x, y
and x+ y all be 0, whence x = 0. So it is positive definite.

It is a fundamental fact that every inner product space satisfies the Schwarz in-
equality. Our proof for Rn was special, using the specific formula for the dot product.
We now show that it follows just from the basic properties of an inner product.

7.4.4. CAUCHY–SCHWARZ INEQUALITY.
For all vectors x,y in an inner product space V ,

|〈x,y〉| ≤ ‖x‖‖y‖.

Equality holds if and only if x and y are collinear.

PROOF. If either x or y is 0, both sides of the inequality are 0. Equality holds here,
and these vectors are collinear. So we may assume that x and y are nonzero.

Apply the positive definite property to the vector x− ty for t ∈ R:
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0≤ 〈x− ty,x− ty〉= 〈x,x− ty〉− t〈y,x− ty〉
= 〈x,x〉− t〈x,y〉− t〈x,y〉+ t2〈y,y〉= ‖x‖2−2t〈x,y〉+ t2‖y‖2.

Substitute t = 〈x,y〉/‖y‖2 to obtain

0≤ ‖x‖2− 〈x,y〉2

‖y‖2 .

Hence 〈x,y〉2 ≤ ‖x‖2 ‖y‖2, establishing the inequality.
For equality to hold, the vector x− ty must have norm 0. By the positive definite

property, this means that x = ty, and so they are collinear. Conversely, if x = ty, then
‖x‖2 = 〈ty, ty〉= t2‖y‖2 and

|〈x,y〉|= |t|〈y,y〉=
√

t2〈y,y〉
√
〈y,y〉= ‖x‖‖y‖.

�

7.4.5. COROLLARY. For f ,g ∈C[a,b], we have∣∣∣∣∫ b

a
f (x)g(x)dx

∣∣∣∣≤ (∫ b

a
f (x)2 dx

)1/2(∫ b

a
g(x)2 dx

)1/2

.

As for Rn, the triangle inequality in an immediate consequence. In particular, the
L2 norms on C[a,b] are indeed norms.

7.4.6. COROLLARY. An inner product space V satisfies the triangle inequality

‖x+ y‖ ≤ ‖x‖+‖y‖ for all x,y ∈V.

Moreover, if equality occurs, then x and y are collinear.

PROOF. This proof is same as for Rn. Using the Cauchy–Schwarz inequality,

‖x+ y‖2 = 〈x+ y,x+ y〉= 〈x,x〉+2〈x,y〉+ 〈y,y〉

≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 =
(
‖x‖+‖y‖

)2
.

Moreover, equality occurs only if 〈x,y〉= ‖x‖‖y‖, which by the Cauchy–Schwarz
inequality can happen only when x and y are collinear. �

Another fundamental consequence of the Cauchy–Schwarz inequality is that the
inner product is continuous with respect to the induced norm. We leave the proof as
an exercise.

7.4.7. COROLLARY. Let V be an inner product space with induced norm ‖ · ‖.
Then the inner product is continuous (i.e., if xn converges to x and yn converges to
y, then 〈xn,yn〉 converges to 〈x,y〉).
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Exercises for Section 7.4

A. Let A =

3 1 2
1 2 1
2 1 4

. Show that the form 〈·, ·〉A is positive definite on R3.

B. Show that every inner product space satisfies the parallelogram law:

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2 for all x,y ∈V.

C. Minimize the quantity ‖x‖2−2t〈x,y〉+ t2‖y‖2 over t ∈R. You will see why we chose t as we
did in the proof of the Cauchy–Schwarz inequality.

D. Show that x and y can be collinear yet the triangle inequality is still a strict inequality.

E. Prove Corollary 7.4.7.

F. Let w(x) be a strictly positive continuous function on [a,b]. Define a form on C[a,b] by the

formula 〈 f ,g〉w =
∫ b

a
f (x)g(x)w(x)dx for f ,g ∈C[a,b]. Show that this is an inner product.

G. A normed vector space V is strictly convex if ‖u‖ = ‖v‖ = ‖(u + v)/2‖ = 1 for vectors
u,v ∈V implies that u = v.

(a) Show that an inner product space is always strictly convex.
(b) Show that R2 with the norm ‖(x,y)‖∞ = max{|x|, |y|} is not strictly convex.

H. For strictly convex normed vector spaces, we have better approximation results.

(a) Show that if W is a finite-dimensional subspace of a strictly convex normed vector space
V , then each point v ∈V has a unique closest point in W .

(b) Show that Rn with the standard Euclidean norm is strictly convex.
(c) Show that R2 with the norm ‖(x,y)‖1 = |x|+ |y| is not strictly convex.
(d) Find a subspace W of V = (R2,‖ ·‖1) such that every point in V that is not in W has more

than one closest point in W .

I. Let T be an n×n matrix. Define a form on Rn by 〈x,y〉T = 〈T x,T y〉 for x,y ∈Rn. Show that
this is an inner product if and only if T is invertible.

J. Let Tr(A) = ∑
n
i=1 aii denote the trace on the space Mn of all n×n matrices. Show that there is

an inner product on Mn given by 〈A,B〉= Tr(ABt) =
n
∑

i=1

n
∑
j=1

ai jbi j. The norm ‖A‖2 = 〈A,A〉1/2

is called the Hilbert–Schmidt norm.

K. Let A =
[
ai j
]

be an n×n matrix, and let x = (x1, . . . ,xn) be a vector in Rn. Using the notation
of Exercise J, show that ‖Ax‖ ≤ ‖A‖2 ‖x‖. HINT: Compute ‖Ax‖2 using coordinates, and
apply the Cauchy–Schwarz inequality.

L. Let T be an invertible n×n matrix. Prove that a sequence of vectors xk in Rn converges to a
vector x in the usual Euclidean norm if and only if it converges to x in the norm of Exercise I,
namely ‖x‖T := ‖T x‖.
HINT: First use Exercise K to show that ‖x‖/‖T−1‖2 ≤ ‖T x‖ ≤ ‖T‖2 ‖x‖.

M. Given an inner product space V , define a function on V \{0} by Rx = x/‖x‖2. This R is called
inversion with respect to the unit sphere {x ∈V : ‖x‖= 1}.

(a) Prove that ‖Rx−Ry‖= ‖x− y‖/(‖x‖‖y‖).
(b) Hence show that the inversion R is continuous.
(c) For all w,x,y,z ∈V , show that ‖w− y‖‖x− z‖ ≤ ‖w− x‖‖y− z‖+‖w− z‖‖x− y‖.

HINT: Reduce to the case w = 0, and reinterpret the inequality using inversion.
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7.5 Finite Orthonormal Sets

7.5.1. DEFINITION. Two vectors x and y are called orthogonal if 〈x,y〉 = 0.
A collection of vectors {en : n ∈ S} in V is called orthonormal if ‖en‖ = 1 for all
n ∈ S and 〈en,em〉= 0 for n 6= m ∈ S.

The space Rn has many orthonormal bases, including the canonical one given by
e1 = (1,0, . . . ,0), . . . ,en = (0, . . . ,0,1). In the next section, we look carefully at an
infinite orthonormal set based on trigonometric functions.

We have a pair of simple observations that prove to be useful.

7.5.2. LEMMA. Let {e1,e2, . . . ,en} be a finite orthonormal set and let α1, . . . ,αn

be real numbers. If w is
n
∑

i=1
αiei, then for each j, 〈w,e j〉= α j .

For any vector v, v−
n
∑

i=1
〈v,ei〉ei is orthogonal to each e j.

PROOF. For j between 1 and n, 〈e j,w〉 =
n
∑

i=1
αi〈e j,ei〉. Observe that 〈e j,ei〉 is al-

ways zero unless i = j, when it is 1. Thus, the summation reduces to α j, as required.
Letting x = v−∑

n
i=1〈v,ei〉ei, observe that 〈x,e j〉= 〈v,e j〉−〈v,e j〉= 0, by linearity

and the previous paragraph. �

7.5.3. COROLLARY. Let {e1,e2, . . . ,en} be a finite orthonormal set. If x is in

span{e1,e2, . . . ,en}, then x can be written uniquely as
n
∑

i=1
〈x,ei〉ei.

Further, all orthonormal sets are linearly independent.

PROOF. If x = α1e1 + · · ·+ αnen then by Lemma 7.5.2, 〈x,ei〉 = αi. So the coeffi-
cients of x are uniquely determined.

If an orthonormal set is not linearly independent, then there is some finite linear
combination that is zero, say α1e1 + · · ·+ αnen = 0 with not all αi zero. By the
previous paragraph with x = 0, all the αi must be zero, a contradiction. �

7.5.4. COROLLARY. In a finite-dimensional vector space, an orthonormal set
is a basis if and only if it is maximal with respect to being an orthonormal set.

PROOF. Let V be the vector space. Recall that a linearly independent set has at most
as many elements as a basis. In particular, an orthonormal set in V must be finite.

Suppose B = {e1, . . . ,en} is an orthonormal set and a basis. For any nonzero
vector v ∈ V , there are real numbers α1, . . . ,αn, not all zero, such that v = α1e1 +
· · ·+ αnen. Applying Lemma 7.5.2, v is not orthogonal to at least one e j. So B is
maximal as an orthonormal set.
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Conversely, if v is a vector not in the span of an orthonormal set B = {e1, . . . ,en},
then by Lemma 7.5.2,

w = v−
n

∑
i=1
〈v,ei〉ei

is a nonzero vector orthogonal to each element of B. Thus, we can enlarge B to the
orthonormal set B∪{w/‖w‖}, i.e., B is not maximal. �

7.5.5. THE GRAM–SCHMIDT PROCESS. The idea used in the proof of
Lemma 7.5.2 can be turned into an algorithm for producing orthonormal sets. We
outline this algorithm, leaving the proofs of the various claims as an exercise.

We start with a linearly independent set x1, . . . ,xn and inductively define an or-
thonormal basis f1, . . . , fn. Note that x1 6= 0 and let f1 = x1/‖x1‖.

Having computed f1, . . . , fk where k < n, next compute

yk+1 = xk+1−
l

∑
i=1
〈xk+1, fi〉 fi.

Linear independence of x1, . . . ,xk+1 ensures that yk+1 6= 0. We define fk+1 =
yk+1/‖yk+1‖. Then { f1, . . . , fn} is an orthonormal basis for span{x1, . . . ,xn}.

Applying this algorithm to any basis for a finite-dimensional inner product space
produces an orthonormal basis of the same size. So we have the following corollary.

7.5.6. COROLLARY. An inner product space of dimension n has an orthonor-
mal basis with n elements.

The major theorem of this section, the Projection Theorem, deals with finite or-
thonormal sets in general inner product spaces. We start with a lemma about com-
puting inner products for such a set.

7.5.7. LEMMA. Let {e1, . . . ,en} be an orthonormal set in an inner product

space V . If x =
n
∑
j=1

α je j and y ∈V satisfies 〈y,e j〉= β j for each e j, then

〈x,y〉=
n

∑
j=1

α jβ j.

In particular, ‖x‖2 =
n
∑
j=1

α2
j .

PROOF. Compute

〈x,y〉=
〈 n

∑
j=1

α je j,y
〉

=
n

∑
j=1

α j〈e j,y〉=
n

∑
j=1

α jβ j.
�
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This lemma suffices for us to understand finite-dimensional inner product spaces.
In particular, we see that every inner product space of dimension n behaves exactly
like Rn with the dot product, once we coordinatize it using an orthonormal basis.

7.5.8. COROLLARY. If V is an inner product space of finite dimension n, then
it has an orthonormal basis {ei : 1≤ i≤ n} and the inner product is given by〈 n

∑
i=1

αiei,
n

∑
j=1

β je j

〉
=

n

∑
i=1

αiβi.

PROOF. By definition of dimension, V has a basis consisting of n linearly inde-
pendent vectors. Apply the Gram–Schmidt process (7.5.5) to this basis to obtain an
orthonormal basis spanning V . Now Lemma 7.5.7 provides the formula for inner
product. �

7.5.9. DEFINITION. A projection on an inner product space V is a linear map
P : V →V such that P2 = P. In addition, we say that P is an orthogonal projection
if kerP = {v ∈V : Pv = 0} is orthogonal to ranP = PV .

The identity map and the zero map are projections in any vector space, called
the trivial projections. A nontrivial projection, P, in R2 is determined by two lines
through the origin, call them R and K. Given a point p in R2, there is a line Kp
parallel to K through p. The image of p under the projection is the intersection of
Kp and R. Clearly, ranP is the line R and if p ∈ R, then Pp = p, so P2 = P. Since
kerP is the line K, P is an orthogonal projection exactly when the lines R and K are
orthogonal. This description, using subspaces instead of lines, can be extended to
all projections in Rn.

7.5.10. PROPOSITION. If P is a projection on a normed vector space V , then

(1) kerP = ran(I−P).

If, in addition, V is an inner product space and P is an orthogonal projection, then

(2) For all x ∈V , ‖x‖2 = ‖Px‖2 +‖(I−P)x‖2.
(3) P is uniquely determined by its range.

PROOF. That kerP ⊂ ran(I−P) follows from Px = 0 if and only if (I−P)x = x.
Conversely, x = (I−P)y implies that Px = (P−P2)y = 0.

If P is an orthogonal projection, the vectors Px and (I−P)x are orthogonal. This
gives (2) above. We leave the proof of (3) as an exercise. �
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7.5.11. PROJECTION THEOREM.
Let M be a finite-dimensional subspace of an inner product space V and P the
orthogonal projection with ranP = M. For all y ∈V and all x ∈M,

‖y− x‖2 = ‖y−Py‖2 +‖Py− x‖2. (7.5.12)

In particular, Py is the closest vector in M to y.

If {e1, . . . ,en} is an orthonormal basis for M, then Py =
n
∑
j=1
〈y,e j〉e j for each

y ∈V . Further,

‖y‖2 ≥
n

∑
j=1
〈y,e j〉2. (7.5.13)

The first part of the theorem shows that the orthogonal projection gives the best
approximation to a vector in a finite-dimensional subspace. The second shows that
we can use finite orthonormal sets to compute orthogonal projections. Figure 7.3
illustrates the theorem for M a plane in R3.

PROOF. We handle the second part first. Let Qy = 〈y,e1〉e1 + · · ·+ 〈y,en〉en. We
leave it to the reader to verify that Q is linear. By definition, Q maps V into M. A

typical vector in M is expressed as x =
n
∑
j=1

α je j. By Lemma 7.5.7,

Qx =
n

∑
j=1
〈x,e j〉e j =

n

∑
j=1

α je j = x.

Hence for any y∈V , Q2y = Q(Qy) = Qy, since Qy∈M. Therefore, Q is a projection

of V onto M. Since Qy belongs to M, Lemma 7.5.7 shows that ‖Qy‖2 =
n
∑
j=1

β 2
j ,

where β j = 〈y,e j〉. By Proposition 7.5.10 (2), ‖y‖2 ≥ ‖Qy‖2; so (7.5.13) follows.
To see that Q is the orthogonal projection onto M = ranQ, suppose that x ∈

M and y ∈ kerQ. From the definition of Q, we see that 〈y,e j〉 = 0 for each j. By
Lemma 7.5.7,

〈x,y〉=
n

∑
j=1
〈x,e j〉〈y,e j〉= 0.

So kerQ is orthogonal to ranQ, showing that Q = P.
To establish (7.5.12), consider x ∈M and y ∈V as Lemma 7.5.7 and compute

‖x− y‖2 = 〈x− y,x− y〉= 〈x,x〉−2〈x,y〉+ 〈y,y〉

=
n

∑
j=1

α
2
j −2

n

∑
j=1

α jβ j +
( n

∑
j=1

β
2
j −

n

∑
j=1

β
2
j

)
+‖y‖2

=
n

∑
j=1

(α j−β j)2−‖Py‖2 +‖y‖2 = ‖x−Py‖2 +‖y‖2−‖Py‖2.
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If x = Py, then ‖x−Py‖2 = 0 and the equation becomes ‖Py−y‖2 = ‖y‖2−‖Py‖2.
Substituting this into the preceding equation yields (7.5.12). �

M
y

Py

FIG. 7.3 The projection of a point.

Exercises for Section 7.5

A. The Gram–Schmidt process. We use the notation of 7.5.5.

(a) Show, by induction on k, that f1, . . . , fk has the same span as x1, . . . ,xk and that yk+1 6= 0.
(b) Show that f1, . . . , fn is an orthonormal set.
(c) Hence conclude that the Gram–Schmidt process produces an orthonormal basis for

span{x1, . . . ,xn}.

B. Modify the Gram–Schmidt process if the initial list of vectors is not linearly independent.
Make sure your process works correctly if x1 = 0.

C. Show that if {xk : k≥ 1} is a countable set of vectors in an inner product space, then the Gram–
Schmidt process produces an orthonormal set { fk : k∈ S} for S⊂N such that k /∈ S if and only
if xk ∈ span{x1, . . . ,xk−1}, and for each n ∈N, span{ fk : k ∈ S,k≤ n}= span

{
xk|1≤ k≤ n}.

D. Find an orthonormal basis for the n×n matrices using the inner product of Exercise 7.4.J.

7.6 Fourier Series

To motivate infinite orthonormal sets, it helps to have an interesting example. We
use Fourier series, which have many applications. Some of these applications appear
in Chapters 13 and 14. To do these applications, we need to work with piecewise
continuous functions.
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Let PC[−π,π] be the vector space of piecewise continuous functions f on
[−π,π] with the usual operations. From Definition 5.2.3, there is a partition of
[−π,π] such that f is continuous on each subinterval and has one-sided limits at
the nodes. The Extreme Value Theorem (5.4.4) shows that f is bounded on each
subinterval and hence on [−π,π]. Thus, f and | f | are Riemann integrable. The prod-
uct of two piecewise continuous functions is also piecewise continuous and thus is
integrable. Thus, we have a well-defined inner product on PC[−π,π] given by

〈 f ,g〉=
1

2π

∫
π

−π

f (θ)g(θ)dθ .

Dividing by 2π gives the constant function 1 unit length. The norm is given by

‖ f‖2 := 〈 f , f 〉1/2 =
(

1
2π

∫
π

−π

| f (θ)|2 dθ

)1/2

.

This inner product and norm are the same, except for the constants, as the L2 inner
product and norm defined in Examples 7.1.5 and 7.4.2 for C[a,b]. We will always
use these normalizations for C[−π,π] or PC[−π,π].

7.6.1. PROPOSITION. The functions {1,
√

2cosnθ ,
√

2sinnθ : n ≥ 1} form
an orthonormal set in PC[−π,π] with this inner product.

PROOF. Starting with the cosines for n≥ m≥ 1, we have

〈
√

2cosnθ ,
√

2cosmθ〉=
1
π

∫
π

−π

cosnθ cosmθ dt

=
1

2π

∫
π

−π

cos(m+n)θ + cos(m−n)θ dt,

where we have used the identity 2cosAcosB = cos(A +B)+ cos(A−B). If n > m,
then both m+n and m−n are not zero, and the integral is

〈
√

2cosnθ ,
√

2cosmθ〉=
1

2π

( sin(m+n)θ
m+n

+
sin(m−n)θ

m−n

)∣∣∣∣π
−π

= 0.

If n = m, then

〈
√

2cosnθ ,
√

2cosnθ〉=
1

2π

( sin2nθ

2n
+θ

)∣∣∣∣π
−π

= 1.

The other cases are similar and are left to the reader. �

A trigonometric polynomial is a finite sum

f (θ) = A0 +
N

∑
k=1

Ak coskθ +Bk sinkθ .
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We say that f as above has degree N if AN or BN is nonzero. We use TP for the set
of all such functions and TPN for the set of trigonometric polynomials of degree at
most N. Applying Lemma 7.5.2 and adjusting for the constants, we obtain

〈 f ,1〉= A0, 〈 f ,cosnθ〉=
An

2
, 〈 f ,sinnθ〉=

Bn

2
.

7.6.2. DEFINITION. Denote the Fourier series of a piecewise continuous
function f : [−π,π]→ R to be

f ∼ A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ ,

where A0 =
1

2π

∫
π

−π

f (t)dt, and for n≥ 1,

An =
1
π

∫
π

−π

f (t)cosnt dt and Bn =
1
π

∫
π

−π

f (t)sinnt dt.

The sequences (An)n≥0 and (Bn)n≥1 are the Fourier coefficients of f .

This definition makes sense even if f is only Riemann integrable.
By construction, the Fourier series of a trigonometric polynomial is itself. It is

often possible to compute Fourier series exactly.

7.6.3. EXAMPLE. Consider the Fourier series of the function f (θ) = |θ | for
−π ≤ θ ≤ π . First note that f is even, so Bn = 0 for all n (Exercise 7.6.I). For An,
we compute

A0 =
1

2π

∫
π

−π

|t|dt =
1
π

∫
π

0
t dt =

π

2
,

and, using integration by parts,

An =
1
π

∫
π

−π

|t|cosnt dt =
2
π

∫
π

0
t cosnt dt

=
2t
π

sinnt
n

∣∣∣∣π
0
− 2

π

∫
π

0
1

sinnt
n

dt = 0+
2cosnt

πn2

∣∣∣∣π
0

=
2

πn2

(
(−1)n−1

)
=

 0 if n is even,

− 4
πn2 if n is odd.

Thus the Fourier series is

|θ | ∼ π

2
− 4

π

∞

∑
k=0

cos(2k +1)θ
(2k +1)2 .
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Even if a function f is continuous, it is not immediately evident that the Fourier
series of f will converge to f . This is a serious problem, which required a lot of
careful thought and helped force mathematicians to adopt the careful definitions
and concern with proofs that drive this book. For one thing, there is more than one
natural notion of convergence in C[−π,π]. In the next section, we look at complete
inner product spaces, where the norm arises from an inner product. We will return
to this question after discussing more notions of convergence in Chapter 8.

To finish this section, we show that the sequence of Fourier coefficients is
bounded. Since piecewise continuous functions on a finite interval must be bounded,

‖ f‖1 :=
1

2π

∫
π

−π

| f (θ)|dθ < ∞.

This is the L1 norm of Example 7.1.5 divided by 2π . Notice that ‖ f‖1 ≤ ‖ f‖∞.
If a function is not bounded, then we can still compute an improper integral,

taking limits around each infinite discontinuity. All functions with ‖ f‖1 < ∞ using
either the Riemann integral or improper Riemann integrals are called absolutely
integrable functions.

7.6.4. PROPOSITION. If f is absolutely integrable on [−π,π], then

|A0| ≤ ‖ f‖1, |An| ≤ 2‖ f‖1, and |Bn| ≤ 2‖ f‖1 for n≥ 1.

In particular, if f ∈ PC[−π,π], then its Fourier coefficients are bounded.

PROOF. This is a routine integration. For example,

|Bn| ≤
1
π

∫
π

−π

| f (θ)sinnθ |dθ ≤ 1
π

∫
π

−π

| f (θ)|dθ = 2‖ f‖1.

Moreover, it is evident that if f is bounded,

‖ f‖1 =
1

2π

∫
π

−π

| f (θ)|dθ ≤ 1
2π

∫
π

−π

‖ f‖∞ dθ = ‖ f‖∞.

So continuous functions are absolutely integrable, and thus the Fourier coefficients
are bounded by 2‖ f‖∞. �

Exercises for Section 7.6
A. Complete the proof of Proposition 7.6.1.

B. Show that fn = sin(nπx) for n ≥ 1 forms an orthonormal set in C[0,1] with respect to the
L2[0,1] norm.

C. (a) Find the Fourier series for cos3(θ), which will be a trigonometric polynomial.
(b) Use trig identities to verify that cos3(θ) equals your answer to part (a).

D. If f ∈C[−π,π] has the Fourier series f ∼ A0 +∑
∞
n=1 An cosnθ +Bn sinnθ , show that

A2
0 +

1
2

∞

∑
n=1

|An|2 + |Bn|2 ≤
1

2π

∫
π

−π

| f (x)|2 dx. HINT: Consider the finite sums.

NOTE: We will show in Example 13.5.5 that this is an equality.
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E. Find the Fourier series of the following functions:

(a) f (θ) = |sinθ |
(b) f (θ) = θ for −π ≤ θ ≤ π

F. (a) Suppose that f (θ) is a 2π-periodic function with known Fourier series. Let α be a real
number, and let g(θ) = f (θ −α) for θ ∈ R. Find the Fourier series of g.

(b) Combine part (a) with Exercise E(a) to find the Fourier series of |cosθ |.
G. (a) Let f (θ) be a 2π-periodic function with a given Fourier series. Let g(θ) = f (−θ) for

θ ∈ R. Find the Fourier series of g.
(b) Suppose that h is a 2π-periodic function such that h(π−θ) = h(θ). What does this imply

about its Fourier series?

H. (a) Compute the Fourier series of f (θ) =

{
1−|θ | for −1≤ θ ≤ 1,

0 otherwise.

(b) Compute the Fourier series of g(θ) =


1 for −1≤ θ ≤ 0,

−1 for 0 < θ ≤ 1,

0 otherwise.
(c) What relationship do you see between these two functions and series?

I. Show that if f ∈ C[−π,π] is an odd function, then the Fourier series of f involves only
functions of the form sinkθ . Similarly, if f ∈C[−π,π] is an even function, then the Fourier
series of f involves only the constant term and the cosine functions.

J. For f ∈C[−π,π], define fe(θ) = 1
2

(
f (θ)+ f (−θ)

)
and fo(θ) = 1

2

(
f (θ)− f (−θ)

)
. Com-

pute the Fourier series of fe and fo in terms of the series for f .

K. Show that f0(θ) = 1 and fn(θ) =
√

2cosnθ on 0≤ θ ≤ π for n≥ 1 is an orthonormal set in

C[0,π] for the inner product 〈 f ,g〉=
1
π

∫
π

0
f (θ)g(θ)dθ .

L. Find an inner product on C[0,1] such that {
√

2sinnπx : n ≥ 1} is an orthonormal set, and
verify that this set is orthonormal for your choice of inner product.

M. Let f (x) = x for −π ≤ x ≤ π . Compute the inner product 〈 f ,sinnx〉 for n ≥ 1. Hence show

that
∞

∑
n=1

1
n2 ≤

π2

6
. HINT: Integrate by parts. (See Example 13.5.5.)

7.7 Orthogonal Expansions and Hilbert Spaces

Given our success in Section 7.5 in understanding inner product spaces using fi-
nite orthonormal sets, it is natural to look at infinite orthonormal sets. Our goal is
to extend the Projection Theorem (7.5.11). We start by generalizing the inequal-
ity (7.5.13) to a countable orthonormal set in an inner product space. Further results
in this section depend on making Cauchy series of vectors converge, and so require
inner product spaces that are complete.

7.7.1. BESSEL’S INEQUALITY.
Let S ⊆ N and let {en : n ∈ S} be an orthonormal set in an inner product space V .
For x ∈V ,

∑
n∈S

∣∣〈x,en〉
∣∣2 ≤ ‖x‖2.
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PROOF. Let us write αn = 〈x,en〉. If S is a finite set, then the Projection Theorem
applies. In particular, if Px denotes the projection onto the span of the en, then

∑
n∈S

∣∣〈x,en〉
∣∣2 = ‖Px‖2 ≤ ‖x‖2.

So suppose that S = N is infinite. Using limits and the preceding argument for the
finite set {en : 1≤ n≤ N} gives

∞

∑
n=1

∣∣〈x,en〉
∣∣2 = lim

N→∞

N

∑
n=1

∣∣〈x,en〉
∣∣2 ≤ lim

N→∞
‖x‖2 = ‖x‖2.

�

To extend other parts of the Projection Theorem, we need to have infinite series
of vectors converge. This can be a delicate issue. However, the problem has an
accessible solution if the inner product space is complete.

7.7.2. DEFINITION. A Hilbert space is a complete inner product space.

We give a Hilbert space in the next example, but it is important to know that not
all “natural” inner product spaces are complete. For example, the space C[−π,π]
with the L2 norm, examined in the previous section, is not complete (the argument
is outlined in Exercise 7.7.G). It is possible to complete C[−π,π] in the L2 norm by
an abstract completion process to obtain a Hilbert space, L2(−π,π). Another way to
do this is to develop the more powerful theory of integration known as the Lebesgue
integral, which is a central topic in a course on measure theory. This larger class of
square integrable functions turns out to be complete.

7.7.3. EXAMPLE. The space `2 consists of all sequences x = (xn)
∞

n=1 such that

‖x‖2 :=
( ∞

∑
n=1

x2
n

)1/2
is finite. The inner product on `2 is given by 〈x,y〉=

∞

∑
n=1

xnyn.

In order for this inner product to be well defined, we need to know that this series
always converges. In fact, it always converges absolutely (see Exercise 7.7.B).

7.7.4. THEOREM. The inner product space `2 is complete.

PROOF. We must show that if a sequence xk =
(
xk,n
)∞

n=1 is Cauchy, then it converges
to a vector x in `2. We know that for every ε > 0, there is a number K so large that
‖xk−xl‖< ε for all k, l ≥ K. In particular,

|xk,n− xl,n| ≤ ‖xk−xl‖< ε for all k, l ≥ K.

So for each coordinate n, the sequence
(
xk,n
)∞

k=1 is a Cauchy sequence of real num-
bers. By the completeness of R (Theorem 2.8.5), there exists yn ∈ R such that

yn = lim
k→∞

xk,n for each n≥ 1.
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Let y = (yn)
∞

n=1. We need to show two things: first, that y is in `2, and second, that
xk converges in `2 to y.

It also follows from the triangle inequality that∣∣‖xk‖−‖xl‖
∣∣≤ ‖xk−xl‖< ε for all k, l ≥ K.

Hence the sequence (‖xk‖)∞

k=1 is Cauchy. Let L = lim
k→∞

‖xk‖.

Fix an integer N. Then compute

N

∑
n=1

|yn|2 = lim
k→∞

N

∑
n=1

|xk,n|2 ≤ lim
k→∞

‖xk‖2 = L2.

To show that y belongs to `2, take a limit as N tends to infinity to obtain

‖y‖2 = lim
N→∞

N

∑
n=1

|yn|2 ≤ L2.

A similar argument shows that xk converges to y. Indeed, fix ε > 0 and choose K
as before using the Cauchy criterion. Then fix N and compute

N

∑
n=1

|yn− xk,n|2 = lim
l→∞

N

∑
n=1

|xl,n− xk,n|2 ≤ lim
l→∞

‖xl −xk‖2 ≤ ε
2.

The right-hand side is now independent of N, so letting N tend to infinity yields

‖y−xk‖2 = lim
N→∞

N

∑
n=1

|yn− xk,n|2 ≤ ε
2

for all k ≥ K. Since ε > 0 is arbitrary, this establishes convergence. �

In a Hilbert space, the closed span of a set of vectors S, denoted by spanS, is
the closure of the linear subspace spanned by S. This is still a subspace. Since it is
a closed subset of a complete space, it is also complete. Thus closed subspaces of
Hilbert spaces are themselves Hilbert spaces in the given inner product.

We call an orthonormal set S an orthonormal basis for a Hilbert space H if it is
maximal as an orthonormal set. For H a finite-dimensional space, this is equivalent
to the usual definition of a basis, by Corollary 7.5.4. In infinite-dimensional spaces,
it is only a basis in a topological sense, where we allow convergent infinite linear
combinations of the orthonormal set.

We can now sharpen Bessel’s inequality (7.7.1), telling us precisely when it is an
equality. Solely to avoid the technicalities of uncountable bases (see Appendix 2.9),
we assume that our Hilbert spaces are separable, meaning that every orthonormal
set is countable. In other words, we assume that an orthonormal set can be indexed
by either by a finite set or N.
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7.7.5. PARSEVAL’S THEOREM.
Let S ⊂ N and E = {en : n ∈ S} be an orthonormal set in a Hilbert space H. Then
the subspace M = spanE consists of all vectors x = ∑

n∈S
αnen, where the coefficient

sequence (αn)
∞

n=1 belongs to `2. Further, for x ∈ H, then x ∈M if and only if

∑
n∈S

∣∣〈x,en〉
∣∣2 = ‖x‖2.

PROOF. When S is a finite set, this theorem follows from the Projection Theo-
rem (7.5.11). So suppose that S is infinite, say S = { j1, j2, j3, . . .}.

Suppose that (αn)
∞

n=1 ∈ `2. Define xk = ∑
k
n=1 αne jn . We will show that this is a

Cauchy sequence. Indeed, if ε > 0, then the convergence of ∑n≥1 |αn|2 shows that
there is an integer K such that ∑

∞
n=K+1 |αn|2 < ε2. Thus if l ≥ k ≥ K,

‖xl − xk‖2 =
∥∥∥ l

∑
n=k+1

αne jn

∥∥∥=
l

∑
n=k+1

|αn|2 < ε
2.

Since H is complete, this sequence converges to a vector x.
Since M is closed and each xk lies in M, it follows that x belongs to M. Moreover,

using Corollary 7.4.7,

〈x,e jn〉= lim
k→∞

〈xk,e jn〉= αn for all n≥ 1.

So we can write without confusion x =
∞

∑
n=1

αne jn . Thus M contains all of the `2

linear combinations of the basis vectors.
Now let x be an arbitrary vector in H and set αn = 〈x,e jn〉. By Bessel’s in-

equality (7.7.1), the sequence (αn)
∞

n=1 belongs to `2 and ∑
n≥1

|αn|2 ≤ ‖x‖2. Let

y =
∞

∑
n=1

αne jn . Compute

‖x− y‖2 = ‖x‖2−2〈x,y〉+‖y‖2 = ‖x‖2−2
∞

∑
n=1
〈x,αne jn〉+

∞

∑
n=1

|αn|2

= ‖x‖2−2
∞

∑
n=1

|αn|2 +
∞

∑
n=1

|αn|2 = ‖x‖2−
∞

∑
n=1

|αn|2.

Thus if Bessel’s inequality is an equality, then x = y and thus it belongs to M.
Conversely, if x belongs to M, we must show that the series ∑

∞
n=1 αnen actually

converges to x itself. Since x belongs to M, it is the limit of vectors in the algebraic
span of the basis vectors. So given any ε > 0, there are an integer N and a vector z
in span{e jn : 1≤ n≤ N} such that ‖x− z‖< ε . By the Projection Theorem (7.5.11),
the vector xN = ∑

N
n=1 αne jn is closer to x, whence ‖x− xN‖ ≤ ‖x− z‖< ε .
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Since this holds for all ε > 0, we deduce that a subsequence of the sequence
(xk)

∞

n=1 converges to x. But this whole sequence converges (as shown in the second
paragraph), so that x = ∑

∞
n=1 αne jn . �

7.7.6. COROLLARY. Let E = {en : n ∈ S} be an orthonormal set in a Hilbert
space H. Then there is a continuous linear orthogonal projection PM of H onto
M = spanE given by PMx = ∑n∈S〈x,en〉en.

PROOF. The preceding proof established that y = PMx = ∑n∈S〈x,en〉en is defined
and that

‖x‖2 = ‖y‖2 +‖x− y‖2 = ‖PMx‖2 +‖x−PMx‖2.

Since the coefficients are determined in a linear fashion,

〈αx+βy,en〉= α〈x,en〉+β 〈y,en〉,

it follows that PM(αx + βy) = αPMx + βPMy for all x,y ∈ H and scalars α,β ∈ R.
So PM is linear.

Since ‖PMx‖ ≤ ‖x‖, we have ‖PMx−PMy‖ = ‖PM(x− y)‖ ≤ ‖x− y‖. So PM is
Lipschitz and thus (uniformly) continuous. Parseval’s Theorem also established that
PMx = x if and only if x ∈M. In particular, the range of PM is precisely M.

Finally, PMy = 0 if and only if 〈y,en〉 = 0 for all n ∈ S. Thus if x = PMx =
∑n∈S αnen and PMy = 0, it follows that

〈x,y〉= ∑
n∈S

αn〈en,y〉= 0.

Hence PM is an orthogonal projection. �

Recall that an orthonormal basis for a Hilbert space was defined as a maximal
orthonormal set. Every Hilbert space has an orthonormal basis, but a proof of this
fact requires assumptions from set theory, including the Axiom of Choice.

7.7.7. COROLLARY. If E = {ei : i≥ 1} is an orthonormal basis for a Hilbert

space H, every vector x ∈ H may be uniquely expressed as x =
∞

∑
i=1
〈x,ei〉ei.

PROOF. We need to show that the closed span of a basis is H. If M = spanE is
a proper subspace, there is a vector x ∈ H that is not in M. Invoking the previous
corollary, y = x−PMx 6= 0. So e = y/‖y‖ is a unit vector such that

PMe =
PM(x−PMx)

‖y‖
= 0.

Thus e is orthogonal to M. In particular, {e,ei : i≥ 1} is orthonormal, which contra-
dicts the maximality of E. Since E is maximal, it follows that M = H.
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Parseval’s Theorem shows that the closed span of an orthonormal set consists of
all `2 combinations of this orthonormal set. So every vector x∈H may be expressed

as
∞

∑
i=1

αiei. The coefficients are unique because this expression for x implies that

〈x,e j〉= lim
n→∞

〈 n

∑
i=1

αiei,e j
〉

=
n

∑
i=1

αi〈ei,e j〉= α j.
�

Exercises for Section 7.7

A. When does equality hold in equation (7.5.13)?

B. Let x = (xn)
∞

n=1 and y = (yn)
∞

n=1 be elements of `2.

(a) Show that ∑
N
n=1 |xnyn| ≤ ‖x‖‖y‖. HINT: Schwarz inequality.

(b) Hence prove that
∞

∑
n=1

xnyn converges absolutely.

C. If M is a closed subspace of a Hilbert space H, define the orthogonal complement of M to
be M⊥ = {x : 〈x,m〉= 0 for all m ∈M}.
(a) Show that every vector in H can be written uniquely as x = m + y, where m ∈ M and

y ∈M⊥. Moreover, ‖x‖2 = ‖m‖2 +‖y‖2.
(b) Show that M = (M⊥)⊥.

D. Let P be a projection on an inner product space V . Prove that the following are equivalent:
(a) P is an orthogonal projection.
(b) ‖v‖2 = ‖Pv‖2 +‖v−Pv‖2 for all v ∈V .
(c) ‖Pv‖ ≤ ‖v‖ for all v ∈V .
(d) 〈Pv,w〉= 〈v,Pw〉 for all v,w ∈V .

HINT: For (c) =⇒ (d), show that not (d) implies there are vectors v = Pv and w = (I−P)w
such that 〈v,w〉 > 0. Compute ‖v− tw‖2 −‖v‖2 for small t > 0. For (d) =⇒ (a), show that
〈Pv,(I−P)w〉= 0.

E. Formulate and prove a precise version of the following statement: “A separable infinite-
dimensional Hilbert space with an orthonormal basis {en : n≥ 1} behaves like `2.”
HINT: Look at the finite-dimensional statement, Corollary 7.5.8.

F. (a) If M and N are closed subspaces of a Hilbert space, show that (M∩N)⊥ = M⊥+N⊥.
(b) Let {en : n ≥ 1} be an orthonormal basis for `2. Let M = span{e2n : n≥ 1} and N =

span{e2n−1 +ne2n : n≥ 1}. Show that M +N is not closed.
(c) Use (b) to show that closure is needed in part (a).

G. Consider the functions fn in C[−π,π] given by fn(x) =


0, −π ≤ x≤ 0,

nx, 0≤ x≤ 1
n ,

1, 1
n ≤ x≤ π.

(a) Show that fn converges in the L2 norm to the characteristic function χ of (0,π]. In partic-
ular, ( fn)

∞

n=1 is an L2 Cauchy sequence.
(b) Show that ‖χ−h‖2 > 0 for every function h in C[−π,π].
(c) Hence conclude that C[−π,π] is not complete in the L2 norm.



Chapter 8
Limits of Functions

8.1 Limits of Functions

There are several reasonable definitions for the limit of a sequence of functions.
Clearly the entries of the sequence should approximate the limit function f to greater
and greater accuracy in some sense. But there are different ways of measuring the
accuracy of an approximation, depending on the problem. Different approximation
schemes generally correspond to different norms, although not all convergence cri-
teria come from a norm. In this section, we consider two natural choices and see
why the stronger notion is better for many purposes.

8.1.1. DEFINITION. Let ( fk) be a sequence of functions from S⊂Rn into Rm.
This sequence converges pointwise to a function f if

lim
k→∞

fk(x) = f (x) for all x ∈ S.

This is the most obvious and perhaps simplest notion of convergence. It is also a
rather weak concept fraught with difficulties.

8.1.2. EXAMPLE. Define piecewise linear continuous functions fk on [0,1] by
connecting the points (0,0), ( 1

k ,k), ( 2
k ,0), and (1,0) by straight lines, namely

fk(x) =


k2x for 0≤ x≤ 1

k ,

k2( 2
k − x) for 1

k ≤ x≤ 2
k ,

0 for 2
k ≤ x≤ 1.

See Figure 8.1. This sequence converges pointwise to the zero function; that is,

lim
k→∞

fk(x) = 0 for all 0≤ x≤ 1.
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FIG. 8.1 Graphs of fk and fk+1.

Indeed, at x = 0, we have fk(x) = 0 for all k≥ 1; and if x > 0, then there is an integer
N such that x ≥ 2/N. Thus once k ≥ N, we have fk(x) = 0. So at every point, the
functions are eventually constant. Notice, however, that the closer x is to zero, the
larger the choice of N must be.

The limit is a continuous function. However, the limit of the integrals is not the
integral of the limit. The area between the graph of fk and the x-axis forms a triangle
with base 2/k and height k and thus has area 1 for all k. Therefore,

lim
k→∞

∫ 1

0
fk(x)dx = 1 6= 0 =

∫ 1

0
0dx.

Easy modifications of this example yield sequences of functions converging point-
wise to 0 with integrals tending to infinity or any finite value or oscillating wildly.

The other notion of convergence that we study, uniform convergence, will de-
mand that convergence occur at a uniform rate on the whole space S. To formulate
this, we first consider the ε–N version of pointwise limit. A sequence ( fk) converges
pointwise to f if for every x ∈ S and ε > 0, there is an integer N such that

‖ fk(x)− f (x)‖< ε for all k ≥ N.

In this case, N depends on both ε and on the point x. (Look at how we chose different
values of N for different x∈ [0,1] in Example 8.1.2.) Uniform convergence demands
that this choice depend only on ε , providing a common N that works for all x in S.

8.1.3. DEFINITION. Let ( fk) be a sequence of functions from S⊂Rn into Rm.
This sequence converges uniformly to a function f if for every ε > 0, there is an
integer N such that

‖ fk(x)− f (x)‖< ε for all x ∈ S and k ≥ N.
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x

y

f + ε

fk

f − ε

FIG. 8.2 Graph of neighbourhood of f and a sample fk.

To understand this definition, look at Figure 8.2. The point is that the graph of fk
must lie between the graphs of f + ε and f − ε .

Clearly, if ( fk) converges uniformly to f , then ( fk) also converges pointwise to
f . But this is not reversible.

As we have seen in Example 7.1.3, when K is a compact subset of Rn, we may
define a norm on the space C(K) of all real-valued continuous functions on K by

‖ f‖∞ = sup
x∈K

| f (x)|.

This is defined because the Extreme Value Theorem (5.4.4) guarantees that the
supremum is finite.

When S is a subset of Rn that is not compact, there are unbounded continu-
ous functions on S. Nevertheless, we may restrict ourselves to the subspace Cb(S),
consisting of all bounded continuous functions from S to R. Then the supremum be-
comes a norm in the same manner. Similarly, we may consider bounded continuous
functions with values in Rm. This space is denoted by Cb(S,Rm) and has the norm

‖ f‖∞ = sup
x∈S

‖ f (x)‖2,

where ‖ · ‖2 is the usual Euclidean norm in Rm. We have the following theorem.

8.1.4. THEOREM. Given S⊂Rn and a sequence of functions ( fk) in C(S,Rm),
( fk) converges uniformly to f if and only if fk− f ∈Cb(S,Rm) for all k sufficiently
large and

lim
k→∞

‖ fk− f‖∞ = 0.

After the preceding discussion, the proof is immediate. Indeed, the statement
‖ fk(x)− f (x)‖ ≤ ε for all x ∈ S is equivalent to saying that fk− f is bounded and
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‖ fk− f‖∞ ≤ ε.

Returning to Example 8.1.2, the maximum of fk occurs at 1
k with fk( 1

k ) = k, and so

‖ fk−0‖∞ = k.

This does not converge to 0. So fk does not converge uniformly to the zero function
(or any other bounded function, for that matter).

8.1.5. EXAMPLE. Consider fk(x) = xk for x ∈ [0,1]. It is easy to check that

lim
k→∞

fk(x) = lim
k→∞

xk =

{
0 for 0≤ x < 1,

1 for x = 1.

Thus the pointwise limit is the function χ{1}, the characteristic function of {1}. The
functions fk are polynomials, and hence not only continuous but even smooth, while
the limit function has a discontinuity at the point 1.

For each k ≥ 1, we have fk(1) = 1, and so

‖ fk−χ{1}‖∞ = sup
0≤x<1

|xk−0|= 1.

So fk does not converge in the uniform norm. Indeed, to contradict the definition,
take ε = 1/2. For each k, let xk = 2−1/2k. Then∣∣ fk(xk)−χ{1}(xk)

∣∣= 1√
2

> ε.

Hence there is no integer N satisfying the definition.

8.1.6. EXAMPLE. Consider the functions fn on [0,π] given by

fn(x) =
1
n

sinnx.

Several of the fn are graphed in Figure 8.3. By the Squeeze Theorem (2.4.6),

lim
n→∞

1
n

sinnx = 0 for all 0≤ x≤ π.

Moreover, ‖ fn‖∞ = sup
0≤x≤π

1
n |sinnx|= 1

n . Thus this sequence converges uniformly to

0. If ε > 0, we may choose N so large that 1
N < ε . Then for any n≥ N,

| fn(x)−0|=
∣∣∣1
n

sinnx
∣∣∣≤ 1

N
< ε for all 0≤ x≤ π.
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x

y1

1 2 3

FIG. 8.3 The graphs of y = fn(x) for n = 1, 4, and 13.

This sequence does not behave well with respect to derivatives—a typical feature
of uniform approximation. Compute

f ′n(x) = cosnx.

Hence lim
n→∞

f ′n(0) = lim
n→∞

1 = 1 6= 0 = f ′(0), while lim
n→∞

f ′n(π) = lim
n→∞

(−1)n does not

even exist. Indeed, this limit does not exist at any point of [0,π] except 0.
The intuition is that for any nice smooth function, there are functions that os-

cillate up and down very rapidly and yet remain close to the nice function, such
as our previous functions. The sequence gn(x) = 1

n sinn2x converges uniformly to
0 as well, yet has derivatives, g′n(x) = ncosn2x, that do not converge anywhere. So
uniform convergence does not give control of derivatives.

Exercises for Section 8.1

A. Let fn(x) = xne−nx for all x ≥ 0 and n≥ 1. Show that ( fn) converges to zero on [0,∞) point-
wise but not uniformly.

B. Let fn(x) = nx(1− x2)n on [0,1] for n≥ 1. Find lim
n→∞

fn(x). Is the convergence uniform?

HINT: Recall that lim
n→∞

(1− h
n )n = e−h.

C. For the sequence of functions in the previous exercise, compare the limit of the integrals (from
0 to 1) with the integral of the limit.

D. Does the sequence fn(x) =
x

1+nx2 converge uniformly on R?

E. Show that fn(x) =
arctan(nx)

n
, n≥ 1 converges uniformly on R.

F. Show that fn(x) = nsin(x/n) converges uniformly on [−R,R] for any finite R but does not
converge uniformly on R.

G. Find all intervals on which the sequence fn(x) =
x2n

n+ x2n , n≥ 1, converges uniformly.

H. Suppose that fn : [0,1] → R is a sequence of C1 functions (i.e., functions with continuous
derivatives) that converges pointwise to a function f . If there is a constant M such that
‖ f ′n‖∞ ≤M for all n, then prove that ( fn) converges to f uniformly.

I. Prove Dini’s Theorem: if f and fn are continuous functions on [a,b] such that fn ≤ fn+1 for
all n≥ 1 and ( fn) converges to f pointwise, then ( fn) converges to f uniformly.
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HINT: Work with gn = f − fn, which decrease to 0. Show that for any point x0 and ε > 0, there
are an integer N and a positive r > 0 such that gN(x)≤ ε on (x0− r,x0 + r). If convergence is
not uniform, say lim‖gn‖∞ = d > 0, find xn such that limgn(xn) = d. Obtain a contradiction.

J. Find an example which shows that Dini’s Theorem is false if [a,b] is replaced with a non-
compact subset of R.

K. (a) Suppose that f : R → R is uniformly continuous. Let fn(x) = f (x + 1/n). Prove that fn
converges uniformly to f on R.

(b) Does this remain true if f is just continuous? Prove it or provide a counterexample.

L. For which values of x≥ 1 does the expression xxxx.
..

make sense?
HINT: Define f1(x) = x and fn+1(x) = x fn(x) for n≥ 1. Then

(a) Show that fn+1(x)≥ fn(x) for all n≥ 1.
(b) When L(x) = lim

n→∞
fn(x) exists, find optimal upper bounds for x and L.

(c) For these values of x, show by induction that fn(x) is bounded above by e for all n ≥ 1.
What can you conclude?

(d) What happens for larger x?

M. The behaviour of xxxx.
..

when 0 < x < 1 is more complicated and so more interesting. To get
started, compute fn(1/16) for small values of n, using the functions fn from the previous
exercise, and see what occurs.

8.2 Uniform Convergence and Continuity

Our first positive result is that uniform convergence preserves continuity and so is
(almost) always the right notion of convergence for continuous functions.

8.2.1. THEOREM. Let ( fk) be a sequence of continuous functions mapping a
subset S of Rn into Rm that converges uniformly to a function f . Then f is continu-
ous.

PROOF. Fix a point a ∈ S and an ε > 0. We must control ‖ f (x)− f (a)‖ only by
controlling the bound on ‖x−a‖. To this end, we make use of the proximity of one
of the continuous functions fk and compute

‖ f (x)− f (a)‖= ‖ f (x)− fk(x)+ fk(x)− fk(a)+ fk(a)− f (a)‖
≤ ‖ f (x)− fk(x)‖+‖ fk(x)− fk(a)‖+‖ fk(a)− f (a)‖.

Note that the first and last terms may be controlled by

‖ f (x)− fk(x)‖ ≤ ‖ fk− f‖∞ for all x ∈ S,

including x = a. The middle term may be controlled by the continuity of fk.
To be precise, first choose N so large that

‖ fN − f‖∞ <
ε

3
.
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Then using the continuity of fN at a, choose a positive number r > 0 such that

‖ fN(x)− fN(a)‖<
ε

3
for all ‖x−a‖< r.

Then for all x ∈ S with ‖x−a‖< r, we obtain

‖ f (x)− f (a)‖ ≤ ‖ f (x)− fN(x)‖+‖ fN(x)− fN(a)‖+‖ fN(a)− f (a)‖

<
ε

3
+

ε

3
+

ε

3
= ε.

Thus f is continuous. �

This method of proof, often called an ‘ε/3 argument’, is one that we shall use
often in this chapter. Also note that in this proof, smaller values of ε require using
a larger value of N, i.e., a closer approximant fN , in order to achieve the desired
estimate.

Now we will use the compactness of K and Theorem 8.2.1 to show that C(K,Rm)
is complete. Just as we used completeness to understand the real line, we can use
it to understand other spaces. First, of course, we have to prove that the space in
question is complete.

8.2.2. COMPLETENESS THEOREM FOR C(K,Rm).
If K ⊂ Rn is a compact set, the space C(K,Rm) of all continuous Rm-valued func-
tions on K with the sup norm is complete.

PROOF. A sequence ( fk) in C(K,Rm) is a Cauchy sequence for the sup norm if for
every ε > 0, there is an integer N such that

‖ fk− fl‖∞ < ε for all k, l ≥ N.

We must show that every Cauchy sequence has a (uniform) limit in C(K,Rm).
First consider an arbitrary point x ∈ K. Using ‖ ·‖ for the Euclidean norm in Rm,

we have
‖ fk(x)− fl(x)‖ ≤ ‖ fk− fl‖∞ < ε for all k, l ≥ N.

Hence the sequence ( fk(x))∞
k=1 is a Cauchy sequence of real numbers. Since Rm is

complete (Theorem 4.2.5), this has a pointwise limit

f (x) := lim
n→∞

fn(x).

This must be shown to converge uniformly. With ε and N as before, we obtain the
estimate

‖ f (x)− fm(x)‖= lim
n→∞

‖ fn(x)− fm(x)‖ ≤ ε for all m≥ N.
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Since this holds for all x ∈ K, it follows that ‖ f − fn‖∞ ≤ ε. Therefore, the limit is
uniform.

By the previous theorem, the uniform limit of continuous functions is continuous.
Thus f is continuous and hence belongs to C(K,Rm). This establishes that C(K,Rm)
is complete. �

That K is compact is used only implicitly in the proof, when we assume that
‖ fm− fn‖∞ is well defined. So the same proof shows that for any S⊆Rm, Cb(S,Rm)
is complete.

We have used this method of proof before and will use it again. For example,
Theorem 4.2.5, showing the completeness of Rn, and the Weierstrass M-test (8.4.7),
later in this chapter, both follow a similar strategy.

Exercises for Section 8.2
A. Find the limits of the following functions. Find an interval on which convergence is uniform

and another on which it is not. Explain.

(a) fn(x) =
( x

2

)n
+
(1

x

)n
(b) gn(x) =

nx
2+5nx

B. Show that hn(x) =
n+ x
4n+ x

converges uniformly on [0,N] for any N < ∞ but not uniformly on

[0,∞).

C. Consider a sequence of continuous functions fn : (0,1) → R. Suppose there is a function
f : (0,1)→R such that whenever 0 < a < b < 1, fn converges uniformly on [a,b] to f . Prove
that f is continuous on (0,1).

D. Let ( fn) and (gn) be sequences of continuous functions on [a,b]. Suppose that ( fn) converges
uniformly to f and (gn) converges uniformly to g on [a,b]. Prove that ( fngn) converges uni-
formly to f g on [a,b].

E. Suppose that ( fk) converges uniformly to f on a compact subset K of Rn and that (gk) con-
verges uniformly on K to a continuous function g such that g(x) 6= 0 for all x ∈ K. Prove that
fk(x)/gk(x) is everywhere defined for large k and that this quotient converges uniformly to
f (x)/g(x) on K.

F. Let fn(x) = arctan(nx)/
√

n.

(a) Find f (x) = lim
n→∞

fn(x), and show that ( fn) converges uniformly to f on R.
(b) Compute lim

n→∞
f ′n(x), and compare this with f ′(x).

(c) Where is the convergence of f ′n uniform? Prove your answer.

G. Suppose that functions fk defined on Rn converge uniformly to a function f . Suppose that
each fn is bounded, say by Ak. Prove that f is bounded.

H. Suppose that fn in C[0,1] all have Lipschitz constant L. Show that if ( fn) converges pointwise
to f , then the convergence is uniform and f is Lipschitz with constant L.

I. Give an example of a sequence of discontinuous functions fn that converges uniformly to a
continuous function.

J. Let V be a complete normed vector space.

(a) Let ( fn) be a Cauchy sequence in C([a,b],V ). Show that for each x ∈ [a,b], ( fn(x)) is
Cauchy, and so define the pointwise limit f (x) = lim

n→∞
fn(x).

(b) Prove that ( fn) converges uniformly. HINT: Use the Cauchy criterion to obtain an esti-
mate for ‖ fn(x)− f (x)‖ that is independent of the point x.

(c) Prove that f is continuous, and deduce that C([a,b],V ) is complete.
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8.3 Uniform Convergence and Integration

A useful feature of uniform convergence is its good behaviour with respect to limits.
We now show that integration over a compact set respects uniform limits.

8.3.1. INTEGRAL CONVERGENCE THEOREM.
Let ( fn) be a sequence of continuous functions on the closed interval [a,b] converg-
ing uniformly to f (x) and fix c ∈ [a,b]. Then the functions

Fn(x) =
∫ x

c
fn(t)dt for n≥ 1

converge uniformly on [a,b] to the function F(x) =
∫ x

c
f (t)dt.

PROOF. The proof is straightforward:

|Fn(x)−F(x)|=
∣∣∣∫ x

c
fn(t)− f (t)dt

∣∣∣
≤
∫ x

c
| fn(t)− f (t)|dt ≤

∫ x

c
‖ fn− f‖∞ dt

≤ |x− c|‖ fn− f‖∞ ≤ (b−a)‖ fn− f‖∞.

The upper bound does not depend on x. Hence

‖Fn−F‖∞ ≤ (b−a)‖ fn− f‖∞.

Since ( fn) converges uniformly to f ,

lim
n→∞

‖Fn−F‖∞ ≤ (b−a) lim
n→∞

‖ fn− f‖∞ = 0.

That is, (Fn) converges uniformly to F . �

This can be reformulated in terms of derivatives as follows.

8.3.2. COROLLARY. Suppose that ( fn) is a sequence of continuously differen-
tiable functions on [a,b] such that ( f ′n) converges uniformly to a function g and there
is a point c ∈ [a,b] such that lim

n→∞
fn(c) = γ exists. Then ( fn) converges uniformly to

a differentiable function f with f (c) = γ and f ′ = g.

PROOF. By the Fundamental Theorem of Calculus, part 2 (6.4.3), fn is the unique
antiderivative of f ′n whose value at c is fn(c). That is,

fn(x) = fn(c)+
∫ x

c
f ′n(t)dt.
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By the previous theorem, the sequence of functions Fn(x) =
∫ x

c
f ′n(t)dt for n ≥ 1

converges uniformly to F(x) =
∫ x

c
g(t)dt. Since lim

n→∞
fn(c) = γ , it follows that

lim
n→∞

‖ fn− (γ +F)‖∞ ≤ lim
n→∞

| fn(c)− γ|+‖Fn−F‖∞ = 0.

Therefore, ( fn) converges uniformly to

f (x) = γ +
∫ x

c
g(x)dx.

Finally, the Fundamental Theorem of Calculus, part 1 (6.4.2) shows that f is differ-
entiable and f ′ = g. �

Consider a function of two variables f (x, t). Notice that

F(x) =
∫ d

c
f (x, t)dt

is a function of x. The previous theorem can be seen as a special case of this situa-
tion, where x is in N and f (t,n) is written as fn(t). It turns out that F ′(x) equals the
integral of ∂ f /∂x, but proving it requires some careful estimates. We begin with a
continuous parameter version of the Integral Convergence Theorem.

8.3.3. PROPOSITION. Let f (x, t) be a continuous function on [a,b]× [c,d].

Define F(x) =
∫ d

c
f (x, t)dt. Then F is continuous on [a,b].

PROOF. Since f is continuous on a compact set, it is uniformly continuous. There-
fore, given ε > 0, there is a δ > 0 such that | f (x, t)− f (y, t)|< ε/(d− c) whenever
|x− y|< δ . Therefore,

|F(x)−F(y)|=
∣∣∣∣∫ d

c
f (x, t)− f (y, t)dt

∣∣∣∣≤ ∫ d

c
| f (x, t)− f (y, t)|dt

≤
∫ d

c

ε

d− c
dt = ε.

Thus F is uniformly continuous. �

8.3.4. LEIBNIZ’S RULE.
Suppose that f (x, t) and ∂

∂x f (x, t) are continuous functions on [a,b]× [c,d]. Then

the function F(x) on [a,b] given by F(x) =
∫ d

c
f (x, t)dt is differentiable and

F ′(x) =
∫ d

c

∂

∂x
f (x, t)dt.
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PROOF. For brevity, we use f1 for the partial derivative of f with respect to its first
variable, that is, f1(x, t) = ∂

∂x f (x, t). Fix x0 ∈ [a,b] and let h 6= 0. Observe that

F(x0 +h)−F(x0)
h

=
∫ d

c

f (x0 +h, t)− f (x0, t)
h

dt.

Since f (x, t) is a differentiable function of x for fixed t, we may apply the Mean
Value Theorem (6.2.2) to obtain a point x(t) depending on t such that |x(t)− x|< h
and

f (x0 +h, t)− f (x0, t)
h

= f1(x(t), t).

The Mean Value Theorem does not show that the function x(t) is continuous. How-
ever, in this situation, the left-hand side of this identity is evidently a continuous
function of t, and hence so is the right-hand side, f1(x(t), t).

Since f1(x, t) is continuous on a compact set, it is uniformly continuous. So for
ε > 0, we can choose δ > 0 such that∣∣ f1(x, t)− f1(y, t)

∣∣< ε

d− c

whenever |x− y|< δ . Therefore, if |h|< δ , then |x(t)− x|< δ ; so∣∣∣∣F(x0+h)−F(x0)
h

−
∫ d

c
f1(x, t)dt

∣∣∣∣= ∣∣∣∣∫ d

c

f (x0+h, t)− f (x0, t)
h

− f1(x, t)dt
∣∣∣∣

≤
∫ d

c

∣∣∣ f1(x(t), t)− f1(x, t)
∣∣∣dt

≤
∫ d

c

ε

d− c
dt = ε.

Since ε > 0 was arbitrary, we obtain

F ′(x0) = lim
h→0

F(x0 +h)−F(x0)
h

=
∫ d

c
f1(x, t)dt =

∫ d

c

∂

∂x
f (x, t)dt.

�

8.3.5. EXAMPLE. We will establish the improper integral
∫

∞

0
e−x2

dx =
√

π

2
.

It is known that the integral g(u) =
∫ u

0 e−x2
dx cannot be expressed in closed form

in terms of the standard elementary functions. However, the definite integral can be
evaluated in a number of ways. Here we exploit Leibniz’s rule to accomplish this.
The auxiliary function that we introduce is unmotivated, but the rest of the proof is
straightforward.

Before we begin computing, observe that e−x2
is positive and thus g(u) is mono-

tone increasing. Thus to prove that a limit exists as u tends to +∞, it suffices to show
that g is bounded. However, e−x2 ≤ 1 for all x and e−x2 ≤ e−x when x≥ 1. So
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g(u)≤
∫ 1

0
1ds+

∫ u

1
e−s ds = 1+(e− e−u)≤ 1+ e.

Consequently,
∫

∞

0 e−x2
dx is defined and finite.

Consider

F(x) =
∫ 1

0

e−x(1+t2)

1+ t2 dt.

Observe that

F(0) =
∫ 1

0

1
1+ t2 dt = arctan t

∣∣∣1
0
=

π

4
.

The integrand f (x, t) =
e−x(1+t2)

1+ t2 is continuous on [0,∞)× [0,1]. We define fx(t) =

f (x, t) and observe that 0≤ fx(t)≤ e−x. Hence fx converges uniformly to 0 on [0,1]
as x→+∞. By the Integral Convergence Theorem (8.3.1), we conclude that

lim
x→∞

f (x) =
∫ 1

0
lim
x→∞

fx(t)dt =
∫ 1

0
0dt = 0.

Now apply the Leibniz rule to compute

F ′(x) =
∫ 1

0

∂

∂x

(
e−x(1+t2)

1+ t2

)
dt

=
∫ 1

0

e−x(1+t2)(−(1+ t2))
1+ t2 dt =−e−x

∫ 1

0
e−xt2

dt.

Make the change of variables s =
√

xt (where x is held constant), to obtain

F ′(x) =−e−x
∫ √

x

0

e−s2

√
x

ds =−e−x
√

x
g(
√

x).

Next, we relate F(0) to the improper integral we want to evaluate:

π

4
= lim

n→∞
F(0)−F(n) = lim

n→∞
−
∫ n

0
F ′(x)dx = lim

n→∞

∫ n

0

e−x
√

x
g(
√

x)dx.

Substitute s =
√

x. By the Fundamental Theorem of Calculus, part 1, g′(s) = e−s2
.

So

π

4
= lim

n→∞

∫ √
n

0
2e−s2

g(s)ds

= lim
n→∞

∫ √
n

0
2g′(s)g(s)ds = lim

n→∞
g2(s)

∣∣∣n
0
=
(∫

∞

0
e−x2

dx
)2

.

Taking square roots gives the result.
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Exercises for Section 8.3

A. For x ∈ [−1,1], let F(x) =
∫ 1

0 x(1−x2y2)−1/2 dy. Show that F ′(x) = (1−x2)−1/2 and deduce
that F(x) = arcsin(x).

B. For n≥ 1, define functions fn on [0,∞) by

fn(x) =


e−x for 0≤ x≤ n,

e−2n(en +n− x) for n≤ x≤ n+ en,

0 for x≥ n+ en.

(a) Find the pointwise limit f of ( fn). Show that the convergence is uniform on [0,∞).

(b) Compute
∫

∞

0
f (x)dx and lim

n→∞

∫
∞

0
fn(x)dx.

(c) Why does this not contradict Theorem 8.3.1?

C. Suppose that g∈C[0,1] and ( fn) is a sequence in C[0,1] that converges uniformly to f . Prove
that

lim
n→∞

∫ 1

0
fn(x)g(x)dx =

∫ 1

0
f (x)g(x)dx.

D. Find lim
n→∞

∫
π

0

sinnx
nx

dx. HINT: Find the limit of the integral over [ε,π] and estimate the rest.

E. Define f (x) =
∫

π

0

sinxt
t

dt.

(a) Prove that this integral is defined.
(b) Compute f ′(x) explicitly.
(c) Prove that f ′ is continuous at 0.

F. Define the Bessel function J0 by J0(x) =
1
π

∫ 1

−1

cos(xt)√
1− t2

dt. Prove that J0 satisfies the differ-

ential equation y′′+ y′/x+ y = 0, that is, J′′0 + J′0/x+ J0 is identically zero.

G. With the setup for the Leibniz rule, let b be a variable and set F(x,b) =
∫ b

a
f (x, t)dt. Let

b(x) be a differentiable function, and define G(x) = F(x,b(x)) =
∫ b(x)

a
f (x, t)dt. Show that

G′(x) =
∫ b(x)

a

∂ f
∂x

(x, t)dt + f (x,b(x))b′(x). HINT: G′(x) =
∂F
∂x

(x,b(x))+
∂F
∂y

(x,b(x))b′(x).

H. Suppose that f ∈C2[0,1] such that f ′′(x)+b f ′(x)+ c f (x) = 0, f (0) = 0, and f ′(0) = 1. Let

d(x) be continuous on [0,1] and define g(x) =
∫ x

0
f (x− t)d(t)dt. Prove that g(0) = g′(0) = 0

and g′′(x)+bg′(x)+ cg(x) = d(x).

8.4 Series of Functions

By analogy with series of numbers, we define a series of functions,
∞

∑
n=1

fn(x), as the

limit of the sequence of partial sums
k
∑

n=1
fn(x). Thus, we say that

∞

∑
n=1

fn(x) converges

pointwise (or uniformly) if the partial sums converge pointwise (or uniformly).
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8.4.1. EXAMPLE. Consider the series of functions
∞

∑
n=1

sin(nx)
n2 . To see that the

partial sums converge, first observe that if k ≥ l, then∣∣∣ k

∑
n=1

fn(x)−
l

∑
n=1

fn(x)
∣∣∣≤ k

∑
n=l+1

| fn(x)| ≤
k

∑
n=l+1

1
n2 .

Since
∞

∑
n=1

1/n2 is a convergent series, the Cauchy Criterion (3.1.5) shows that for

any ε > 0, there is an integer N such that if l,k ≥ N, then
k
∑

n=l+1
1/n2 < ε . Thus, for

l,k ≥ N, ∣∣∣ k

∑
n=1

fn(x)−
l

∑
n=1

fn(x)
∣∣∣< ε,

proving that for each x, the partial sums are Cauchy and so converge.

8.4.2. EXAMPLE. On the other hand, consider the sequence of functions fn
on [0,1] given by fn = χ(0,1/n). For any x in [1/(n + 1),1/n), the values fn+1(x),
fn+2(x), . . . are all zero and the values f1(x), . . . , fn(x) are all one. Hence

∞

∑
k=0

fk(x) = n for
1

n+1
≤ x <

1
n
.

Thus, the series ∑
∞
k=0 fk(x) converges at each point of [0,1]. It does not converge

uniformly, since for all k > l, we have∣∣∣ k

∑
n=1

fn(x)−
l

∑
n=1

fn(x)
∣∣∣≥ fl+1(x) = 1 for all x ∈ (0,1/(l +1)).

8.4.3. EXAMPLE. One of the most important types of series of functions is a
power series. This is a series of the form

∞

∑
n=1

anxn = a0 +a1x+a2x2 +a3x3 + · · · .

We will consider these series in detail in the next section. As a starter, consider the

series
∞

∑
n=0

xn/n!. For each x ∈ R, we can apply the Ratio Test, to obtain

lim
n→∞

xn+1/(n+1)!
xn/n!

= lim
n→∞

x
n+1

= 0.

So this series converges pointwise for on R. After Theorem 8.4.7, we will show that
it converges uniformly on each interval [−A,A]; we find the sum in Example 8.5.4.



156 8 Limits of Functions

Using the partial sums, we can translate all of the results of the previous two
sections about sequences of functions into results about series of functions. Here is
an example. We leave the reformulation of the other theorems as exercises.

8.4.4. THEOREM. Let ( fk) be a sequence of continuous functions from a sub-

set S of Rn into Rm. If
∞

∑
k=1

fk(x) converges uniformly, then it is continuous.

8.4.5. DEFINITION. Let S⊂Rn. We say that a series of functions ( fk) from S
to Rm is uniformly Cauchy on S if for every ε > 0, there is an N such that∥∥∥ l

∑
i=k+1

fi(x)
∥∥∥

∞

≤ ε whenever x ∈ S and l > k ≥ N.

The proof that a sequence of real numbers converges if and only if it is Cauchy
(Theorem 2.8.5) can be modified in a straightforward way to show the following.

8.4.6. THEOREM. A series of functions converges uniformly if and only if it is
uniformly Cauchy.

PROOF. Let fk be the kth partial sum. If fk converges uniformly to f , then for each
ε > 0, there is N ∈ N such that ‖ fk− f‖< ε/2 for all k ≥ N. If k, l ≥ N,

‖ fk− fl‖ ≤ ‖ fk− f‖+‖ f − fl‖<
ε

2
+

ε

2
= ε.

Conversely, if ( fk) is uniformly Cauchy, then ( fk(x)) is Cauchy for every x, and thus
f (x) = lim

k→∞
fk(x) exists as a pointwise limit. Moreover, if ε > 0 and ‖ fk − fl‖ < ε

for all k, l ≥ N, then
‖ f − fk‖= lim

l→∞
‖ fk− fl‖ ≤ ε.

Thus this convergence is uniform. �

There is a useful test for uniform convergence of a series of functions. The proof
is easy, and the test comes up often in practice.

8.4.7. WEIERSTRASS M-TEST.
Suppose that ak(x) is a sequence of functions on S⊂Rn into Rm, (Mk) is a sequence
of real numbers, and there is N such that for all k ≥ N and all x ∈ S,

‖ak‖∞ = sup
x∈S

‖ak(x)‖ ≤Mk.

If
∞

∑
k=1

Mk converges, then the series
∞

∑
k=1

ak(x) converges uniformly on S.
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PROOF. For each x ∈ S, the sequence (ak(x)) is an absolutely convergent sequence
of real numbers, since

∞

∑
k=1

‖ak(x)‖<
∞

∑
k=1

‖ak‖∞ ≤
N

∑
k=1

‖ak‖∞ +
∞

∑
k=N+1

Mk < ∞.

Thus the sum exists. Define f (x) =
∞

∑
k=1

ak(x). Then for each x ∈ S,

∥∥∥ f (x)−
l

∑
k=1

ak(x)
∥∥∥=

∥∥∥ ∞

∑
k=l+1

ak(x)
∥∥∥≤ ∞

∑
k=l+1

‖ak(x)‖ ≤
∞

∑
k=l+1

‖ak‖∞ ≤
∞

∑
k=l+1

Mk,

for all l with l ≥ N. This estimate does not depend on x. Thus

lim
l→∞

∥∥∥ f −
l

∑
k=1

ak

∥∥∥
∞

≤ lim
l→∞

∞

∑
k=l+1

Mk = 0.

Therefore, this series converges uniformly to f . �

As an application, we return to the series
∞

∑
n=0

xn

n!
considered in Example 8.4.3.

On any interval [−A,A] with A ≥ 0, |xn/n!| ≤ An/n! =: Mn. Applying the Ratio

Test to Mn shows that
∞

∑
n=0

Mn converges. Hence by the M-test, the series converges

uniformly on [−A,A]. The series does not converge uniformly on the whole real line,
but since it converges uniformly on every bounded interval, we may conclude that
the limit is continuous on the whole line.

8.4.8. EXAMPLE. Consider the geometric series
∞

∑
n=0

(−x2)n. The ratio of suc-

cessive terms of this series at the point x is −x2. Thus for |x| < 1, this series con-
verges, while it diverges for |x| > 1. By inspection, it also diverges at x = ±1. For
each x in (−1,1), we readily obtain that

∞

∑
n=0

(−x2)n =
1

1− (−x2)
=

1
1+ x2 .

On the interval of convergence (−1,1), the convergence is not uniform. Indeed,
for any integer N, take a = 2−1/2N and note that the Nth term (−a2)N = 1

2 is large.
However, on the interval [−r,r] for any r < 1, we have

sup
|x|≤r

|(−x2)n|= r2n.
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Since
∞

∑
n=0

r2n =
1

1− r2 < ∞, the Weierstrass M-test shows that the series converges

uniformly to f (x) =
1

1+ x2 on [−r,r].

Consider the functions

Fn(x) :=
∫ x

0

n

∑
k=0

(−t2)k dt =
n

∑
k=0

(−1)k

2k +1
x2k+1.

Apply Theorem 8.3.1 to see that the Fn converge uniformly on [−r,r] to the function

F(x) =
∫ x

0

1
1+ t2 dt = arctan(x).

This yields the Taylor series for arctan about 0; see also Example 10.1.5,

arctan(x) =
∞

∑
n=0

(−1)n

2n+1
x2n+1.

The radius of convergence of this series is still 1. This converges at x =±1 as well
because it is an alternating series in which the terms are monotone decreasing to
zero.

Figure 8.4.8 gives the graphs of y = arctan(x) and the degree-5 and -11 Taylor
series. Notice that the degree-11 series is closer to arctan than the degree-5 series on
[−1,1] but is further away outside that interval.

It happens that this convergence is uniform on the whole interval [−1,1]. Note
that the series is an alternating series for every x ∈ R. The terms converge mono-
tonely to 0 precisely when |x| ≤ 1. To see this, we need the error estimate for alter-
nating series. Since the terms decrease in absolute value, the error is never greater
than the next term in the series. So the error between the nth partial sum and the
limit is no greater than

sup
|x|≤1

∣∣∣ (−1)n

2n+1
x2n+1

∣∣∣≤ 1
2n+1

.

Since this tends to 0, the series converges uniformly on [−1,1] to arctan(x).

8.4.9. EXAMPLE. The reason we have said nothing so far about the derivatives
of uniformly convergent sequences is that in general, there is nothing good to say.
Indeed, there are continuous functions that are not differentiable at any point. These
are called nowhere differentiable functions. The first example was constructed by
Bolzano sometime before 1830 but was not published. Weierstrass independently
discovered such functions in 1861 and he published his construction in 1872.

To construct a continuous nowhere differentiable function, let

f (x) = ∑
k≥1

2−k cos(10k
πx).
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FIG. 8.4 Graphs for y = arctan(x) and its degree-5 and -11 Taylor series.

Set fk(x) = 2−k cos(10kπx). Then ∑k≥1 ‖ fk‖∞ = ∑k≥1 2−k = 1 converges. Thus by
the Weierstrass M-test, this series converges uniformly on the whole real line to a
continuous function.

Figure 8.5 gives the graphs of the first two partial sums, namely y = cos(10πx)/2
and y = cos(10πx)/2 + cos(100πx)/4. The rapid oscillation in the second graph
suggests how the limit function could fail to be differentiable. Bear in mind that each
partial sum is infinitely differentiable, being a finite linear combination of infinitely
differentiable functions.

Consider an arbitrary point x in R, say x = x0.x1x2x3 . . . . We will show that f is
not differentiable at x by constructing a sequence zn converging to x such that the
difference quotient | f (zn)− f (x)|/|zn− x| goes to +∞.

Fix n ≥ 1. Let y0 = x0.x1x2 . . .xn and y1 = y0 + 10−n. So y0 ≤ x ≤ y1. Let us
estimate | f (y0)− f (y1)|. Since 10nπy0 and 10nπy1 are integer multiples of π , we
have

fn(y0) = (−1)xn2−n and fn(y1) = (−1)xn+12−n.

Hence | fn(y0)− fn(y1)| = 21−n. For k > n, 10kyiπ is an integer multiple of 2π . So
fk(y0) = fk(y1) = 2−k. For 1≤ k < n, the Mean Value Theorem (6.2.2) yields

| fk(y0)− fk(y1)| ≤ ‖ f ′k‖∞|y0− y1|= (2−k10k
π)10−n = 2−n

π5k−n.
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FIG. 8.5 The first two partial sums for Weierstrass’s function.

Combining all of these estimates judiciously, we obtain

| f (y0)− f (y1)| ≥ | fn(y0)− fn(y1)|− ∑
k 6=n

| fk(y0)− fk(y1)|

≥ 21−n−
n−1

∑
k=1

2−n
π5k−n

> 2−n
(

2− π

4

)
> 2−n.

One of these values is far from f (x), since

| f (y0)− f (x)|+ | f (x)− f (y1)| ≥ | f (y0)− f (y1)|> 2−n.

Choose i = 0 or 1 such that | f (yi)− f (x)|> 2−n−1, and set zn = yi. Clearly |zn−x| ≤
|y1− y0|= 10−n. Therefore,∣∣∣ f (zn)− f (x)

zn− x

∣∣∣≥ ∣∣∣2−n−1

10−n

∣∣∣= 5n/2.

As n tends to infinity, it is clear that the sequence (zn) converges to x while the
differential quotient blows up. Therefore, f is not differentiable at x.

Exercises for Section 8.4

A. Reformulate Theorem 8.3.1 and Corollary 8.3.2 in terms of series of functions.

B. Prove Theorem 8.4.6.

C. (a) Show that
∞

∑
n=1

xne−nx converges uniformly on [0,A] for each A > 0.

(b) Does it converge uniformly on [0,∞) ?

D. Does
∞

∑
n=1

1
x2 +n2 converge uniformly on the whole real line?
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E. Show that if
∞

∑
n=1

|an|< ∞, then
∞

∑
n=1

an cosnx converges uniformly on R.

F. (a) Let fn(x) =
x2

(1+ x2)n for x ∈ R. Evaluate the sum S(x) =
∞

∑
n=0

fn(x).

(b) Is this convergence uniform? For which values a < b does this series converge uniformly
on [a,b]?

G. Find the sum of
∞

∑
n=0

( x−7
x+1

)n
for x 6=−1. Where is the convergence uniform?

H. Suppose that ak(x) are continuous functions on [0,1], and define sn(x) =
n
∑

k=1
ak(x). Show that

if (sn) converges uniformly on [0,1], then (an) converges uniformly to 0.

I. Prove the series version of Dini’s Theorem (Exercise 8.1.I): If gn are nonnegative continuous

functions on [a,b] and
∞

∑
n=1

gn converges pointwise to a continuous function on [a,b], then it

converges uniformly.

J. Let ( fn) be a sequence of functions defined on N such that lim
k→∞

fn(k) = Ln exists for each

n ≥ 0. Suppose that ‖ fn‖∞ ≤ Mn, where
∞

∑
n=0

Mn < ∞. Define a function F(k) =
∞

∑
n=0

fn(k).

Prove that lim
k→∞

F(k) =
∞

∑
n=0

Ln.

HINT: Think of fn as a function gn on { 1
k : k ≥ 1}∪{0}. How will you define gn(0)?

K. Apply the previous exercise to the functions fn(k) =
(

k
n

)( x
k

)n
for n ≥ 0 and k ≥ 1. Hence

show that lim
k→∞

(
1+

x
k

)k
= ex.

L. In Example 8.4.9, we could use f (x) = ∑
k≥1

bk cos(akπx), where b < 1 and a is an even integer.

Prove that if ab > 1+π/2, then f is nowhere differentiable.

M. Let d(x) = dist(x,N) and fk(x) = 2−k
(
d(2kx)−2d(2k−1x)

)
for k ≥ 1.

(a) Compute gk(x) = d(x)+
n
∑

k=1
fk(x).

(b) Where does gk fail to be differentiable? This is an increasing sequence of sets with union
dense in R.

(c) Find the limit of gk. How can it turn out to be differentiable?

8.5 Power Series

As mentioned in the previous section, a power series is a series of functions of the
form

∞

∑
n=0

anxn = a0 +a1x+a2x2 +a3x3 + · · · .

Formally, this is a power series in x and we could also consider a power series in
x− x0, namely

∞

∑
n=0

an(x− x0)n = a0 +a1(x− x0)+a2(x− x0)2 +a3(x− x0)3 + · · · .
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This increase in generality is only apparent, since we can set y = x− x0 and work
with a power series in y.

Clearly, a power series converges when x = 0. This may be the only value of x
for which the series converges. For example, apply the Ratio Test (Exercise 3.2.I)

to
∞

∑
n=1

n!xn. The following theorem provides a full answer to the general question of

when a power series converges.

8.5.1. HADAMARD’S THEOREM.
Given a power series

∞

∑
n=0

anxn, there is R in [0,+∞)∪{+∞} so that the series con-

verges for all x with |x|< R and diverges for all x with |x|> R. Moreover, the series
converges uniformly on each closed interval [a,b] contained in (−R,R).

Finally, if α = limsup
n→∞

|an|1/n, then

R =


+∞ if α = 0,

0 if α = +∞,
1
α

if α ∈ (0,+∞).

We call R the radius of convergence of the power series.

PROOF. Fixing x ∈ R and applying the Root Test (3.2.4) to
∞

∑
n=0

anxn gives

limsup |anxn|1/n = |x| limsup |an|1/n = |x|α.

So if α = 0, then |x|α < 1 for all choices of x, and so the series always converges,
as claimed. If α = +∞, then |x|α > 1 for all x 6= 0, and so the series diverges for
nonzero x, again as claimed. Otherwise, |x|α < 1 if and only if |x|< R and |x|α > 1
if and only if |x| > R. By the Root Test again, it follows that we have convergence
and divergence on the required intervals.

It remains only to show uniform convergence on each interval [a,b] contained
in (−R,R). There is some c < R such that [a,b] ⊂ [−c,c] for some c < R. Observe
that for x ∈ [−c,c], |anxn| ≤ |an|cn. Since c < R, the previous paragraph shows that

∞

∑
n=0

|an|cn converges. By the M-test (8.4.7), it follows that
∞

∑
n=0

anxn converges uni-

formly on [−c,c] and hence on [a,b]. �

By Exercise 3.2.J, if lim
n→∞

∣∣ an+1
an

∣∣ is defined, then lim
n→∞

|an|1/n = lim
n→∞

∣∣ an+1
an

∣∣. Thus,
we can often use ratios instead of roots to compute radii of convergence. See Exer-
cise 8.5.C.

8.5.2. EXAMPLE. Hadamard’s Theorem contains no information about what
happens if |x|= R. The answer, as with the Ratio and Root Tests for series of num-
bers, is that the series may converge or diverge at these points. We consider three
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series,
∞

∑
n=1

xn

2nn2 ,
∞

∑
n=1

xn

2nn
,

∞

∑
n=1

x2n

2nn
,

to illustrate this. For the first series, the limit ratio of successive coefficients is

lim
n→∞

2nn2

2n+1(n+1)2 = lim
n→∞

n2

2(n+1)2 =
1
2
.

Therefore, the radius of convergence is 2. Similarly, the second series also has radius
of convergence 2.

Consider the first series at x = ±2. We have
∞

∑
n=1

1/n2 and
∞

∑
n=1

(−1)n/n2, both of

which converge. For the second series at x =±2, we have
∞

∑
n=1

1/n and
∞

∑
n=1

(−1)n/n,

which diverge and converge, respectively. The first series has interval of conver-
gence [−2,2] while the second has [−2,2).

The third series shows that some care is needed in using Hadamard’s Theorem.

To write this series in the form
∞

∑
n=1

anxn, we cannot define an to be 1/(2nn), but rather

a2k+1 = 0 and a2k = 2−k/k for k≥ 0. Using this formula for an, only the even terms
matter:

limsup
n→∞

|an|1/n = lim
k→∞

∣∣∣ 1
2kk

∣∣∣1/2k
=

1√
2

lim
k→∞

(1
k

)1/2k
=

1√
2
.

So the series has radius of convergence
√

2. At x =±
√

2, this series is
∞

∑
n=1

1
n , which

diverges. Therefore, the interval of convergence is (−
√

2,
√

2).

It seems natural to differentiate and integrate a power series term by term. That

is, the derivative and the indefinite integral of f (x) =
∞

∑
n=0

anxn should be the sums

of the terms nanxn−1 and anxn+1/(n + 1), respectively. The badly behaved exam-
ples of previous sections show that such hopes are misplaced for arbitrary series of
functions.

The next theorem shows that power series fulfil these hopes; such properties
make power series particularly useful. For example, this theorem implies that if a
power series has radius of convergence R > 0, then it is infinitely differentiable on
(−R,R).

8.5.3. TERM-BY-TERM OPERATIONS ON SERIES.
If f (x) =

∞

∑
n=0

anxn has radius of convergence R > 0, then
∞

∑
n=1

nanxn−1 has radius of

convergence R, f is differentiable on (−R,R), and for x ∈ (−R,R),

f ′(x) =
∞

∑
n=1

nanxn−1.
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Furthermore,
∞

∑
n=0

an

n+1
xn+1 has radius of convergence R, and for x ∈ (−R,R),

∫ x

0
f (t)dt =

∞

∑
n=0

an

n+1
xn+1.

PROOF. Observe that
∞

∑
n=0

nanxn−1 and
∞

∑
n=0

nanxn have the same radius of conver-

gence. We have

limsup
n→∞

|nan|1/n = lim
n→∞

n1/n limsup
n→∞

|an|1/n =
1
R

.

Thus
∞

∑
n=0

nanxn−1 has radius of convergence R. Since the partial sums
k
∑

n=0
nanxn−1

converge uniformly on each interval [−a,a]⊂ (−R,R), we can apply Corollary 8.3.2

(with c = 0) to show that f is differentiable and f ′(x) =
∞

∑
n=0

nanxn−1.

Similarly,
∞

∑
n=0

an

n+1
xn+1 and

∞

∑
n=0

an

n+1
xn have the same radius of convergence

and

limsup
n→∞

∣∣∣∣ an

n+1

∣∣∣∣1/n

= lim
n→∞

1
(n+1)1/n limsup

n→∞

|an|1/n =
1
R

.

So
∞

∑
n=0

an

n+1
xn+1 has radius of convergence R. If x ∈ (−R,R), then since

n
∑

k=0
aktk

converges uniformly to f (t) on the interval [0,x], Theorem 8.3.1 implies that the
sequence of integrals

Fn(x) =
∫ x

0

n

∑
k=0

aktk dt =
n

∑
k=0

ak

k +1
xk+1

converges uniformly to F(x) =
∫ x

0
f (t)dt on each interval [−a,a]⊂ (−R,R). Thus,

∞

∑
n=0

an

n+1
xn+1 =

∫ x

0
f (t)dt.

�

8.5.4. EXAMPLE. We return to f (x) = ∑
n≥0

xn

n!
from Example 8.4.3. After prov-

ing the M-test (8.4.7), we showed that this series has infinite radius of convergence,
and converges uniformly on [−A,A] for all finite A. Using term-by-term differentia-
tion,

f ′(x) =
∞

∑
n=1

xn−1

(n−1)!
=

∞

∑
k=0

xk

k!
= f (x).



8.5 Power Series 165

The differential equation f ′(x) = f (x) may be rewritten as

1 =
f ′(x)
f (x)

= (log f )′(x).

Integrating from 0 to t, we obtain

t =
∫ t

0
1dx =

∫ t

0
(log f )′(x)dx = log f (t)− log f (0).

It is evident that f (0) = 1 and therefore log f (t) = t, whence f (t) = et .

8.5.5. EXAMPLE. Consider the power series ∑
n≥1

n2xn. Since lim
n→∞

(n+1)2

n2 = 1,

the Ratio Test tells us that the radius of convergence is 1. When |x| = 1, the terms
do not tend to 0, and thus the series diverges. So ∑

n≥1
n2xn is a well-defined function

for x ∈ (−1,1).
Turn now to the function g(x) = ∑n≥0 xn, which also has radius of convergence 1.

Since g is defined a geometric series, we have g(x) = 1/(1−x) for |x|< 1. Applying
Theorem 8.5.3 yields

∑
n≥1

nxn−1 = g′(x) =
1

(1− x)2 .

This series has the same radius of convergence, 1, as does

∑
n≥1

nxn =
x

(1− x)2 .

A second application of Theorem 8.5.3 yields

∑
n≥1

n2xn−1 =
(

x
(1− x)2

)′
=

1+ x
(1− x)3 .

Multiplying by x gives f (x) = ∑
n≥1

n2xn =
x(1+ x)
(1− x)3 . In particular, ∑

n≥1

n2

2n = f ( 1
2 ) = 6.

8.5.6. EXAMPLE. In this example, we obtain the Binomial Theorem for frac-
tional powers. That is, we derive the power series expansion of (1+x)α for α ∈R. If
g(x) = (1+x)α , then g′(x) = α(1+x)α−1, and so g satisfies the differential equation
(DE)

(1+ x)g′(x) = αg(x), g(0) = 1.

Suppose there is a power series f (x) =
∞

∑
n=0

anxn that satisfies this DE. Then we have

(1+ x)
∞

∑
n=1

nanxn−1 = α

∞

∑
n=0

anxn.
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Collecting terms, we have

∞

∑
n=0

(
nan +(n+1)an+1

)
xn =

∞

∑
n=0

αanxn,

and so nan +(n+1)an+1 = αan, giving an+1 =
α−n
n+1

an. Since a0 = f (0) = 1, we

have a1 = α , a2 =
α(α−1)

2
, a3 =

α(α−1)(α−2)
6

, and so on. In general, we
obtain the fractional binomial coefficients

an =
α(α−1) · · ·(α−n+2)(α−n+1)

n!
=
(

α

n

)
.

It remains to show that this series has a positive radius of convergence and that it
actually converges to (1+ x)α .

If α is a nonnegative integer, then the an are eventually zero, and so the series
reduces to the usual Binomial Theorem. In this case, the radius of convergence is
infinite. Otherwise, an 6= 0 for all n, and we can apply the Ratio Test to obtain

lim
n→∞

∣∣∣an+1

an

∣∣∣= lim
n→∞

∣∣∣α−n
n+1

∣∣∣= 1.

Hence the series has radius of convergence 1.
To show that f (x) = (1 + x)α , consider the ratio f (x)/(1 + x)α . Differentiating

the ratio with respect to x gives

(1+ x)α f ′(x)−α(1+ x)α−1 f (x)
(1+ x)2α

,

and since we have shown that (1 + x) f ′(x) = α f (x), it follows that the derivative
is zero. However, setting x = 0 in f (x)/(1 + x)α gives 1/1 = 1, and so the ratio is
constantly equal to 1, showing that f (x) = (1+ x)α .

Thus, for |x|< 1 and any real α ,

(1+ x)α =
∞

∑
n=0

(
α

n

)
xn.

Exercises for Section 8.5

A. Determine the interval of convergence of the following power series:

(a)
∞

∑
n=0

n3xn (b)
∞

∑
n=1

(−1)n

n2 xn (c)
∞

∑
n=0

n2

2n xn

(d)
∞

∑
n=0

√
nxn (e)

∞

∑
n=0

(−1)n x2n

(2n)!
(f)

∞

∑
n=0

xn!
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(g)
∞

∑
n=1

n!
nn xn (h)

∞

∑
n=0

(n!)2

(2n)!
xn (i)

∞

∑
n=0

1
n

xn

B. Find a power series
∞

∑
n=0

anxn that has a different interval of convergence than
∞

∑
n=0

nanxn−1.

C. Suppose that lim
n→∞

an

an+1
= L exists. Find the radius of convergence of the power series

∞

∑
n=1

anxn. (See Exercise 3.2.J.)

D. Using the method of Example 8.5.6, show that if f (x) =
∞

∑
n=0

anxn satisfies the DE f ′(x) = f (x)

and f (0) = 1, then f (x) =
∞

∑
n=0

xn/n!.

E. Repeat the previous exercise with the conditions f ′′(x) = − f (x), f is an odd function, and
f (0) = 0.

F. Prove that if infinitely many of the an are nonzero integers, then the radius of convergence of
∞

∑
n=1

anxn is at most 1.

G. (a) Compute f (x) =
∞

∑
n=1

xn/n.

(b) Compute
∞

∑
n=1

2n/(n5n). Justify your method.

H. (a) Compute f (x) =
∞

∑
n=0

(n+1)xn.

(b) Compute
∞

∑
n=0

n/3n. Justify your method.

(c) Is the substitution of x =−1 justified?

I. (a) Compute g(x) =
∞

∑
n=0

(n2 +n)xn.

(b) Compute
∞

∑
n=0

(n2 +n)/2n. Justify your method.

J. Using the binomial series for (1− x)−1/2 and the formula∫
π/2

0
sin2n t dt =

1 ·3 ·5 · · ·(2n−1)
2 ·4 · · ·(2n)

π

2
,

show that for κ ∈ (0,1), the integral
∫

π/2

0
(1−κ

2 sin2 t)−1/2dt equals

π

2

(
1+
(1

2

)2
κ

2 +
(1 ·3

2 ·4

)2
κ

4 +
(1 ·3 ·5

2 ·4 ·6

)2
κ

6 + · · ·
)

.

K. Recall that the Fibonacci sequence is defined by F(0) = F(1) = 1 and the recurrence formula
F(n+2) = F(n)+F(n+1) for n≥ 0. Set f (x) = ∑

∞
n=0 F(n)xn.

(a) Show that F(n) ≤ 2n and hence deduce a positive lower bound for the radius of conver-
gence of this power series.

(b) Compute lim
n→∞

F(n+1)/F(n) and hence find the radius of convergence R.

HINT: Let rn = F(n + 1)/F(n). Show by induction that rn+1 − rn = − rn−rn−1
rnrn−1

and that
rnrn+1 ≥ 2. Hence deduce that the limit R exists. Show that R satisfies a quadratic equation.

(c) Compute (1− x− x2) f (x) for |x|< R, and justify your steps. Hence compute f (x).

(d) Show that f (x) =
∞

∑
n=0

(x+ x2)n, and that this converges for |x|< R.
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8.6 Compactness and Subsets of C(K)

We saw in Chapter 4 that compactness is a very powerful property. This showed up
particularly in Chapter 5 in the proofs of the Extreme Value Theorem (5.4.4) and of
uniform continuity for a continuous function on a compact set, Theorem 5.5.9. In
this section, we characterize the subsets of C(K) that are themselves compact. We
will need this characterization to prove Peano’s Theorem (12.8.1), which shows that
a wide range of differential equations have solutions.

We restrict our attention to sets of functions in C(K) when K is a compact subset
of Rn. Recall, from Definition 7.2.5, that F ⊆C(K) is called compact if every se-
quence ( fn) of functions in F has a subsequence ( fni) that converges uniformly to
a function f in F . The Heine–Borel Theorem showed that a subset of Rn is com-
pact if and only if it is closed and bounded. However, Rn is a finite-dimensional
space; and this is a critical fact. C(K) is infinite-dimensional, so some of those argu-
ments are invalid. But then, so is the conclusion—see Exercise 7.2.I, for example,
or Example 8.6.1 below.

The arguments of Lemma 4.4.3 are still valid. If F is not closed, there is a
sequence ( fn) in F that has a uniform limit f = lim

n→∞
fn that is not in F . Every

subsequence ( fni) also has limit f , which is not in F . So F is not compact.
Likewise, if F is unbounded, it contains a sequence ( fn) such that ‖ fn‖ > n

for n ≥ 1. Any subsequence ( fni) satisfies lim
n→∞

‖ fni‖ = ∞. Consequently, it cannot
converge uniformly to any function.

For C(K), there are other ways in which a subset can fail to be compact; we work
out an example in detail.

8.6.1. EXAMPLE. Look again at Example 8.1.5. We will show that the set
F = { fn(x) = xn : n ≥ 1} is closed and bounded but not compact. The functions
fn on [0,1] are all bounded by 1. Suppose that ( fni) is any subsequence of ( fn). By
Example 8.1.5,

lim
i→∞

fni(x) = lim
n→∞

fn(x) =

{
0 for 0≤ x < 1,

1 for x = 1.

However, this limit χ{1} is not continuous, and the convergence is not uniform. Thus
no subsequence converges. It follows that the only limit points of F are the points
in F themselves. In particular, F contains all of its limit points, and therefore it
is closed. On the other hand, F is not compact because the sequence ( fn) has no
convergent subsequence.

8.6.2. EXAMPLE. Consider a sequence (gn) of continuous functions on K such
that gn converges uniformly to a function g. Then the set

G = {gn : n≥ 1}∪{g}
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is compact. Indeed, suppose that ( fn) is a sequence in G . Either some element of G
is repeated infinitely often, or infinitely many gk’s are represented in this sequence.
In the first case, there is a constant subsequence that evidently converges in G . Oth-
erwise, there is a subsequence ( fni) such that fni = gki and lim

i→∞
ki = ∞. In this case,

the subsequence converges uniformly to g.
Now consider a point a in K and an ε > 0. Since g is continuous, there is an

r0 > 0 such that

‖g(x)−g(a)‖<
ε

3
whenever ‖x−a‖< r0.

Since gn converges uniformly to g, there is an integer N such that

‖g−gn‖∞ <
ε

3
for all n≥ N.

Combining these estimates, we can show that for n≥ N and ‖x−a‖< r0,

‖gn(x)−gn(a)‖ ≤ ‖gn(x)−g(x)‖+‖g(x)−g(a)‖+‖g(a)−gn(a)‖

≤ ε

3
+

ε

3
+

ε

3
= ε.

Now we can modify this to obtain a statement for all functions in G . Each gn for
n < N is continuous. So there are positive real numbers rn > 0 such that

‖gn(x)−gn(a)‖< ε whenever ‖x−a‖< rn.

Set r = min{rn : 0≤ n≤ N}. We have shown that

‖ f (x)− f (a)‖< ε whenever ‖x−a‖< r and f ∈ G .

This property suggests a new variant of continuity in which a whole family of
functions satisfy the same inequalities.

8.6.3. DEFINITION. A family of functions F mapping a set S ⊂ Rn into Rm

is equicontinuous at a point a ∈ S if for every ε > 0, there is an r > 0 such that

‖ f (x)− f (a)‖< ε whenever ‖x−a‖< r and f ∈F .

The family F is equicontinuous on a set S if it is equicontinuous at every point in
S. The family F is uniformly equicontinuous on S if for each ε > 0, there is an
r > 0 such that

‖ f (x)− f (y)‖< ε whenever ‖x− y‖< r, x,y ∈ S and f ∈F .

Reconsider the previous two examples. In the second example, we established
that G is equicontinuous. However, in the first example, the set F = {xn : n ≥
1} is not equicontinuous if x = 1. Indeed, take ε = 1/10 and let 0 < r < 1 be an
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arbitrary positive number. Take x = 1− r/2. Since lim
n→∞

xn = 0, there is an integer N
sufficiently large that

|1− xn|> 0.5 for all n≥ N.

Hence this r does not work in the definition of equicontinuity, since |1− x|< r and
|1− xn| > 0.5. Since r is arbitrary, there is no choice of r that will work, and so F
is not equicontinuous at 1.

8.6.4. LEMMA. Let K be a compact subset of Rn. A compact subset F of
C(K,Rm) is equicontinuous.

PROOF. Suppose to the contrary that for a certain point a in K and ε > 0, the def-
inition of equicontinuity is not satisfied for F . This means that for each choice of
r = 1/n, there are a function fn ∈F and a point xn ∈ K such that

‖xn−a‖<
1
n

and ‖ fn(xn)− fn(a)‖ ≥ ε.

It is evident that no subsequence of ( fn) can be equicontinuous either.
Now if F were compact, there would be a subsequence ( fni) that converged uni-

formly to some function f . By Example 8.6.2, this subsequence would be equicon-
tinuous. This contradiction shows that F must be equicontinuous. �

8.6.5. PROPOSITION. If F is an equicontinuous family of functions on a
compact set, then it is uniformly equicontinuous.

PROOF. This is a modification of Theorem 5.5.9. If the result is false, there is an
ε > 0 for which the definition of equicontinuity fails. This means that for each r =
1/n, there are points xn and yn in K and a function fn in F such that

‖xn− yn‖<
1
n

and ‖ fn(xn)− fn(yn)‖ ≥ ε.

Since K is compact, the sequence (xn) has a convergent subsequence with
lim
i→∞

xni = a. Hence

lim
i→∞

yni = lim
i→∞

xni + lim
i→∞

yni − xni = a+0 = a.

By the equicontinuity of F at a, there is an r > 0 such that

‖ f (x)− f (a)‖<
ε

2
for all f ∈F , ‖x−a‖< r.

There is an integer I such that for all i≥ I,

‖xni −a‖< r and ‖yni −a‖< r.
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Combining these estimates, for all i≥ I,

‖ fni(xni)− fni(yni)‖ ≤ ‖ fni(xni)− fni(a)‖+‖ fni(a)− fni(yni)‖

<
ε

2
+

ε

2
= ε.

This contradicts the hypothesis that uniform equicontinuity fails, so it must hold. �

To prove our main result, characterizating compact subsets of C(K,Rm), we need
a new concept, total boundedness.

8.6.6. DEFINITION. A subset S of K ⊆ Rm is called an ε-net of K if

K ⊂
⋃
a∈S

Bε(a).

A set K is totally bounded if it has a finite ε-net for every ε > 0.

In this section, we consider total boundedness only for subsets of Rm. In Rm,
total boundedness is equivalent to boundedness (Lemma 8.6.7 proves the nontriv-
ial direction). In fact, Corollary 7.3.2 implies that proving the result for Rm with
the Euclidean norm will show that it is true for all finite-dimensional normed vec-
tor spaces. In more general settings, compactness (not boundedness) implies total
boundedness, and complete totally bounded sets are compact. We prove this in the
next chapter, as part of the Borel–Lebesgue Theorem (9.2.3).

8.6.7. LEMMA. Let K be a bounded subset of Rm. Then K is totally bounded.

PROOF. As usual, we use the Euclidean norm on Rm. Fix ε > 0. Choose N such
that 1/N < min{ε,m−1/2}. Since K is bounded, there is L > 0 such that K ⊆ {x ∈
Rm : |xi| ≤ L, 1≤ i≤ m}. Let

F =
{

ki

2N2 ∈ [−L,L] : ki ∈ Z
}

and A = {(a1,a2, . . . ,am) ∈ Rm : ai ∈ F, i = 1, . . . ,m}. It is easy to see that F is a
finite 1/(2N2)-net for [−L,L]. Let Ã = {a ∈ A : Bε/2(a)∩K 6= ∅}, and for each
a ∈ Ã, pick xa ∈ Bε/2(a)∩K.

We claim that {xa : a ∈ Ã} is a finite ε-net for K. If x = (x1, . . . ,xn) ∈ K, then for
i = 1, . . . ,n, there is ai ∈ F with |xi − ai| < 1/(2N2). Letting a = (a1,a2, . . . ,am),
a short calculation shows that ‖x− a‖ ≤ 1/(2N) < ε/2, since

√
m ≤ N. Since

Bε/2(a)∩K is nonempty, a ∈ Ã, and hence xa is defined, and further,

‖x− xa‖ ≤ ‖x−a‖+‖a− xa‖<
ε

2
+

ε

2
= ε.

�
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8.6.8. COROLLARY. Let K be a bounded subset of Rm. Then K contains a
sequence {xi : i≥ 1} that is dense in K. Moreover, for any ε > 0, there is an integer
N such that {xi : 1≤ i≤ N} forms an ε-net for K.

PROOF. For each integer k≥ 1, let Bk be a finite 1/k-net for K. Form a sequence (xi)
by listing all of the elements of each Bk in turn as the points xNk−1+1, . . . ,xNk . If x∈K,
then for each k there is an element xnk that is a point in Bk such that ‖x−xnk‖< 1/k.
Thus (xnk)

∞
k=1 is a subsequence converging to x. Since x is an arbitrary point in K,

the sequence (xi) is dense. By construction, if ε > 1/k, the set {xi : 1 ≤ i ≤ Nk}
forms an ε-net for K. �

8.6.9. ARZELÀ–ASCOLI THEOREM.
Let K be a compact subset of Rn. A subset F of C(K,Rm) is compact if and only if
it is closed, bounded, and equicontinuous.

PROOF. The easy direction has been established: If F is compact, then it is closed,
bounded, and equicontinuous.

So assume that F has these three properties and let ( fn) be a sequence in F . We
will construct a convergent subsequence. By Corollary 8.6.8, there is a sequence
(xi) such that for each r > 0, there is an integer N such that {x1, . . . ,xN} forms an
r-net for K.

We claim that there is a subsequence of ( fn), call it ( fnk), such that

lim
k→∞

fnk(xi) = Li exists for all i≥ 1.

To prove this, let Λ0 denote the set of positive integers. Since
(

fn(x1)
)

is a bounded
sequence, the Bolzano–Weierstrass Theorem (2.7.2) provides a convergent subse-
quence. That is, there is an infinite subset Λ1 ⊂Λ0 such that

lim
n∈Λ1

fn(x1) = L1 exists.

Next,
(

fn(x2)
)

n∈Λ1
is bounded sequence, so there is an infinite subset Λ2 ⊂Λ1 such

that
lim
n∈Λ2

fn(x2) = L2 exists.

Continuing in this way, we obtain a decreasing sequence Λ0 ⊃ Λ1 ⊃ Λ2 ⊃ ·· · of
infinite sets such that

lim
n∈Λi

fn(xi) = Li converges for each i≥ 1.

We now use a diagonalization method, similar to the proof that R is uncountable,
Theorem 2.9.8. Let nk be the kth entry of Λk; and let Λ = {nk : k ∈ N}. Then for
each i, there are at most i−1 entries of Λ that are not in Λi. Thus,
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lim
k→∞

fnk(xi) = lim
n∈Λi

fn(xi) = Li for all i≥ 1,

proving the claim.
For simplicity of notation, we use gk for fnk in the remainder of the proof. Now

fix ε > 0. By uniform equicontinuity, there is r > 0 such that

‖ f (x)− f (y)‖<
ε

3
for all f ∈F and ‖x− y‖< r.

Choose N such that {x1, . . . ,xN} is an r-net for K. Since the gk converge at each of
these N points, there is some integer M such that

‖gk(xi)−gl(xi)‖ ≤
ε

3
for all k, l ≥M and 1≤ i≤ N.

Let k, l ≥ M and pick x ∈ K. Since {x1, . . . ,xN} is an r-net for K, there is some
i≤ N such that ‖x− xi‖< r. We need an ε/3-argument to finish the proof:

‖gk(x)−gl(x)‖ ≤ ‖gk(x)−gk(xi)‖+‖gk(xi)−gl(xi)‖+‖gl(xi)−gl(x)‖

≤ ε

3
+

ε

3
+

ε

3
= ε.

Thus gk is uniformly Cauchy, and so converges uniformly by Theorem 8.2.2. The
limit g belongs to F because F is closed. Finally, since every sequence in F has a

�

In particular, this theorem shows that if a sequence of functions ( fn) in C[a,b]
forms a bounded equicontinuous subset, then ( fn) has a subsequence that converges
uniformly to some function in C[a,b].

Consider the subset K of C[0,1] consisting of all functions

n ∈ K converge uniformly to a function f , then

| f (0)|= lim
n→∞

| fn(0)| ≤ 5,

and
| f (x)− f (y)|= lim

n→∞
| fn(x)− fn(y)| ≤ lim

n→∞
47|x− y|= 47|x− y|.

In particular,
| f (x)| ≤ | f (x)− f (0)|+ | f (0)| ≤ 47+5 = 52,

so K is bounded.
Finally, observe that K is equicontinuous. For if ε > 0, take r = ε/47. Then if

|x− y|< r,
| f (x)− f (y)| ≤ 47|x− y|< 47r = ε.

Notice that K is closed. For if f
f ∈C[0,1] such that | f (0)| ≤ 5 and f has Lipschitz constant at most 47.

convergent subsequence, it follows that F is compact.

8.6.10. EXAMPLE.
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Therefore, all of the hypotheses of the Arzelà–Ascoli Theorem (8.6.9) are satis-
fied. Hence this is a compact subset of C[0,1].

Exercises for Section 8.6

A. Use fn(x) = xn on [0,1] to show that B = { f ∈C[0,1] : ‖ f‖ ≤ 1} is not compact.

B. Show that { f ∈ C[0,1] : f (x) > 0 for all x ∈ [0,1]} is open. HINT: Extreme Value Theo-
rem (5.4.4).

C. What is the interior of { f ∈Cb(R) : f (x) > 0 for all x ∈ R}?
HINT: Compare with the previous exercise.

D. Prove that the family {sin(nx) : n≥ 1} is not an equicontinuous subset of C[0,π].

E. (a) Show that

F =
{

F(x) =
∫ x

0
f (t)dt : f ∈C[0,1], ‖ f‖∞ ≤ 1

}
is a bounded and equicontinuous subset of C[0,1].

(b) Why is F not closed?
(c) Show that the closure of F is all functions f with Lipschitz constant 1 such that f (0) = 0.

HINT: Construct Fn in F such that Fn(2−nk) = n
n+1 f (2−nk) for 0≤ k ≤ 2n.

F. (a) Let F be a subset of C[0,1] that is closed, bounded, and equicontinuous. Prove that there
is a function g ∈F such that∫ 1

0
g(x)dx≥

∫ 1

0
f (x)dx for all f ∈F .

(b) Construct a closed bounded subset F of C[0,1] for which the conclusion of the previous
problem is false.

G. Let K ⊂Rn be compact. Show that a subset S of C(K) is compact if and only if it is closed and
totally bounded. HINT: Show that totally bounded sets are bounded and equicontinuous.

H. Let F be an equicontinuous family of functions in C(K), where K is a compact subset of Rn.
Prove that if for each x ∈ K, sup{ f (x) : f ∈F}= Mx < ∞, then F is bounded.
HINT: Use equicontinuity to bound F by Mx + 1 on a ball about x. Suppose that | fn(xn)|
tends to +∞. Extract a convergent subsequence of {xn}.

I. Let F be a family of continuous functions defined on R that is (i) equicontinuous and sat-
isfies (ii) sup{ f (x) : f ∈F}= Mx < ∞ for every x. Show that every sequence ( fn)

∞

n=1 has a
subsequence that converges uniformly on [−k,k] for every k > 0.
HINT: Find a subsequence ( f1,n)

∞

n=1 that converges uniformly on [−1,1]. Then extract a sub-
subsequence ( f2,n)

∞

n=1 that converges uniformly on [−2,2], and so on. Now use a diagonal
argument.



Chapter 9
Metric Spaces

This text focuses on subsets of a normed space, since this is the natural setting for
most of our applications. In this chapter, we introduce an apparently more general
framework, metric spaces, and some new ideas that are somewhat more advanced.
They play an occasional role in the advanced sections of the applications.

9.1 Definitions and Examples

In a normed vector space, the distance between elements is found using the norm
of the difference. However, a distance function can be defined abstractly on any set
using the idea of a metric. Most of the arguments we used in the normed context
will also work for metric spaces, with only minimal changes. The crucial difference
is that in a metric space, we do not work in a vector space, so we cannot use the
addition or scalar multiplication.

9.1.1. DEFINITION. Let X be a set. A metric on a set X is a function ρ defined
on X ×X taking values in [0,∞) with the following properties:

(1) (positive definiteness) ρ(x,y) = 0 if and only if x = y,

(2) (symmetry) ρ(x,y) = ρ(y,x) for all x,y ∈ X ,

(3) (triangle inequality) ρ(x,z)≤ ρ(x,y)+ρ(y,z) for all x,y,z ∈ X .

A metric space is a set X with a metric ρ , denoted by (X ,ρ). If the metric is under-
stood, we use X alone.

9.1.2. EXAMPLES.
(1) If X is a subset of a normed space V , define ρ(x,y) = ‖x− y‖. This is our
standard example.

(2) Put a metric on the surface of the sphere by setting ρ(x,y) to be the length of
the shortest path from x to y (known as a geodesic). This is the length of the shorter
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arc of the great circle passing through x and y. More generally, we can define such
a metric on any smooth surface.

(3) The discrete metric on a set X is given by

d(x,y) =

{
0 if x = y,
1 if x 6= y.

(4) Define a metric on Z by ρ2(n,n) = 0 and ρ2(m,n) = 2−d , where d is the
largest power of 2 dividing m−n 6= 0. It is trivial to verify properties (1) and (2). If
ρ2(l,m) = 2−d and ρ2(m,n) = 2−e, then 2min{d,e} divides l−n, and so

ρ(l,n)≤ 2−min{d,e} = max{ρ2(l,m),ρ2(m,n)}.

This metric is known as the 2-adic metric. Replacing 2 with another prime p, we
can define similarly the p-adic metric.

(5) If X is a closed subset of Rn, let K(X) denote the collection of all nonempty
compact subsets of X . If A is a compact subset of X and x ∈ X , we define

dist(x,A) = inf
a∈A

‖x−a‖.

Then we define the Hausdorff metric on K(X) by

dH(A,B) = max
{

sup
a∈A

dist(a,B),sup
b∈B

dist(b,A)
}

= max
{

sup
a∈A

inf
b∈B

‖a−b‖,sup
b∈B

inf
a∈A

‖a−b‖
}

.

Since A is closed, dist(x,A) = 0 if and only if x ∈ A. In particular, we see that
dH(A,B) = 0 if and only if A = B. So dH is positive definite and is evidently sym-
metric. For the triangle inequality, let A,B,C be three compact subsets of X . For
each a ∈ A, the Extreme Value Theorem (5.4.4) yields the existence of a closest
point b ∈ B, so ‖a− b‖ = dist(a,B). Then there is a closest point c ∈ C to b with
‖b− c‖= dist(b,C). Therefore,

dist(a,C)≤ ‖a− c‖ ≤ ‖a−b‖+‖b− c‖
= dist(a,B)+dist(b,C)
≤ dH(A,B)+dH(B,C).

Therefore, sup
a∈A

dist(a,C)≤ dH(A,B)+dH(B,C). Reversing the roles of A and C and

combining the two inequalities, we obtain dH(A,C)≤ dH(A,B)+dH(B,C).
Let Aε := {x∈Rn : dist(x,A)≤ ε}. Note that dH(A,B)≤ ε if and only if A⊂ Bε

and B⊂ Aε .
This example will be used in Section 11.7, when we study fractal sets.
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The notions of convergence and open set can be carried over to metric spaces by
replacing ‖x− y‖ with ρ(x,y). Once this is done, most of the other definitions do
not need to be changed at all.

9.1.3. DEFINITION. The ball Br(x) of radius r > 0 about a point x is defined
as {y ∈ X : ρ(x,y) < r}. We write Bρ

r (x) if the metric is ambiguous. A subset U is
open if for every x ∈U , there is an r > 0 so that Br(x) is contained in U and the
interior of a set A,

∫
A, is the largest open set contained in A,

A sequence (xn) is said to converge to x if lim
n→∞

ρ(x,xn) = 0. A set C is closed if

it contains all limit points of sequences of points in C and the closure of a set A, A,
is the set of all limit points of A.

If X is a subset of a normed space, then these definitions agree with our old
definitions; so the language is consistent. It is easy to see that a set is open precisely
when the complement is closed (adapt the proof of Theorem 4.3.8 for normed vector
spaces). Because metric spaces do not have a vector space structure, the topology is
not always like that of Rn or a normed vector space. For example, Br(a) can be a
proper subset of {x : ρ(x,a)≤ r}, as it is for the discrete metric.

9.1.4. DEFINITION. A sequence (xn)
∞

n=1 in a metric space (X ,ρ) is a Cauchy
sequence if for every ε > 0, there is an integer N such that ρ(xi,x j) < ε for all
i, j ≥ N.

A metric space X is complete if every Cauchy sequence converges (in X).

9.1.5. EXAMPLES.
(1) Every convergent sequence is Cauchy; the proof of Proposition 2.8.1 carries
over.

(2) It is easy to show that a subset of a complete metric space is complete if and
only if it is closed. So one useful way to construct many complete metric spaces is
to take a closed subset of a complete normed space. The purpose of Exercise 9.1.M
is to show that every metric space arises in this manner, although it is not always a
natural context.

(3) If X has the discrete metric, the only way a sequence may converge to x is if
the sequence is eventually constant (i.e., xn = x for all n ≥ N). This is because the
ball B1/2(x) equals {x}. So every subset of X is both open and closed. Also X is
complete.

(4) Consider the 2-adic metric of Example 9.1.2 (4) again. The balls have the form
B2−d (n) = {m∈Z : m≡ n (mod 2d)}. The sequence (2n)∞

n=1 converges to 0 because
ρ2(2n,0) = 2−n → 0. Observe that 1− (−2)n is an odd multiple of 3 for all n ≥
1. The sequence an = (1− (−2)n)/3 is Cauchy because if n > m ≥ N, then an −
am = (−2)man−m and therefore ρ2(am,an) = 2−m ≤ 2−N . This sequence does not
converge.
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(5) If X ⊆ Rn is closed, the metric space (K(X),dH) is complete; see Theo-
rem 11.7.2.

Continuous functions are defined by analogy with the norm case.

9.1.6. DEFINITION. A function f from a metric space (X ,ρ) into a metric
space (Y,σ) is continuous if for every x0 ∈ X and ε > 0, there is a δ > 0 such that
σ( f (x), f (x0)) < ε whenever ρ(x,x0) < δ .

The proof of Theorem 5.3.1 goes through without change.

9.1.7. THEOREM. Let f map a metric space (X ,ρ) into a metric space (Y,σ).
The following are equivalent:

(1) f is continuous on X;
(2) for every sequence (xn) with lim

n→∞
xn = a ∈ X, we have lim

n→∞
f (xn) = f (a); and

(3) f−1(U) = {x ∈ X : f (x) ∈U} is open in X for every open set U in Y .

As in the norm case, if the domain of a continuous function is not compact,
the function need not be bounded. However, we have the same solution: consider
the normed vector space Cb(X ,Rm) of all bounded continuous functions f : X →
Rm with the sup norm on functions, i.e., ‖ f‖∞ = supx∈X ‖ f (x)‖, where ‖ · ‖ is the
Euclidean norm on Rm.

9.1.8. THEOREM. The space Cb(X ,Rm) of all bounded continuous functions
on a metric space X with the sup norm ‖ f‖= sup{‖ f (x)‖ : x ∈ X} is complete.

PROOF. The proofs of Theorems 8.2.1 and 8.2.2 work with Cb(X ,Rm). As we noted
after the latter theorem, compactness is used in its proof only to ensure that the sup
norm is finite. Therefore, Cb(X ,Rm) is a complete normed vector space. The details
are left as an exercise. �

Exercises for Section 9.1

A. Show that ρ(x,y) = |ex− ey| is a metric on R.

B. Show that every subset of a discrete metric space is both open and closed.

C. Prove that U is open in (X ,ρ) if and only if X \U is closed.

D. Prove Theorem 9.1.7.

E. Given a metric space (X ,ρ), define a new metric on X by σ(x,y) = min{ρ(x,y),1}.

(a) Show that σ is a metric on X . Observe that X has finite diameter in the σ metric.
(b) Show that lim

n→∞
xn = x in (X ,ρ) if and only if lim

n→∞
xn = x in (X ,σ).

(c) Show that (xn) is Cauchy in (X ,ρ) if and only if it is Cauchy in (X ,σ). Hence complete-
ness is the same for these two metrics.
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F. Suppose that V is a vector space with norm ‖ · ‖. If (X ,ρ) is a metric space, observe that the
space Cb(X ,V ) of all bounded continuous functions from X to V is a vector space. Show that
‖ f‖∞ = sup

x∈X
‖ f (x)‖ is a norm on Cb(X ,V ).

G. Two metrics ρ and σ on a set X are topologically equivalent if for each x ∈ X and r > 0,
there is an s = s(r,x) > 0 such that Bρ

s (x)⊂ Bσ
r (x) and Bσ

s (x)⊂ Bρ
r (x).

(a) Prove that topologically equivalent metrics have the same open and closed sets.
(b) Prove that topologically equivalent metrics have the same convergent sequences.
(c) Give examples of topologically equivalent metrics with different Cauchy sequences.

H. Two metrics ρ and σ on a set X are equivalent if there are constants 0 < c < C such that
cρ(x,y)≤ σ(x,y)≤Cρ(x,y) for all x,y ∈ X .

(a) Prove that equivalent metrics are topologically equivalent.
(b) Prove that equivalent metrics have the same Cauchy sequences.
(c) Give examples of topologically equivalent metrics that are not equivalent.

I. Define a function on Mn ×Mn by ρ(A,B) = rank(A−B). Prove that ρ is a metric that is
topologically equivalent to the discrete metric.

J. Put a metric ρ on all the words in a dictionary by defining the distance between two distinct
words to be 2−n if the words agree for the first n letters and are different at the (n+1)st
letter. Here we agree that a space is distinct from a letter. For example, ρ(car,cart) = 2−3 and
ρ(car,call) = 2−2.

(a) Verify that this is a metric.
(b) Suppose that words w1, w2, and w3 are listed in alphabetical order. Show that ρ(w1,w2)≤

ρ(w1,w3).
(c) Suppose that words w1, w2, and w3 are listed in alphabetical order. Find a formula for

ρ(w1,w3) in terms of ρ(w1,w2) and ρ(w2,w3).

K. Recall the 2-adic metric of Examples 9.1.2 (4) and 9.1.5 (4). Extend it to Q by setting
ρ2(a/b,a/b) = 0 and, if a/b 6= c/d, then ρ2(a/b,c/d) = 2−e, where e is the unique inte-
ger such that a/b− c/d = 2e( f /g) and both f and g are odd integers.

(a) Prove that ρ2 is a metric on Q.
(b) Show that the sequence of integers an = (1− (−2)n)/3 converges in (Q,ρ2).

(c) Find the limit of
n!

n!+1
in this metric.

L. Complete the details of Theorem 9.1.8 as follows:

(a) Prove that Theorem 8.2.1 is valid when S is replaced by a metric space X .
(b) Prove that Cb(X ,Rm) is a complete normed vector space. HINT: Theorem 8.2.2

M. Suppose that (X ,ρ) is a nonempty metric space. Let Cb(X) be the normed space of all
bounded continuous functions on X with the sup norm ‖ f‖∞ = sup{| f (x)| : x ∈ X}.

(a) Fix x0 in X . For each x ∈ X , define fx(y) = ρ(x,y)−ρ(x0,y) for y ∈ X . Show that fx is a
bounded continuous function on X .

(b) Show that ‖ fx− fy‖∞ = ρ(x,y).
(c) Hence deduce that the map that takes x ∈ X to the function fx identifies X with a subset F

of Cb(X) that induces the same metric.

N. (a) Give an example of a decreasing sequence of closed balls in a complete metric space with
empty intersection. Compare with Exercise 7.2.J.
HINT: Use a metric on N topologically equivalent to the discrete metric so that {n ≥ k}
are closed balls.

(b) Show that a metric space (M,d) is complete if and only if every decreasing sequence of
closed balls with radii going to zero has a nonempty intersection.
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9.2 Compact Metric Spaces

As we have mentioned in the last two chapters, in general, a closed and bounded set
need not be compact. There are several characterizations of compactness in metric
spaces, every bit as useful and important as the Heine–Borel Theorem (4.4.6). In
this section, we make the needed definitions and then prove the characterizations.

We have to change our language slightly. Our old definition of compactness will
be renamed sequential compactness. Although we introduce a new definition and
call it compactness, we will prove that the two notions are equivalent in normed
spaces and in metric spaces. There is a more general setting, topological spaces,
where they differ, but we never deal with it in this book. The new definition also
makes sense in normed spaces and could have been introduced there.

9.2.1. DEFINITION. A collection of open sets {Uα : α ∈ A} in X is called an
open cover of Y ⊆ X if Y ⊆

⋃
α∈A Uα . A subcover of Y in {Uα : α ∈ A} is just a

subcollection {Uα : α ∈ B} for some B⊆ A that is still a cover of Y . In particular, it
is a finite subcover if B is finite, that is, a finite collection of the Uα that covers Y .

A collection of closed sets {Cα : α ∈ A} has the finite intersection property if
every finite subcollection has nonempty intersection.

For example, consider the cover of [a,b] indicated in Figure 9.1, where there are
three sets, each on its own horizontal line.

a b

FIG. 9.1 An open cover for X = [a,b].

9.2.2. DEFINITION. A metric space X is compact if every open cover of X
has a finite subcover. A metric space X is sequentially compact if every sequence
of points in X has a convergent subsequence.

A metric space X is totally bounded if for every ε > 0, there are finitely many
points x1, . . . ,xk ∈ X such that {Bε(xi) : 1 ≤ i ≤ k} is an open cover. This is an
immediate generalization of the definition for subsets of Rm, Definition 8.6.6.

9.2.3. BOREL–LEBESGUE THEOREM.
For a metric space X, the following are equivalent.

(1) X is compact.
(2) Every collection of closed subsets of X with the finite intersection property has

nonempty intersection.
(3) X is sequentially compact.
(4) X is complete and totally bounded.
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PROOF. We assume (1), X is compact, and prove (2). Suppose that {Cα : α ∈ A} is a
collection of closed sets such that

⋂
α Cα = ∅. Consider the open sets Uα = C′

α , the
complements of Cα . Then

⋃
α Uα =

(⋂
α Cα

)′ = X . Thus there is a finite subcover
X = Uα1 ∪·· ·∪Uαk . Consequently,

Cα1 ∩·· ·∩Cαk =
(
Uα1 ∪·· ·∪Uαk

)′ = ∅.

So no collection of closed sets with empty intersection has the finite intersection
property, the contrapositive of (2).

Now assume (2) and let (xi) be a sequence in X . Define Cn = {xi : i≥ n}. This
is a decreasing sequence of closed sets. The collection {Cn : n ≥ 1} has the finite
intersection property, since the intersection of Cn1 , . . . ,Cnk contains the point xn,
where n = max{n1, . . . ,nk}. By hypothesis, there is a point x in

⋂
n≥1 Cn. Recursively

define a sequence as follows. Let n0 = 1. If nk−1 is defined, use the fact that x ∈
{xi : i > nk−1} to choose nk > nk−1 with ρ(x,xnk) < 1/k. By construction, lim

k→∞
xnk =

x.
Assume sequential compactness, (3), and consider (4). If (xi) is a Cauchy se-

quence, select a convergent subsequence, say lim
k→∞

xnk = x. Given ε > 0, use the

Cauchy property to find N such that i, j ≥ N implies that ρ(xi,x j) < ε/2. Then use
the convergence to find nk > N such that ρ(x,xnk) < ε/2. Then if i≥ N,

ρ(x,xi)≤ ρ(x,xnk)+ρ(xnk ,xi) < ε

2 + ε

2 = ε.

So lim
i→∞

xi = x. Thus X is complete.

If X were not totally bounded, then there would be some ε > 0 such that no
finite collection of ε-balls could cover X . Recursively select points xk ∈ X such that
xk /∈ Bε(x1)∪·· ·∪Bε(xk−1) for all k≥ 2. Consider the sequence (xi). We will obtain
a contradiction by showing that there is no convergent subsequence. Indeed, if (xni)
were a convergent subsequence, then it would be Cauchy. So for some N large, all
i > N satisfy ρ(xi,xN) < ε , contrary to the fact that xi /∈ Bε(xN). Therefore, X must
be totally bounded.

Finally, we show that (4) implies (1). For each k ≥ 1, choose a finite set Xk ⊂ X
such that ∪x∈Xk B1/k(x) covers X . Suppose (1) is false, that is, there is an open cover
U with no finite subcover. This leads to a contradiction.

We will recursively define a sequence of points yk ∈ Xk such that
⋂k

j=1 B1/ j(y j)
does not have a finite subcover from U . For k = 1, suppose, for each x ∈ X1, that
B1(x) had a finite subcover, call it Ux ⊆ U . Then ∪x∈X1Ux covers X and, being a
finite union of finite sets, is finite. This contradicts U having no finite subcovers of
X , and so there is some y1 ∈ X1 such that B1(y1) has no finite subcover from U .

Suppose that we have defined y1, . . . ,yk−1. Let S =
⋂k−1

j=1 B1/ j(y j). For each

x ∈ Xk, assume that S∩B1/k(x) had a finite subcover from U , call it Ux. Then S
would have a finite subcover from U , namely ∪x∈XkUx, contradicting our choice of
y1, . . . ,yk−1. Thus, there is yk ∈ Xk such that

⋂k
j=1 B1/ j(y j) has no finite subcover

from U .
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We claim that (yk) is Cauchy. Suppose k, j ∈ N with k ≥ j. Now
⋂k

i=1 B1/i(yi) is
nonempty because the empty set has a finite subcover, the one with no elements of
U . Picking x in this set, we have x ∈ B1/ j(y j)∩B1/k(yk). Hence

ρ(y j,yk)≤ ρ(y j,x)+ρ(x,yk)≤ 1
j + 1

k .

Given ε > 0, choose N so large that N > 2/ε . Then for j,k ≥ N, it follows that
ρ(y j,yk)≤ 2/N < ε .

But (4) states that X is complete, and thus y = lim
k→∞

yk exists. There is some V ∈U

such that y∈V . Since V is open, there is ε > 0 such that Bε(y)⊆V . Choose k > 2/ε

with ρ(yk,y) < ε/2. Then since 1/k < ε/2,

∩k
i=1B1/i(yi)⊂ B1/k(yk)⊂ Bε(y)⊂V.

Thus ∩k
i=1B1/i(yi) has a finite subcover, namely {Y}. But ∩k

i=1B1/i(yi) does not a
finite subcover, a contradiction, and so (1) holds. �

In general, being complete and bounded is not sufficient to imply that a metric
space is compact. For example, by Exercise 9.1.E the real line has a bounded met-
ric topologically equivalent to the usual one. In this new metric it is bounded and
complete but is not compact.

Perhaps a more natural example is the closed unit ball B of C[0,1] in the max
norm. This is complete because it is a closed subset of a complete space. However,
it is not totally bounded. To see this, let fn be the piecewise linear functions that take
the value 0 on [0,1/(n+1)]∪ [1/(n−1),1] and 1 at 1/n. Since ‖ fn‖∞ = 1, they all
lie in B. But ‖ fn− fm‖∞ = 1 if n 6= m. Thus no 1/2-ball can contain more than one of
them. Hence no finite family of 1/2-balls covers B. We have a complete description
of the compact subsets of C[0,1], by the Arzelà–Ascoli Theorem (8.6.9).

All of our basic theorems on continuous functions go through for continuous
functions on metric spaces. In particular, Theorem 5.4.3 can be established with the
same proof. We will give a proof based on open covers. In Exercise 9.2.H, this will
yield the metric space version of the Extreme Value Theorem (5.4.4).

9.2.4. THEOREM. Let f : X →Y be a continuous map between metric spaces.
If C ⊆ X is compact, then the image set f (C) is compact.

PROOF. Let U = {Uα : α ∈A} be an open cover of f (C) in Y . Since f is continuous,
Vα := f−1(Uα) are open sets in X . The collection V = {Vα : α ∈A} is an open cover
of C. Indeed, for each x ∈C, f (x) ∈ f (C) and thus f (x) ∈Uα for some α . Hence x
belongs to Vα . By the compactness of C, select a finite subcover Vα1 , . . . ,Vαk . Then

f (C)⊂
k⋃

i=1

f (Vαi)⊂
k⋃

i=1

Uαi .

So Uα1 , . . . ,Uαk is a finite subcover of f (C). Therefore, f (C) is compact. �
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Exercises for Section 9.2

A. Let (X ,ρ) be a metric space and consider Y ⊂ X as a metric space with the same metric.

(a) Show that every open set U in Y has the form V ∩Y for some open set V in X .
HINT: This is easy for balls.

(b) Show that Y is compact if and only if every collection {Vα : α ∈ A} of open sets in X that
covers Y has a finite subcover.

B. Show that if Y is a subset of a complete metric space X , then Y is compact if and only if it is
closed and totally bounded.

C. Show that a closed subset of a compact metric space is compact.

D. Show that every compact metric space is separable (i.e., it has a countable dense subset).

E. (a) Prove that every open subset U of Rn is the countable union of compact subsets.
HINT: Use the distance to Uc and the norm to define the sets.

(b) Show that every open cover of an open subset of Rn has a countable subcover.

F. Prove Cantor’s Intersection Theorem: A decreasing sequence of nonempty compact subsets
A1 ⊃ A2 ⊃ ·· · of a metric space (X ,ρ) has nonempty intersection.

G. Show that a continuous function from a compact metric space (X ,ρ) into a metric space (Y,d)
is uniformly continuous. HINT: Fix ε > 0. For x ∈ X , choose δx > 0 such that ρ(x, t) < 2δx
implies d( f (x), f (t)) < ε/2. Then {Bδx (x) :x ∈ X} covers X .

H. If f is a continuous function from a compact metric space (X ,ρ) into R, prove that there is a
point x0 ∈ X such that | f (x0)|= sup{| f (x)| : x ∈ X}.
HINT: Compare to the proof of the Extreme Value Theorem (5.4.4).

I. Let Sn for n≥ 1 be a finite union of disjoint closed balls in Rk of radius at most 2−n such that
Sn+1 ⊂ Sn and Sn+1 has at least two balls inside each ball of Sn. Prove that C =

⋂
n≥1 Sn is a

perfect, nowhere dense compact subset of Rk.
HINT: Compare with Example 4.4.8.

J. If f is a continuous one-to-one function of a compact metric space X onto Y , show that f−1

is continuous. HINT: Theorem 9.2.4.

K. Show that the previous exercise is false if X is not compact.
HINT: Map (0,1] onto a circle with a tail (i.e., the figure 6).

L. We say that (X ,ρ) is a second countable metric space if there is a countable collection U of
open balls in X such that for every x ∈ X and r > 0, there is a ball U ∈U with x ∈U ⊂ Br(x).
Prove that (X ,ρ) is second countable if and only if it is separable.
HINT: For ⇒, take the centres of balls in U . For ⇐, take all balls of radius 1/k, k ≥ 1, about
each point in a countable dense set.

9.3 Complete Metric Spaces

Now we turn to an important consequence of completeness.

9.3.1. DEFINITION. A subset A of a metric space (X ,ρ) is nowhere dense
if int(A) = ∅ (i.e., the closure of A has no interior). A subset B is said to be first
category if it is the countable union of nowhere dense sets. A subset Y of a complete
metric space is a residual set if the complement Y ′ is first category.
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Nowhere dense sets are small in a certain sense, and thus sets of first category are
also considered to be small. For example, the Cantor set is nowhere dense in R. Our
main result, which has surprisingly powerful consequences, is that complete metric
spaces are never first category.

9.3.2. BAIRE CATEGORY THEOREM.
Let (X ,ρ) be a complete metric space. Then the union of countably many nowhere
dense subsets of X has no interior, and in particular is a proper subset of X. Equiv-
alently, the intersection of countably many dense open subsets of X is dense in X.

PROOF. Consider a sequence (An)
∞

n=1 of nowhere dense subsets of X . To show that
the complement of

⋃
n≥1 An is dense in X , take any ball Br0(x0). We will construct

a point in this ball that is not in any An. It will then follow that this union has
no interior, whence the complement contains points arbitrarily close to each point
x ∈ X , and so is dense.

Since A1 has no interior, it does not contain Br0/2(x0). Pick x1 in Br0/2(x0) \
A1. Since A1 is closed, dist(x1,A1) > 0. So we may choose an 0 < r1 < r0/2 such
that Br1(x1) is disjoint from A1. Note that Br1(x1) ⊂ Br0(x0). Proceed recursively
choosing a point xn+1 ∈ Brn/2(xn) and an rn+1 ∈ (0,rn/2) such that Brn+1(xn+1) is
disjoint from An+1. Clearly, Brn+1(xn+1)⊂ Brn(xn).

The sequence (xn)
∞

n=1 is Cauchy. Indeed, given ε > 0, choose N such that
2−Nr0 < ε/2. Then rN < ε/2. However, all xn for n ≥ N lie in BrN (xN). Thus for
n,m≥ N,

ρ(xn,xm)≤ ρ(xn,xN)+ρ(xN ,xm) <
ε

2
+

ε

2
= ε.

Because X is a complete space, there is a limit x∞ = lim
n→∞

xn in X . The point x∞

belongs to
⋂

n≥1 Brn(xn). Hence it is disjoint from every An for n≥ 1.
If Un are dense open subsets of X , their complements An are closed and nowhere

dense. By the previous paragraphs,
⋃

n≥1 An has dense complement. This comple-
ment is exactly

⋂
n≥1 Un. �

Here is one interesting and unexpected consequence. It says that most continuous
functions are nowhere differentiable. This is rather nonintuitive, since it was hard
work to construct even one explicit example of such a function in Example 8.4.9.

9.3.3. PROPOSITION. The set of continuous, nowhere differentiable functions
on an interval [a,b] is a residual set and in particular is dense in C[a,b].

PROOF. Say that a function f is Lipschitz at x0 if there is a constant L such that
| f (x)− f (x0)| ≤ L|x− x0| for all x ∈ [a,b]. Our first observation is that if f is dif-
ferentiable at x0, then it is also Lipschitz at x0. From the definition of derivative,

lim
x→x0

f (x)− f (x0)
x− x0

= f ′(x0). Choose δ > 0 such that for |x− x0|< δ ,
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| f (x)− f (x0)|
|x− x0|

≤ | f ′(x0)|+1.

Then for |x− x0|< δ , | f (x)− f (x0)| ≤ (| f ′(x0)|+1)|x− x0|. If |x− x0| ≥ δ ,

| f (x)− f (x0)| ≤ 2‖ f‖∞ ≤
2‖ f‖∞

δ
|x− x0|.

So L = max{| f ′(x0)|+1,2‖ f‖∞/δ} is a Lipschitz constant at x0.
Let An consist of all functions f ∈ C[a,b] such that f has Lipschitz constant

L ≤ n at some point x0 ∈ [a,b]. Let us show that An is closed. Suppose that ( fk)
∞

k=1
is a sequence of functions in An converging uniformly to a function f . Each fk has
Lipschitz constant n at some point xk ∈ [a,b]. Since [a,b] is compact, there is a
subsequence xki converging to a point x0 ∈ [a,b]. Then

| f (x)− f (x0)| ≤ | f (x)− fki(x)|+ | fki(x)− fki(xki)|
+ | fki(xki)− fki(x0)|+ | fki(x0)− f (x0)|

≤ ‖ f − fki‖∞ +n|x− xki |+n|xki − x0|+‖ f − fki‖∞

= 2‖ f − fki‖∞ +n
(
|x− xki |+ |xki − x0|

)
.

Take a limit as i→ ∞ to obtain | f (x)− f (x0)| ≤ n|x− x0|. Thus An is closed.
Next we show that An has no interior and hence is nowhere dense. Fix a func-

tion f ∈ An and an ε > 0. Let us look for a function g in Bε( f ) that is not in An.
By Theorem 5.5.9, f is uniformly continuous. Choose δ > 0 such that |x− y| < δ

implies that | f (x)− f (y)| < ε/4. Construct a piecewise linear continuous function
h that agrees with f on a sequence a = x0 < x1 < · · ·< xN = b, where xk−xk−1 < δ

for 1 ≤ k ≤ N. A simple estimate shows that ‖ f − h‖∞ < ε/2. The function h is
Lipschitz with constant L, say. Choose M > 4π(L + n)/ε and set g = h + ε

2 sinMx.
Then

‖ f −g‖∞ ≤ ‖ f −h‖∞ +‖h−g‖∞ <
ε

2
+

ε

2
< ε.

To see that g /∈ An, take any point x0. We can always choose x∈ [a,b] with |x−x0|<
2π/M such that sinMx =±1 has sign opposite to the sign of sinMx0. Thus,

|g(x)−g(x0)| ≥
ε

2
|sinMx− sinMx0|− |h(x)−h(x0)|

≥ ε

2
−L|x− x0| ≥

(
Mε

4π
−L
)
|x− x0|> n|x− x0|.

So g does not have Lipschitz constant n at any point x0 ∈ [a,b].
Recall from Theorem 8.2.2 that C[a,b] is complete. By the Baire Category Theo-

rem, it is not the union of countably many nowhere dense sets. The first category set⋃
n≥1 An contains all functions that are differentiable at any single point. Thus the

complement, consisting entirely of nowhere differentiable functions, is a residual
set. Therefore, nowhere differentiable functions are dense in C[a,b]. �
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Exercises for Section 9.3

A. Show that A is nowhere dense in X if and only if X \A is dense in X .

B. Show that R2 is not the union of countably many lines.

C. Show that a countable complete metric space has isolated points, i.e., points that are open
(and closed).
HINT: Write the space as a union of points and apply Baire Category.

D. Show that a complete metric space containing more than one point that has no isolated points
is uncountable. HINT: Use the previous exercise.

E. A Gδ set is the intersection of a countable family of open sets.

(a) Show that if A⊂ R is closed, then A is a Gδ set.
(b) Show that Q is not a Gδ subset of R. HINT: Show that R\Q is not first category.

F. (a) If f is a real-valued function on a metric space X , show that the set of points at which f is
continuous is a Gδ set. HINT: Show that the set Uk of points x for which there are i ∈N
and δ > 0 such that | f (y)− i

k |<
1
k for y ∈ Bδ (x) is open.

(b) Show that no function on [0,1] can be continuous just on Q. Compare Example 5.2.9.

G. Suppose that ( fn) is a sequence of continuous real-valued functions on a complete metric
space X that converges pointwise to a function f .

(a) Prove that there are M > 0 and an open set U ⊂ X such that sup{| fn(x)| : n≥ 1} ≤M for
all x ∈U . HINT: Let Ak = {x ∈ X : supn≥1 | fn(x)| ≤ k}.

(b) If f is continuous and ε > 0, show that there are an open set U and an integer N such that
| f (x)− fn(x)|< ε for all x ∈U and n≥ N.
HINT: Let Bk = {x ∈ X : supn≥k | f (x)− fn(x)| ≤ ε/2}.

H. (a) Show that the set of compact nowhere dense subsets of Rn is dense in K(X), where K(X)
is equipped with the Hausdorff metric of Example 9.1.2 (5).
HINT: If C is compact and ε > 0, use a finite ε-net. Finite sets are nowhere dense.

(b) Show that the set An of those compact sets in K(X) that contain a ball of radius 1/n is a
closed set with no interior.

I. Banach–Steinhaus Theorem. Suppose that X and Y are complete normed vector spaces,
and {Tα : α ∈ A} is a family of continuous linear maps of X into Y such that for each x ∈ X ,
Kx = supα∈A ‖Tα x‖< ∞.

(a) Let An = {x ∈ X : Kx ≤ n}. Show that An is closed.
(b) Prove that there is some n0 such that An0 has interior, say containing Bε (x0).
(c) Show that there is a finite constant L such that every Tα has Lipschitz constant L.

HINT: If ‖x‖< 1, then x0 + εx ∈ An0 . Estimate ‖Tα x‖.

J. Show that [0,1] is not the disjoint union of a countable family {An : n ≥ 1} of nonempty
closed sets. HINT: If Un = intAn, observe that X := [0,1] \

⋃
n≥1 Un =

⋃
n≥1(An \Un) is

complete. Find n0 ≥ 1 and (a,b) such that ∅ 6= X ∩ (a,b) ⊂ An0 . Show that Un ∩ (a,b) = ∅
for n 6= n0.

K. A function on [0,1] that is not monotonic on any interval is called a nowhere monotonic
function. Show that these functions are a residual subset of C[0,1].
HINT: Let An = {± f : there is x ∈ [0,1],( f (y)− f (x))(y− x)≥ 0 for |y− x| ≤ 1

n}.



Chapter 10
Approximation by Polynomials

This chapter introduces some of the essentials of approximation theory, in partic-
ular approximating functions by “nice” ones such as polynomials. In general, the
intention of approximation theory is to replace some complicated function with a
new function, one that is easier to work with, at the price of some (hopefully small)
difference between the two functions. The new function is called an approximation.
There are two crucial issues in using an approximation: first, how much simpler
is the approximation? and second, how close is the approximation to the original
function? Deciding which approximation to use requires an analysis of the trade-off
between these two issues.

Of course, the answers to these two questions depend on the exact meanings of
simpler and close, which vary according to the context. In this chapter, we study
approximations by polynomials. Close is measured by some norm. We concentrate
on the uniform norm, so that a polynomial approximation should be close to the
function everywhere on a given interval.

Approximations are closely tied to the notions of limit and convergence, since a
sequence of functions approximating a function f to greater and greater accuracy
converges to f in the norm used. Different approximation schemes correspond to
different norms.

10.1 Taylor Series

The first approximation taught in calculus and the most often used approximation
is the tangent line approximation: If f : R→ R is differentiable at a ∈ R, then for x
near a, we have

f (x)≈ f (a)+ f ′(a)(x−a).

However, you should learn early that an approximation is only as good as the er-
ror estimate that can be verified. Unless we can estimate the error, the difference be-
tween f (x) and its approximation f (a)+ f ′(a)(x−a), it is impossible to say whether
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190 10 Approximation by Polynomials

the approximation is worth the trouble. For example, why not just approximate f (x)
with the constant f (a), since x is ‘near’ a and f is continuous?

We start with the error estimate for the constant approximation f (a). This error
estimate comes from the Mean Value Theorem (6.2.2), which gives us the estimate
| f (x)− f (a)| = | f ′(c)(x− a)| ≤ C|x− a|, where c is some point between a and x
and C = sup{| f ′(c)| : c between x and a}. When C is finite, we obtain a useful error
estimate for this constant approximation. Notice that this estimate does not require
us to find f (x) exactly. If we could easily find f (x), we wouldn’t bother with the
approximation.

A more sophisticated use of the Mean Value Theorem shows that the tangent line
has an error of the form M(x−a)2 for a constant M that depends on f ′′. For x very
close to a, this is a considerable improvement on C|x−a|. See Exercise 10.1.B.

In this section, we generalize these two approximations and their error estimates
to take account of higher derivatives—in other words, we generalize the Mean Value
Theorem. Since this method requires many derivatives, and because it uses informa-
tion at only one point, it will not be an ideal method for uniform approximation over
an interval. Nevertheless, it works very well in certain instances of great importance.

The role of the tangent line to f is replaced by a polynomial Pn(x) of degree at
most n that has the same derivatives at a as f up to the nth degree. This is all the
agreement that the parameters of a polynomial of degree at most n permit.

10.1.1. DEFINITION. If f has n derivatives at a point a ∈ [A,B], the Taylor
polynomial of order n for f at a is

Pn(x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n

=
n

∑
k=0

f (k)(a)
k!

(x−a)k.

10.1.2. LEMMA. Let f (x) belong to Cn[A,B] (i.e., f has n continuous deriv-
atives), and let a ∈ [A,B]. The Taylor polynomial Pn(x) of order n for f at a is the
unique polynomial p(x) of degree at most n such that p(k)(a) = f (k)(a) for 0≤ k≤ n.

PROOF. Every polynomial of degree at most n has the form p(x) =
n
∑
j=0

a j(x−a) j.

We may differentiate this k times to obtain

p(k)(x) =
n

∑
j=k

j( j−1) · · ·( j +1− k)(x−a) j−k.

Substituting x = a yields p(k)(a) = k!ak. Therefore, we must choose the coefficients
ak = f (k)(a)/k!, which yields the Taylor polynomial Pn(x). �

The preceding simple lemma established that the Taylor polynomial is the ap-
propriate analogue of the tangent line for higher-order polynomials. The hard work,
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and indeed the total content of this approximation, comes from the error estimate.
In this case, the estimate is good only for points sufficiently close to a when there is
reasonable control on the size of the (n +1)st derivative. The case n = 0 is a direct
consequence of the Mean Value Theorem.

10.1.3. TAYLOR’S THEOREM.
Let f (x) belong to Cn[A,B], and furthermore assume that f (n+1) is defined and
| f (n+1)(x)| ≤ M for x ∈ [A,B]. Let a ∈ [A,B], and let Pn(x) be the Taylor polyno-
mial of order n for f at a. Then for each x ∈ [A,B], the error of approximation
Rn(x) = f (x)−Pn(x) satisfies

|Rn(x)| ≤
M|x−a|n+1

(n+1)!
.

PROOF. Notice that for 0≤ k ≤ n,

R(k)
n (a) = f (k)(a)−P(k)

n (a) = 0.

Because Pn is a polynomial of degree at most n,

R(n+1)
n (x) = f (n+1)(x)−P(n+1)

n (x) = f (n+1)(x).

Applying the Mean Value Theorem to R(n)
n gives

|R(n)
n (x)|= |R(n)

n (x)−R(n)
n (a)| ≤M|x−a|.

Suppose that for some k with 0≤ k < n, we have shown that

|R(n−k)
n (x)| ≤ M|x−a|k+1

(k +1)!
.

Then we integrate to obtain

|R(n−k−1)
n (x)|=

∣∣∣R(n−k−1)
n (a)+

∫ x

a
R(n−k)

n (t)dt
∣∣∣

≤
∣∣∣0+

∫ x

a

M|t−a|k+1

(k +1)!
dt
∣∣∣= M|x−a|k+2

(k +2)!
.

We established the formula for k = 0, and have now completed the induction
step. Eventually we obtain the desired formula when k = n,

|Rn(x)| ≤
M|x−a|n+1

(n+1)!
.

�



192 10 Approximation by Polynomials

When f is C∞, the Taylor series of f about a is
∞

∑
k=0

f (k)(a)
k!

(x− a)k. This is a

power series, and so we must watch out for problems with convergence.

10.1.4. EXAMPLE. Consider f (x) = ex. This function has the very nice prop-
erty that f ′ = f . Thus f (n)(x) = ex for all n≥ 0. Expanding around a = 0, we obtain

Taylor polynomials Pn(x) =
n
∑

k=0

xk

k!
. Note that | f (n+1)(t)|= et ≤ max{1,ex} if t lies

between 0 and x. Thus Taylor’s Theorem for the interval [0,x] or [x,0] says that the
error is at most ∣∣∣ex−

n

∑
k=0

xk

k!

∣∣∣≤max{1,ex} |x|n+1

(n+1)!
.

Even for small values of n, Pn(x) is close to ex around the origin; see Figure 10.1.

x-2 -1 1 2

y

5

FIG. 10.1 The graphs of y = ex and y = P4(x).

The Ratio Test shows that lim
n→∞

|x|n+1

(n+1)! = 0 for every x ∈ R. Thus the Taylor series
converges to ex on the whole real line. Moreover, this series converges uniformly
on any interval [−A,A]. To see this, notice that the error estimate at any point x ∈
[−A,A] is greatest for x = A. Hence

sup
|x|≤A

∣∣∣ex−
n

∑
k=0

xk

k!

∣∣∣≤ eAAn+1

(n+1)!
.

To compute e, we could use this formula to compute∣∣∣e− n

∑
k=0

1
k!

∣∣∣≤ e
(n+1)!

≤ 3
(n+1)!

.
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To obtain e to 10 decimal places, we need 3
(n+1)! < 0.5(10)−10 or (n+1)! > 6(10)10.

A calculation shows that we need n = 13.
This is not too bad, yet we can significantly increase the rate of convergence by

using a smaller value of x. For example, suppose that we use x = 1/16 to compute
e1/16. We can then square this number four times to obtain e. If we use just the first
ten terms, we have∣∣∣e1/16−

10

∑
k=0

1
(16)kk!

∣∣∣≤ e1/16

(16)11(11)!
< 1.6(10)−21.

Then we take the number a =
10
∑

k=0

1
(16)kk!

and square it four times to obtain a16 as an

approximation to e. Since we know that e1/16−ε < a < e1/16, where ε = 1.6(10)−21,
we have

e > a16 > (e1/16− ε)16 > e−16e15/16
ε > e−7(10)−20.

So roughly the same number of calculations yields almost double the number of
digits of accuracy.

Consider the power series
∞

∑
n=0

xn

n!
. The Ratio Test shows that

lim
n→∞

|x|n+1/(n+1)!
|x|n/n!

= lim
n→∞

|x|
n+1

= 0

for every real x. Thus this power series has an infinite radius of convergence. More-
over, as we have shown, this series converges to the function ex; and this conver-
gence is uniform on each bounded interval.

A similar situation occurs for sinx and cosx.

Many functions in common use are C∞, meaning that they have continuous
derivatives of all orders. For such functions, the Taylor polynomials of all orders
are defined. Thus it is natural to consider the convergence of the Taylor series of f
around x = a. Recall from Section 8.5 that every power series has a radius of conver-
gence. In the previous example, the best possible result occurred—the power series
of ex has an infinite radius of convergence, and the limit of the series is the function
itself. Unfortunately, things are not always so good.

10.1.5. EXAMPLE. Consider the function f (x) =
1

1+ x2 . The formulae for the

derivatives are a bit complicated, so we use a trick. Consider the polynomials

P2n(x) =
n

∑
k=0

(−x2)k = 1− x2 + x4 + · · ·+(−x2)n =
1− (−x2)n+1

1+ x2 .

We deduce the estimate
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1+ x2 −P2n(x)

∣∣∣= x2n+2

1+ x2 .

It follows that lim
n→∞

P2n(x) = f (x) provided that |x|< 1, and this convergence is uni-

form on any interval [−r,r] for 0 < r < 1. Moreover, this estimate shows that

lim
x→0

| f (x)−P2n(x)|
x2n+1 = lim

x→0

|x|
1+ x2 = 0.

By Exercise 10.1.C, it follows that this is indeed the Taylor polynomial for f not
only of order 2n, but also of order 2n+1.

So the Taylor series for f about 0 is
∞

∑
k=0

(−x2)k. The radius of convergence is

readily seen to be 1, since for |x| ≥ 1 the terms to do not go to 0, while for |x|< 1, the
geometric series does converge. Moreover, the limit is our function f (x). Notice that
even though f is defined and C∞ on the whole real line, the Taylor series converges
only on a finite interval.

10.1.6. EXAMPLE. In the last example, we showed that for any r < 1, the
series for 1/(1 + x2) converges uniformly on [−r,r]. Thus we may integrate this
series term by term by Theorem 8.3.1. For |x|= r < 1,

arctan(x) =
∫ x

0

1
1+ t2 dt =

∫ x

0
lim
n→∞

n

∑
k=0

(−t2)k dt

= lim
n→∞

∫ x

0

n

∑
k=0

(−t2)k dt = lim
n→∞

n

∑
k=0

(−1)k

2k +1
x2k+1 =

∞

∑
k=0

(−1)k

2k +1
x2k+1.

This is the Taylor series for arctan(x). It also has radius of convergence 1 and con-
verges uniformly on [−r,r] for any r < 1. This series also converges at x = ±1 by
the alternating series test.

The next thing to notice is that this series does converge to arctan(x) uniformly
on [−1,1]. To see this, we use the alternating series test at each point x ∈ [−1,1].

We have P2n(x) =
n−1
∑

k=0

(−1)k

2k +1
x2k+1. This is a sequence of polynomials of degree

2n−1 that converges to arctan(x) at each point in [−1,1]. The corresponding series
is alternating in sign with terms of modulus |x|2k+1/(2k+1) tending monotonically
to 0. Thus the error is no greater than the modulus of the next term.

∣∣arctan(x)−P2n(x)
∣∣< |x|2n+1

2n+1
≤ 1

2n+1
.

Therefore,

sup
|x|≤1

∣∣arctan(x)−P2n(x)
∣∣≤ 1

2n+1
.

So P2n converges uniformly to arctan(x) on [−1,1].



10.1 Taylor Series 195

However, this sequence converges very slowly. Indeed, by the triangle inequality
for the max norm in C[−1,1],

1
2n+1

= ‖P2n−P2n+2‖∞ ≤ ‖P2n− f‖∞ +‖ f −P2n+2‖∞.

So max
{
‖P2n− f‖∞,‖ f −P2n+2‖∞

}
≥ 1

4n+2
, a rather slow rate of convergence.

On the other hand, this estimate shows that the error on [−r,r] is no more than
r2n+1/(2n+1), which goes to zero quite quickly as n→∞, if r is small. So Taylor se-
ries can sometimes be a good approximation in a limited range. See Exercise 10.1.E
for a method of rapidly computing π using these polynomials.

10.1.7. EXAMPLE. Even if f has derivatives of all orders that we can evaluate
accurately and the Taylor series converges uniformly, the Taylor polynomials may
not converge to the right function! The classic example of this is the function

f (x) =

{
e−1/x2

if x 6= 0,

0 if x = 0.

Figure 10.2 shows just how flat this function is near zero.

x-2 -1 1 2

y

1/2

FIG. 10.2 The graph of y = e−1/x2
.

We will show that f is C∞ on all of R and f (n)(0) = 0 for all n. We claim that
there is a polynomial qn(x) of degree at most 2n such that

f (n)(x) =
qn(x)
x3n e−1/x2

for x 6= 0.

Indeed, this is obvious for n = 0, where q0 = 1. We proceed by induction. If it is
true for n, then by the product rule,
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f (n+1)(x) = f (n)′(x) = e−1/x2
(

q′n(x)
x3n − 3nqn(x)

x3n+1 +
qn(x)
x3n

(−2
x3

))
=

x3q′n(x)−3nx2qn(x)−2qn(x)
x3n+3 e−1/x2

.

To check the degree of

qn+1(x) = x3q′n(x)−3nx2qn(x)−2qn(x),

note that
deg(x3q′n)≤ 3+degq′n ≤ 2+degqn ≤ 2n+2

and
deg(3nx2qn)≤ 2+degqn ≤ 2n+2.

Clearly this nice algebraic formula for the derivatives is continuous on both
(−∞,0) and (0,∞). So f is C∞ everywhere except possibly at x = 0. Also,

lim
x→0

e−1/x2

xk = lim
t→±∞

tk

et2 ,

where we substitute t = 1/x. Since

et2
=

∞

∑
n=0

1
n!

t2n ≥ 1
k!

t2k,

we see that

lim
t→±∞

∣∣∣∣ tk

et2

∣∣∣∣≤ lim
t→±∞

k!
|t|k

= 0.

Therefore, if qn =
2n
∑
j=0

a jx j, we obtain

lim
x→0

f (n)(x) = lim
x→0

2n

∑
j=0

a jx j e−1/x2

x3n =
2n

∑
j=0

a j lim
x→0

e−1/x2

x3n− j = 0.

We use the same fact to show that f (n)(0) = 0 for n≥ 1. Indeed,

f (n+1)(0) = lim
h→0

f (n)(h)− f (n)(0)
h

= lim
h→0

qn(h)e−1/h2

h3n+1 = 0.

So f (n) is defined on the whole line and is continuous for each n. Therefore, f is C∞.
Because all of the derivatives of f vanish at x = 0, all of the Taylor polynomi-

als are Pn(x) = 0. While this certainly converges rapidly on the whole real line, it
converges to the wrong function! The Taylor polynomials completely fail to approx-
imate f anywhere except at the one point x = 0.
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Exercises for Section 10.1

A. Find the Taylor polynomials of order 3 for each of the following functions at the given point
a, and estimate the error at the point b.

(a) f (x) = tanx about a = π

4 and b = 0.75
(b) g(x) =

√
1+ x2 about a = 0 and b = 0.1

(c) h(x) = x4 about a = 1 and b = 0.99
(d) k(x) = sinhx about a = 0 and b = 0.003

B. Let a ∈ [A,B], f ∈ C2[A,B], and let P1(x) = f (a) + f ′(a)(x− a) be the first-order Taylor
polynomial. Fix a point x0 in [A,B].

(a) Define h(t) = f (t)+ f ′(t)(x0− t)+D(x0− t)2. Find D such that h(a) = h(x0).
(b) Find c between a and x0 such that f (x0)−P1(x0) = 1

2 f ′′(c)(x0−a)2.
(c) Find a constant M such that | f (x)− f (a)| ≤M(x−a)2 for all x ∈ [A,B].

C. Let f satisfy the hypotheses of Taylor’s Theorem at x = a.

(a) Show that lim
x→a

f (x)−Pn(x)
(x−a)n = 0.

(b) If Q(x) ∈ Pn and lim
x→a

f (x)−Q(x)
(x−a)n = 0, prove that Q = Pn.

D. (a) Find the Taylor series for sinx about x = 0, and prove that it converges to sinx uniformly
on any bounded interval [−N,N].

(b) Find the Taylor expansion of sinx about x = π/6. Hence show how to approximate
sin(31◦) to 10 decimal places. Do careful estimates.

E. (a) Verify that 4arctan( 1
5 )− arctan( 1

239 ) = π

4 . HINT: Take the tan of both sides.
(b) Using the estimates for arctan(x) derived in Example 10.1.6, compute how many terms

are needed to approximate π to 1000 decimal places of accuracy using this formula.
(c) Calculate π to 6 decimal places of accuracy using this method.

F. Let f (x) = logx.

(a) Find the Taylor series of f about x = 1.
(b) What is the radius of convergence of this series?
(c) What happens at the two endpoints of the interval of convergence? Hence find a series

converging to log2.
(d) By observing that log2 = log4/3− log2/3, find another series converging to log2. Why

is this series more useful?
(e) Show that log3 = 3log0.96 + 5log 81

80 − 11log0.9. Find a finite expression that does not
involve logs which estimates log3 to 50 decimal places.

G. Suppose that f ,g∈Cn+1[a−δ ,a+δ ] and f (k)(a) = g(k)(a) = 0 for 0≤ k < n and g(n)(a) 6= 0.

Use Taylor polynomials to show that lim
x→a

f (x)
g(x)

=
f (n)(a)
g(n)(a)

.

H. Show that
∫ +∞

−∞

log
∣∣∣1+ x
1− x

∣∣∣ dx
x

= π
2 as follows:

(a) Reduce the integral to 4
∫ 1

0
log
∣∣∣1+ x
1− x

∣∣∣ dx
x

.

(b) Use the Taylor series for logx about x = 1 found in Exercise 10.1.F. Use your knowledge

of convergence and integration to evaluate
∫ r

0
log
∣∣∣ x+1
x−1

∣∣∣ dx
x

as a series when r < 1.

(c) Justify the improper integral obtained by letting r go to 1.

(d) Use the famous identity
∞

∑
n=1

1
n2 = π2

6 to complete the argument.
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I. Let f (x) = (1+ x)−1/2.

(a) Find a formula for f (k)(x). Hence show that

f (k)(0) =
(–1

2
k

)
:=

–1
2 (–1

2 −1) · · ·(–1
2 +1− k)

k!
=

(−1)k(2k)!
22k(k!)2 =

(−1
4

)k
(

2k
k

)
.

(b) Show that the Taylor series for f about x = 0 is
∞

∑
k=0

(
2k
k

)(−x
4

)k
, and compute the radius

of convergence.
(c) Show that

√
2 = 1.4 f (−0.02). Hence compute

√
2 to 8 decimal places.

(d) Express
√

2 = 1.415 f (ε), where ε is expressed as a fraction in lowest terms. Use this to
obtain an alternating series for

√
2. How many terms are needed to estimate

√
2 to 100

decimal places?

J. Let a be the number with 198 ones (i.e., a = 11 . . .11︸ ︷︷ ︸
198 ones

). Find
√

a to 500 decimal places.

HINT: a =
(

1099

3

)2
(1−10−198). Your decimal expansion should end in 97916.

10.2 How Not to Approximate a Function

Given a continuous function f : [a,b]→R, can we approximate f by a polynomial?
For example, suppose you need to write a computer program to evaluate f . Since
some round-off errors are inevitable, why not replace f with a polynomial that is
close to f , since the polynomial will be easy to evaluate?

What precisely do we mean by close? This depends on the context, but in the
context of the preceding programming example, we mean a polynomial p such that

‖ f − p‖∞ = max
x∈[a,b]

| f (x)− p(x)|

is small. This is known as uniform approximation. Such approximations are im-
portant both in practical work and in theory. Later in this chapter, there are several
methods for computing such approximations, including methods well adapted to
programming.

We start by looking at several plausible methods that do not work.
It might seem that the Taylor polynomials of the previous section are a good

answer to this problem. However, there are several serious flaws. First, and most
important, the function f may not be differentiable at all and f must have at least n
derivatives in order to compute Pn. Moreover, the bound on the (n+1)st derivative is
the crucial factor in the error estimate, so f must have n+1 derivatives. The bounds
may be so large that this estimate is useless. Second, even for very nice functions,
the Taylor series may converge only on a small interval about the point a. Recall
Example 10.1.6, which shows that the Taylor series for arctan(x) converges only
on the small interval [−1,1] even though the function is C∞ on all of R. Moreover,
the convergence is very slow unless we further restrict the interval to something
like [−0.5,0.5]. Worse yet was f (x) = e−1/x2

of Example 10.1.7, which is C∞ and
for which the Taylor series about x = 0 converges everywhere, but to the wrong
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function. Because the Taylor series uses information at only one point, it cannot be
expected to always do a good job over an entire interval.

Differentiation is a very unstable process when the function is known only ap-
proximately in the uniform norm—a small error in evaluating the function can result
in a huge error in the derivative (see Example 10.2.1). So even when the Taylor se-
ries does converge, it can be difficult to compute the coefficients numerically.

10.2.1. EXAMPLE. One reason that Taylor polynomials fail is that they use
information available at only one point. Another failing is that they try too hard to
approximate derivatives at the same time. Here is an example where convergence
for the function is good, but not for the derivative. Let

fn(x) = x+
1√
n

sinnx for −π ≤ x≤ π.

It is easy to verify that fn converges uniformly on [−π,π] to the function f (x) =
x. Indeed,

‖ f − fn‖∞ = max
−π≤x≤π

1√
n
|sinnx|= 1√

n
for n≥ 1.

However f ′(x) = 1 everywhere, while f ′n(x) = 1+
√

ncosnx. Therefore,

‖ f ′ − f ′n‖∞ = max
−π≤x≤π

√
n |cosnx|=

√
n for n≥ 1.

As the approximants fn get closer to f , they oscillate more and more dramatically.
So the derivatives of the fn are very far from the derivative of f .

Another possible method for finding good approximants is to use polynomial
interpolation. Pick n+1 points distributed over [a,b], for example,

xi = a+
i(b−a)

n
for i = 0,1, . . . ,n.

There is a unique polynomial pn of degree at most n that goes through the n + 1
points (xi, f (xi)), i = 0,1, . . . ,n.

It seems reasonable to suspect that as n increases, pn will converge uniformly to
f . However, this is not true. In 1901, Runge showed that the polynomial interpolants
on [−5,5] to the function

f (x) =
1

1+ x2

do not converge to f . In fact, lim
n→∞

‖ f − pn‖∞ = ∞. Proving this is more than a little
tricky. If instead of choosing n + 1 equally spaced points, we cleverly choose the
points xi = 5cos(iπ/n), i = 0,1, . . . ,n, then the interpolating polynomials pn(x) will
converge uniformly to this particular function.

However, if you specify the points in advance, then no matter which points you
choose at each stage, there is some continuous function f ∈ C[a,b] such that the
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interpolating polynomials of degree n do not converge uniformly to f . This was
proved by Bernstein and Faber independently in 1914.

There are algorithms using interpolation that involve varying the points of inter-
polation strategically. There are also ways of making interpolation into a practical
method by using splines instead of polynomials. We will return to the latter idea in
the last two sections of this chapter.

After all of these negative results, we might wonder whether it is possible to
approximate an arbitrary continuous function by a polynomial. It is a remarkable
and important theorem, proved by Weierstrass in 1885, that this is possible.

10.2.2. WEIERSTRASS APPROXIMATION THEOREM.
Let f be any continuous real-valued function on [a,b]. Then there is a sequence of
polynomials pn that converges uniformly to f on [a,b].

In the language of normed vector spaces, this theorem says that the polynomials
are dense in C[a,b] in the max norm.

In fact, this theorem is sufficiently important that many different proofs have
been found. The proof we give was found in 1912 by Bernstein, a Russian math-
ematician. It explicitly constructs the approximating polynomial. This algorithm is
not the most efficient, but the problem of finding efficient algorithms can wait until
we have proved that the theorem is true.

Exercises for Section 10.2

A. Assuming that the Weierstrass Theorem is true for C[0,1], prove that it is true for C[a,b], for
an arbitrary interval [a,b]. HINT: For f ∈C[a,b], use g(t) := f

(
a+(b−a)t

)
in C[0,1].

B. Let α > 0. Using the Weierstrass Theorem, prove that every continuous function f (x) on
[0,+∞] with lim

x→∞
f (x) = 0 can be uniformly approximated as closely as we like by a function

of the form q(x) = ∑
N
n=1 Cne−nαx. HINT: Consider g(y) = f (− log(y)/α) on (0,1].

C. (a) Show that every continuous function f on [a,b] is the uniform limit of polynomials of the
form pn(x3).

(b) Describe the subspace of C[−1,1] consisting of functions that are uniform limits of poly-
nomials of the form pn(x2).

D. Suppose that f is a continuous function on [0,1] such that
∫ 1

0
f (x)xn dx = 0 for all n ≥ 0.

Prove that f = 0. HINT: Use the Weierstrass Theorem to show that
∫ 1

0 | f (x)|2 dx = 0.

E. Let X be a compact subset of [−N,N].

(a) Show that every continuous function f on X may be extended to a continuous function g
defined on [−N,N] with ‖g‖∞ = ‖ f‖∞.

(b) Show that every continuous function on X is the uniform limit of polynomials.

F. If f is continuously differentiable on [0,1], show that there is a sequence of polynomials pn
converging uniformly to f such that p′n converge uniformly to f ′. HINT: Start with f ′.

G. Show that if f is in C∞[0,1], then there is a sequence pn of polynomials such that the kth
derivatives p(k)

n converge uniformly to f (k) for every k ≥ 0.
HINT: Adapt Exercise 10.2.F to find pn with ‖ f (k)− p(k)

n ‖∞ < 1
n for 0≤ k ≤ n.

H. Prove that ex is not a polynomial. HINT: Consider behaviour at ±∞.
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I. (a) If 0 6∈ [a,b], show that every continuous function f on [a,b] is the uniform limit of a
sequence of polynomials (qn), where qn(x) = xn pn(x) for polynomials pn.

(b) If 0 ∈ [a,b], show that a continuous function f on [a,b] is the uniform limit of a sequence
of polynomials (qn), where qn(x) = xn pn(x) for polynomials pn, if and only if f (0) = 0.

J. (a) If x0, . . . ,xn are points in [a,b] and a = (a0, . . . ,an) ∈ Rn+1, show that there is a unique
polynomial pa in Pn such that p(xi) = ai for 0≤ i≤ n.
HINT: Find polynomials q j such that q j(xi) = δi j is 1 if i = j and is 0 if 0≤ i 6= j ≤ n.

(b) Show that there is a constant M (depending on n) such that ‖pa‖∞ ≤M‖a‖2.

K. Suppose that f ∈C[a,b], ε > 0 and x1, . . . ,xn are points in [a,b]. Prove that there is a polyno-
mial p such that p(xi) = f (xi) for 1≤ i≤ n and ‖ f − p‖∞ < ε . HINT: First approximate f
closely by some polynomial. Then use the previous exercise to adjust the difference.

10.3 Bernstein’s Proof of the Weierstrass Theorem

Recall the binomial formula, (a+b)n =
n
∑

k=0

(n
k

)
akbn−k. If we set a = x and b = 1−x,

then we obtain

1 =
n

∑
k=0

(
n
k

)
xk(1− x)n−k.

Bernstein started by considering the functions

Pn
k (x) =

(
n
k

)
xk(1− x)n−k for k = 0,1, . . . ,n,

now called Bernstein polynomials. They have several virtues. They are polynomi-
als of degree n. They take only nonnegative values on [0,1]. And they add up to 1.
Moreover, Pn

k is a “bump” function with a maximum at k/n, as a routine calculus
calculation shows. For example, the four functions P3

k for 0 ≤ k ≤ 3 are given in
Figure 10.3.

Given a continuous function f on [0,1], define a polynomial Bn f by

(Bn f )(x) =
n

∑
k=0

f
( k

n

)
Pn

k (x) =
n

∑
k=0

f
( k

n

)(n
k

)
xk(1− x)n−k.

This is a linear combination of the polynomials Pn
k ; and so Bn f is a polynomial of

degree at most n. We think of Bn as a function from the vector space C[0,1] into
itself. This map has several easy but important properties. If f ,g ∈C[0,1], we say
that f ≥ g if f (x)≥ g(x) for all 0≤ x≤ 1.

10.3.1. PROPOSITION. The map Bn is linear and monotone. That is, for all
f ,g ∈C[0,1] and α,β ∈ R,

(1) Bn(α f +βg) = αBn f +βBng,
(2) Bn f ≥ Bng if f ≥ g,
(3) |Bn f | ≤ Bng if | f | ≤ g.
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x1

y
1

FIG. 10.3 The Bernstein polynomials of degree 3.

The only part that requires any cleverness is the monotonicity. However, since
each Pn

k ≥ 0, it follows that when f ≥ 0, then Bn f is also positive. So if f ≥ g, then
Bn f −Bng = Bn( f −g)≥ 0. In particular, | f | ≤ g means that−g≤ f ≤ g; and hence
−Bng≤ Bn f ≤ Bng. The details are left to the reader.

Next let us compute Bn f for three basic polynomials: 1, x, and x2.

10.3.2. LEMMA. Bn1 = 1, Bnx = x, and

Bnx2 =
n−1

n
x2 +

1
n

x = x2 +
x− x2

n
.

PROOF. For the first equation, observe that Bn1 is the sum of Pn
0 through Pn

n , which
we have already noted is identically 1.

Differentiating the binomial identity ∑
n
k=0
(n

k

)
akbn−k = (a+b)n with respect to a

gives
n

∑
k=0

k
(

n
k

)
ak−1bn−k = n(a+b)n−1. (10.3.3)

Substitute a = x and b = 1− x and multiply by x/n to get

Bnx =
n

∑
k=0

k
n

(
n
k

)
xk(1− x)n−k =

x
n

n
(
x+(1− x)

)n−1 = x.

Multiplying (10.3.3) by a and differentiating again with respect to a yields

n

∑
k=0

k2
(

n
k

)
ak−1bn−k = n(a+b)n−1 +n(n−1)a(a+b)n−2.

Substitute a = x and b = 1− x and multiply by x/n2 to obtain
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Bnx2 =
n

∑
k=1

k2

n2

(
n
k

)
xk(1− x)n−k =

x
n2 (n+n(n−1)x) =

x+(n−1)x2

n
.

�

PROOF OF WEIERSTRASS’S THEOREM. By Exercise 10.2.A, it suffices to prove
the theorem for the interval [0,1]. Fix a continuous function f in C[0,1]. We will
prove that for each ε > 0, there is some N > 0 such that

‖ f (x)−Bn f (x)‖< ε for all n≥ N.

Since [0,1] is compact, f is uniformly continuous on [0,1] by Theorem 5.5.9.
Thus for our given ε > 0, there is some δ > 0 such that

| f (x)− f (y)| ≤ ε

2
for all |x− y| ≤ δ , x,y ∈ [0,1].

Also, f is bounded on [0,1] by the Extreme Value Theorem (5.4.4). So let

M = ‖ f‖∞ = sup
x∈[0,1]

| f (x)|.

Fix any point a ∈ [0,1]. We claim that | f (x)− f (a)| ≤ ε

2
+

2M
δ 2 (x−a)2. Indeed,

if |x−a| ≤ δ , then

| f (x)− f (a)| ≤ ε

2
≤ ε

2
+

2M
δ 2 (x−a)2

by our estimate of uniform continuity. And if |x−a| ≥ δ , then

| f (x)− f (a)| ≤ 2M ≤ 2M
(x−a

δ

)2
≤ ε

2
+

2M
δ 2 (x−a)2.

By linearity of Bn and Bn1 = 1, we obtain Bn( f − f (a))(x) = Bn f (x)− f (a).
Now use the positivity of our map Bn to obtain

|Bn f (x)− f (a)| ≤ Bn

(
ε

2
+

2M
δ 2 (x−a)2

)
=

ε

2
+

2M
δ 2

(
x2 +

x− x2

n
−2ax+a2

)
=

ε

2
+

2M
δ 2 (x−a)2 +

2M
δ 2

x− x2

n
.

Evaluate this at x = a to obtain

|Bn f (a)− f (a)| ≤ ε

2
+

2M
δ 2

a−a2

n
≤ ε

2
+

M
2δ 2n

.

We use the fact that max{a−a2 : 0≤ a≤ 1}= 1
4 .

This estimate does not depend on the point a. So we have found that
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‖Bn f − f‖∞ ≤
ε

2
+

M
2δ 2n

.

So now choose N ≥ M
δ 2ε

such that
M

2δ 2N
<

ε

2
. Then for all n≥ N,

‖Bn f − f‖∞ ≤
ε

2
+

ε

2
= ε. �

As was already mentioned, using Bernstein polynomials is not an efficient way
of finding polynomial approximations. However, Bernstein polynomials have other
advantages, which are developed in the exercises.

Exercises for Section 10.3

A. Show that Pn
k (x) =

(n
k

)
xk(1− x)n−k attains its maximum at k

n .

B. Show that ‖Bn f‖∞ ≤ ‖ f‖∞. HINT: Use monotonicity.

C. Prove that Bn( f )2 ≤ Bn( f 2). HINT: Expand Bn(( f −a)2).

D. (a) Compute Bnx3.
(b) Compute lim

n→∞
n(Bnx3− x3).

E. Work through our proof of the Weierstrass theorem with the function f (x) = |x− 1
2 | on [0,1] to

obtain an estimate for the degree of a polynomial p needed to ensure that ‖ f − p‖∞ < 0.0005.

F. (a) Show that Bn(ex) = (1+(e1/n−1)x)n.
(b) Show that this may be rewritten as (1+ x

n + x cn
n2 )n, where 0≤ cn ≤ 1.

(c) Hence prove directly that Bn(ex) converges uniformly to ex on [0,1].

G. (a) Show that the derivative of Bn+1 f is

(Bn+1 f )′(x) =
n

∑
k=0

f
( k+1

n+1

)
− f
( k

n+1

)
1

n+1

(
n
k

)
xk(1− x)n−k.

(b) If f has a continuous first derivative, use the Mean Value Theorem and the uniform conti-
nuity of f to show that lim

n→∞
‖(Bn f )′ − f ′‖∞ = 0.

H. (a) Set fnm(x) = x
(
x− 1

n

)(
x− 2

n

)
· · ·
(
x− m−1

n

)
for m≥ 0,n≥ 1. Show that Bn fnm = fnm(1)xm.

(b) Hence show that both sequences ( fnm) and (Bn fnm) converge uniformly to xm.
(c) Show Bnxm converges to xm using ‖Bnxm− xm‖∞ ≤ ‖Bn(xm− fnm)‖∞ +‖Bn fnm− xm‖∞.
(d) Use this to give another proof that Bn p converges uniformly to p for every polynomial p.

10.4 Accuracy of Approximation

In this section, we measure the rate of convergence of polynomial approximations.
We define the optimal error. The aim is to get a reasonable idea of what it is for a
given function, and how well a given approximation compares with it.

Let Pn denote the vector space of polynomials of degree at most n. We will write
Pn[a,b] to mean that Pn is considered as a subspace of C[a,b] with norm given by
the maximum modulus over the interval [a,b].
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10.4.1. DEFINITION. If f ∈C[a,b], define the error function En( f ) by

En( f ) = inf{‖ f −q‖∞ : q ∈ Pn}.

Likewise, if F is a set of functions, we let

En(F ) = sup
f∈F

En( f ).

We can determine how good a polynomial approximation p ∈ Pn to f is by how
close ‖ f − p‖∞ is to En( f ).

A little thought reveals that wildly oscillating functions will not be well approx-
imated by polynomials of low degree. For example, the function f (x) = cos(nπx)
in C[0,1] alternately takes the extreme values ±1 at k

n for 0 ≤ k ≤ n. Any function
close to f (within 1) will have to switch signs between these points. This suggests
that in order to get a reasonable estimate, we must measure how quickly f varies.

10.4.2. DEFINITION. The modulus of continuity of f ∈C[a,b] is defined for
each δ > 0 by

ω( f ;δ ) = sup
{
| f (x1)− f (x2)| : |x1− x2|< δ , x1,x2 ∈ [a,b]

}
.

In other words, ω( f ,δ ) is the smallest choice of ε for which δ “works” in the
definition of uniform continuity.

By Theorem 5.5.9, every continuous function on the compact set [0,1] is uni-
formly continuous. Therefore, for each ε > 0, there is a δ > 0 such that

| f (x)− f (y)|< ε for all |x− y|< δ , x,y ∈ [0,1].

Restating this with our new terminology, we see that for every ε > 0, there is a δ > 0
such that ω( f ;δ ) < ε . Thus the uniform continuity of f is equivalent to

lim
δ→0+

ω( f ;δ ) = 0.

10.4.3. EXAMPLE. Consider f (x) =
√

x on [0,1]. Fix δ ≥ 0 and look at

sup
0≤t≤δ

f (x+ t)− f (x) =
√

x+δ −
√

x =
δ√

x+δ +
√

x
≤
√

δ .

This inequality is sharp at x = 0. Thus, ω( f ;δ ) =
√

δ .

The class of functions f with ω( f ;δ )≤ δ for all δ > 0 are precisely the functions
satisfying

| f (x)− f (y)| ≤ |x− y|,
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namely the functions with Lipschitz constant 1. Denote by S the class of functions
in C[0,1] with Lipschitz constant 1. We will prove our results first for the class S .

A good lower bound for the error is obtained using an idea due to Chebyshev.
We will use the idea behind the next proof repeatedly, so examine it carefully.

10.4.4. PROPOSITION. En(S )≥ 1
2n+2

for n≥ 0.

PROOF. Fix n≥ 0. Consider the sawtoothed function f that takes the values

f
( k

n+1

)
=

(−1)k

2n+2
for 0≤ k ≤ n+1

and is linear in between with slope ±1. Clearly, f belongs to S .
We will show that the closest polynomial to f in Pn is the zero polynomial, which

is clearly distance 1/(2n + 2) from f . To this end, suppose that p is a polynomial
with ‖p− f‖∞ < 1

2n+2 . Then

∣∣∣p( k
n+1

)
− (−1)k

2n+2

∣∣∣< 1
2n+2

.

It follows that sign p
( k

n+1

)
= (−1)k. Consequently, p changes sign between k

n+1 and
k+1
n+1 for each 0≤ k ≤ n. By the Intermediate Value Theorem (5.6.1), p has a root in
the open interval ( k

n+1 , k+1
n+1 ). So p is a nonconstant polynomial with at least n + 1

roots, and thus is not in Pn. Consequently,

En(S )≥ En( f ) = ‖ f‖∞ =
1

2n+2
. �

To obtain an upper bound, let us look carefully at the estimate that comes out of
Bernstein’s proof of the Weierstrass Theorem.

10.4.5. PROPOSITION. En(S )≤ 1/
√

n for n≥ 1.

PROOF. Fix f ∈ S . We recall the details of the proof of the Weierstrass Approx-
imation Theorem in our context. Let ε be any positive number. We claim that the
Lipschitz condition gives the strong inequality

| f (x)− f (a)| ≤ |x−a| ≤ ε +
(x−a)2

ε
.

To check this, consider the cases |x−a| ≤ ε and |x−a|> ε separately.
Now apply the Bernstein map Bn, which by monotonicity yields

|Bn f (x)− f (a)| ≤ ε +
Bn
(
(x−a)2

)
ε

= ε +
(x−a)2

ε
+

x− x2

nε
.
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Substituting x = a and maximizing over [0,1], we obtain

‖Bn f − f‖∞ ≤ ε +
1

nε
‖x− x2‖∞ = ε +

1
4nε

.

Minimizing this leads to the choice of ε = 1
2
√

n . Thus ‖Bn f − f‖∞ ≤ 1√
n . �

There is quite a gap between our upper and lower bounds when n is large. In fact,
the lower bound has the correct order of growth. In order to obtain superior upper
bounds, we need to replace Bernstein approximations Bn f with a better method of
polynomial approximation. We do this in Section 14.9 using Fourier series.

Exercises for Section 10.4

A. Show that ω( f ;δ1)≤ ω( f ;δ2) if δ1 ≤ δ2.

B. If f is C1 on [a,b], show that ω( f ;δ )≤ ‖ f ′‖∞δ .

C. Show that a function f on R is uniformly continuous if and only if lim
δ→0+

ω( f ;δ ) = 0.

D. Show that f is Lipschitz with constant L if and only if f satisfies ω( f ,δ )≤ Lδ .

E. If f is Lipschitz with constant L, prove that ‖Bn f − f‖ ≤ L√
n

.

F. For f ,g ∈C[a,b] and α,β ∈ R,

(a) Show that En(α f +βg)≤ |α|En( f )+ |β |En(g).
(b) Show that Em+n( f g)≤ ‖ f‖∞En(g)+‖g‖∞Em( f ).

G. Show that if lim
δ→0+

ω( f ;δ )
δ

= 0, then f is constant.

H. (a) In C[0,1], show that En(cosmπx) = 1 for n < m.
(b) Use the Taylor series about a = 1/2 to show that E10n(cosnπx) < 10−3n.

I. Let f (x) = |2x−1| on [0,1].

(a) Show that Bn f ( 1
2 ) = 2−2n

(2n
n

)
.

(b) Compute lim
n→∞

√
nBn f

( 1
2

)
. HINT: Use Stirling’s formula to approximate the factorials.

(c) Hence show that Proposition 10.4.5 is the right order of magnitude.

10.5 Existence of Best Approximations

Suppose that f is a continuous function on [a,b]. We may search for the optimal
polynomial approximation of given degree. The analysis tools that we have de-
veloped will allow us to show that such an optimal approximation always exists.
Moreover, in the next section, the best approximation will be shown to be unique.

A polynomial p(x) = a0 +a1x + · · ·+anxn of degree at most n is determined by
the n + 1 coefficients a0, . . . ,an. Moreover, a nonzero polynomial of this form has
at most n zeros and thus is not equal to the zero function on [a,b]. Hence Pn[a,b] is
an (n + 1)-dimensional vector subspace of C[a,b] with basis 1,x, . . . ,xn. It may be
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identified with Rn+1 by associating p to the vector (a0, . . . ,an). The norm is quite
different from the Euclidean norm. However, the results of Section 7.3 are precisely
what we need to solve our problem.

First, Lemma 7.3.1 shows that there are constants 0 < c < C (depending on a, b
and n) such that every polynomial p(x) = a0 +a1x+ · · ·+anxn in Pn[a,b] satisfies

c
( n

∑
k=0

|ak|2
)1/2

≤ ‖p‖∞ = sup
a≤x≤b

|p(x)| ≤C
( n

∑
k=0

|ak|2
)1/2

.

This lemma allows us to transfer our convergence results for Rn+1 over to Pn. It
is important to note that these results depend on having a fixed bound on the degree
of the polynomials. They are false for polynomials of unbounded degree.

10.5.1. COROLLARY. Pn[a,b] has the same convergent sequences as Rn+1 in

the sense that the sequence pi =
n
∑

k=0
aikxk in Pn[a,b] converges uniformly on [a,b] to

a polynomial p =
n
∑

k=0
akxk if and only if lim

i→∞
aik = ak for 0≤ k ≤ n.

PROOF. Let pi correspond to the vector ai = (ai0, . . . ,ain) for i≥ 1, and let p corre-
spond to the vector a. If ai converges to a, then

lim
i→∞

‖p− pi‖∞ ≤ lim
i→∞

C‖a−ai‖2 = 0.

Hence pi converges uniformly to p on [a,b]. Conversely, if pi converges uniformly
to p on [a,b], then

lim
i→∞

‖a−ai‖2 ≤ lim
i→∞

1
c
‖p− pi‖∞ = 0.

So ai converges to a in the Euclidean norm.
The second statement follows from Lemma 4.2.3, which shows that a sequence

converges in Rn+1 if and only if each coefficient converges. �

Second, Corollary 7.3.3 applies directly. Again this is false if the degree of the
polynomials is not bounded.

10.5.2. COROLLARY. A subset of Pn[a,b] is compact if and only if it is closed
and bounded.

An immediate consequence of Theorem 7.3.5 is the result we are looking for.

10.5.3. THEOREM. Let f be a continuous function on [a,b]. For each n ≥ 0,
there exists a closest polynomial to f of degree at most n in the max norm on C[a,b].
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We consider an example that shows that a best approximation in certain more
general circumstances may not exist; and when it does exist, it may not be unique.

10.5.4. EXAMPLE. Consider the subspace

S = {h ∈C[0,1] : h(0) = 0}

of C[0,1]. Note that if f is any function in C[0,1], then f − f (0) belongs to S. This
shows that the linear span of S and the constant function 1 is all of C[0,1]. We
therefore say that S is a subspace of codimension one. In particular, it is infinite-
dimensional, since C[0,1] is infinite-dimensional. So the type of arguments we used
for Pn do not apply.

Consider the function f = 1. What are the best approximations to f in S? Clearly,
for any h ∈ S,

‖ f −h‖∞ ≥ | f (0)−h(0)|= 1.

On the other hand, ‖ f −h‖∞ = 1 is equivalent to the inequalities

0≤ h(x)≤ 2 for all 0≤ x≤ 1.

There are many functions h ∈ S within these constraints. For example, h0 = 0,
h1(x) = x/2, h2(x) = 2x, and h3(x) = π

2 sin2(6πx). We see that there are (infinitely)
many closest points.

Now consider the subspace

T =
{

h ∈ S :
∫ 1

0
h(x)dx = 0

}
.

This is a subspace because if g and h belong to T and α and β are in R, then
(αg+βh)(0) = 0 and∫ 1

0
(αg+βh)(x)dx = α

∫ 1

0
g(x)dx+β

∫ 1

0
h(x)dx = 0.

The subspace T has codimension 2 because C[0,1] is spanned by T , 1, and x (see
Exercise 10.5.E). Moreover, T is closed. For if hn ∈ T converge uniformly to a
function h, then h(0) = lim

n→∞
hn(0) = 0, and by Theorem 8.3.1,

∫ 1

0
h(x)dx = lim

n→∞

∫ 1

0
hn(x)dx = 0.

So h belongs to T .
Let g(x) = x and consider the distance of g to T . Note that g(0) = 0 but∫ 1

0
g(x)dx =

1
2
.
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Suppose that h ∈ T , and compute that

1
2

=
∫ 1

0
g(x)−h(x)dx≤

∫ 1

0
‖g−h‖∞ dx = ‖g−h‖∞.

If ‖g−h‖∞ = 1
2 , then this inequality must be an equality. This can occur only if

g(x)−h(x) = ‖g−h‖∞ =
1
2

for all 0≤ x≤ 1.

This implies that h(x) = x− 1
2 . Note that h does not lie in T because h(0) 6= 0. So

the distance 1/2 is not attained.
However, we can easily come arbitrarily close to this distance. Indeed, we will

show that for any integer n, there will be a continuous function hn in T such that
‖g−hn‖∞ = 1

2 + 1
n . The idea is to make hn(x) = x− 1

2 −
1
n on [an,1], hn(0) = 0 and

linear in between, with an chosen so that the integral is zero. It is easy to check that
the function with these properties does the job. A calculation shows that an = 4

n+2 .
We find that

hn(x) =


− (n−2)2

8n
x for 0≤ x≤ 4

n+2
,

x− 1
2
− 1

n
for

4
n+2

≤ x≤ 1.

This shows that when infinite-dimensional subspaces are involved, there need not
be a closest point.

Exercises for Section 10.5

A. Suppose that f ∈C[0,1] satisfies f (0) = f (1) = 0.

(a) Show that f is a limit of polynomials such that p(0) = p(1) = 0.
(b) Show that there is a closest polynomial of degree at most n with this property.

B. Let f ∈C1[0,1]. Show that there is a closest polynomial of degree at most n to f in the C1[0,1]
norm, analogous to the C3[a,b] norm defined in Example 7.1.4.

C. Find all closest lines p(x) = ax + b to f (x) = x2 in the C1[0,1] norm. Note that the best
approximation is not unique.

D. Find the closest polynomial to sinx on R.

E. For the subspace T of Example 10.5.4, show that span{T,1,x}= C[0,1].
HINT: for f ∈C[0,1], find a such that f (x)− f (0)−ax ∈ T .

F. (a) Show that for every bounded function on [a,b], there is a closest polynomial p ∈ Pn in the
max norm.

(b) Show by example that a closest polynomial need not be unique.

G. Recall that a norm is strictly convex if ‖x‖= ‖y‖= ‖(x+ y)/2‖ implies that x = y.

(a) Suppose that V is a vector space with a strictly convex norm and M is a finite-dimensional
subspace of V . Prove that each v ∈V has a unique closest point in M.

(b) Prove that an inner product norm is strictly convex.
(c) Show by example that C[0,1] is not strictly convex.
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10.6 Characterizing Best Approximations

Perhaps in view of the previous examples, it is surprising that the best polynomial
approximant of degree n to any continuous function f is uniquely determined. How-
ever, it is unique. We are able to show this because there is an interesting condition
that characterizes this best approximation. This result was established by Borel in
1905, building on work of Chebyshev.

10.6.1. EXAMPLE. Consider any continuous function f in C[0,1]. What is the
best approximation by a polynomial of degree 0 (i.e., a constant)? We want to make
‖ f − c‖∞ as small as possible. By the Extreme Value Theorem, there are two points
xmin and xmax in [0,1] such that

f (xmin)≤ f (x)≤ f (xmax) for all 0≤ x≤ 1.

Clearly, ‖ f − c‖∞ is the maximum of | f (xmin)− c| and | f (xmax)− c|. To make both
as small as possible, we must take

c =
f (xmin)+ f (xmax)

2
.

With this choice, the error r(x) = f (x)− c satisfies

r(xmax) = ‖r‖∞ =
f (xmax)− f (xmin)

2

and

r(xmin) =−‖r‖∞ =− f (xmax)− f (xmin)
2

.

10.6.2. EXAMPLE. Consider the continuous function f (x) = x2 in C[0,1].
What is the best linear approximation? One approach is to find the maximum mod-
ulus of x2 − ax− b and then minimize over choices of a and b. This is a calculus
problem that is not too difficult. However, our approach will be to “guess” the an-
swer and to verify it by geometric means.

First subtract x from f to get g(x) = x2−x. This function is symmetric about the
line x = 1

2 . It takes its maximum value 0 at both 0 and 1, while its minimum is − 1
4

at x = 1
2 . From the previous example, we know that to minimize ‖g(x)− b‖∞ we

should set the constant b equal to − 1
8 so that the maximum and minima have the

same absolute value, 1
8 . This intuitive approach yields a guess that the best linear

approximation is x− 1
8 . The error is r(x) = x2− x+ 1

8 . We know that

r(0) = 1
8 , r( 1

2 ) =− 1
8 , and r(1) = 1

8 .

Now we will show that y = x− 1
8 is indeed the closest line to x2 on [0,1]. Equiv-

alently, it suffices to show that y = 0 is the closest line to y = r(x) on [0,1]. Suppose
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that some linear function g satisfies ‖r−g‖< 1
8 . Then

g(0) ∈ (0, 1
4 ), g( 1

2 ) ∈ (− 1
4 ,0), and g(1) ∈ (0, 1

4 ).

Therefore,
g(0) > 0 > g( 1

2 ) < 0 < g(1).

By the Intermediate Value Theorem, g has a zero between 0 and 1
2 and another zero

between 1
2 and 1. But g is linear, and thus it has at most one root. This contradiction

shows that no better linear approximation exists.
Notice that the strategy we used in this example is essentially the same as that

used in proving Proposition 10.4.4.

In the first example, the best approximation yields an error function r that
achieves the values ±‖r‖∞. In the case of our linear approximation, we found three
points at which r alternately achieved the values ±‖r‖∞. This notion generalizes to
give a condition that is sufficient to be the best approximation.

10.6.3. DEFINITION. A function g∈C[a,b] satisfies the equioscillation con-
dition of degree n if there are n+2 points x1 < x2 < · · ·< xn+2 in [a,b] such that

g(xi) = (−1)i‖g‖∞ or g(xi) = (−1)i+1‖g‖∞ for 1≤ i≤ n+2.

In other words, g attains its maximum absolute value at n+2 points and it alternates
in sign between these points.

Figure 10.4 shows a function that satisfies the equioscillation condition.

x

y

x1

x2

x3

x4

x5

FIG. 10.4 A function satisfying the equioscillation condition for n = 3

10.6.4. THEOREM. Suppose f ∈C[a,b] and p ∈ Pn. If r = f − p satisfies the
equioscillation condition of degree n, then

‖ f − p‖∞ = inf{‖ f −q‖∞ : q ∈ Pn}.
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PROOF. If the equality were not true, then there would be some nonzero q ∈ Pn
such that p+q is a better approximation to f ; that is,

‖ f − (p+q)‖∞ < ‖ f − p‖∞,

or equivalently, ‖r− q‖∞ < ‖r‖∞. In particular, if x1, . . . ,xn+2 are the points from
the equioscillation condition for r, then

|r(xi)−q(xi)|< ‖r‖∞ = |r(xi)| for 1≤ i≤ n+2.

It follows that q(xi) is nonzero and has the same sign as r(xi) for 1≤ i≤ n+2.
Therefore, q changes sign between xi and xi+1 for 1≤ i≤ n+1. By the Interme-

diate Value Theorem, q has a root between xi and xi+1 for 1 ≤ i ≤ n + 1. Hence it
has at least n + 1 zeros. But q is a polynomial of degree at most n, so the only way
it can have n+1 zeros is if q is the zero polynomial. This is false, and thus no better
approximation exists. �

The important insight of Chebyshev and Borel is that this condition is not only
sufficient, but also necessary. The argument is more subtle. When the function r fails
the equioscillation condition, a better approximation of degree n must be found.

10.6.5. THEOREM. If f ∈C[a,b] and p ∈ Pn satisfy

‖ f − p‖∞ = inf{‖ f −q‖∞ : q ∈ Pn},

then f − p satisfies the equioscillation condition of degree n.

PROOF. Let r = f − p ∈C[a,b] and set R = ‖r‖∞. By Theorem 5.5.9, r is uniformly
continuous on [a,b]. Thus there is a δ > 0 such that

|r(x)− r(y)|< R
2

for all |x− y|< δ , x,y ∈ [a,b].

Partition [a,b] into disjoint intervals of length less than δ . Let I1, I2, . . . , Il denote
those intervals I of the partition such that |r(x)| = R for some x ∈ I. Notice that
since each I j has length less than δ , if r(x) = R for some x ∈ I j, then for all y ∈ I j
we have

r(y)≥ r(x)−|r(x)− r(y)| ≥ R/2.

Similarly, if r(x) = −R for some x ∈ I j, then r(y) ≤ −R/2 for all y ∈ I j. Let ε j be
+1 or −1 according to whether r(x) is positive or negative on I j.

CLAIM: The sequence (ε1, . . . ,εl) has at least n+1 changes of sign.

Accepting this claim for a moment, we produce the points required in the def-
inition of the equioscillation condition. Group together adjacent intervals with the
same sign, and label these new intervals J1,J2, . . . ,Jk, where k ≥ n + 2. For each i
between 1 and n + 2, pick a point xi ∈ Ji such that |r(xi)| = R. By the choice of Ji,
the signs alternate and so the equioscillation condition holds.
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Thus, it remains only to prove the claim. Suppose the claim is false; that is, there
are at most n changes of sign in (ε1, . . . ,εl). We will construct a better approximating
polynomial, contradicting the choice of p.

Again, group together adjacent intervals with the same sign, and label these new
intervals J1,J2, . . . ,Jk, where k≤ n+1. Because r changes sign between Ji and Ji+1,
it is possible to pick a point ai ∈R that lies between them. Define a polynomial q of
degree k−1≤ n by

q(x) =
k−1

∏
i=1

x−ai.

Since q ∈ Pn and q changes sign at each ai, either q or −q agrees in sign with r(x)
on each set Ji, i = 1, . . . ,k. If necessary, replace q with −q such that this agreement
holds.

Let L0 =
⋃l

j=1 I j and L1 = [a,b]\L0. Since L0 is compact and q is never zero on
L0, the minimum,

m = min{|q(x)| : x ∈ L0},

is strictly positive by the Extreme Value Theorem. Let M = ‖q‖∞.
Since L1 is the union of finitely many closed intervals on which the maximum of

|r(x)| is not attained, |r(x)| does not attain the value R on L1. Again by the Extreme
Value Theorem, there is some d > 0 such that

max{|r(x)| : x ∈ L1}= R−d < R.

We will show that the polynomial

s(x) = p(x)+
d

2M
q(x)

is a better approximation to f than p(x), contradicting the choice of p. Notice that

f (x)− s(x) = r(x)− d
2M

q(x).

Because r and q have the same sign on each I j,

max
x∈L0

| f (x)− s(x)| ≤ R− dm
2M

.

On the remainder, we have

max
x∈L1

| f (x)− s(x)| ≤max
x∈L1

| f (x)− p(x)|+max
x∈L1

|p(x)− s(x)|

≤ R−d +
d

2M
‖q‖= R− d

2
.

Now [a,b] = L0∪L1. Thus
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‖ f − s‖= max
a≤x≤b

| f (x)− s(x)| ≤max
{

R− dm
2M

,R− d
2

}
< R.

This contradicts the minimality of p and so proves the claim. �

Let us put these results together with one more idea to complete the main result.

10.6.6. CHEBYSHEV APPROXIMATION THEOREM.
For each continuous function f in C[a,b], there is a unique polynomial p of degree
at most n such that

‖ f − p‖∞ = inf{‖ f −q‖∞ : q ∈ Pn[a,b]}.

This best approximant is characterized by the fact that f − p either is 0 or satisfies
the equioscillation condition of degree n.

PROOF. By Theorem 10.5.3, there is at least one closest polynomial to f in Pn.
Suppose p,q ∈ Pn are both closest polynomials in Pn, and let

R = ‖ f − p‖∞ = ‖ f −q‖∞.

Then the midpoint (p+q)/2 is also a polynomial in Pn that is closest to f because
of the triangle inequality:

R≤
∥∥∥ f − p+q

2

∥∥∥
∞

≤ 1
2‖ f − p‖∞ + 1

2‖ f −q‖∞ = R.

Thus by Theorem 10.6.5, r = f − 1
2 (p+q) satisfies the equioscillation condition.

Let x1 < x2 < · · ·< xn+2 be the required points such that

|r(xi)|= R for 1≤ i≤ n+2.

Another use of the triangle inequality yields

R =
∣∣∣ f (xi)−

p(xi)+q(xi)
2

∣∣∣≤ 1
2

∣∣ f (xi)− p(xi)
∣∣+ 1

2

∣∣ f (xi)−q(xi)
∣∣≤ R.

Consequently, f (xi)− p(xi) and f (xi)−q(xi) both have absolute value R. Since there
is no cancellation when they are added, they must have the same sign. Therefore,
f (xi)− p(xi) = f (xi)−q(xi), and hence

p(xi) = q(xi) for 1≤ i≤ n+2.

Therefore, p− q is a polynomial of degree at most n with n + 2 roots, and so is
identically equal to zero. In other words, the closest point is unique. �
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10.6.7. EXAMPLE. Chebyshev’s characterization sometimes allows exact cal-
culation of the best polynomial. Consider the following problem: Find the closest
cubic to f (x) = cosx on [−π

2 , π

2 ].
Since f is an even function, we expect that the best approximation will be even.

This is indeed the case. Let p ∈ P3 be the closest cubic, and let p̃(x) = p(−x). Then

‖ f − p̃‖∞ = max
−1≤x≤1

| f (x)− p(−x)|

= max
−1≤x≤1

| f (−x)− p(−x)|= ‖ f − p‖∞.

Since the closest polynomial is unique, it follows that p = p̃, namely p(−x) = p(x).
So we are looking for p(x) = ax2 +b.

From Chebyshev’s Theorem, we are looking for a polynomial that differs from
f by ±d at five points with alternating signs, where d = ‖ f − p‖∞. Consider the
derivatives of r(x) = cosx−ax2−b:

r′(x) =−sinx−2ax and r′′(x) =−cosx−2a.

Since −cosx is concave on [−π

2 , π

2 ], the second derivative r′′ has at most two zeros.
This happens only if − 1

2 < a < 0; and these zeros are at ±z = ±arccos(2a). So r′

is decreasing on [−1,−z], then increasing on [−z,z], and then decreasing again on
[z,1]. Thus r′ can have at most three zeros. But r achieves its extreme values five
times. So r′ has exactly three zeros corresponding to extrema of r; and the other two
extrema must be at the endpoints. Because of the symmetry of even functions, one
extremum is at 0, and the other two critical points will be called ±x0. Moreover,
r′(0) = 0 and r′′(0) =−1−2a < 0; so this is a maximum.

So far, we have

d = r(0) = 1−b,

d = r(±π

2
) =−a

(π

2
)2−b,

−d = r(±x0) = cosx0−ax2
0−b,

0 = r′(x0) =−sinx0−2ax0.

Solving the first two equations for a yields a =−4/π2. Plugging this into the fourth
yields sinx0 = 8x0/π2.

Since sinx is concave on [0, π

2 ], this equation has a unique positive solution. It
may be found numerically to be approximately x0 := 1.0988243. From the third
equation (and the first), we obtain

b =
1
2

(
1+ cosx0 +

4x2
0

π2

)
:= 0.9719952.

So the closest cubic to cosx on [−π

2 , π

2 ] is p(x) =− 4
π2 x2 +0.9719952 and the error

is d = 0.0280048.
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Exercises for Section 10.6

A. Find the closest line to ex on [0,1].

B. Find the cubic polynomial that best approximates |x| on the interval [−1,1].
HINT: Use symmetry first.

C. Suppose that f ∈ C[a,b] is a twice continuously differentiable function with f ′′(x) > 0 on

[a,b]. Show that the best linear approximation to f has slope
f (b)− f (a)

b−a
.

D. Apply the previous exercise to find the closest line to f (x) =
√

1+3x2 on [0,1], and compute
the error.

E. If f in C[−1,1] is an even (odd) function, show that the best approximation of degree n is
also even (odd).

F. Let p be the best polynomial approximation of degree n to
√

x on [0,1]. Show that q(x) =
p(x2) is the best polynomial approximation of degree 2n + 1 to |x| on [−1,1]. HINT: How
does the equioscillation condition on

√
x− p(x) translate to the approximation of |x|?

10.7 Expansions Using Chebyshev Polynomials

Ideally, we would like to find the polynomial that is exactly the best approximation
to a given continuous function f . There is an algorithm that constructs a sequence of
polynomials converging uniformly to the best approximating polynomial of degree
n known as Remes’s algorithm. Roughly, it works as follows: Pick n+2 points x1 <
x2 < · · · < xn+2 in [a,b]. These points might be equally spaced, but foreknowledge
of the function could lead you to pick points clustered in regions where f behaves
more wildly. Then solve the linear equations for a0,a1, . . . ,an and d:

a0 + x1a1 + x2
1a2 + · · · + xn

1an − d = f (x1),
a0 + x2a2 + x2

2a2 + · · · + xn
2an + d = f (x2),

...
a0 + xn+2a1 + x2

n+2a2 + · · · + xn
n+2an + (−1)n+2d = f (xn+2).

This method attempts to find a polynomial that satisfies Chebyshev’s Theorem.
However, the function may well take its extrema on other points. So the algorithm
proceeds to choose new points x′1, . . . ,x

′
n+2 by selecting points where the error is

largest (or close to it) near each point. Eventually, this procedure converges to the
nearest polynomial of degree n.

However, each step of this process involves many calculations, so convergence
to the optimal polynomial is slow. In practice, it is better to find quickly an approx-
imating polynomial that is not quite the best. Solutions that are less than optimal,
but still quite good, can be found very efficiently. We develop such an algorithm
in this section using Chebyshev polynomials. Chebyshev polynomials are useful in
numerical analysis, algebra, and other areas.
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10.7.1. DEFINITION. For n≥ 0, define the Chebyshev polynomial of degree
n in Pn[−1,1] by

Tn(x) = cos(narccosx).

It is not immediately obvious that Tn is a polynomial, much less a polynomial of
degree n. The T in Tn comes from the continental transliterations, such as Tcheby-
cheff, of the original Russian. The graphs of T1 through T8 in Figure 10.5 suggests
some of the many nice properties of these polynomials; for instance, Tn is an even
or odd function, according to n being even or odd.

10.7.2. LEMMA. T0(x) = 1, T1(x) = x and

Tn(x) = 2xTn−1(x)−Tn−2(x) for n≥ 2.

For each n≥ 1, Tn(x) is a polynomial of degree n with leading coefficient 2n−1. Also,
‖Tn‖∞ = 1, and

Tn
(
cos
( k

n π
))

= (−1)k for 0≤ k ≤ n.

PROOF. Recall the sum and difference of angles formulas for cosine:

cos(A±B) = cosAcosB∓ sinAsinB.

Let A = nθ and B = θ , and add these two formulas to get

cos(n+1)θ + cos(n−1)θ = 2cosnθ cosθ .

Substituting θ = arccosx gives

Tn+1(x)+Tn−1(x) = 2xTn(x) for all n≥ 1.

Evidently, T0 = 1 and T1(x) = x. The next few terms are

T2(x) = 2xT1(x)−T0(x) = 2x2−1,

T3(x) = 2xT2(x)−T1(x) = 4x3−3x,

T4(x) = 2xT3(x)−T2(x) = 8x4−8x2 +1.

By induction, it follows that Tn(x) is a polynomial of degree n with leading coeffi-
cient 2n−1.

Since |cosθ | ≤ 1 for all values of θ , it follows that ‖Tn‖∞ ≤ 1. Now |cos(θ)|= 1
only when θ is an integer multiple of π . It follows that Tn attains its maximum
modulus when narccosx = kπ for some integer k. Solving, we obtain

xk = cos
( k

n π
)

for 0≤ k ≤ n.

Other choices of k just repeat these values. Finally,

Tn(xk) = (−1)k for 0≤ k ≤ n. �
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FIG. 10.5 The Chebyshev polynomials T1 through T8.
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10.7.3. COROLLARY. The unique polynomial of degree at most n− 1 that
best approximates xn on [−1,1] is pn(x) = xn−21−nTn(x), and En−1(xn) = 21−n.

PROOF. Since the leading term of Tn is 2n−1xn, pn(x) is a polynomial of degree at
most n−1. The difference

xn− pn(x) = 21−nTn(x)

has maximum modulus 21−n, and it attains this maximum modulus at the n + 1
points xk = cos(kπ/n) for 0 ≤ k ≤ n with alternating sign. Hence it satisfies the
equioscillation condition of degree n− 1. By Chebyshev’s Theorem, this is the
unique closest polynomial of degree n−1. �

Without developing any further results, we can already use Chebyshev polyno-
mials to find good approximations.

10.7.4. EXAMPLE. We will approximate f (x) = sin(x) on the interval [−1,1]
by modifying the Taylor approximations. The Taylor polynomial of degree 10 is

p(x) = x− 1
3!

x3 +
1
5!

x5− 1
7!

x7 +
1
9!

x9.

For x ∈ [−1,1], the error term is given by Taylor’s Theorem,

|sin(x)− p(x)| ≤ |x|11

11!
‖ f (11)‖∞ ≤

1
11!

< 2.506×10−8.

The idea is to replace the term x9/9! with the best approximation of degree less than
9, which we have seen is (x9−T9(x)/28)/9!. This increases the error by at most∥∥∥∥x9

9!
− x9−T9(x)/28

9!

∥∥∥∥
∞

=
1

289!
‖T9(x)‖∞ =

1
289!

≤ 1.077×10−8.

Using the three-term recurrence relation (or looking it up in a computer algebra
package), we find that

T9(x) = 28x9−576x7 +432x5−120x3 +9x.

Thus

p(x) = x− 1
3!

x3− 1
5!

x5 +
1
7!

x7 +
x9−T9(x)/28

9!

has degree 7, and approximates sin(x) on [−1,1] with error at most 3.6×10−8.
For comparison, the Taylor polynomial of degree 7 gives an error of about

2.73× 10−6. Thus, p(x) is 75 times as accurate as the Taylor polynomial of the
same degree.
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In practice, we want to do away with ad hoc methods and find an algorithm
that yields reasonably good approximations quickly. We need the following inner
product for f ,g ∈C[−1,1]:

〈 f ,g〉T =
1
π

∫ 1

−1
f (x)g(x)

dx√
1− x2

.

It is easy to verify that this is an inner product on C[−1,1] (i.e., it is linear in both
variables, positive definite, and symmetric). The crucial property we need is that
the Chebyshev polynomials are orthogonal with respect to this inner product. The
constant 1/π makes the constant function 1 have norm 1, which is computationally
convenient.

10.7.5. LEMMA.

〈Tn,Tm〉T =


0 if m 6= n,
1
2 if m = n 6= 0,

1 if m = n = 0.

PROOF. Make the substitution cosθ = x in the integral, so that −sinθ dθ = dx,
whence dθ =−dx/

√
1− x2. We have

〈Tn,Tm〉T =
1
π

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=
1
π

∫
π

0
cosnθ cosmθ dθ

=
1

2π

∫
π

0
cos(m+n)θ + cos(m−n)θ dθ ,

where again we have used the identity 2cosAcosB = cos(A+B)+ cos(A−B).
There are three different integrals, depending on the values of m and n. If m 6= n,

then both m+n and m−n are not zero and the integral is

1
2π

(
sin(m+n)θ

m+n
+

sin(m−n)θ
m−n

)∣∣∣∣π
0

= 0.

If m = n 6= 0, then m−n is zero and m+n is not, so the integral is

1
2π

(
sin(m+n)θ

m+n
+ x
)∣∣∣∣π

0
=

1
2
.

Finally, if m = n = 0, then the integral is 1. �

Suppose that a function f ∈ C[−1,1] can be expressed as an infinite sum of

Chebyshev polynomials, say f (x) =
∞

∑
n=1

anTn(x) for all x ∈ [−1,1]. Then, willfully
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ignoring the issue of convergence, we can write

〈 f ,Tk〉T =
〈 ∞

∑
n=1

anTn,Tk

〉
T

=
∞

∑
n=1
〈anTn,Tk〉T = ak〈Tk,Tk〉T .

Solving for ak in the preceding equation and using the definition of the inner prod-
uct, we have a possible formula for the coefficients:

ak = 2〈 f ,Tk〉T =
2
π

∫ 1

−1
f (x)Tk(x)

dx√
1− x2

for k ≥ 1

and
a0 = 〈 f ,T0〉T =

1
π

∫ 1

−1
f (x)

dx√
1− x2

.

10.7.6. DEFINITION. We define the Chebyshev series for f in C[−1,1] to be
∞

∑
n=1

anTn(x), where the sequence (an) is given by the preceding formulas.

There are a host of questions about this series. For which x does this infinite
series converge? Is the resulting function continuous? Does it equal f or not?

In Chapter 14, we connect Chebyshev series to Fourier series and obtain The-
orem 14.8.2, which shows that the Chebyshev series converges uniformly for all
Lipschitz functions. For now, we state a weaker result and leave its proof as an
exercise.

10.7.7. THEOREM. If f ∈C[−1,1] has a continuous second derivative, then
the Chebyshev series of f converges uniformly to f .

Exercises for Section 10.7

A. Verify the following properties of the Chebyshev polynomials Tn(x).

(a) If m is even, then Tm is an even function; and if m is odd, then Tm is odd.
(b) Show that every polynomial p of degree n has a unique representation using Chebyshev

polynomials: p(x) = a0T0(x)+a1T1(x)+ · · ·+anTn(x).
(c) Tm(Tn(x)) = Tmn(x).
(d) (1− x2)T ′′

n (x)− xT ′
n(x)+n2Tn(x) = 0.

B. Show by induction that Tn(x) =

(
x+

√
x2−1

)n +
(
x−

√
x2−1

)n

2
.

C. Find a sequence of polynomials converging uniformly to f (x) = |x|3 on [−1,1]. HINT: f ∈C2.

D. Prove Theorem 10.7.7 using the following outline.

(a) Show that there is M > 0 such that the Chebyshev coefficients of f satisfy an ≤M/n2.
HINT: Make the change of variable x = cosθ and integrate by parts twice.

(b) Deduce that the Chebyshev series converges uniformly to some function F .
(c) Show that F = f . HINT: compute 〈 f −F,2Tn〉T and find a way to use Exercise 10.2.D.
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E. Suppose that f ∈ C[−1,1] has a Chebyshev series
∞

∑
n=0

anTn. If
∞

∑
n=0

|an| < ∞, show that the

Chebyshev series converges uniformly to f . HINT: Study the proof of Theorem 10.7.7.

F. Verify the following expansions in Chebyshev polynomials:

(a) |x|= 2
π
− 4

π

∞

∑
j=1

(−1) j

4 j2−1 T2 j(x).

(b)
√

1− x2 =
2
π
− 4

π

∞

∑
j=1

1
4 j2−1

T2 j(x). HINT: Substitute x = cosθ . Apply Exercise E.

G. Suppose that f ∈C[−1,1] has a Chebyshev series
∞

∑
n=0

anTn.

(a) Show that En( f )≤
∞

∑
k=n+1

|ak|.

(b) Show that En(Tn+1) = 1. HINT: Theorem 10.6.4

(c) Show that
∣∣En( f )−|an+1|

∣∣≤ ∞

∑
k=n+2

|ak|. HINT: Show En( f )≥En
(
|an+1|Tn+1

)
−

∞

∑
k=n+2

|ak|.

(d) Show that if lim
n→∞

∑
∞
k=n+1 |ak|
|an|

= 0, then lim
n→∞

En( f )
|an+1|

= 1.

H. Let an be a sequence of real numbers monotone decreasing to 0. Define the sequence of

polynomials pn(x) =
n
∑

k=1
(ak−ak+1)T3k (x).

(a) Show that this sequence converges uniformly on [−1,1] to a continuous function f (x).
HINT: Weierstrass M-test.

(b) Evaluate ( f − pn)
(

cos(3−n−1kπ)
)

for 0≤ k ≤ 3n+1.
(c) Show that E3n ( f ) = an+1. Conclude that there are continuous functions for which the

optimal sequence of polynomials converges exceedingly slowly.

10.8 Splines

Splines are smooth piecewise polynomials. They are well adapted to use on comput-
ers, and are often used in practice. Because they are closely related to polynomials,
we give a brief treatment of splines here, concentrating on issues related to real
analysis. For algorithmic and implementation issues, we refer the reader to [14].

To motivate the idea behind splines, observe that approximation by polynomials
can be improved either by increasing the degree of the polynomial or by decreasing
the size of the interval on which the approximation is used. Splines take the latter
approach, successively chopping the interval into small pieces and approximating
the function on each piece by a polynomial of fixed small degree, such as a cubic.

We search for a relatively smooth function that is piecewise a polynomial of
low degree but is not globally a polynomial at all. This turns out to be worth the
additional theoretical complications. Why? First, evaluating the approximation will
be easier on each subinterval because it is a polynomial of small degree. Instead of
having to do some multiplications, we have several comparisons to decide which
interval we are in. Comparison is much simpler than multiplication, so evaluation
can be much faster, even if we have to do many comparisons.



224 10 Approximation by Polynomials

Second, since the degree is small, we can use simple methods like interpolation
to find the polynomial on each subinterval. Interpolation is both easy to implement
on the computer and (mostly) easy to understand.

Third, local irregularities of the function affect the approximation only locally,
in contrast to polynomial approximation. For example, a sharp spike in f affects the
polynomial approximation globally; but for splines, this affects the approximation
on only a single subinterval.

The discussion so far has supposed that we are free to choose completely differ-
ent polynomials on each subinterval. In fact, we would like the polynomials to fit
together smoothly. To start, we begin with the revealing special case of approxima-
tion by a piecewise linear continuous function.

Choose a partition ∆ of the interval [a,b] into k subintervals with endpoints a =
x0 < x1 < · · ·< xk = b. We define S1(∆) to be the subspace of C[a,b] given by

S1(∆) = {g ∈C[a,b] : g|[xi,xi+1] is linear for 0≤ i < k}.

Clearly, a function g∈ S1(∆) is uniquely determined by its values g(xi) at the nodes
xi for 0 ≤ i ≤ k. Indeed, we just construct the line segments between the points
(xi,g(xi)). Thus S1(∆) is a finite-dimensional subspace of dimension k + 1. The
elements of this space are called linear splines. Figure 10.6 shows an element of
S1(∆) approximating a given continuous function.

Now take a continuous function f in C[a,b]. By Theorem 7.3.5, there is some g
in S1(∆) such that

‖ f −g‖∞ = inf{‖ f −h‖∞ : h ∈ S1(∆)}.

Instead of trying to find this optimal choice, we choose the function h in S1(∆) such
that h(xi) = f (xi) for 0 ≤ i ≤ k. Define J1 : C[a,b] → S1(∆) by letting J1 f be this
function h. Notice that our characterization of functions in S1(∆) shows that J1g = g
for g ∈ S1(∆). Also, J1 is linear:

J1(a f +bg) = aJ1 f +bJ1g for f ,g ∈C[a,b] and a,b ∈ R.

The following lemma shows that choosing J1 f instead of the best approximant does
not increase the error too much.

10.8.1. LEMMA. If f ∈C[a,b], then

‖ f − J1 f‖∞ ≤ 2inf{‖ f −g‖∞ : g ∈ S1(∆)}.

PROOF. Notice that for any f ∈C[a,b],

‖J1 f‖∞ = max
{
| f (xi)| : 0≤ i≤ k

}
≤ ‖ f‖∞.

If g ∈ S1(∆) is the closest point to f , we use linearity and J1g = g to obtain

‖ f −J1 f‖∞ = ‖ f −g−J1( f −g)‖∞ ≤ ‖ f −g‖∞ +‖J1( f −g)‖∞ ≤ 2‖ f −g‖∞. �
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FIG. 10.6 Approximation in S1(∆).

10.8.2. DEFINITION. A cubic spline for a partition ∆ of [a,b] is a C2 function
h such that h|[xi,xi+1] is a polynomial of degree at most 3 for 0 ≤ i < k. Let S(∆)
denote the vector space of all cubic splines for the partition ∆ .

Cubic spline interpolation is popular in practice. It may seem rather surprising
that it is possible to fit cubics together and remain twice continuously differentiable
and still have the flexibility to approximate functions well.

10.8.3. EXAMPLE. Consider

h(x) =



2x3 +12x2 +24x+16 if −2≤ x≤−1,

−7x3−15x2− 3x+ 7 if −1≤ x≤ 0,

9x3−15x2− 3x+ 7 if 0≤ x≤ 1,

−5x3 +27x2−45x+21 if 1≤ x≤ 2,

x3− 9x2 +27x−27 if 2≤ x≤ 3.

We readily compute the following:

h′(x) h′′(x) interval

6x2 +24x+24 12x+12 −2≤ x≤−1
−21x2−30x− 3 −42x−15 −1≤ x≤ 0

27x2−30x− 3 54x−15 0≤ x≤ 1
−15x2 +54x−45 −30x+27 1≤ x≤ 2

3x2−18x+27 6x− 9 2≤ x≤ 3

We can now verify the following table of values. Since the first and second deriva-
tives match up at the endpoints of each interval, h is C2 and so is a cubic spline:
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xi −2 −1 0 1 2 3

h(xi) 0 2 7 −2 −1 0
h′(xi) 0 6 −3 −6 3 0
h′′(xi) 0 12 −30 24 −6 0

To find a cubic spline h approximating f , we specify certain conditions. Let us
demand first that

h(xi) = f (xi) for 0≤ i≤ k.

Let’s write each cubic polynomial as hi = h|[xi,xi+1] for 0≤ i < k. We need additional
conditions to ensure that h is C2:

h′i(xi) = h′i+1(xi) and h′′i (xi) = h′′i+1(xi) for 1≤ i≤ k−1.

A cubic has four parameters, and these equations put four conditions on each cubic
except for the two on the ends, where there are three constraints. To finish specifying
the spline, we add two endpoint conditions:

h′1(x0) = f ′(x0) and h′k(xk) = f ′(xk),

assuming that these derivatives exist. (If they do not, we may set them equal to 0.)
For convenience, we shall assume that f is C2, which ensures that these data are
defined and allows some interesting theoretical consequences.

We shall see that a cubic spline h in S(∆) is uniquely determined by these equa-
tions. There are k +3 data conditions determined by f , namely f (x0), . . . , f (xk) and
f ′(x0) and f ′(xk). Hence we expect to find that S(∆) is a finite-dimensional sub-
space of dimension k+3. This will allow us to define a map J from C2[a,b] to S(∆)
by setting J f to be the function h specified by these equations.

10.8.4. LEMMA. Given c < d and real numbers a1,a2,s1,s2, there is a unique
cubic polynomial p satisfying

p(c) = a1, p(d) = a2, p′(c) = s1, and p′(d) = s2.

Setting ∆ = d− c, we obtain

p′′(c) =
6(a2−a1)

∆ 2 − 4s1+2s2

∆
and p′′(d) =−6(a2−a1)

∆ 2 +
2s1+4s2

∆
.

PROOF. Consider the cubics

p1(x) =
(x−d)2

(d− c)2

(
1+2

x− c
d− c

)
, p2(x) =

(x− c)2

(d− c)2

(
1−2

x−d
d− c

)
,

q1(x) =
(x− c)(x−d)2

(d− c)2 , q2(x) =
(x− c)2(x−d)

(d− c)2 .
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For example, p1(c) = 1 and p′1(c) = p′1(d) = p1(d) = 0. The reader can verify that
p(x) = a1 p1(x)+a2 p2(x)+ s1q1(x)+ s2q2(x) is the desired cubic.

For uniqueness, we can note that the difference of two such cubics is a cubic q
such that q(c) = q(d) = q′(c) = q′(d) = 0. The first two conditions show that c and
d are roots of q; and the second two conditions then imply that they are double roots.
So (x− c)2(x−d)2 divides q. Since q has degree at most 3, this forces q = 0.

Finding the value of p′′ at c and d is a routine calculation. �

10.8.5. THEOREM. Given a partition ∆ : a = x0 < x1 < · · ·< xk = b of the in-
terval [a,b] and real numbers a0, . . . ,ak, s0, and sk, there is a unique cubic spline
h ∈ S(∆) such that h(xi) = ai for 0≤ i≤ k and h′(a) = s0 and h′(b) = sk.

PROOF. If such a spline exists, we could define si = h′(xi) for 1 ≤ i ≤ k− 1. We
search for such values of si that allow a spline. Given the values ai of h and si of h′

at the points xi−1 and xi, the previous lemma determines a unique cubic hi on the
interval [xi−1,xi]. So for each choice of (s1, . . . ,sk−1), there is one piecewise cubic
function on [a,b] that interpolates the values ai and derivatives si at each point xi for
0 ≤ i ≤ k. However, in general this will not be C2. There are k− 1 conditions that
must be satisfied:

h′′i (xi) = h′′i+1(xi) for 1≤ i≤ k−1.

Our job is to compute a formula for these second derivatives to obtain conditions on
the hypothetical data s1, . . . ,sk−1.

Let us write ∆i = xi − xi−1 for 1 ≤ i ≤ k. By the previous lemma, the second
derivative conditions at xi for 1≤ i≤ k−1 are

h′′(xi) =−6(ai−ai−1)
∆ 2

i
+

2si−1 +4si

∆i
=

6(ai+1−ai)
∆ 2

i+1
− 4si +2si+1

∆i+1
. (10.8.6)

Rearranging this yields a linear system of k− 1 equations in the k− 1 unknowns
s1, . . . ,sk−1. For 1≤ i≤ k−1,

∆i+1si−1 +2(∆i+∆i+1)si +∆isi+1 =
3∆i(ai+1−ai)

∆i+1
+

3∆i+1(ai−ai−1)
∆i

.

The terms involving s0 and sk may be moved to the right-hand side.
It now remains to show that this system has a unique solution. Let

X =



2(∆1+∆2) ∆1 0 0 . . . 0

∆3 2(∆2+∆3) ∆2 0 . . . 0
...

...
...

. . .
...

...

0 . . . 0 ∆k−1 2(∆k−2+∆k−1) ∆k−2

0 . . . 0 0 ∆k 2(∆k−1+∆k)


.
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This will follow if we can show that X is invertible. The property of this system that
makes it possible is that the matrix is diagonally dominant, which means that the
diagonal entries are greater than the sum of all other entries in each row.

To see this, suppose that y = (y1, . . . ,yk−1) is in the kernel of X . Choose a co-
efficient i0 such that |yi0 | ≥ |y j| for 1 ≤ j ≤ k− 1. Then looking only at the i0th
coefficient of 0 = Xy, we obtain

0 =
∣∣∆i0+1yi0−1 +2(∆i0 +∆i0+1)yi0 +∆i0yi0+1

∣∣
≥ 2(∆i0 +∆i0+1)|yi0 |−∆i0+1|yi0−1|−∆i0 |yi0+1|
≥ (∆i0 +∆i0+1)|yi0 |.

Hence y = 0 and so X has trivial kernel. Therefore X is invertible. So for each set of
data a0, . . . ,ak, s0, and sk, there is a unique choice of points s1, . . . ,sk−1 solving our
system. Thus there is a unique spline h ∈ S(∆) satisfying these data. �

Thus if f is a C2 function on [a,b], there is a unique cubic spline h such that
h(xi) = ai := f (xi) for 0 ≤ i ≤ k, h′(a) = s0 := f ′(a), and h′(b) = sk := f ′(b). We
denote the function h by J f . Let us show that J is linear. If f1 and f2 are functions
in C2[a,b] with hi = J fi, then h = α1h1 +α2h2 is a spline such that

h(xi) =
(
α1h1 +α2h2

)
(xi) =

(
α1 f1(xi)+α2 f2

)
(xi)

and

h′(a) =
(
α1h′1 +α2h′2

)
(a) = α1 f ′1(a)+α2 f ′2(a) =

(
α1 f1(xi)+α2 f2

)′(a).

Similarly, this holds at b. By the uniqueness of the spline, it follows that

J(α1 f1 +α2 f2) = α1h1 +α2h2 = α1J f1 +α2J f2.

In particular, we may find specific splines ci satisfying

c′i(a) = c′i(b) = 0 and ci(x j) =

{
1 if j = i,
0 if j 6= i,

for 0 ≤ i ≤ k. The linear space S(∆) is spanned by {x,x2,ci : 0 ≤ i ≤ k}. To see
this, let h be the spline with data a0, . . . ,ak,s0, and sk. Let q be the unique quadratic
q(x) = cx+dx2 such that q′(a) = s1 and q′(b) = sk. Then g = h−q is a spline with
g′(a) = g′(b) = 0. Form the spline

s(x) = q(x)+
n

∑
i=0

g(xi)ci(x).

It is easy to check that s is another spline with the same data as h. Since this uniquely
determines the spline, h = s has the desired form. This exhibits a specific basis for
S(∆). Figure 10.7 shows c0 and c2 for a particular partition.
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x3

y
1

FIG. 10.7 Graphs of c0 and c2 for ∆ = {0, .5,1.4,2,2.5,3}.

Now that we have shown that cubic splines are plentiful, we investigate how well
J f approximates the original function f . We need the following:

10.8.7. LEMMA. If f ∈C2[a,b], then for all ϕ ∈ S1(∆),∫ b

a
ϕ(x)( f − J f )′′(x)dx = 0.

PROOF. We use integration by parts twice. Letting du = ( f − J f )′′(x)dx and v =
ϕ(x), we have∫ b

a
ϕ(x)( f − J f )′′(x)dx = ϕ(x)( f − J f )′(x)

∣∣∣∣b
a
−
∫ b

a
ϕ
′(x)( f − J f )′(x)dx.

Observe that f ′(a) = (J f )′(a) and f ′(b) = (J f )′(b), so the first term above is zero.
Using integration by parts again with du = ( f − J f )′(x)dx and v = ϕ ′(x),∫ b

a
ϕ(x)( f − J f )′′(x)dx = ϕ

′(x)( f − J f )(x)
∣∣∣∣b
a
−
∫ b

a
ϕ
′′(x)( f − J f )(x)dx.

Now, f (a) = J f (a) and f (b) = J f (b), so the first term is zero. For the second term,
we observe that since ϕ is piecewise linear, ϕ ′′ is equal to zero except for the points
x0,x1, . . . ,xn, where it is not defined. Thus the integral is zero. �

10.8.8. THEOREM. If f ∈C2[a,b], then∫ b

a

(
f ′′(x)

)2 dx =
∫ b

a

(
(J f )′′(x)

)2 dx+
∫ b

a

(
( f − J f )′′(x)

)2 dx.
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PROOF. Let g = f − J f . We have

∫ b

a

(
f ′′(x)

)2 dx =
∫ b

a

(
J f ′′(x)+g′′(x)

)2 dx

=
∫ b

a

(
J f ′′(x)

)2dx+2
∫ b

a
(J f )′′(x)g′′(x)dx+

∫ b

a

(
g′′(x)

)2 dx.

However, since J f ∈ S(∆) is piecewise cubic and C2, it follows that (J f )′′ is piece-
wise linear, whence it belongs to S1(∆). Hence by Lemma 10.8.7, the second term
is zero. This gives the required equality. �

This allows a characterization of the cubic spline approximating f as optimal in
a certain sense.

10.8.9. COROLLARY. Fix f ∈C2[a,b]. Among all functions g ∈C2[a,b] such
that g(xi) = f (xi) for 0 ≤ i ≤ k, g′(a) = f ′(a), and g′(b) = f ′(b), the cubic spline
interpolant J f minimizes the energy integral∫ b

a

(
g′′(x)

)2 dx.

PROOF. For any such function g, we have Jg = J f . So by the previous theorem,∫ b

a

(
g′′(x)

)2 dx =
∫ b

a

(
(J f )′′(x)

)2 dx+
∫ b

a

(
(g− J f )′′(x)

)2 dx

≥
∫ b

a

(
(J f )′′(x)

)2 dx.

This inequality becomes an equality only if g′′ = (J f )′′. Since we also have g(a) =
J f (a) and g′(a) = (J f )′(a) by hypothesis, this implies that g = J f by integrating
twice. �

This property is called the smoothest interpolation property of cubic spline
interpolation. Minimizing

∫ b
a
(
g′′
)2(x)dx is roughly equivalent to minimizing the

strain energy. Historically, flexible thin strips of wood called splines were used in
drafting to approximate curves through a set of points. In 1946, when Schoenberg
introduced spline curves, he observed that they represent the curves drawn by means
of wooden splines, hence the name. Splines appear to be smooth since they avoid
discontinuous first derivatives, which people recognize as “spikes,” and avoid dis-
continuous second derivatives, which are recognized as sudden changes in curva-
ture. Discontinuous third derivatives are not visible in any obvious geometric way.

Exercises for Section 10.8

A. Fill in the details of the proof of Lemma 10.8.4.

B. Find a nice explicit basis for S1(∆).



10.9 Uniform Approximation by Splines 231

C. Show that if f ∈ S1(∆) and f ′ is continuous on [a,b], then f is a straight line.

D. Prove the Weierstrass Approximation Theorem (10.2.2) using the following outline. Define
absa(x) = |x−a| and use abs for abs0.

(a) Show that abs is a uniform limit of the polynomials (pn) given by p0 = 0 and pk+1 =
pk +(x− p2

k)/2. HINT: First show that pk+1 ≥ pk and 0≤ pk(x)≤
√

x by induction on k.
(b) Deduce that for each a ∈ R, absa is a uniform limit of polynomials.
(c) Show that S1(∆) is spanned by 1 and {absa : a ∈ ∆}.
(d) If f ∈C[a,b] and ε > 0, show that there is a partition of [a,b], ∆ , and g ∈ S1(∆) such that

‖ f −g‖< ε .

E. Show that if f ∈ S(∆) and f ′′′ is continuous on [a,b], then f is a cubic polynomial.

F. Show that for f ∈C2[a,b], ‖ f − J f‖∞ ≤ 2inf{‖ f −g‖∞ : g ∈ S(∆)}.
HINT: Compare with Lemma 10.8.1.

G. Suppose that ∆ has k > 4 intervals. Let 1 ≤ i ≤ k−4. If h ∈ S(∆) is 0 everywhere except on
(xi,xi+3), show that h = 0. HINT: What derivative conditions are forced?

H. Let x3
+ denote the function max{x3,0}. Show that every cubic spline in S(∆) has the form

p(x)+
k−1
∑

i=1
ci(x− xi)3

+, where p(x) is a cubic polynomial and ci ∈ R.

HINT: Given h ∈ S(∆), let ci = δi/6, where δi is the change in h′′′ at xi.

I. Find a nonzero spline h for the partition {−1,0,1,2,3,4,5} such that h is 0 on [−1,0]∪ [4,5].
HINT: Use the previous exercise.

10.9 Uniform Approximation by Splines

To complete our analysis of cubic splines, we will obtain an estimate for the error of
approximation. This is a rather delicate argument that combines a generalized mean
value theorem with another system of linear equations. Our goal is to establish the
following theorem:

10.9.1. THEOREM. Let ∆ be a partition a = x0 < x1 < · · · < xk = b of the
interval [a,b] and set δ = max{xi−xi−1 : 1≤ i≤ k}. Let f ∈C2[a,b] and let h = J f
be the cubic spline in S(∆) approximating f . Then

‖ f −h‖∞ ≤
5
2

δ
2

ω( f ′′;δ ),

‖ f ′ −h′‖∞ ≤ 5δ ω( f ′′;δ ),
‖ f ′′ −h′′‖∞ ≤ 5ω( f ′′;δ ).

Since the proof is long and computational, we give an overview first. Follow-
ing the algebra of the last section, we obtain a system of k + 1 linear equations
satisfied by h′′(x0), . . . ,h′′(xk). The constant terms in this system are estimated us-
ing a second-order Mean Value Theorem. Then the equations are used to show that
|h′′(xi)− f ′′(xi)| ≤ 4ω( f ′′;δ ). It is then straightforward to bound ‖h′′ − f ′′‖∞, and
then integratation gives bounds for ‖ f ′ −h′‖∞ and ‖ f −h‖∞.

We begin with a second-order Mean Value Theorem.
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10.9.2. LEMMA. Suppose that f ∈C2[a,c] and a < b < c. There is a point ξ

in (a,c) such that

f (b)−
(

c−b
c−a

f (a)+
b−a
c−a

f (c)
)

=
−(c−b)(b−a)

2
f ′′(ξ ).

PROOF. Let L(x) be the straight line through (a, f (a)) and (c, f (c)), namely

L(x) =
c− x
c−a

f (a)+
x−a
c−a

f (c).

Consider the function

g(x) = (c−b)(b−a)
(

f (x)−L(x)
)
− (c− x)(x−a)

(
f (b)−L(b)

)
.

Notice that g(a) = g(b) = g(c) = 0. So by Rolle’s Theorem, there are points ξ1 ∈
(a,b) and ξ2 ∈ (b,c) such that g′(ξ1) = g′(ξ2) = 0. Applying Rolle’s Theorem to g′

now yields a point ξ in (ξ1,ξ2) such that

0 = g′′(ξ ) = (c−b)(b−a) f ′′(ξ )+2
(

f (b)−L(b)
)
.

This is just a rearrangement of the desired formula. �

Notice that there is a limiting situation in which b equals a or c. Take b = a, for
example. Divide both sides by b−a and take the limit, ignoring the important point
that ξ depends on b. Then we obtain

−c−a
2

f ′′(ξ ) =
f (a)− f (c)

c−a
+ lim

b→a

f (b)− f (a)
b−a

=
f (a)− f (c)

c−a
+ f ′(a).

Rearranging, this becomes

f (c) = f (a)+ f ′(a)(c−a)+
(c−a)2

2
f ′′(ξ ) for some ξ ∈ (a,c).

We could make the limit argument correct, but we do not need to do so because this
is just a consequence of the order-one Taylor’s Theorem (see Exercise 10.1.B).

PROOF OF THEOREM 10.9.1. We need to show that h′′ is close to f ′′ at the
points xi. We rewrite the formula (10.8.6) as

h′′(xi) =
6(ai+1−ai)

∆ 2
i+1

− 4si +2si+1

∆i+1
for 0≤ i≤ k−1,

h′′(xi) =
−6(ai−ai−1)

∆ 2
i

+
2si−1 +4si

∆i
for 1≤ i≤ k.

The idea is to eliminate the unknown s1, . . . ,sk−1 from these 2k equations to yield
k +1 equations for the h′′(xi), 0≤ i≤ k.
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We save some space by presenting the list of equations and ask the interested
reader to verify that they are correct:

2∆1h′′(x0)+∆1h′′(x1) = 6
(a1−a0

∆1
− s0

)
,

∆ih′′(xi−1)+2(∆i+∆i+1)h′′(xi)+∆i+1h′′(xi+1) = 6
(ai+1−ai

∆i+1
−ai−ai−1

∆i

)
for 1≤ i≤ k−1,

∆kh′′(xk−1)+2∆kh′′(xk) = 6
(

sk−
ak−ak−1

∆k

)
.

Let us define the matrix

Y =



2∆1 ∆1 0 0 . . . 0 0 0

∆1 2(∆1+∆2) ∆2 0 . . . 0 0 0

0 ∆2 2(∆2+∆3) ∆3 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 . . . ∆k−2 2(∆k−2+∆k−1) ∆k−1 0

0 0 0 . . . 0 ∆k−1 2(∆k−1+∆k) ∆k

0 0 0 . . . 0 0 ∆k 2∆k


.

So if we set

h′′ =



h′′(x0)

h′′(x1)
...

h′′(xk−1)

h′′(xk)


, f′′ =



f ′′(x0)

f ′′(x1)
...

f ′′(xk−1)

f ′′(xk)


, and z =



6
( a1−a0

∆1
− s0

)
6
( a2−a1

∆2
− a1−a0

∆1

)
...

6
( ak−ak−1

∆k
− ak−1−ak−2

∆k−1

)
6
(
sk−

ak−ak−1
∆k

)


,

then the equation becomes Y h′′ = z.
Now we apply Lemma 10.9.2 to approximate z. Use xi−1,xi,xi+1 for a,b,c. There

is a point ξi in [xi−1,xi+1] such that

6
(

ai+1−ai

∆i+1
− ai−ai−1

∆i

)
= 6

(xi−xi−1) f (xi+1)− (xi+1−xi−1) f (xi)+(xi+1−xi) f (xi−1)
(xi+1− xi)(xi− xi−1)

= 3
(
xi+1− xi−1

)
f ′′(ξi) = 3(∆i +∆i+1) f ′′(ξi)
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for 1 ≤ i ≤ k− 1. The two end terms are approximated using the limit version,
namely Taylor’s formula of order 2:

6
(

a1−a0

∆1
− s0

)
= 6
(

f (x1)− f (x0)
x1− x0

− f ′(x0)
)

= 3
(
x1− x0

)
f ′′(ξ0) = 3∆1 f ′′(ξ0)

for some ξ0 in [x0,x1]. Similarly, there is a point ξk in [xk−1,xk] such that

6
(

sk−
ak−ak−1

∆k

)
= 6
(

f ′(xk)−
f (xk)− f (xk−1)

xk− xk−1

)
= 3
(
xk− xk−1

)
f ′′(ξk) = 3∆k f ′′(ξk).

Now we approximate h′′ − f′′ by evaluating Y (h′′ − f′′). The first coefficient is
estimated by∣∣3∆1 f ′′(ξ0)−2∆1 f ′′(x0)−∆1 f ′′(x1)

∣∣≤ 2∆1| f ′′(ξ0)− f ′′(x0)|+∆1| f ′′(ξ0)− f ′′(x1)|
≤ 3∆1 ω( f ′′;δ ).

By Lemma 14.9.10, ω( f ′′;2δ )≤ 2ω( f ′′;δ ). For 1≤ i≤ k−1, we obtain∣∣3(∆i+∆i+1) f ′′(ξi)−∆i f ′′(xi−1)−2(∆i+∆i+1) f ′′(xi)−∆i+1 f ′′(xi+1)
∣∣

≤ 2(∆i+∆i+1)
∣∣ f ′′(ξi)− f ′′(xi)

∣∣+∆i
∣∣ f ′′(ξi)− f ′′(xi−1)

∣∣+∆i+1
∣∣ f ′′(ξi)− f ′′(xi+1)

∣∣
≤ 2(∆i +∆i+1)ω( f ′′;δ )+(∆i +∆i+1)ω( f ′′;2δ )
≤ 4(∆i +∆i+1)ω( f ′′;δ ).

Finally, the last term is estimated:∣∣3∆k f ′′(ξk)−∆k f ′′(ξk−1)−2∆k f ′′(xk)
∣∣

≤ ∆k| f ′′(ξk)− f ′′(ξk−1)|+2∆k| f ′′(ξk)− f ′′(xk)|
≤ 3∆k ω( f ′′;δ ).

Let A = max{|h′′(xi)− f ′′(xi)| : 0 ≤ i ≤ k} occur at i0. Then looking at the i0th
coefficient of Y (h′′ − f′′), we obtain

4(∆i0 +∆i0+1)ω( f ′′;δ )

≥
∣∣∣∆i0

(
h′′(xi0−1)− f ′′(xi0−1)

)
+2(∆i0 +∆i0+1)

(
h′′(xi0)− f ′′(xi0)

)
+∆i0+1

(
h′′(xi0+1)− f ′′(xi0+1)

)∣∣∣
≥ 2
∣∣∣(∆i0 +∆i0+1)

(
h′′(xi0)− f ′′(xi0)

)∣∣∣− ∣∣∣∆i0

(
h′′(xi0−1)− f ′′(xi0−1)

)∣∣∣
−
∣∣∣∆i0+1

(
h′′(xi0+1)− f ′′(xi0+1)

)∣∣∣
≥ (∆i0 +∆i0+1)A.
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So A≤ 4ω( f ′′;δ ). When the i0 = 0 or k, we obtain 3ω( f ′′;δ ) instead.
We are almost done with the estimate for the second derivative. Notice that on

[xi−1,xi], h′′(x) = h′′i (x) is linear. So h′′(x) lies between h′′(xi−1) and h′′(xi). For
convenience, suppose that h′′(xi−1)≤ h′′(xi). The other case is similar. Then

−5ω( f ′′;δ )≤
(
h′′(xi−1)− f ′′(xi−1)

)
+
(

f ′′(xi−1)− f ′′(x)
)

≤ h′′(x)− f ′′(x)

≤
(
h′′(xi)− f ′′(xi)

)
+
(

f ′′(xi)− f ′′(x)
)
≤ 5ω( f ′′;δ ).

Thus ‖h′′ − f ′′‖∞ ≤ 5ω( f ′′;δ ).
The rest is easy. Since f (xi−1)− h(xi−1) = 0 = f (xi)− h(xi), Rolle’s Theorem

provides a point ζi in [xi−1,xi] such that f ′(ζi)− h′(ζi) = 0. Hence for any point x
in [xi−1,xi],

| f ′(x)−h′(x)|=
∣∣∣∣∫ x

ζi

f ′′(t)−h′′(t)dt
∣∣∣∣≤ 5ω( f ′′;δ )|x−ζi| ≤ 5δω( f ′′;δ ).

Therefore ‖h′ − f ′‖∞ ≤ 5δω( f ′′;δ ). Now pick the nearest partition point xi to x, so
that |x− xi| ≤ δ/2. Since f (xi) = h(xi),

| f (x)−h(x)|=
∣∣∣∣∫ x

xi

f ′(t)−h′(t)dt
∣∣∣∣≤ 5δω( f ′′;δ )|x− xi| ≤

5
2

δ
2
ω( f ′′;δ ).

So ‖h− f‖∞ ≤ 5
2 δ 2ω( f ′′;δ ). �

Exercises for Section 10.9

A. Show that S(∆) has dimension k +3.

B. The second-order Mean Value Theorem (10.9.2) suggests the possibility of a third-order
Mean Value Theorem. Suppose that f ∈ C3[a,d] and b,c in (a,d) with b 6= c. If P is the
unique quadratic polynomial through (a, f (a)), (c, f (c)), and (d, f (d)), show that there is
ξ ∈ [a,d] with

f (b)−P(b) =
(b− c)(b−a)(b−d)

6
f ′′′(ξ ).

C. Prove that every continuous function on [0,1] is the uniform limit of the sequence of cubic
splines hk with nodes at { j2−k : 0≤ j ≤ 2k}.

10.10 The Stone–Weierstrass Theorem

We conclude this chapter with a very general approximation theorem that has many
applications to approximation problems. It provides a very simple, easy to check
criterion for when all continuous functions on a compact metric space can be ap-
proximated by some element of a subalgebra of functions. In particular, we shall
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see immediate consequences for approximation by polynomials in several variables
and by trigonometric polynomials.

10.10.1. DEFINITION. A subset A of C(X), the space of continuous real-
valued functions on a compact metric space X , is an algebra if it is a subspace of
C(X) that is closed under multiplication (i.e., if f ,g ∈ A, then f g ∈ A).

For f ,g ∈C(X), define new elements of C(X), f ∨g and f ∧g, by

( f ∨g)(x) = max{ f (x),g(x)} and ( f ∧g)(x) = min{ f (x),g(x)}.

A subset L of C(X) is a vector lattice if it is a subspace that is closed under these
two operations, that is, f ,g both in L imply f ∨g and f ∧g are in L.

It is easy to verify the two identities f ∨ g = 1/2( f + g) + 1/2| f − g| and that
f ∧ g = 1/2( f + g)− 1/2| f − g|. Conversely, | f | = f ∨ (− f ). It follows that an
algebra A is a vector lattice if and only if | f | ∈ A for each f ∈ A.

10.10.2. DEFINITION. A set S of functions on X separates points if for each
pair of points x,y ∈ X , there is a function f ∈ S such that f (x) 6= f (y). Say that S
vanishes at x0 if f (x0) = 0 for all f ∈ S.

In order to approximate arbitrary continuous functions on X from elements of A,
a moment’s thought shows that A must separate points. Moreover, A cannot vanish
at any point, for then we could not approximate the constant function 1. These rather
modest requirements, combined with the algebraic structure of an algebra, yield the
following beautiful result.

10.10.3. STONE–WEIERSTRASS THEOREM.
An algebra A of continuous real-valued functions on a compact metric space X that
separates points and does not vanish at any point is dense in C(X).

We break the proof into several parts. Because norms over several domains occur
in this proof, let us write ‖ f‖X for the uniform norm over X , and write ‖ f‖∞ for the
uniform norm of a function on a real interval [a,b] if the interval is understood.

10.10.4. LEMMA. If A is an algebra of real-valued continuous functions on X,
then its closure A is a closed algebra and a vector lattice.

PROOF. It is easy to check that the closure of a subspace is still a subspace. The
verification is left as an exercise. To see that A is closed under multiplication, take
f ,g ∈ A. Choose sequences fn and gn in A that converge uniformly to f and g,
respectively. Since A is an algebra, fngn belongs to A. Then the sequence ( fngn)
converges uniformly to f g (see Exercise 8.2.D). So A is closed under multiplication,
and thus is an algebra.
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Fix a function f ∈ A. By the Weierstrass Approximation Theorem, the func-
tion h(t) = |t| for t ∈ [−‖ f‖X ,‖ f‖X ] is the uniform limit of a sequence pn of
polynomials. We can arrange that pn(0) = 0. Indeed, 0 = h(0) = lim

n→∞
pn(0). Thus

qn(x) = pn(x)− pn(0) satisfies qn(0) = 0 and

‖h−qn‖∞ ≤ ‖h− pn‖∞ + |pn(0)|.

The right-hand side converges to 0, and thus (qn) converges uniformly to h.
We will show that | f | belongs to A also. Since A is an algebra, all linear com-

binations of f , f 2, f 3, . . . belong to A. So if q is a polynomial with q(0) = 0, say
q(x) = a1x+a2x2 + · · ·+akxk, then

q( f ) = a1 f +a2 f 2 + · · ·+ak f k

belongs to A. Moreover, if p,q are two such polynomials, then

‖p( f )−q( f )‖X = sup
x∈X

|p( f (x))−q( f (x))|

≤ sup
t∈[−‖ f‖X ,‖ f‖X ]

|p(t)−q(t)|= ‖p−q‖∞.

Since ‖qn( f )−qm( f )‖X ≤ ‖qn−qm‖∞ and (qn) is a Cauchy sequence, we conclude
that (qn( f )) is also a Cauchy sequence. Thus the limit g belongs to A. But

g(x) = lim
n→∞

qn( f (x)) = h( f (x)) = | f (x)|.

So | f | belongs to A for each f ∈ A. Therefore, A is a vector lattice. �

10.10.5. LEMMA. If A is an algebra on X that separates points and never
vanishes, then for any x,y ∈ X and α,β ∈ R, there is a function h ∈ A such that
h(x) = α and h(y) = β .

PROOF. There is a function f ∈ A such that f (x) 6= f (y). We may assume that
f (y) 6= 0. If f (x) 6= 0 also, try h = f 2− t f . We require

f (x)2− t f (x) = α,

f (y)2− t f (y) = β .

Solving yields t =
α−β

f (y)− f (x)
+ f (x)+ f (y). If f (x) = 0, there is a function g ∈ A

with g(x) 6= 0. In this case,

h =
α

g(x)
g+

βg(x)−αg(y)
g(x) f (y)

f

will suffice. �
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PROOF OF THE STONE–WEIERSTRASS THEOREM. Fix a function f ∈C(X) and
ε > 0. We will approximate f within ε by functions in A. For each pair of points
x,y ∈ X , use Lemma 10.10.5 to find functions gx,y ∈ A such that gx,y(x) = f (x) and
gx,y(y) = f (y).

Fix y. For each x 6= y,

Ux = {z ∈ X : gx,y(z) > f (z)− ε}= (gx,y− f )−1(−ε,∞)

is an open set containing x and y. Thus {Ux : x ∈ X \{y}} is an open cover of X . By
the Borel–Lebesgue Theorem (9.2.3), this cover has a finite subcover Ux1 , . . . ,Uxk .
Let

gy = gx1,y∨gx2,y∨·· ·∨gxk,y.

By Lemma 10.10.4, gy belongs to A. By construction, gy(y) = f (y) and gy(x) >
f (x)− ε for all x ∈ X .

Now define Vy = {x ∈ X : gy(x) < f (x)+ ε}, which is an open set containing y.
Then {Vy : y∈X} is an open cover of X . By the Borel–Lebesgue Theorem, this cover
has a finite subcover Vy1 , . . . ,Vyl . Let g = gy1 ∧ gy2 ∧ ·· · ∧ gyl . By Lemma 10.10.4,
g belongs to A. By construction, g(x) < f (x) + ε for all x ∈ X . Moreover, since
gy j > f (x)− ε for 1≤ j ≤ l,

f (x)− ε < g(x) < f (x)+ ε for all x ∈ X .

Thus ‖ f −g‖X < ε as desired. �

10.10.6. COROLLARY. Let X be a compact subset of Rn. The algebra of all
polynomials p(x1,x2, . . . ,xn) in the n coordinates is dense in C(X).

PROOF. It is clear that the set P of all polynomials in n variables is an algebra. The
constant function 1 does not vanish at any point. Finally, any two distinct points are
separated by at least one of the coordinate functions xi. Therefore, P satisfies the
hypotheses of the Stone–Weierstrass Theorem and hence is dense in C(X). �

Another application of the Stone–Weierstrass Theorem yields an abstract proof
of the following corollary, which will be given a different and more direct proof in
Fejér’s Theorem (14.4.5). See also Corollary 13.5.6 for yet another proof. Recall
(Section 7.5) that a trigonometric polynomial is a function of the form f (t) = a0 +

n
∑

i=1
ak coskt +bk sinkt.

10.10.7. COROLLARY. The set TP of all trigonometric polynomials is dense
in C∗[−π,π], the space of 2π-periodic functions on R.

PROOF. The set TP is clearly a vector space but is not obviously an algebra. The
identities sinkt sin lt = 1

2 cos(k− l)t − 1
2 cos(k + l)t, sinkt cos lt = 1

2 sin(k + l)t +
1
2 sin(k− l)t, and coskt cos lt = 1

2 cos(k− l)t + 1
2 cos(k + l)t show that the four pos-
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sible products of functions of the form sinkt and cos lt are each a trigonometric
polynomial. By linearity, TP is an algebra.

To put this problem into the context of the Stone–Weierstrass Theorem, let T
be the unit circle. Consider the map P(t) = (cos t,sin t) of R onto T . Observe that
P(s) = P(t) if and only if s− t is an integer multiple of 2π . In particular, [−π,π]
is wrapped around the circle with only the endpoints ±π coinciding. A continuous
function g ∈C(T ) may be identified with the function f (t) = g(P(t)). It is easy to
see that f (−π) = f (π). If we define the closed subspace

C∗[−π,π] = { f ∈C[−π,π] : f (−π) = f (π)},

then it is also easy to see that every function in C∗[−π,π] is obtained as g(P(t))
for some g ∈C(T ). Moreover, this correspondence between C(T ) and C∗[−π,π] is
isometric, linear, and preserves multiplication.

The two coordinate functions x1 and x2 on T send the point P(t) to cos t and sin t,
respectively. So the first paragraph shows that polynomials in x1 and x2 are actually
trigonometric polynomials of the variable t. So the algebra TP of all trigonometric
polynomials in C∗[−π,π] is identified with the algebra of all usual polynomials on
T . By Corollary 10.10.6, the algebra of polynomials is dense in C(T ). Therefore,
the algebra of trigonometric polynomials is dense in C∗[−π,π]. �

Exercises for Section 10.10

A. Show that the closure of a subspace of C(X) is also a subspace of C(X).

B. Let X and Y be compact metric spaces. Show that the set of all functions of the form
k
∑

i=1
fi(x)gi(y) for k ≥ 1 and fi ∈C(X) and gi ∈C(Y ) is dense in C(X ×Y ).

C. Let h ∈C[0,1]. Show that every f ∈C[0,1] is a limit of polynomials in h if and only if h is
strictly monotone.

D. Let X be a compact metric space. Suppose A is a subalgebra of C(X) that separates the points
of X . If A 6= C(X), show that there is a point x0 ∈ X such that A = { f ∈C(X) : f (x0) = 0}.
HINT: Show that A+R1 is an algebra that does not vanish at any point. Can A vanish at more
than one point?

E. Let A be an algebra of complex-valued continuous functions on X , i.e., a vector space over C
that is closed under multiplication. Suppose A separates points, does not vanish at any point,
and further, if f ∈ A, then f belongs to A. Show that A is dense in CC(X), the complex-valued
continuous functions on X . HINT: Consider the set Ar of real-valued functions in A.

F. Let X be a compact metric space. A subset J of C(X) is an ideal if it is a vector space with
the property that if p ∈ J and f ∈C(X), then f p ∈ J.

(a) Let E = {x ∈ X : J vanishes at x}. Show that E is closed.
(b) Show that J separates points of X \E.
(c) Show that J is dense in the set of continuous functions on X that vanish on E.

HINT: Fix f and ε > 0, and set F = {x ∈ X : | f (x)| ≥ ε}. Find a finite set of elements
pi ∈ J such that p(x) = ∑

k
i=1 pi(x)2 ≥ 1 for x ∈ F . Let q = f np/(1+np) for n large.



Chapter 11
Discrete Dynamical Systems

Suppose we wish to describe some physical system. The dynamical systems ap-
proach considers the space X of all possible states of the system—think of a point
x in X as representing physical data. We will assume that X is a subset of some
normed vector space, often R. The evolution of the system over time determines a
function T of X into itself that takes each state to a new state, one unit of time later.

Suppose that x0 is the state of the system at time zero and xn is the state of the
system at time n. If T n+1(x) := T (T n(x)) for n≥ 1, then we have

xn = T xn−1 = T 2xn−2 = · · ·= T nx0.

In this chapter, T 2x virtually always means T (T (x)) and not (T (x))2.

11.0.1. DEFINITION. Suppose that X is a subset of a normed vector space,
and T is a continuous map from X into itself. The pair (X ,T ) is called a discrete
dynamical system. For each point x ∈ X , the forward orbit of x is the sequence
O(x) := {T nx : n≥ 0}.

To determine the behaviour of this system, we study the forward orbit O(x). What
is the limit of this orbit for each x, as n goes to +∞? If x is changed a little (in some
sense), then how does this limit change? This turns out to be an interesting problem.
There are systems in which the limit can change dramatically for tiny changes in the
starting point. This leads to the idea of chaos, which we study in Section 11.5.

We concentrate first on fixed points, that is, points x0 ∈ X with x0 = T x0. These
are interesting for their own sake, since analysis problems can sometimes be formu-
lated so that the solution is the fixed point of some dynamical system. Viewing a
problem in this way can give important results that are otherwise hard to obtain. In
this chapter, we will take this approach to Newton’s method for solving equations
numerically. In Chapter 12, we will use it to study differential equations.

Later in this chapter, we describe other types of orbits and then look at the notion
of chaos for dynamical systems. The final section of the chapter considers iterated
function schemes, which provide a means of generating fractals. It requires only
Section 11.1 and the first section of Chapter 9.
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11.1 Fixed Points and the Contraction Principle

Fixed points are so important in analysis that we will discuss two methods for ensur-
ing their existence. Our first method has the added advantage that it comes equipped
with a natural algorithm for computing the limit point. This has both theoretical and
computational advantages over purely existential arguments.

As motivation, consider the function T x = 1.8(x− x3) graphed in Figure 11.1.
Factoring shows that this cubic has roots at −1, 0, and 1. It has a local maximum
at the point (1/

√
3,2

√
3/5). Since T is an odd function, it has a local minimum at

(−1/
√

3,−2
√

3/5). To find the fixed points, we solve the equation

x = T x = 1.8x−1.8x3.

This has three solutions, x =−2/3, 0, and 2/3.

x

y y = x

FIG. 11.1 Graph of T x = 1.8(x− x3) showing fixed points.

We classify fixed points based on the orbits of nearby points. This behaviour is
crucial to understanding how to approximate a fixed point.

11.1.1. DEFINITION. A fixed point x∗ is called an attractive fixed point or a
sink is there is an open neighbourhood U = (a,b) containing x∗ such that for every
point x in (a,b), the orbit O(x) converges to x∗. A fixed point x∗ is called a repelling
fixed point or source if there is a neighbourhood U = (a,b) containing x∗ such that
for every point x in (a,b) except for x∗ itself, the orbit O(x) leaves the interval U .

Notice that for an attractive fixed point x∗, the interval U around x∗ may be quite
small. Also, for a repelling fixed point x∗, the orbit O(x) may return to the interval
U after it leaves. However, it must then leave the interval again eventually.
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We shall see that if T has a continuous derivative, the difference between at-
tractive and repelling fixed points comes down to the size of the derivative at x∗.
A fixed point x∗ is attracting if |T ′(x∗)| < 1 and repelling if |T ′(x∗)| > 1. The case
|T ′(x∗)|= 1 is ambiguous and might be one, the other, or neither.

In our example,
T ′(x) = 1.8−5.4x2.

So T ′(0) = 1.8 > 1. The tangent line at the origin is L(x) = 1.8x. Since the tangent
line is a good approximation to T near x = 0, it follows that T roughly multiplies
x by the factor 1.8 when x is small. So repeated application of this to a very small
nonzero number will eventually move the point far from 0. We will make this precise
in Lemma 11.1.2 using the Mean Value Theorem (6.2.2) to show that 0 is a repelling
point in the interval (−1/3,1/3).

On the other hand, at x =±2/3, T ′(x) =−0.6. This has absolute value less than
1. So near x = 2/3, the function is approximated by the tangent line

L(x) = 2
3 −0.6(x− 2

3 ).

This decreases the distance to 2/3 by approximately a factor of 0.6 on each iteration;
i.e.,

T n+1x− 2
3 ≈ 0.6(T nx− 2

3 ).

So T nx converges to 2/3. Again, we obtain a precise inequality in Lemma 11.1.2.
So the points ±2/3 are attractive fixed points.

Consider the graph of the function given in Figure 11.2. Fixed points correspond
to the intersection of the graph of T with the line y = x. Starting with any point
x0, mark the point (x0,x0) on the diagonal. A vertical line from this point meets
the graph of T at (x0,T x0) = (x0,x1). Then a horizontal line from here meets the
diagonal at (x1,x1). Repeated application yields a graphical picture of the dynamics.
Note that starting near a fixed point, the slope of the graph determines whether the
points approach or move away from the fixed point.

x

y y = x

x0 x1 x2 x3 x0x1 x2x3

FIG. 11.2 Fixed points for T x = 1.8(x− x3).
.
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In our example, another typical behaviour is exhibited by all |x| sufficiently large.
For the sake of simplicity, consider |x|> 2. Then

|T x|= 1.8(x2−1)|x| ≥ 5.4|x|.

It is clear then that lim
n→∞

|T nx|= +∞. So all of these orbits go off to infinity. Usually
we will try to restrict our domain to a bounded region that is mapped back into itself
by the transformation T .

We now connect our classification of fixed points with derivatives. Say T is a C1

dynamical system on X ⊂R if the function T is C1, i.e., has a continuous derivative.

11.1.2. LEMMA. Suppose that T is a C1 dynamical system with a fixed point x∗.
If |T ′(x∗)|< c < 1, then x∗ is an attractive fixed point. Moreover, there is an interval
U = (x∗ − r,x∗ + r) about x∗ such that for every x0 ∈ U, the sequence xn = T nx0
satisfies

|xn− x∗| ≤ cn|x0− x∗| ≤ cn

1− c
|x1− x0|.

If |T ′(x∗)|> 1, then x∗ is a repelling fixed point.

PROOF. Suppose that |T ′(x∗)| < c < 1. Since x 7→ |T ′(x)| is continuous, by Ex-
ercise 5.1.G, there is r > 0 such that for all x in the interval U = (x∗ − r,x∗ + r),
|T ′(x)|< c.

Let x0 be an arbitrary point in U , and consider the sequence xn = T nx0. Applying
the Mean Value Theorem (6.2.2) to T at xn and x∗, there is a point z between them
such that

T xn−T x∗

xn− x∗
= T ′(z).

Rewriting this using T xn = xn+1 and T x∗ = x∗, we obtain

|xn+1− x∗|= |T ′(z)| |xn− x∗|.

Provided that xn belongs to the interval U , we obtain that

|xn+1− x∗|< c|xn− x∗|.

In particular, xn+1 is closer to x∗ than xn is; and therefore xn+1 also belongs to U . By
induction, we obtain (verify this!) that

|xn− x∗|< cn|x0− x∗| for all n≥ 1.

Hence lim
n→∞

|xn− x∗| = 0 by the Squeeze Theorem (2.4.6). That is, lim
n→∞

xn = x∗. So

x∗ is an attractive fixed point.
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Similarly, suppose that |T ′(x∗)| > c > 1. Using Exercise 5.1.G and a few cal-
culations with inequalities, there is r > 0 such that for all x in the interval U =
(x∗ − r,x∗+ r), |T ′(x)|> c.

The Mean Value Theorem argument works the same way as long as xn belongs to
the interval U . However, in this case, repeated iteration eventually moves xn outside
of U , at which point we have almost no information about the dynamics of T . So as
long as xn is in U , we obtain a point z between xn and x∗ such that

|xn+1− x∗|= |T ′(z)| |xn− x∗|> c|xn− x∗|.

This can be repeated as long as xn remains inside U to obtain

|xn− x∗|> cn|x0− x∗|.

Since this distance to x∗ is tending to +∞, repeated iteration eventually will move
xn+1 outside of U . Therefore, x∗ is a repelling fixed point. �

Notice that in this proof, we only used differentiability in order to apply the Mean
Value Theorem and obtain a distance estimate. The following definition describes
this distance estimate directly, and so allows us to abstract the arguments of the
previous proof to other settings, where differentiability may not hold. However, we
demand that these estimates hold on the whole domain. While this may seem to
be excessively strong, remember that we may be able to restrict our attention to a
smaller domain in which these conditions apply. For example, in our previous proof,
the interval U would be a suitable domain.

11.1.3. DEFINITION. Let X be a subset of a normed vector space (V,‖ ·‖). A
map T : X → X is a contraction on X if there is a positive constant c < 1 such that

‖T x−Ty‖ ≤ c‖x− y‖ for all x,y ∈ X .

That is, T is Lipschitz with constant c < 1.

11.1.4. EXAMPLE. Let us look more closely at the map T x = 1.8(x− x3) in-
troduced in the first section. The fixed points are −2/3, 0, and 2/3.

Now |T ′(2/3)| = |− 0.6| < 1, so this is an attracting fixed point. We will show
that T is a contraction on the interval [0.5,0.7]. In this interval, T has a single critical
point at 1/

√
3, a local maximum, and

T (0.5) = 0.675, T (1/
√

3) = 0.4
√

3≈ 0.6928, and T (0.7) = 0.6426.

Since T is increasing on [0.5,1/
√

3] and decreasing on [1/
√

3,0.7], it follows that
T maps [0.5,0.7] into itself. Moreover,

sup
0.5≤x≤0.7

|T ′(x)|= sup
0.5≤x≤0.7

1.8|1−3x2|= max{|0.45|, |−0.846|}= 0.846.
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Therefore, T is a contraction on [0.5,0.7] with contraction constant c = 0.846.
Now consider the fixed point 0. Since T ′(0) = 1.8 > 1, this is a repelling fixed

point. On the interval [−1/3,1/3], we have

inf
|x|≤1/3

T ′(x) = inf
|x|≤1/3

1.8(1−3x2) = 1.2.

So the proof of Lemma 11.1.2 shows that

|T x| ≥ 1.2|x| for all x ∈ [− 1
3 , 1

3 ].

So the sequence T nx moves away from 0 until it leaves this interval.

11.1.5. EXAMPLE. Consider the linear function T (x) = mx+b for x∈R. Then

|T x−Ty|= |m||x− y|.

Hence T is a contraction on R provided that |m| < 1. This map has a fixed point if
there is a solution to x = T x = mx + b. It is easy to compute that x∗ = b

1−m is the
unique solution provided that m 6= 1. What happens when m = 1?

We may think of T as the dynamical system on R that maps each point x to T x.
Consider the forward orbit O(x) = {T nx : n≥ 0} of a point x. We obtain a sequence
defined by the recurrence

xn+1 = T xn for n≥ 0.

A simple calculation shows that

x1 = mx0 +b,

x2 = m2x0 +(1+m)b,

x3 = m3x0 +(1+m+m2)b,

x4 = m4x0 +(1+m+m2 +m3)b.

It appears that there is a general formula

xn = mnx0 +(1+m+m2 + · · ·+mn−1)b.

We may verify this by induction. It evidently holds true for n = 1. Suppose that it is
valid for a given n. Then

xn+1 = mxn +b = m
(
mnx0 +(1+m+m2 + · · ·+mn−1)b

)
+b

= mn+1x0 +(m+m2 + · · ·+mn)b+b

= mn+1x0 +(1+m+m2 + · · ·+mn)b.

Hence the formula follows for n+1, and so for all positive integers by induction.
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When |m| < 1, the contraction case, this sequence has a limit that we obtain by
summing an infinite geometric series:

lim
n→∞

xn = lim
n→∞

mnx0 +(1+m+m2 + · · ·+mn−1)b = 0+b
∞

∑
k=0

mk =
b

1−m
.

Hence this sequence converges to the fixed point x∗. Therefore, x∗ is an attractive
fixed point that may be located by starting anywhere and iterating T . This means
that an approximate solution to T x = x will be stable, meaning that the orbit of any
point close to x∗ will remain close to x∗. In fact, it was not even necessary to start
close to x∗ to obtain convergence.

On the other hand, when |m| > 1, lim
n→∞

|xn| = ∞, and so this sequence diverges.
There is still a fixed point, but it is repelling. In this case, the answer is to invert T .
The map T is one-to-one, and thus we may solve for

T−1x = (x−b)/m = 1
m x− b

m .

This map T−1 is a contraction, and we can apply the previous analysis to it. Each
point x comes from the point x−1 = T−1x. Going “back into the past” by setting
x−n−1 = T−1x−n converges to the fixed point x∗. Since points close to x∗ move
outward and eventually go off to infinity, x∗ is a source.

Finally, when m = −1, there is a unique fixed point. But this point cannot be
located as the limit of an orbit. The reason is that

T 2x =−(T x)+b =−(−x+b)+b = x.

That is, T 2 equals the identity map on R. So with the exception of the fixed point
x∗ = b/2, every point has a period-2 orbit.

11.1.6. THE BANACH CONTRACTION PRINCIPLE.
Let X be a closed subset of a complete normed vector space (V,‖ · ‖). If T is a
contraction map of X into X, then T has a unique fixed point x∗. Furthermore, if x
is any vector in X, then x∗ = lim

n→∞
T nx and

‖T nx− x∗‖ ≤ cn‖x− x∗‖ ≤ cn

1− c
‖x−T x‖,

where c is the Lipschitz constant for T .

PROOF. The statement of the theorem suggests how the proof should proceed. Pick
any point x0 in X and form the sequence (xn) given by xn+1 = T xn for n≥ 0.

We claim that this sequence is Cauchy. To see this, first observe that

‖xn+1− xn‖= ‖T xn−T xn−1‖ ≤ c‖xn− xn−1‖
≤ c2‖xn−1− xn−2‖ ≤ cn‖x1− x0‖= cnD,
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where D = ‖x1− x0‖< ∞. Using this fact and the triangle inequality, we compute

‖xn+m− xn‖ ≤
m−1

∑
i=0

‖xn+i+1− xn+i‖ ≤
m−1

∑
i=0

cn+iD <
∞

∑
i=0

cn+iD =
cnD

(1− c)
. (11.1.7)

Given ε > 0, choose N so large that cN < ε(1− c)/D, which is possible since
lim
n→∞

cn = 0. Hence for n≥ N and m≥ 0, we have ‖xn+m−xn‖< ε . So the sequence

(xn) is Cauchy, as claimed.
Because V is complete, the sequence (xn) converges to some vector x∗ ∈V . Since

X is closed, this limit point belongs to X . Observe that T is uniformly continuous
because it is Lipschitz (Proposition 5.5.4). Using continuity, we have

T x∗ = T
(

lim
n→∞

xn

)
= lim

n→∞
T xn = lim

n→∞
xn+1 = x∗.

Hence x∗ is a fixed point.
Suppose that y ∈ X is also a fixed point: so Ty = y. Then

‖x∗ − y‖= ‖T x∗ −Ty‖ ≤ c‖x∗ − y‖.

Since c < 1, this implies that ‖x∗ − y‖ = 0, whence x∗ = y. Therefore, x∗ is the
unique fixed point, independent of the choice of x0.

Starting at any vector x and using the estimate (11.1.7), we obtain

‖T nx− x∗‖= ‖T nx−T nx∗‖ ≤ cn‖x− x∗‖
= cn lim

m→∞
‖x− xm‖ ≤ cn(1− c)−1‖T x− x‖.

�

11.1.8. EXAMPLE. Let V = R, X = [−1,1], and T x = cosx. By the Mean
Value Theorem, for any x,y ∈ X , there is a point z between x and y such that

|T x−Ty|= |x− y| |sinz|.

In particular, |z|< 1. Since sinx is increasing on [−1,1],

max
|z|≤1

|sinz|= |sin±1|= sin1 < 1.

Thus T is a contraction. To find the fixed point experimentally, type any value into
your calculator and repeatedly push the cos button. If your calculator is set for
radians, the sequence will converge rapidly to 0.73908513321516064 . . . .

What happens when you do the same for T x = sinx? It is not a contraction. Nev-
ertheless, there is a unique fixed point sin0 = 0, and the iterated sequence converges.
But it converges at a painfully slow rate. Try it on your calculator. It is slow because
the derivative at the fixed point is cos0 = 1.
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Indeed, the inequality 0 < sinθ < θ for θ in (0,π/2] shows that the only fixed
point in [0,∞) is x = 0. Since sinx is odd, the same is true on (−∞,0]. The first itera-
tion x1 = sinx0 lies in [−1,1]; and thereafter this inequality shows that if 0 < x1 ≤ 1,
then 0 ≤ xn+1 < xn < 1 for n ≥ 1. Likewise, if −1 ≤ x1 < 0, then the sequence xn
is monotone increasing and bounded above by 0. Hence the limit exists and must
be the unique fixed point of sinx. We can use the Taylor series of sinx (see Exer-
cise 10.1.D) to show that

|sinx− x| ≤ |x|3

6
.

Thus if x0 = 0.1, it follows that

|xn− xn+1| ≤
x3

0
6

= 10−3/6.

Since each step moves us at most 10−3/6, it will take over
0.1−0.01

10−3/6
= 540 it-

erations before xn ≤ 0.01. After that, it will take at least 54,000 iterations to get
below 0.001 and 5.4 million more steps to obtain a fourth decimal of accuracy in
the approximation of the fixed point.

One moral of this example is that for maps T that are not contractions, even if
applying T moves a point x very little, x need not be very close to a fixed point x∗.
For contractions, it is true that if T moves x little, then x is close to a fixed point x∗

and, in addition, we have a numerical estimate for ‖x−x∗‖ in terms of ‖T x−x‖ and
the Lipschitz constant.

11.1.9. EXAMPLE. If in the definition of contraction, the condition is weak-
ened to ‖T x−Ty‖ ≤ ‖x− y‖, then we cannot conclude that there is a fixed point.
For example, take X = R and T x = x + 1. Clearly, T has no fixed points. But since
‖T x−Ty‖= ‖x− y‖, distance is preserved.

Even the strict inequality ‖T x− Ty‖ < ‖x− y‖ is not sufficient. Consider X =
[1,∞) and Sx = x+ x−1. Then

|Sx−Sy|= (x+ 1
x )− (y+ 1

y ) = |x− y|(1− 1
xy ) < |x− y|

for all x,y≥ 1. However, Sx > x for all x, so S has no fixed point.

11.1.10. REMARK. The first part of Lemma 11.1.2 may be proved as a simple
consequence of the Banach Contraction Principle. Indeed, suppose that T is a C1

dynamical system with a fixed point x∗ such that |T ′(x∗)| < c < 1. As before, use
the continuity of T ′ to find an interval I = [x∗ − r,x∗+ r] such that |T ′(x)| ≤ c for all
x ∈ I. The only difference here is that we are using a closed interval and a ≤ sign
instead of an open interval and strict inequality. Apply the Mean Value Theorem to
any two points x,y in I. For such points, there is a point z between them such that
|T x−Ty|= |T ′(z)| |x− y| ≤ c|x− y|.

In particular,
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|T x− x∗|= |T x−T x∗| ≤ c|x− x∗| ≤ cr.

Therefore, T maps the interval I into itself, and it is a contraction with contraction
constant c. By the Banach Contraction Principle, we see that x∗ is the unique fixed
point in I. Moreover, we obtain the desired distance estimates.

11.1.11. EXAMPLE. This example deals with a system of linear equations
and looks for a condition that guarantees an attractive fixed point. Let A =

[
ai j
]

be
an n× n matrix, and let b = (b1, . . . ,bn) be a (column) vector in Rn. Consider the
system of equations

x = Ax+b. (11.1.12)

We will try to analyze this problem by studying the dynamical system given by the
map T : Rn → Rn according to the rule

T x = Ax+b.

A solution to (11.1.12) corresponds to a fixed point of T .
There are various norms on Rn, and different norms lead to different criteria for

T to be a contraction. In this example, we will use the max norm,

‖x‖∞ = max
1≤i≤n

|xi|.

If we think of points in Rn as real-valued functions on {1, . . . ,n}, say x(i) = xi for
1 ≤ i ≤ n, then this is the uniform norm on C({1, . . . ,n}). We will show that T is a
contraction on Rn in the max norm if and only if

c := max
1≤i≤n

n

∑
j=1
|ai j|< 1.

First suppose that c ≥ 1. There is some integer i0 such that c = ∑
n
j=1 |ai0 j|. Set

x j = sign(ai0 j). Then

‖x−0‖∞ = ‖x‖∞ = max
1≤i≤n

|xi|= 1,

while

‖T x−T 0‖∞ = ‖Ax‖∞ ≥ |(Ax)i0 |=
n

∑
j=1

ai0 jx j

=
n

∑
j=1
|ai0 j|= c≥ 1 = ‖x−0‖∞.

So T is not contractive.
On the other hand, if c < 1, then we compute for x,y ∈ Rn,
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‖T x−T y‖∞ = ‖A(x−y)‖∞

= max
1≤i≤n

∣∣ n

∑
j=1

ai j(x j− y j)
∣∣≤ max

1≤i≤n

n

∑
j=1
|ai j| |x j− y j|

≤
(

max
1≤i≤n

n

∑
j=1
|ai j|

)(
max

1≤ j≤n
|x j− y j|

)
= c‖x−y‖∞.

So T is a contraction.
Thus by the Banach Contraction Principle, we know that there is a unique solu-

tion that can be computed iteratively from any starting point. Choose x0 = 0. Then

x1 = T x0 = b,

x2 = T x1 = b+Ab = (I +A)b,

x3 = T x2 = b+A(b+Ab) = (I +A+A2)b.

We will show that xn = (I +A+ · · ·+An−1)b. This is evident for n = 0,1,2,3 by the
previous calculations. Assume that it is true for some integer n. Then

xn+1 = T xn = b+A(I +A+ · · ·+An−1)b = (I +A+ · · ·+An)b.

So the formula is established by induction.
The solution to (11.1.12) is the unique fixed point

x∗ = lim
n→∞

xn = lim
n→∞

(I +A+ · · ·+An−1)b =
∞

∑
k=0

Akb.

The important factor making this infinite sum convergent is that because T and A
are contractions,

‖Akb‖∞ = ‖Akb−Ak0‖ ≤ ck‖b−0‖∞ = ck‖b‖∞.

So this series is dominated by a convergent geometric series and thus converges
by the comparison test. Indeed, the same argument shows that the series ∑

∞
k=0 Akx

converges for every vector x ∈ Rn. So the sum C = ∑
∞
k=0 Ak makes sense as a

linear transformation. We note that in particular, if x is any vector in Rn, then
limn→∞ Anx = 0. The solution to our problem is x∗ = Cb.

We know from linear algebra how to solve the equation x = Ax + b. This leads
to (I−A)x = b. When I−A is invertible, there is a unique solution x = (I−A)−1b.
This suggests that our contractive condition (11.1.11) leads to the conclusion that
I−A is invertible with inverse C = ∑

∞
k=0 Ak. To see that this is the case, compute

(I−A)Cx = lim
n→∞

(I−A)(I +A+ · · ·+An−1)x

= lim
n→∞

(I +A+ · · ·+An−1)x− (A+A2 + · · ·+An)x

= lim
n→∞

x−Anx = x.
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Since this holds for all x∈Rn, I−A has inverse C. This formula (I−A)−1 = ∑
∞
k=0 Ak

should be seen as parallel to the power series identity

1
1− x

=
∞

∑
k=0

xk for |x|< 1.

The condition |x| < 1 guarantees that the series converges. The contractive condi-
tion (11.1.11) plays the same role in the matrix equation.

Exercises for Section 11.1

A. Let T x = 1.8(x− x3). Find the smallest R such that limn→∞ |T nx|= +∞ for all |x|> R.

B. Show that T x = sinx is not a contraction on [−1,1].

C. Give an example of a differentiable map T from R to R whose fixed points are exactly the set
of integers. Find points where |T ′(x)|> 1.

D. Explain why in the previous example, points with |T ′(x)|> 1 necessarily exist.

E. Suppose that S and T are contractions with Lipschitz constants s and t, respectively. Prove
that the composition ST is a contraction with Lipschitz constant st.

F. Consider the special case of Example 11.1.11 where A =
[

0.5 0.4
0 0.8

]
and b =

[
0.1
0.2

]
. Explicitly

compute the infinite sum ∑
∞
k=0 Ak in order to solve for the fixed point of T x = Ax+b.

G. Redo Example 11.1.11 using the 1-norm ‖x‖1 = ∑
n
i=1 |xi| on Rn in place of ‖x‖∞.

HINT: Show that T is a contraction if and only if max1≤ j≤n ∑
n
i=1 |ai j|< 1.

H. Define T on C[−1,1] by T f (x) = f (x)+(x2− f (x)2)/2. Set f0 = 0 and fn+1 = T fn for n≥ 0.
Prove that fn is a monotone increasing sequence of functions such that

0≤ x2− fn+1(x)2 ≤ (1− 1
4 x2)(x2− fn(x)2).

Hence show that fn is a sequence of polynomials converging uniformly to |x|.
I. Suppose S and T are contractions on X with Lipschitz constant c < 1 and fixed points xs and xt

respectively. Prove that ‖xs−xt‖ ≤ (1−c)−1‖S−T‖∞, where ‖S−T‖∞ = supx∈X ‖Sx−T x‖.
HINT: Estimate ‖xs− xt‖ in terms of ‖xs−T xs‖.

J. Suppose that for 0 ≤ s ≤ 1, Ts is a contraction of a complete normed space X with Lipschitz
constant c < 1. Moreover, assume that this is a continuous path of contractions. That is,
lims→s0 ‖Ts−Ts0‖∞ = 0. Prove that the fixed points xs of Ts form a continuous path.
HINT: Use the previous exercise.

K. Define a map D on C[0,1] as follows:

D f (x) =


2
3 + 1

3 f (3x) for 0≤ x≤ 1
3 ,

(2+ f (1))( 2
3 − x) for 1

3 ≤ x≤ 2
3 ,

x− 2
3 for 2

3 ≤ x≤ 1.

(a) Sketch the graph of some function f and D f .
(b) Show that D is a contraction.
(c) Describe the fixed point. HINT: Repeatedly apply D to the function f (x) = 1/3.
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11.2 Newton’s Method

Newton’s method is an iterative procedure to rapidly compute a zero of a differen-
tiable function. The Contraction Principle provides a nice proof that it works.

Suppose we have a function f on R and a reasonable guess x0 for the zero (or
root) of f . If f is differentiable at x0, then we can draw the tangent line at x0. It
seems plausible that if x0 is close to the root of the function, the root of the tangent
line will be even closer. This uses one of the basic ideas of differential calculus: The
tangent line to f at x0 is a good approximation to f near x0.

The equation of the tangent line is

y = f (x0)+ f ′(x0)(x− x0).

To find the root, we set y = 0 and solve for x, to obtain

x = x0−
f (x0)
f ′(x0)

.

Call this root x1. By repeating the same calculation for x1, we obtain a sequence
(xn)

∞

n=1, where

xn+1 = xn−
f (xn)
f ′(xn)

for n≥ 1.

Our hope is that the sequence converges to a point x∗ satisfying f (x∗) = 0. See
Figure 11.3 for an example of (the first few terms) of such a sequence.

To prove this, we reformulate the problem using fixed points. Suppose f is twice
differentiable and f (x∗) = 0 for some point x∗. Define a dynamical system T by

T x = x− f (x)
f ′(x)

.

It is easy to see that if f (x∗) = 0, then T x∗ = x∗ and vice versa. So we are looking
for a fixed point for the function T . Notice that for this definition to make sense,
we require f ′(x) 6= 0 on our domain. This will show up in our hypotheses as the
condition f ′(x∗) 6= 0.

We compute the derivative

T ′(x) = 1− f ′(x)2− f (x) f ′′(x)
f ′(x)2 =

f (x) f ′′(x)
f ′(x)2 .

Notice that T ′(x∗) = 0. So x∗ is an attractive fixed point by Lemma 11.1.2. Moreover,
the constant c used may be any small positive number. Indeed, the closer we get to
x∗, the smaller the value of c that may be used. This will be important in obtaining
very rapid convergence.

In addition to verifying that Newton’s method works, we can estimate how
quickly the error decreases. This kind of error analysis is fundamental to decid-
ing the effectiveness of an algorithm. It is considered minimally acceptable if the
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x

y

y = f (x)

x0x1x2

FIG. 11.3 Example of a function f and sequence (xn).

error tends to zero geometrically in the sense that

|xn+1− x∗| ≤ c|xn− x∗| for n≥ N

for some constant c < 1. For if cs < 0.1, we obtain an additional digit of accuracy
every s iterations. Compare Example 11.1.8.

However, if great accuracy is desired, this is not all that fast. Some algorithms,
such as Newton’s method, converge quadratically, meaning that there is a constant
M such that

|xn+1− x∗| ≤M|xn− x∗|2 for n≥ N.

Once |xn− x∗| < 0.1/M, the number of digits of accuracy doubles every iteration.
Thus, once we get sufficiently close to the solution, the sequence approaches x∗ very
rapidly.

11.2.1. NEWTON’S METHOD.
Suppose f is C2 and there is x∗ ∈R such that f (x∗) = 0 and f ′(x∗) 6= 0. There is an
r > 0 such that if |x0− x∗| ≤ r, then the iterates xn+1 = xn− f (xn)/ f ′(xn) converge
to x∗. Moreover, the iterates converge quadratically; i.e., there is a constant M such
that

|xn+1− x∗|< M|xn− x∗|2 for n≥ 1.

PROOF. Let T x = x− f (x)/ f ′(x). Then T x∗ = x∗. As we just computed,

T ′(x) =
f (x) f ′′(x)

f ′(x)2 .

In particular, T ′(x∗) = 0. Also, T ′(x) is defined for x near x∗, since f ′(x) 6= 0 for x
near x∗. Choose r > 0 so small that |T ′(x0)| ≤ 1/2 for all x0 ∈ [x∗ − r,x∗ + r]. By
Lemma 11.1.2, iterates xn+1 = T xn converge to x∗, and

|xn− x∗| ≤ 2−n|x0− x∗| ≤ 21−n|x0− x1|.
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In particular, (xn) converges at least geometrically to the fixed point.
Quadratic convergence follows from a careful application of the Mean Value

Theorem. The estimate from Lemma 11.1.2 used only the fact that |T ′(x)| ≤ c near
the fixed point x∗. We will exploit the fact that T ′(x∗) = 0. Here are the details. Let

A = sup
|x−x∗|≤r

| f ′′(x)| and B = inf
|x−x∗|≤r

| f ′(x)|,

and set M = A/B. By the Mean Value Theorem (6.2.2), there is a point an between
xn and x∗ such that

f (xn) = f (xn)− f (x∗) = f ′(an)(xn− x∗).

Solve for xn− x∗ and substitute into the following:

xn+1− x∗ = (xn− x∗)+(xn+1− xn) =
f (xn)
f ′(an)

− f (xn)
f ′(xn)

=
f (xn)

f ′(an) f ′(xn)
(

f ′(xn)− f ′(an)
)

=
xn− x∗

f ′(xn)
(

f ′(xn)− f ′(an)
)
.

Applying the Mean Value Theorem again, this time to f ′, provides a point bn be-
tween xn and an such that

| f ′(xn)− f ′(an)|= | f ′′(bn)(xn−an)| ≤ A|xn− x∗|.

Combining this with | f ′(xn)| ≥ B and substituting again yields

|xn+1− x∗| ≤ |xn− x∗|
B

A|xn− x∗|= M|xn− x∗|2.

This establishes the quadratic convergence. �

11.2.2. EXAMPLE. COMPUTATION OF SQUARE ROOTS. At one time, every-
one had to compute square roots by hand. Today, a few people have to program
calculators to compute them. Newton’s method is an excellent way for a person or a
computer to find square roots rapidly to high accuracy. To illustrate the method, we
will compute a few square roots. Unlike a calculator, we also give an upper bound
for the error between our computed value and the true value.

Finding the square root of a > 0 means finding the positive root of the function
f (x) = x2−a. Applying Newton’s method, a simple computation gives

T x = x− x2−a
2x

=
1
2

(
x+

a
x

)
.

In fact, we will see that any initial positive choice of x1 will converge to
√

a. Try
this on your calculator as a method of computing

√
2 or

√
71.

Suppose that you are asked to compute
√

149 to 15 digits of accuracy. Since
122 = 144 < 149 < 169 = 132, let x0 = 12 be our first approximation. Clearly, the
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error is at most 0.5. Moreover,

T ′(x) =
1
2

(
1− 149

x2

)
.

This is evidently monotone. Thus on [12,13], the derivative is bounded by

max
{
|T ′(12)|, |T ′(13)|

}
= max

{ 5
288

,
10
169

}
=

10
169

< 0.06.

Therefore, Newton’s method guarantees that the sequence

x0 = 12, xn+1 =
1
2

(
xn +

149
xn

)
for n≥ 0

converges quadratically to
√

149.
Let us compute the other constants involved. Since f ′(x) = 2x and f ′′(x) = 2, we

obtain

A = sup
12≤x≤13

| f ′′(x)|= 2, B = inf
12≤x≤13

| f ′(x)|= 24, and M =
A
B

< 0.084.

Using the Mean Value Theorem (6.2.2), note that

| f (x0)|= | f (x0)− f (x∗)|= | f ′(c)| |x0− x∗| ≥ B|x0− x∗|.

Thus
|x0− x∗|< | f (x0)|/24 = 5/24 < 0.21.

From the error estimate for Newton’s method, we obtain

|xn+1− x∗| ≤ 0.084|xn− x∗|2.

Starting with x0 = 12, we have the following table of terms and bounds on the error:

n xn Bound on |xn− x∗| xn rounded to accuracy

0 12 0.21 12

1 12.208333333333333 3.704×10−3 12.21

2 12.206555745164960 1.153×10−6 12.20656

3 12.206555615733703 3.572×10−13 12.206555615734

4 12.206555615733702 1.117×10−26 12.2065556157347029. . .

So we obtain 15 digits of accuracy, in fact, 26 digits, at n = 4. To progress fur-
ther, we need to worry more about the round-off error of our calculations than with
Newton’s method.

Look at the global aspects of this example. It is easy to see from the graph that
f (x) = x2 − 149 is concave, much like Figure 11.3. If x0 lies in (0,

√
149), then
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x1 >
√

149. However, taking x0 very small will make x1 very large. After that, it is
also apparent from the graph that xn decreases monotonely and quickly to

√
149.

Similarly, starting with x0 < 0, the same procedure follows from reflection of the
whole picture in the y-axis—the sequence converges rapidly to −

√
149. The point

x0 = 0 is a nonstarter because f ′(0) = 0.

Exercises for Section 11.2

A. Show that f (x) = x3 + x +1 has exactly one real root. Use Newton’s method to approximate
it to eight decimal places. Show your error estimates.

B. The equation sinx = x/2 has exactly one positive solution. Use Newton’s method to approxi-
mate it to eight decimal places. Show your error estimates.

C. (a) Set up Newton’s method for computing cube roots.
(b) Show by hand that 3√2−1.25 < 0.01.
(c) Compute 3√2 to eight decimal places.

D. Let f (x) = (
√

2)x for x ∈ R. Sketch y = f (x) and y = x on the same graph. Given x0 ∈ R,
define a sequence by xn+1 = f (xn) for n≥ 0.

(a) Find all fixed points of f .
(b) Show that the sequence (xn)

∞

n=1 is monotone.
(c) If (xn) converges to a number x∗, prove that f (x∗) = x∗.
(d) For which x0 ∈ R does the sequence (xn) converge, and what is the limit?

E. Find the largest critical point of f (x) = x2 sin(1/x) to four decimal places.

F. Find the minimum value of f (x) = (logx)2 + x on (0,∞) to four decimal places.

G. Apply Newton’s method to find the root of f (x) = (x− r)1/3. Start with any point x0 6= r, and
compute |xn− r|. Explain what went wrong here.

H. Modified Newton’s method. With the same setup as for Newton’s method, show that the

sequence xn+1 = xn−
f (xn)
f ′(x0)

for n≥ 0 converges to x∗.

I. Before computers had high-precision division, the following algorithms were used. Notice
that they involve only multiplication.

(a) Let a > 0. Show that Newton’s formula for solving 1/x = a yields the iteration xn+1 =
2xn−ax2

n.
(b) Suppose that x0 = (1− ε)/a for some |ε|< 1. Derive the formula for xn.
(c) Do the same analysis for the iteration scheme xn+1 = xn

(
1 +(1− axn)(1 +(1− axn))

)
.

Explain why this is a superior algorithm.

J. Let h(x) = x1/3e−x2
.

(a) Set up Newton’s method for this function.
(b) If 0 < |xn|< 1/

√
6, then |xn+1|> 2|xn|.

(c) Show that if xn > 1/
√

6, then xn+1 > xn + 1
2xn

.
(d) Hence show that Newton’s method never works unless x0 = 0. However, given ε > 0, there

will be an N so large that |xn+1− xn|< ε for n≥ N.
(e) Sketch h and try to explain this nasty behaviour.

K. Three towns are situated around the shore of a circular lake of radius 1 km. The largest town,
Alphaville, claims one-half of the area of the lake as its territory. The town mathematician
is charged with computing the radius r of a circle from the town hall (which is right on the
shore) that will cut off half the area of the lake. Compute r to seven decimal places.
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HINTS: Let T denote the town hall, and O the centre of the lake. The circle of radius r meets
the shoreline at X and Y . The area enclosed is the union of two segments of circles cut off by
the chord XY . Express r and the area A as functions of the angle θ = ∠OT X .
MORE HINTS:(1) Show that (i) 1 < r < 2; (ii) ∠TOX = π−2θ ; (iii) the area of the segment
of a circle of radius ρ cut off by a chord that subtends an angle α is ρ2(α−sinα)/2. (2) Show
that r = 2cosθ and A(θ) = 2π − 4θ sin2

θ − 2sin(2θ). (3) Solve A(θ) = π using Newton’s
method. Show error estimates.

11.3 Orbits of a Dynamical System

There are several possibilities for the structure of the orbit of a point x0. Fixed
points, which we have discussed in detail, have the simplest possible orbits, namely
O(x0) = {x0}. Almost as good as fixed points from the point of view of dynamics,
and certainly more common, are periodic points. We say that x∗ is a periodic point
if there is a positive integer n such that T nx∗ = x∗. The smallest positive n for which
this holds is called the period. Notice that x∗ is a fixed point of T n. We can therefore
call x∗ an attractive periodic point or a repelling periodic point for T if it is an
attractive or repelling fixed point of T n. Because T maps an open set around x∗ into
an open set around T x∗, it is easy to check that points in the same periodic orbit are
either all attractive or all repelling.

Let us discuss the terminology of dynamical systems by examining a particu-
lar map, namely the map T x = 1.8(x− x3) that we discussed in Section 11.1. Our
example contains an orbit of period 2, namely {±

√
14/3}. Indeed, it is an easy

calculation to see that

T (
√

14/3) =−
√

14/3 and T (−
√

14/3) =
√

14/3.

See Figure 11.4. This is a repelling orbit, since

(T 2)′(
√

14/3) = T ′(T
√

14/3)T ′(
√

14/3) = (1.8−5.4(14/3))2 = 547.56 > 1.

A point x is called an eventually periodic point if T nx eventually belongs to
a period. Consider our example again. Notice that T (1) = 0. So T n(1) = 0 for all
n≥ 1. The equation T x = 1 has a solution that is the root of the cubic

1 = 1.8x−1.8x3.

This has a solution r, since every real polynomial of odd degree has a root by Exer-
cise 5.6.D and we may calculate r≈−1.20822631883. Then with x0 = r, we obtain
x1 = T x0 = 1 and x2 = T (1) = 0, and so x0 = T nx0 = 0 for all n ≥ 2. Similarly,
we have a sequence (rn) of points such that T n(rn) = 0, such as r0 = 0, r1 = 1,
r2 ≈ −1.20823, r3 ≈ 1.24128. Observe that rn is close to (−1)n−1

√
14/3 for large

n, in the sense that rn− (−1)n−1
√

14/3 converges to zero.
Likewise, there are points that are eventually mapped onto the two attractive fixed

points ±2/3.
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x

y

x0x1 x2x3x4

FIG. 11.4 Graph of T x = 1.8(x− x3) showing period-2 orbit and a nearby orbit.

Figure 11.5, called a phase portrait, attempts to show graphically the behaviour
of our mapping T . Rather than using a graph, it represents the space as a line and
the function as arrows taking a point x to T x. In particular, you should observe
that except for a sequence of points that eventually map to 0, every other point in
(−
√

14/3,
√

14/3) has an orbit that converges to one of the two attractive fixed
points ±2/3. Notice that except for the two arrows for the period-2 orbit, arrows
above the line show the first few terms of the sequence (rn) mentioned previously,
while those below the line show the “nearby” orbit from Figure 11.4.

Of course, this example does not exhaust the possibilities for the behaviour of an
orbit. It can happen that the orbit of a single point is dense in the whole space. A
point x is called a transitive point if O(x) = X . The following examples are more
complicated than our first one and exhibit this new possibility as well as having
many periodic points.

11.3.1. EXAMPLE. Let the space be the unit circle T. We can describe a typ-
ical point on the circle by the angle θ it makes to the positive real axis in radians.
If θ is changed to θ + 2nπ , the point determined remains the same. So this angle
is determined “up to a multiple of 2π .” We may add two angles, or multiply them
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0
√

14/3−
√

14/3 2/3

−2/3

FIG. 11.5 Phase portrait of T x = 1.8(x− x3)
.

by an integer. The resulting point does not depend on how we initially measure the
angle. (Notice that when multiplying by a fraction such as 1/2, the answer does de-
pend on which way the angle is represented. Half of 1 does not determine the same
point as half of 1+2π .) We call this arithmetic modulo 2π . We will write

θ ≡ ϕ (mod 2π)

to mean that θ−ϕ is an integer multiple of 2π , which is to say that θ and ϕ represent
the same point on the circle. In this way, we may think of the unit circle T as the
real line wrapping around the circle infinitely often, meeting up at the same point
every 2π . This will be convenient for calculation.

Consider the rotation map Rα through an angle α given by

Rα θ ≡ θ +α (mod 2π).

It is rather easy to analyze what happens here. The only way to obtain a periodic
point is to have

θ ≡ Rn
α θ = θ +nα (mod 2π).

This requires nα to be an integer multiple of 2π . When this occurs and n is as small
as possible, it follows that every point in T has period n. Indeed, Rn

α = id, the identity
map. This is the case for those α that are a rational multiple of 2π . Equivalently, Rα

is periodic if and only if α/2π ∈Q.
On the other hand, for all irrational values of α/2π , Rα has no periodic points.

We will show that the orbit of every point is dense in the circle. Indeed, suppose that
ε > 0 and that θ and ϕ are two points on the circle. We wish to find an integer n
such that |Rn

α θ −ϕ|< ε .
To do this, we first solve a simpler problem. We will find a positive integer m

such that |Rm
α 0| < ε . This says that while there are no periodic points, points do

come back very close to where they start every once in a while. Our method uses
the Pigeonhole Principle.

Pick an integer N so large that 2π < Nε . Divide the circle into N intervals Ik =
[(k−1)2π/N,k2π/N) for 1≤ k ≤ N. Note that each interval has length 2π/N < ε .
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Now consider the N +1 points

{x j ≡ R j
α 0 = jα (mod 2π) : 0≤ j ≤ N}.

These N +1 points are distributed in some way among the N intervals Ik. Since there
are more points than intervals, the Pigeonhole Principle asserts that some interval
contains at least two points. Let i < j be two integers in our set such that xi and
x j both lie in some interval Ik. These two points are therefore close to each other.
Precisely,

|x j− xi|<
2π

N
< ε.

Now we use the fact that Rα is isometric, meaning that

|Rα θ −Rα ϕ|= |θ −ϕ|

for any two points θ ,ϕ ∈ T. This just says that the map Rα is a rigid rotation that
does not change the distance between points. Let m = j− i. Hence

|Rm
α 0|= |x j−i− x0|= |Ri

α x j−i−Ri
α x0|= |x j− xi|< ε.

It is also important that xm is not 0. This follows because α/2π is irrational. So
we observe that

Rkm
α 0≡ kxm (mod 2π) for k ≥ 0

forms a sequence of points that move around the circle in steps smaller than ε . So it
is possible to choose k such that kxm is close to ϕ−θ , and thus

|ϕ−Rkm
α θ |= |(ϕ−θ)−Rkm

α 0|= |(ϕ−θ)− kxm|< ε.

So every orbit is dense in the whole circle.

11.3.2. EXAMPLE. We will now look at an example that has both interesting
periodic points and transitive orbits. Some of the proofs must be left until later (see
Examples 11.5.5, 11.5.10, and 11.5.14). We shall see that this example is chaotic.
While this word is suggestive of wild behaviour, it actually has a precise mathemat-
ical meaning, which we will explore in Section 11.5.

Consider the map T from T into itself given by T θ = 2θ . This is called the
doubling map on the circle. Essentially this map wraps the circle twice around
itself. That is, the top semicircle [0,π) is mapped one-to-one and onto the whole
circle; and the bottom semicircle [π,2π) is also mapped one-to-one and onto the
whole circle. Thus this map is two-to-one.

A point θ is periodic of period n≥ 1 if

θ ≡ T n
θ = 2n

θ (mod 2π).

This happens if and only if (2n − 1)θ is an integer multiple of 2π . The period of
O(θ) will be the smallest positive integer k such that (2k−1)θ is an integer multiple
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of 2π . Thus the point 2π/(2n−1) is periodic of period n, and

O

(
2π

2n−1

)
=
{

2 jπ

2n−1
: 1≤ j ≤ n

}
.

Indeed, every point 2πs/(2n− 1) for every n ≥ 1 and 1 ≤ s ≤ 2n− 1 is a periodic
point, although the period will possibly be a proper divisor of n rather than n itself.
These points are dense in the whole circle. Because the derivative of T is 2 as a map
from R to R, it follows that every periodic point is repelling.

There are eventually periodic points, namely 2πs/(2p(2n− 1)) for p ≥ 1. After
p iterations, these points join the periods identified previously. It is not difficult to
see that this is a complete list of all the periodic and eventually periodic points. So
every other point has infinite orbit. Unlike our first example, these orbits will not
converge to some period, since every periodic point is repelling.

This example also has a dense set of transitive points, although we only outline
the argument. Write a point θ as 2πt for 0 ≤ t < 1. Then write t in binary as t =
(0.ε1ε2ε3 . . .)base 2. Then T kθ ≡ 2πtk (mod 2π), and the binary expansion is tk =
(0.εk+1εk+2εk+3 . . .)base 2. The set of possible limit points of this orbit has little to do
with the first few (say) billion coefficients. So we may use these to specify θ close
to any point in the circle. Now arrange the tail of the binary expansion to include
all possible finite sequences of 0’s and 1’s. Then by applying T repeatedly, each of
these finite sequences eventually appears as the initial part of the binary expansion
of tk. This shows that the orbit is dense in the whole circle.

Exercises for Section 11.3

A. Suppose that x∗ is a point of period n. Show that if x∗ is attracting (or repelling) for T n, then
each T ix∗, i = 0, . . . ,n−1, is an attracting (or repelling) periodic point.

B. Draw a phase diagram of the dynamics of T x = 0.5(x− x3) for x ∈ R.

C. Find the periodic points of the tripling map on the circle: T : T→ T given by T θ = 3θ .

D. Consider T x = a(x− x3) for x ∈ R and a > 0.

(a) Find all fixed points. Decide whether they are attracting or repelling.
(b) Find all points of period-2. HINT: First look first for solutions of T x = −x. To factor

T 2x− x, use the fact that each fixed point is a root to factor out a cubic, and factor out a
quadratic corresponding to the period-2 cycle already found.

(c) Decide whether the period-2 points are attracting or repelling.
(d) Find the three bifurcation points corresponding to the changes in the period-1 and -2 points

(i.e., at which values of the parameter a do changes in the dynamics occur?).
(e) Draw a phase diagram of the dynamics for a = 2.1.

E. Consider the tent map T of [0,1] onto itself by T x =

{
2x if 0≤ x≤ 1

2 ,

2−2x if 1
2 ≤ x≤ 1.

(a) Graph T n for n = 1,2,3,4.
(b) Using the graphs, show there are exactly 2n fixed points for T n. How are they distributed?
(c) Use (b) to show that the periodic points are dense in X .
(d) Show that there are two distinct orbits of period 3.

HINT: Solve T 3x = x for x ∈ [ 1
8 , 1

4 ] and for x ∈ [ 1
4 , 3

8 ].
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(e) Show that there are points of period n for every positive integer n.
(f) Find all points that are not fixed but are eventually fixed. Show that they are dense in X .

F. Let ω(x) =
⋂

n≥0 O(T nx) be the cluster set of the forward orbit of T : X → X .

(a) Show that T maps ω(x) into itself.
(b) Show that O(x) = O(x)∪ω(x).
(c) Show by example that ω(x) can be empty.
(d) If O(x) is compact, show that ω(x) is a nonempty subset of O(x).

G. Suppose that O(x) is compact.

(a) Let n0 be the smallest integer such that T n0 x ∈ ω(x). Prove O(T n0 x) = ω(x) = ω(T n0 x).
(b) If ω(x) is infinite, show that it must be perfect. This contradicts Exercise 4.4.L.
(c) Show that O(x) is a compact set if and only if there is an n0 such that T n0 x is periodic.

H. A dynamical system (X ,T ) is minimal if the only closed sets F with T F ⊂ F are ∅ and X .

(a) Show that (X ,T ) is minimal if and only if every point x ∈ X is a transitive point, meaning
that O(x) is dense in X .

(b) Show that the rotation Rα on the circle T is minimal if and only if α/2π is irrational.

I. Let C be the Cantor set of Example 4.4.8, and represent each point x ∈C in its ternary expan-
sion using only 0’s and 2’s. Define T : C →C by

T 0.

k︷ ︸︸ ︷
2 . . .20εk+2εk+3 . . . = 0.

k︷ ︸︸ ︷
0 . . .02εk+2εk+3 . . .

for k = 0,1, . . . and T 0.22222 . . . = 0.00000 . . . .

(a) Prove that T is continuous and bijective.
(b) Show that O(0) is dense in C.
(c) Prove that (C,T ) is minimal.

11.4 Periodic Points

In this section, we use the Intermediate Value Theorem (5.6.1) to establish the exis-
tence of fixed points and periodic points. This new technique applies more widely
than the Banach Contraction Principle (11.1.6), but it is not constructive, that is, it
does not generally yield a computational scheme.

First, we look at a couple of situations that imply a fixed point.

11.4.1. LEMMA. Suppose that T is a continuous function of a closed bounded
interval I = [a,b] into itself. Then T has a fixed point.

PROOF. Consider the function

f (x) = T x− x for a≤ x≤ b.

Notice that
f (a) = Ta−a≥ 0 and f (b) = T b−b≤ 0.
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By the Intermediate Value Theorem (5.6.1), there is a point x∗ in [a,b] such that

0 = f (x∗) = T x∗ − x∗.

Thus x∗ is the desired fixed point. �

The second result is very similar, but instead of mapping an interval into itself,
we have an interval mapping onto itself.

11.4.2. LEMMA. Let T be a continuous function on a closed bounded interval
I = [a,b] such that T (I) contains I. Then T has a fixed point.

PROOF. Again consider the function f (x) = T x− x for a ≤ x ≤ b. By hypothesis,
there are points c and d such that T c = a and T d = b. Thus

f (c) = T c− c = a− c≤ 0,

f (d) = T d−d = b−d ≥ 0.

Again by the Intermediate Value Theorem, there is a point x∗ in [c,d] such that

0 = f (x∗) = T x∗ − x∗.

So x∗ is the desired fixed point. �

11.4.3. EXAMPLE. Consider the family of quadratic maps Qax = a(x−x2) for
a > 1 known as the logistic functions. These maps are inverted parabolas with zeros
at 0 and 1 and a maximum at (1/2,a/4). Each map Qa takes positive values on [0,1]
and negative values elsewhere. The derivative is Q′

a(x) = a(1−2x). It is evident that
|Q′

a(x)|> 1 on R\ [0,1]. So it is not difficult to show that if x < 0 or x > 1, then Qn
ax

diverges to −∞. For this reason, we restrict our domain to the interval I = [0,1].
There are two cases. Suppose that a ≤ 4. Then Qa maps I into itself. Thus it has

a fixed point by Lemma 11.4.1. On the other hand, if a ≥ 4, then since Qa0 = 0
and Qa 1/2 = a/4 ≥ 1, it follows from the Intermediate Value Theorem that Qa(I)
contains I. So Qa has a fixed point by Lemma 11.4.2.

It will be an added convenience, when the image of one interval contains another,
to find a smaller interval that exactly maps onto the target interval. While this is
intuitively clear, the details need to be checked. The proof is left as an exercise.

11.4.4. LEMMA. Let T : [a,b]→R be a continuous function such that T ([a,b])
contains an interval [c,d]. Then there is a (smaller) interval [a′,b′]⊆ [a,b] such that
T ([a′,b′]) = [c,d] and T ({a′,b′}) = {c,d}.

For closed bounded intervals I and J, we will write I → J to indicate that T (I)
contains J. Let us see how this can be used to find periodic points.
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11.4.5. EXAMPLE. Consider the family of logistic functions Qax = a(x− x2)
acting on I = [0,1] for a ≥ 4. Write I0 = [0, 1

2 ] and I1 = [ 1
2 ,1]. By the argument

in the previous example, Qa(I0) and Qa(I1) both contain I (i.e., I0 → I0 ∪ I1 and
I1 → I0∪ I1).

In particular, I0 → I0 → I1 → I0. Use Lemma 11.4.4 repeated as follows. First find
an interval J2 ⊂ I1 such that Qa(J2) = I0. Then find J1 ⊂ I0 such that Qa(J1) = J2.
Finally, find J0 ⊂ I0 such that Qa(J0) = J1. Then

Q3
a(J0) = Q2

a(J1) = Qa(J2) = I0.

By Lemma 11.4.1, Q3
a has a fixed point in J0, say x0. We will show that this point

has period 3. Indeed, let xi = Qi
ax0, i = 1,2. By construction, Qax2 = Q3

ax0 = x0.
Thus x0 is either a period-3 point or a fixed point. Now x0 and x1 belong to I0 and
x2 belongs to I1. If x0 were a fixed point, it would belong to I0 ∩ I1 = { 1

2}. But
Qa

1
2 = a

4 ≥ 1 is not fixed or even periodic. Thus x2 is different from x0 and x1, and
consequently Qa has an orbit of length 3.

This proof requires a ≥ 4 to work. However, it is actually the case that period-3
orbits begin to appear when a is about 3.8284.

11.4.6. EXAMPLE. Period doubling. Let f be a map from I = [0,1] into itself.
Define a map D f as follows:

D f (x) =


2
3 + 1

3 f (3x) for 0≤ x≤ 1
3

(2+ f (1))( 2
3 − x) for 1

3 ≤ x≤ 2
3

x− 2
3 for 2

3 ≤ x≤ 1.

We claim that with the single exception of a repelling fixed point in the interval
I2 = [ 1

3 , 2
3 ], the periodic orbits of D f correspond to the periodic orbits of f , the

periods are exactly double, and the dynamics (attracting or repelling) of these orbits
are preserved.

Indeed, it is clear from the graphs in Figure 11.6 that there is an (easily computed)
fixed point in the interval I2. Since the function D f has slope −2− f (1)≤−2, this
evidently is a repelling fixed point. Any other point in I2 is mapped farther and
farther from this point until it leaves this middle third.

The interval I1 = [0, 1
3 ] is mapped into I3 = [ 2

3 ,1] and I3 is mapped bijectively
onto I1. These orbits map back and forth between I1 and I3, never intersecting I2.
Since no orbit, other than the fixed point, stays in I2, eventually every orbit (other
than the fixed point) alternates between I1 and I3.

Now notice that if x ∈ [0,1], then

(D f )2(x/3) = D f ( 2
3 + 1

3 f (x)) = 1
3 f (x).

This means that the graph of (D f )2 on I1 is identical to the graph of f on I except
that it is scaled (in both the x-direction and the y-direction) by a factor of one-third.
To make this precise, let σ(x) = x/3 be a map of I onto I1. This map is a continuous
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FIG. 11.6 Applying D to various functions.

bijection with continuous inverse σ−1(x) = 3x. The relation between f and (D f )2

can be expressed as

σ f (x) = (D f )2
σ or (D f )2 = σ f σ

−1.

In Section 11.6, we will see that this relationship is a special case of an important
notion, topological conjugacy.

So if x is a periodic point for f of period n, then x/3 has period n for (D f )2 and
vice versa. Since D f flips back and forth between I1 and I3, it follows that x/3 has
period 2n for D f . Moreover, it will be attracting or repelling as x is.

Now consider a map f0 with a unique attracting fixed point such as the constant
function f0(x) = 1

3 . Define a sequence of functions by

fn+1 = D fn for all n≥ 1.

Then f1 has an attracting orbit of period 2 and has a repelling fixed point in between.
The function f2 will have an attracting orbit of period 4, and in between, there will
be a repelling orbit of period 2 and a repelling fixed point. Recursively we find that
fn has an attracting orbit of period 2n and in between it has repelling orbits of lengths
1,2, . . . ,2n−1.

Exercise 11.4.G outlines how to show that this sequence of functions converges
uniformly to a function f∞ that has one repelling orbit of period 2n for each n ≥ 0
and no other periods.

11.4.7. EXAMPLE. The logistic functions of Example 11.4.3 give a dramatic
demonstration of how periodic points can change as a parameter is varied. Recall
Qa(x) = a(x− x2) on I = [0,1]. When a > 1, there are two fixed points: a repelling
fixed point at 0 and another fixed point at 1−1/a. The derivative

Q′
a
(
1− 1

a

)
= a

(
1−2(1− 1

a )
)

= 2−a
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lies in (−1,1) for 1 < a < 3, and so 1− 1/a is an attractive fixed point. At a = 3,
Q′

3(2/3) = −1. This point is neither attracting nor repelling. Finally, for a > 3, the
fixed point 1−1/a is repelling, since Q′

a(1−1/a) <−1.
Next, we consider points of period 2. Notice that

Q2
ax = a

(
ax(1− x)

)(
1−ax+ax2)

is a polynomial of degree 4. To find the points of period 2, solve the identity Q2
ax = x.

This is made easier because we already know that 0 and 1− 1/a are solutions. So
we may factor x and a

(
x− (1− 1

a )
)

=
(
ax− (a−1)

)
out of Q2

ax− x to obtain

Q2
ax− x = x

(
ax− (a−1)

)(
a2x2− (a2 +a)x+(a+1)

)
.

The quadratic factor has discriminant

(a2 +a)2−4a2(a+1) = a4−2a3−3a2 = a2((a−1)2−4
)
.

This is positive precisely when a > 3. So for 1 < a < 3, there are no period-2 points.
At a = 3, Q2

3x− x = x(3x−2)3 also has no period-2 orbits. However, once a > 3, a
period-2 orbit appears consisting of the points

p± =
a2 +a±a

√
(a−1)2−4

2a2 .

When a parametric family of maps changes its dynamical behaviour, this is called a
bifurcation. The associated value of the parameter is called a bifurcation point.

To compute the derivative of Q2
a at p±, we use the chain rule:

(Q2
a)
′(p+) = Q′

a(Qa p+)Q′
a(p+) = Q′

a(p−)Q′
a(p+)

= a(1−2p−)a(1−2p+)

= a2−2a2(p−+ p+)+4a2(p−p+)

= a2−2(a2 +a)+4(a+1) = 5− (a−1)2.

It follows that this period is attracting for 3 < a < 1+
√

6. Then another bifurcation
occurs at a = 1 +

√
6 when this becomes a repelling orbit. It turns out that at this

point, an attracting orbit of period 4 appears.
However, the story does not stop here. An infinite sequence of bifurcations oc-

curs, at each point of which an attractive period of length 2n appears and the period
of length 2n−1 becomes repelling. This is sometimes called the ‘period-doubling
route to chaos’. The limit of this procedure is a point a∞ ≈ 3.5699. For every a≥ a∞,
Qa has repelling orbits of period 2n for all n ≥ 0. The story continues and yet more
bifurcations happen between a∞ and 4. For example, period-3 orbits first appear at
about 3.8284.
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There is an ordering among the possible periods of orbits that was discovered by
Sharkovskii. In this ordering, the existence of a period-n orbit implies the existence
of all periods that occur later in the ordering:

3 B 5 B 7 B 9 B · · · B 6 B 10 B 14 B · · · B 12 B 20 B 28 B · · ·
B 3 ·2n B 5 ·2n B 7 ·2n B · · · B 3 ·2n+1 B 5 ·2n+1 B 7 ·2n+1 B · · ·
B · · · · · ·B 2n B 2n−1 B · · ·B 4 B 2 B 1.

We will prove a special case of this result, that period 3 is preeminent among all
periods. The general argument follows the same lines but is more complicated.

11.4.8. LEMMA. Let T be a continuous map from an interval I into itself. Sup-
pose that there are intervals such that I1 → I2 → ··· → In. Then there are intervals
Jk ⊂ Ik for 1≤ k ≤ n−1 such that

T (Jk) = Jk+1 for 1≤ k ≤ n−2 and T Jn−1 = In.

PROOF. This is an easy application of Lemma 11.4.4. First, find Jn−1 ⊂ In−1 such
that T (Jn−1) = In. Then use the lemma again to obtain an interval Jn−2 ⊂ In−2 such
that T (Jn−2) = Jn−1. Proceed in this way to define the sequence recursively. �

11.4.9. SHARKOVSKII’S THEOREM.
Suppose that T is a continuous map of an interval I = [a,b] into itself that has an
orbit of period 3. Then T has an orbit of period n for every n≥ 1.

PROOF. For n = 1, we may invoke Lemma 11.4.1 to obtain a fixed point a1.
For n ≥ 2, we need to look at the period-3 orbit, so suppose x1 < x2 < x3 is the

period-3 orbit. Either T x1 = x2 or T x1 = x3. But in the second case, we may consider
the interval with order reversed, in which case x3 is the smallest, and it maps to the
second point x2. So the argument for the first case must equally apply in the second.
Thus we may assume that

x1 < x2 = T x1 < x3 = T x2 and T x3 = x1.

Let I0 = [x1,x2] and I1 = [x2,x3]. It is immediate from the Intermediate Value
Theorem that T I0 contains I1 and T I1 contains I0 ∪ I1. That is, I0 → I1 and I1 → I0
and I1 → I1. By Lemma 11.4.4, there is an interval J0 contained in I0 and there are
intervals J1 and J2 contained in I1 such that

T (J0) = I1, T (J1) = I0, and T (J2) = I1.

So for n = 2, we use the fact that J0 → J1 → J0. From this it follows that T 2(J0)
contains J0. So by Lemma 11.4.2, there is a fixed point a2 of T 2 in J0. We note that
if J0 ∩ J1 is nonempty, it must consist only of the point x2. Since T 2x2 = x1, it is
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not fixed for T 2. Thus a2 is some other point in J0 and so Ta2 6= a2. Hence a2 has
period 2.

Now consider n≥ 4. We will proceed as in Example 11.4.5. Notice that

J0 → J2 → ··· → J2︸ ︷︷ ︸
n−2 copies

→ J1 → J0.

Apply Lemma 11.4.8 to find intervals K0 ⊂ J0, Ki ⊂ J2 for 1 ≤ i ≤ n− 2 and
Kn−1 ⊂ J1 such that

T (Ki) = Ki+1 for 0≤ i≤ n−2 and T (Kn−1) = J0.

In particular, T n(K0) = J0 contains K0. Applying Lemma 11.4.2 again yields a fixed
point an of T n in K0.

We must verify that an has no smaller period. But this is a consequence of a fact
guaranteed by our construction:

T ian ∈ J2 for 1≤ i≤ n−2 and T n−1an ∈ J1.

CLAIM: None of these points is equal to an. Indeed, as in the period-2 case, the
only possible intersection of J0 and J1 ∪ J2 is the point x2. However, were an = x2,
it would follow that J2 would be an interval containing T 2an = x1, which is not
possible. Hence the period of an is exactly n. �

Exercises for Section 11.4

A. Find a continuous function from (0,1) onto itself with no fixed points. Why does this not
contradict Lemma 11.4.1 or 11.4.2?

B. Prove Lemma 11.4.4. HINT: Pick a0 and b0 in [a,b] such that Ta0 = c and T b0 = d. If
a0 < b0, let a′ = sup{x ∈ [a0,b0] : T x = c} and b′ = inf{x ∈ [a′,b0] : T x = d}. Consider the
case a0 > b0 separately.

C. Consider the function T mapping I = [0,4] onto itself by

T x =


2x+2 for 0≤ x≤ 1,

5− x for 1≤ x≤ 2,

7−2x for 2≤ x≤ 3,

4− x for 3≤ x≤ 4.

Figure 11.7 gives the graph of T . Note that {0,2,3,1,4} is a period-5 orbit.

(a) Sketch the graphs of T 2 and T 3.
(b) Show that T has one period-2 orbit.
(c) Show that T has no period-3 orbit. HINT: Show that T 3x > x on [0,2], T 3x < x on [3,4],

and T 3 is monotone decreasing on [2,3].

D. Suppose that T is a continuous map from an interval I into itself. Moreover, suppose that there
are points x1 < x2 < x3 < x4 such that T x1 = x2, T x2 = x3, T x3 = x4, and T x4 ≤ x1. Show
that T has an orbit of period 3. HINT: Let Ik = [xk,xk+1]. Show that I1 → I2 → I3 → I1.
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x2 4

y

2

4

y = T (x)

FIG. 11.7 The graph of T .

E. Give an example of a map with an orbit of period 6, but no odd orbits.

F. This is a computer experiment for the family of logistic maps Qa.

(a) Let a = 3.46. Use a computer to calculate x = Q100
a (0.5). Then compute Qax, Q2

ax,
Q3

ax, . . . ,Q10
a x. What do you observe? Why did this happen?

(b) Try this for a = 3.55. What is different now? What bifurcation occurred?
(c) Do the same for a = 3.83. What do you observe? Try this for a = 3.8 and a = 3.9. The

two sequences do not behave in the same way, but the reasons are different.

G. Consider the period-doubling method of Example 11.4.6. Start with the constant function
f0(x) = 1

3 . Define a sequence of functions by fn+1 = D fn for n≥ 0.

(a) Show that fn+1(x) = fn(x) for all 3−n ≤ x≤ 1 and 1−3−n ≤ fn(x)≤ 1 for all 0≤ x≤ 3−n.
(b) Use part (a) to show that fn converges uniformly to a continuous limit function f∞.
(c) Calculate the point xn of intersection between the line y = 1− 3−n + x and the graph of

fn+1(x). Show that this is a point of period 2n for f∞.
(d) Show that these are the only periods of the function f∞.

11.5 Chaotic Systems

In this section, we will define and examine chaotic systems, which are systems of
striking complexity with seemingly “wild” behaviour. The surprise is that this com-
plexity arises in seemingly simple situations, as the examples of this section will
show. In mathematical physics, it was an important insight that very simple, com-
monly occurring differential equations exhibit chaotic behaviour. Part of the defi-
nition of chaos is that very small perturbations in initial conditions lead to wildly
different orbits. For example, this phenomenon makes detailed weather prediction
over the long term impossible, even if it is weather produced in a laboratory using
an apparently simple model. This is also the reason that water flowing in a river
produces complicated eddying that is constantly changing and unpredictable.

The mathematical notion of chaos depends on three things. The first is a dense
set of periodic points. The other two items are new, and we study them in turn.
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11.5.1. DEFINITION. A dynamical system T mapping a set X into itself is
topologically transitive if for any two nonempty open sets U and V in X , there is
an integer n≥ 1 such that T nU ∩V is nonempty.

11.5.2. PROPOSITION. For a dynamical system T mapping a set X into itself,
topological transitivity is equivalent to the following: For each x,y ∈ X and ε > 0,
there are a point z ∈ X and an integer n≥ 1 such that

‖x− z‖< ε and ‖y−T nz‖< ε.

PROOF. To see this, first assume that T is topologically transitive. Given x,y ∈ X
and ε > 0, take U = Bε(x) and V = Bε(y). Transitivity provides n such that T nU ∩V
is nonempty. Pick z ∈U such that T nz ∈V , and we are done.

Conversely, let nonempty open sets U and V be given. Pick points x ∈ U and
y ∈V . Since U and V are open, there is an ε > 0 such that

Bε(x)⊂U and Bε(y)⊂V.

Let z and n ≥ 1 be chosen such that z ∈ Bε(x) and T nz ∈ Bε(y). Then T nz belongs
to T nU ∩V . �

If there is a transitive point x0, meaning that O(x0) is dense in X , then T is
topologically transitive. To see this, suppose x,y ∈ X and ε > 0 are given, then pick
m such that ‖x−T mx0‖ < ε . Notice that the orbit O(T mx0) is the same as O(x0)
except for the first m points, and hence it is also dense (explain this). So there is
another integer n≥ 1 such that ‖y−T m+nx0‖< ε . So z = T mx0 does the job.

It is perhaps a surprising fact that the converse is true. We require that X be
infinite just to avoid the trivial case in which X consists of a single finite orbit. The
proof depends on the Baire Category Theorem, from Section 9.3.

11.5.3. THE BIRKHOFF TRANSITIVITY THEOREM.
If a mapping T is topologically transitive on an infinite closed subset of Rk, then it
has a dense set of transitive points.

PROOF. Let {Vn : n ≥ 1} be a collection of open sets with the property that every
open set V contains one of these Vn. For example, let {xn : n≥ 1} be a dense subset
of X in which every point in this set is repeated infinitely often. Then the sets Vn =
B1/n(xn) have this property (verify!).

For each Vn, the set Un = {x ∈ X : T kx ∈ Vn for some k ≥ 1} is the union of the
open sets T−k(Vn) for k ≥ 1, and thus is open. Since T is topologically transitive,
given any open set U , there is some k≥ 1 such that T kU∩Vn is nonempty. Therefore,
Un∩U 6= ∅, and thus Un is dense.

Consider R =
⋂

n≥1 Un. Take any point x0 in R. For each n≥ 1, there is an integer
k such that T kx0 ∈Vn. Therefore, O(x0) intersects every Vn. This shows that O(x0)
is dense. So R is the set of transitive points of T . Since R is the intersection of
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countably many dense open sets, the Baire Category Theorem (9.3.2) shows that R
is dense in X . �

11.5.4. EXAMPLE. In Example 11.3.1, if α/2π is not rational, then the ir-
rational rotation Rα of the circle T has transitive points. Hence it is topologically
transitive. Indeed, every point is transitive.

11.5.5. EXAMPLE. In Example 11.3.2, the map T θ = 2θ (mod 2π) was
shown to have a dense set of repelling periodic points, and we outlined how to show
that it has a dense set of transitive points. This would imply that it is topologically
transitive. We will verify this again directly from the definition.

Let U and V be nonempty open subsets of the circle. Then U contains an interval
I of length ε > 0. It follows that T nU contains T nI, which is an interval of length
2nε . Eventually 2nε > 2π , at which point T nI must contain the whole circle. In
particular, the intersection of T nU with V is V itself.

11.5.6. EXAMPLE. Again we consider the quadratic family of logistic maps
Qax = a(x− x2) on the unit interval I for large a. Our arguments will work for
a > 2+

√
5≈ 4.2361. However, more delicate arguments work for any a > 4.

The first thing to notice about the case a > 4 is that Qa does not map I into itself.
Notice that once Qk

ax is mapped outside of [0,1], it remains outside, since Qa maps
(−∞,0)∪ (1,∞) into (−∞,0). We recall from Example 11.4.3 that once a point is
outside [0,1], the orbit goes off to −∞.

There is an open interval

J1 = {x ∈ [0,1] : Qax > 1}

centred around x = 1
2 . The remainder I1 consists of two closed intervals, and each

is mapped one-to-one and onto [0,1]. In particular, in the middle of each of these
closed intervals is an open interval that is mapped onto J1. Hence

J2 = {x ∈ I1 : Q2
ax > 1}

is the union of these two intervals. What remains is the union of four intervals that
Q2

a maps one-to-one and onto [0,1].
Proceeding in this way, we may define

In = {x ∈ [0,1] : Qn
ax ∈ [0,1]}

and
Jn = {x ∈ In−1 : Qn

ax > 1}.

See Figure 11.8 for an example. Notice that In = [0,1]\
⋃n

k=1 Jk consists of the union
of 2n disjoint intervals and Qn

a maps each of these intervals one-to-one and onto
[0,1]. We call these 2n intervals the component intervals of In.

We are interested in the set
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Xa = {x ∈ [0,1] : Qn
ax ∈ [0,1] for all n≥ 1}.

If x ∈ Xa, then it is clear that Qax remains in Xa. So this set is mapped into itself,
making (Xa,Qa) a dynamical system.

From our construction, we see that Xa =
⋂

n≥1
In. In fact, this looks a lot like the

construction of the Cantor set C (Example 4.4.8) and Xa has many of the same
properties. By Cantor’s Intersection Theorem (4.4.7), it follows that Xa is nonempty
and compact. We will show that it is perfect (no point is isolated) and nowhere dense
(it contains no intervals). A set with these properties is often called a generalized
Cantor set, or sometimes just a Cantor set.

To simplify the argument, we will assume that a > 2+
√

5≈ 4.236.

11.5.7. LEMMA. If a > 2 +
√

5, then c := minx∈I1 |Q′
a(x)| > 1. Thus each of

the 2n component intervals of In has length at most c−n.

PROOF. The graph of Qa is symmetric about the line x = 1
2 . The set I1 consists of

two intervals [0,s] and [1−s,1], where s is the smaller root of a(x−x2) = 1, namely

s =
a−

√
a2−4a
2a

=
1
2
−
√

a2−4a
2a

.

Note that s is a decreasing function of a for a ≥ 4. Also, |Q′
a(x)| = a|1− 2x| is

decreasing on [0, 1
2 ]. So the minimum value is taken at s, which is

c = Q′
a(s) =

√
a2−4a =

√
(a−2)2−4.

This is an increasing function of a and takes the value 1 when a2− 4a = 1. Rear-
ranging, we have (a− 2)2 = 5, so that a = 2 +

√
5. Any larger value of a yields a

value of c greater than 1.
We will verify that the intervals in In have length at most c−n by induction. For

n = 0, this is clear. Suppose that the conclusion is valid for n− 1. Notice that Qa
maps each component interval [p,q] of In onto an interval of In−1. The Mean Value

x

y
1

J1J2 J2J3J3 J3 J3

FIG. 11.8 The graph of Q5, showing J1, J2, and J3.
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Theorem implies that there is a point r between p and q such that∣∣∣∣Qa(q)−Qa(p)
q− p

∣∣∣∣= |Q′
a(r)| ≥ c.

Hence |q− p| ≤ c−1|Qa(q)−Qa(p)| ≤ c−1c1−n = c−n. �

We can apply this to any interval contained in Xa. Since it would also be an
interval contained in In for all n≥ 1, it must have zero length. So Xa has no interior.

Now let x be a point in Xa. It is clear from the construction of Xa that the endpoints
of each component interval of In belongs to Xa. (In fact, these are eventually fixed
points whose orbits end at 0.) If x is not the left endpoint of one of the intervals in
some In, let xn be the left endpoint of the component interval of In that contains x.
By Lemma 11.5.7, it follows that |x− xn| ≤ c−n and so x = lim

n→∞
xn. If x happens to

be a left endpoint, then use the right endpoints instead. Hence Xa is perfect. This
verifies our claim that Xa is a Cantor set.

Now we are ready to establish topological transitivity.

11.5.8. PROPOSITION. If a > 2 +
√

5, the quadratic map Qa = a(x− x2) is
topologically transitive on the generalized Cantor set Xa.

PROOF. Suppose that x,y ∈ Xa and ε > 0. Choose n so large that c−n < ε , and let J
be the component interval of In containing x. Then since J has length at most c−n, it
is contained in (x−ε,x+ε). Now Qn

aJ is the whole interval I. Pick z to be the point
in J such that Qn

az = y. Since y belongs to Xa, it is clear that the orbit of z consists of
a few points in [0,1] together with the orbit of y, which also remains in I. Therefore,
z belongs to Xa. We have found a point z in Xa near x that maps precisely onto y via
Qn

a. Therefore, Qa is topologically transitive on Xa. �

The third notion we need is the crucial one of sensitive dependence on initial
conditions. Roughly, it says that for every point x we can find a point y, as close as
we like to x, such that the orbits of x and y are eventually far apart. This means that
no measurement of initial conditions, however accurate, can predict the long-term
behaviour of the orbit of a point.

11.5.9. DEFINITION. A map T mapping X into itself exhibits sensitive de-
pendence on initial conditions if there is a real number r > 0 such that for every
point x ∈ X and any ε > 0, there is a point y ∈ X and n≥ 1 such that

‖x− y‖< ε and ‖T nx−T ny‖ ≥ r.

11.5.10. EXAMPLE. Consider the circle-doubling map T θ ≡ 2θ (mod 2π)
again. It is easy to see that this map has sensitive dependence on initial conditions.
Indeed, let r = 1. For any ε > 0 and any θ ∈ T, pick any other point ϕ 6= θ with
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|θ −ϕ|< ε . Choose n such that 1≤ 2n|θ −ϕ| ≤ 2. Then it is clear that

|T n
θ −T n

ϕ|= 2n|θ −ϕ| ≥ 1.

11.5.11. EXAMPLE. On the other hand, the rotation map Rα of the circle T
through an angle α is rigid: |T nθ −T nϕ|= |θ −ϕ| for all n≥ 1. So this map is not
sensitive to initial conditions.

11.5.12. PROPOSITION. When a > 2+
√

5, then the quadratic logistic map
Qax = a(x− x2) exhibits sensitive dependence on initial conditions on the general-
ized Cantor set Xa.

PROOF. Set r = 1
2 . Given x ∈ Xa and ε > 0, we find as before an integer n and a

component interval J of In that is contained in (x− ε,x + ε). Then Qn
a maps J one-

to-one and onto [0,1]. In particular, the two endpoints y and z of J are mapped to 0
and 1. So

|Qn
az−Qn

ax|+ |Qn
ax−Qn

ay|= 1.

So max
{
|Qn

az−Qn
ax|, |Qn

ax−Qn
ay|
}
≥ 1

2 as desired. �

Now we can define chaos.

11.5.13. DEFINITION. We call (X ,T ) a chaotic dynamical system if

(1) The set of periodic points is dense in X .
(2) T is topologically transitive on X .
(3) T exhibits sensitive dependence on initial conditions.

This definition demands lots of wild behaviour. In order for the periodic points
to be dense, there need to be infinitely many distinct finite orbits. The existence of
transitive points already means that orbits are distributed everywhere throughout X .
Sensitive dependence on initial conditions means that orbits that start out nearby
can be expected to diverge eventually.

These notions are interrelated. For any infinite metric space, the conditions of
dense periodic points and topological transitivity together imply sensitive depen-
dence on initial conditions. The proof is elementary but delicate; see [38]. However,
(2) and (3) do not imply (1), nor do (1) and (3) imply (2). But if the space X is an
interval in R, then (2) implies both (1) and (3); a simple proof of this result is given
in [43]. Some authors drop condition (1), arguing that it is the other two conditions
that are paramount.

11.5.14. EXAMPLE. We have shown that the circle-doubling map has a dense
set of periodic points in Example 11.3.2. In Example 11.5.5, it was shown to be
topologically transitive. And in Example 11.5.10, it was seen to have sensitive de-
pendence on initial conditions. Hence this system is chaotic.
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11.5.15. EXAMPLE. The quadratic family Qax = a(x− x2) of logistic maps
is chaotic for a > 2 +

√
5. Indeed, Proposition 11.5.8 established topological tran-

sitivity and Proposition 11.5.12 established sensitive dependence on initial condi-
tions. In Example 11.4.5, it was established that Qa has orbits of period 3. Hence by
Sharkovskii’s Theorem (11.4.9), there are orbits of every possible period. But this
does not show that they are dense.

It suffices to show that each component interval J of In contains periodic points,
since as we have argued before, every interval (x−ε,x+ε) contains such an interval.
Now Qn

a maps J onto I, which contains J. Therefore, by Lemma 11.4.2, there is a
point y ∈ J that is a fixed point for Qn

a. So y is a periodic point (whose period is a
divisor of n). Moreover, y must belong to Xa, since the whole orbit of y remains in
[0,1]. It follows that periodic points are dense in Xa and that Qa is chaotic.

In fact, all of this analysis remains valid for a > 4. But because the Mean Value
Theorem argument based on Lemma 11.5.7 is no longer valid, the proof is different.

For our last example in this section, we will do a complete proof of chaos for a
new system that will be useful in the next section for understanding the relationship
between the quadratic maps Qa for large a.

11.5.16. EXAMPLE. Recall from Example 4.4.8 that the middle thirds Cantor
set C can be described as the set of all points x in [0,1] that have a ternary expansion
(base 3) using only 0’s and 2’s. It is a compact set that is nowhere dense (contains
no intervals) and perfect (has no isolated points). It was constructed by removing,
in succession, the middle third of each interval remaining at each stage. The end-
points of the removed intervals belong to C and consist of those points that have two
different ternary expansions. However, only one of these expansions consists of 0’s
and 2’s alone.

Define the shift map on the Cantor set C by

Sy = 3y (mod 1) = (0.y2y3y4 . . .)base 3 for y = (0.y1y2y3 . . .)base 3 ∈C.

It is easy to see that

Sy =

{
3y for y ∈C∩ [0,1/3],
3y−2 for y ∈C∩ [2/3,1].

It follows that S is a continuous map. Moreover, the range is contained in C since
every point in the image has a ternary expansion with only 0’s and 2’s. Clearly, S
maps each of the sets C∩ [0,1/3] and C∩ [2/3,1] bijectively onto C.

Let us examine the dynamics of the shift map, starting with periodic points. A
moment’s reflection shows that Sny = y if and only if yk+n = yk for all k≥ 1. That is,
y has period n exactly when the ternary expansion of y is periodic of period n. There
are precisely 2n points such that Sny = y. Indeed, the first n ternary digits a1, . . . ,an
form an arbitrary finite sequence of 0’s and 2’s, and this forces
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y = (0.a1 . . .ana1 . . .ana1 . . .an . . .)base3

=
n

∑
k=1

ak3−k(1+3−n +3−2n + · · ·
)

=
1

1−3−n

n

∑
k=1

ak3−k.

From this, it is evident that the set of periodic points is dense in C. Indeed, given
y = (0.y1y2y3 . . .)base3 in C and ε > 0, choose N so large that 3−N < ε . Then let x be
the periodic point determined by the sequence y1, . . . ,yN . Then x and y both belong
to the interval [(0.y1y2 . . .yN)base3,(0.y1y2 . . .yN)base3 +3−N ], which has length 3−N .
Hence |x− y| ≤ 3−N < ε .

The set of aperiodic points that are eventually fixed is also dense. Indeed, the
points in C that are eventually mapped to 0 are exactly those with a finite ternary
expansion, namely

y = (0.y1 . . .yn)base3 = (0.y1 . . .yn000 . . .)base3.

Next we will show that the set of transitive points is dense. The hard part is to
describe one such point. List all finite sequences of 0’s and 2’s by first listing all
sequences of length 1 in increasing order, then those of length 2, and so on:

0, 2, 00, 02, 20, 22, 000, 002, 020, 022, 200, 202, 220, 222,

0000, 0002, 0020, 0022, 0200, 0202, 0220, 0222, . . . .

String them all together to give the infinite ternary expansion of a point:

a = (0.02000220220000020200222002022202220000000200200022 . . .)base3.

Suppose y is any point in C and ε > 0 is given. Pick an integer N such that 3−N < ε .
Somewhere in the expansion of a we can find the first N digits of y in sequence, say
starting in the (p+1)st place of a. Then Spa starts with these same N digits. Hence

|y−Spa| ≤ 3−N < ε.

To see that the transitive points are dense, notice that if SNx = a, then x is also
transitive. So let x be the point beginning with the first N digits of y followed by the
digits of a. Then x is transitive. As before, we obtain that |x− y|< ε .

Finally, we need to verify that S has sensitive dependence on initial conditions.
This is easy. Let r = 1/4. If x and ε > 0 are given, choose N > 1 such that 3−N < ε .
Let y be the point in C obtained by changing the ternary expansion of x only in the
Nth digit from a 0 to a 2, or vice versa. Then |x− y| < ε . Also SN−1x and SN−1y
differ in the first ternary digit. So one is in T0 and the other in T1. In particular,∣∣SN−1x−SN−1y

∣∣≥ 1
3

> r.

We conclude that the shift map S is chaotic.
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Exercises for Section 11.5
A. If T is topologically transitive on X , show that X either is infinite or consists of a single orbit.

B. Consider the tent map of Exercise 11.3.E, which has a dense set of periodic points.

(a) What is the slope of T n(x)? Use this to establish sensitive dependence on initial conditions.
(b) Show that T n maps each interval [k2−n,(k +1)2−n] onto [0,1]. Use this to establish topo-

logical transitivity.
(c) Hence conclude that the tent map is chaotic.

C. Consider the big tent map Sx =

{
3x for x≤ 1

2 ,

3(1− x) for x≥ 1
2 .

(a) Sketch the graphs of S, S2, and S3.
(b) What are the dynamics for points outside of [0,1]?
(c) Describe the set In = {x ∈ [0,1] : Snx ∈ [0,1]}.
(d) Describe the set X =

⋂
n≥1 In.

(e) Show that T n has exactly 2n fixed points, and they all belong to X . Hence show that the
periodic points are dense in X .

(f) Show that S is chaotic on X . HINT: Use the idea of the previous exercise.

D. Let f∞ : [0,1]→ [0,1] be the function constructed in Exercise 11.4.G.

(a) Show that the middle thirds Cantor set C (Example 4.4.8) is mapped into itself by f∞.
HINT: Let Sn denote the nth stage in the construction of C, consisting of 2n intervals of
length 3−n. Show that f∞(Sn) = Sn.

(b) Show that if x is not periodic for f∞, then f k
∞(x) eventually belongs to each Sn. Hence the

distance from f k
∞(x) to C tends to zero.

(c) Show that there are no periodic points in C.
(d) Show that f∞ permutes the 2n intervals of Sn in a single cycle, so that the orbit of a point

x ∈ Sn intersects all 2n of these intervals.
(e) Use (d) to show that the orbit of every point in C is dense in C. In particular, f∞ is topo-

logically transitive on C.
(f) Use (d) to show that f∞ does not have sensitive dependence on initial conditions.

11.6 Topological Conjugacy

In this section, we will discuss how to show that two dynamical systems, possibly
on different spaces, are essentially the same. By essentially the same, we mean that
they have the same dynamical system properties. It is convenient to introduce two
new notions that allow us to express the fact that two dynamical systems are the
same map up to a reparametrization.

The notion of homeomorphism encodes the fact that two spaces have the same
topology, meaning roughly that convergent sequences correspond but distances be-
tween points need not correspond.

11.6.1. DEFINITION. Two subsets of normed vector spaces X and Y are said
to be homeomorphic if there is a continuous, one-to-one, and onto map σ : X → Y
such that the inverse map σ−1 is also continuous. The map σ is called a homeo-
morphism.
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11.6.2. EXAMPLE. Let f be a continuous map from [0,1] into itself, and con-
sider when this is a homeomorphism. To be onto, there must be points a and b such
that f (a) = 0 and f (b) = 1. By the Intermediate Value Theorem (5.6.1), f maps
[a,b] onto [0,1]. If [a,b] were a proper subset of [0,1], then the remaining points
would have to be mapped somewhere and f would fail to be one-to-one. Hence we
have either f (0) = 0 and f (1) = 1 or f (0) = 1 and f (1) = 0. For convenience, let
us assume that it is the former for a moment. By the same token, f must be strictly
increasing. Indeed, if there were x < y such that f (y)≤ f (x), then the Intermediate
Value Theorem again yields a point z such that 0≤ z≤ x and f (z) = f (y), destroying
the one-to-one property.

Conversely, if f is a continuous strictly increasing function such that f (0) = 0
and f (1) = 1, then the same argument shows that f is one-to-one and onto. So the
inverse function f−1 is well defined. Moreover, it is evident that f−1 is also strictly
increasing and maps [0,1] onto itself. By Theorem 5.7.6, f−1 is also continuous.
Therefore, f is a homeomorphism of [0,1].

Likewise, if f is a continuous strictly decreasing function such that f (0) = 1 and
f (1) = 0, then it is a homeomorphism.

This example makes it look as though the order on the real line is crucial to estab-
lishing the continuity of the inverse. However, this result is actually more basic and
depends crucially on compactness. In fact, for a bijection f : X → Y between com-
pact subsets of Rd (or indeed, compact subsets of any metric space), the continuity
of f implies the continuity of f−1—see Exercise 5.4.L.

This result is also true if X and Y are compact subsets of a normed vector space,
with the same proof; all we need do is show that each of the theorems and lemmas
in the proof holds for any normed vector space.

11.6.3. EXAMPLE. Let X be a generalized Cantor set in R and let C be the
standard middle thirds Cantor set, both given as the intersection of sets In and Sn,
respectively, which are the disjoint union of 2n intervals with lengths tending to zero:
X =

⋂
n≥0 In and C =

⋂
n≥0 Sn, where each component interval of In contains two

component intervals of In+1. We shall show that X is homeomorphic to C. Moreover,
this homeomorphism may be constructed to be monotone increasing.

For brevity, let Z be the space of all sequences with entries in {0,2}.
We label the component intervals of Sn as in Figure 11.9. A component interval of

Sn is denoted by a finite sequence of 0’s and 2’s. When it is split into two intervals
of Sn+1 by removing the middle third, the new intervals are labeled by adding a
0 to the label of the first interval and a 2 to the second. So, for example, when
T202 = [20/27,7/9] is split, we label the new intervals as T2020 = [20/27,31/81]
and T2022 = [32/81,7/9]. The formula is more transparent in base 3:

T2020 = [0.2020base 3,0.2021base 3] and T2022 = [0.2022base 3,0.2100base 3].

So the label α1 . . .αn specifies the first digits in the ternary expansion of the points
in the interval Tα1...αn .
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T0 = [0, 1
3 ]

T2 = [ 2
3 ,1]

T00 = [0, 1
9 ]

T02 = [ 2
9 , 1

3 ]

T20 = [ 2
3 , 7

9 ]

T22 = [ 8
9 ,1]

T000 = [0, 1
27 ]

T002 = [ 2
27 , 1

9 ]

T020 = [ 2
9 , 7

27 ]

T022 = [ 8
27 , 1

3 ]

T200 = [ 2
3 , 19

27 ]

T202 = [ 20
27 , 7

9 ]

T220 = [ 8
9 , 25

27 ]

T222 = [ 26
27 ,1]

FIG. 11.9 Component intervals of each of S0, S1, and S2.

Recall that each point y of C is determined by the sequence of component inter-
vals of Sn that contains it. Indeed, a typical point of C is given in base 3 as

y = (0.y1y2y3 . . .)base 3 = ∑
k≥1

yk3−k,

where (yk) is a sequence of 0’s and 2’s, i.e., an element of Z. Thus, we have a
bijection between C and Z. Further, y belongs to the intervals Ty1y2...yn for each n≥ 1,
and ⋂

n≥1

Ty1y2...yn = {y}.

Indeed, since the length of the intervals goes to zero, the intersection can contain at
most one point. It is easy to show that the one point must be y.

We now describe X in the same manner. Let the interval components of In be
denoted by Jα1α2...αn for each finite sequence α1α2 . . .αn of 0’s and 2’s. When
this interval is split into two parts by removing an open interval from the interior,
the leftmost remaining interval will be denoted by Jα1α2...αn0 and the rightmost by
Jα1α2...αn2. By hypothesis, each interval Jα1α2...αn is nonempty, and the lengths tend
to 0 as n goes to +∞.

For each sequence a = (αk)
∞

n=1 of 0’s and 2’s in Z, define a point xa in X by

{xa}=
⋂
n≥1

Jα1α2...αn .

Since the lengths of the intervals tend to 0, the intersection may contain at most one
point. On the other hand, using compactness, Cantor’s Intersection Theorem (4.4.7)
guarantees that this intersection is nonempty. So it consists of a single point, say xa.

Conversely, each point x in X determines a unique sequence a = (αk)
∞

n=1 in Z
because there is exactly one component interval of In containing x, which we denote
by Jα1α2...αn . So there is a bijective correspondence between X and Z.
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Define a function τ from X to C by composing the bijection from X to Z with
that from Z to C. That is,

τ(xa) = ∑
k≥1

2αk

3k .

As a composition of bijections, τ is a bijection.
Next we establish the continuity of τ . Let xa ∈ X and ε > 0 be given. Choose

N so large that 3−N < ε . Now xa belongs to Jα1α2...αN . Note that Jα1α2...αN and
IN \ Jα1α2...αN are disjoint closed sets. Let δ be the positive distance between them.
Suppose that x ∈ X and |x− xa| < δ . Then x also belongs to Jα1α2...αN . Hence τ(x)
belongs to Tα1α2...αN . This is an interval of length 3−N containing τ(xa) as well.
Hence

|τ(x)− τ(xa)| ≤ 3−N < ε.

Finally, we invoke Exercise 5.4.L to conclude that τ is a homeomorphism. Alter-
natively, the continuity of τ−1 can be proved in the same way as for τ . Note that the
map τ preserves the order on the 2n intervals in In for every n. It follows easily that
τ is monotone increasing.

Now we study those homeomorphisms between two spaces that carry a dynami-
cal system on one space to a different system on the other.

11.6.4. DEFINITION. Let (X ,S) and (Y,T ) be dynamical systems. They are
said to be topologically conjugate if there is a homeomorphism σ from X onto Y
such that σS = T σ , or equivalently, T = σSσ−1. The map σ is called a topological
conjugacy between S and T .

It is clear that if σ is a topological conjugacy between S and T , then

σSn = T n
σ for all n≥ 1.

Hence if x ∈ X is a periodic point for S with period n, then y = σ(x) will be periodic
for T of the same order. Moreover, the fact that σ is a homeomorphism means that
convergent sequences in X correspond exactly to convergent sequences in Y under
this map. Hence a periodic point y = σ(x) will be attracting or repelling exactly as
x is. Indeed, we have OT (σ(x)) = σ(OS(x)) for every point x ∈ X .

Topological conjugacy is an equivalence relation. First, if σ conjugates S onto T ,
then σ−1 conjugates T back onto S. If R is conjugate to S and S is conjugate to T ,
then R and T are conjugate. Evidently, the identity map id : S → S is a topological
conjugacy from S to itself.

We will study topological conjugacy by examining a few examples.

11.6.5. PROPOSITION. The tent map (Exercise 11.3.E) and the quadratic
map Q4x = 4x−4x2 on [0,1] are topologically conjugate. So Q4 is chaotic on [0,1].
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PROOF. We will pull the appropriate homeomorphism out of the air. So the rest
of this proof will be easy to understand, but it won’t explain how to choose the
homeomorphism.

Let σ(x) = sin2(π

2 x). It is easily checked that σ is strictly increasing and contin-
uous on [0,1] and that σ(0) = 0 and σ(1) = 1. Hence by Example 11.6.2, it follows
that σ is a homeomorphism of [0,1]. Now using Q4x = 4x(1− x), compute

Q4σ(x) = 4sin2(π

2 x)cos2(π

2 x) = sin2(πx).

Likewise,

σ(T x) =

{
sin2(π

2 (2x)
)

= sin2(πx) if 0≤ x≤ 1
2 ,

sin2(π

2 (2−2x)
)

= sin2(π−πx) if 1
2 ≤ x≤ 1.

Thus σT = Q4σ ; and so σ is a topological conjugacy intertwining T and Q4.
By Exercise 11.5.B, the tent map is chaotic. Hence Q4 is also. �

The goal of the rest of this section is to continue our analysis of the quadratic
maps Qa for a > 2+

√
5. We will establish a topological equivalence with the shift

on the Cantor set. Hence these quadratic maps are all topologically equivalent to
each other, so that dynamically they all behave in exactly the same way.

11.6.6. THEOREM. For a > 2 +
√

5, the quadratic maps Qa on the set Xa is
topologically conjugate to the shift S on the Cantor set C.

PROOF. Recall from Example 11.5.6 that Xa is a generalized Cantor set. We will
construct a homeomorphism along the lines of Example 11.6.3, except that the or-
dering will be determined by the dynamics rather than by the usual order on the
line.

Recall the notation from Example 11.5.6. The first step in constructing Xa is the
set

I1 = J0∪ J1 = {x ∈ [0,1] : Qax ∈ [0,1]}.

For each point x in Xa, Qn−1
a x belongs to Xa, and thus to either J0 or J1. Define

the itinerary of x to be the sequence Γ x = γ1γ2 . . . of 0’s and 1’s defined by the
condition

Qn−1
a x ∈ Jγn for all n≥ 1.

The interval Jα1...αn−1 is mapped bijectively by Qn−1
a onto the whole unit interval.

And Xa ∩ Jα1...αn−1 is mapped into Xa, and in particular into I1 = J0 ∪ J1. This di-
chotomy determines the sets Jα1...αn−10 and Jα1...αn−11, as one is mapped onto J0 by
Qn−1

a and the other is mapped onto J1. The order we need to keep track of is this
itinerary ordering, not the usual order on R. This discussion shows that if x and y
both belong to Xa∩Jα1...αn , then the itineraries Γ x and Γ y agree for the first n terms.

Define a map σ from Xa to C by
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σ(x) = yΓ x := ∑
k≥1

2γk

3k .

We will verify that σ is a homeomorphism.
For any x ∈ Xa and ε > 0, choose N such that 3−N < ε . Then x belongs to one of

the Nth-level intervals Jα1...αN . Let δ be the positive distance between this interval
and the remaining IN \ Jα1...αN . Then any y ∈ Xa with |x− y| < δ also belongs to
Jα1...αN . Hence the itinerary of y agrees with x for the first N terms. This means that
σ(x) and σ(y) belong to the same Nth-level interval for C. Hence

|σ(x)−σ(y)| ≤ 3−N < ε.

So σ is continuous.
To see that σ is a bijection, consider any point y ∈ C. As usual, we write y =

0.y1y2 . . .base 3 in ternary using a sequence of 0’s and 2’s. This is the image of all
points x∈ Xa with itinerary Γ = γ1γ2 . . . given by γk = yk/2. However, Γ determines
another unique sequence a = α1α2 . . . by the relation

Qn−1
a Jα1...αn = Jγn for all n≥ 1.

So the points x with itinerary Γ are the points in⋂
n≥1

Jα1...αn .

As we have noted before, this intersection consists of exactly one point; call it xa.
So σ is onto because this set is nonempty for each Γ , and it is one-to-one because
the set is always a singleton.

Now we may apply Exercise 5.4.L to see that σ is a homeomorphism.
We must show that σ intertwines Qa and S. Suppose that x ∈ Xa has itinerary

Γ = γ1γ2γ3 . . . . Then the itinerary of Qax is evidently γ2γ3γ4 . . . because

Qn−1
a Qax = Qn

Ax ∈ Jγn+1 for all n≥ 1.

This is just saying that
σ(Qax) = Sσ(x).

Therefore, Qa is topologically conjugate to the shift. �

11.6.7. COROLLARY. The quadratic maps Qa for a > 2 +
√

5 have a dense
set of transitive points in Xa.

PROOF. This follows from our discussion of the shift in Example 11.5.16. The shift
has a dense set of transitive points. So any map topologically conjugate to the shift
must have such a set as well. �
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11.6.8. REMARK. We have been studying the quadratic logistic maps in detail
throughout this chapter. Our early arguments depended on specific calculations for
these functions. However, all of the arguments for chaos depend only on a few fairly
general properties.

Suppose that f is a function on [0,1] with f (0) = f (1) = 0 that is unimodal,
meaning that f increases to a maximum at a point (x0,y0) and then decreases back
down to (1,0). In order for our arguments to work, all we need is that y0 > 1 and
| f ′(x)| ≥ c > 1 for all x in

I1 = {x ∈ [0,1] : f (x) ∈ [0,1]}.

Then the argument of Example 11.5.6 would apply to show that the set

X = {x ∈ [0,1] : f n(x) ∈ [0,1] for all n≥ 1}

is a Cantor set.
The preceding proof showing that Qa is topologically conjugate to the shift relied

only on the fact that Qn
aJ = [0,1] for every component interval of the nth-level set

In for each n ≥ 1. It is easy to see that this property also holds in the generality of
the unimodal function f . Thus, in particular, f is chaotic on X . This enables us to
recognize chaos in many situations.

A simple example of this that is very similar to the quadratic family is the func-
tion f (x) = 3x− 3x3. However, it is more instructive to look at the quadratic maps
again.

Consider the graph of Q2
3.75 in Figure 11.10. Notice that Q3.75 has a fixed point

at 1− 1/3.75 = 11
15 ; and Q3.75

4
11 = 11

15 as well. On the interval J = [ 4
15 , 11

15 ], Q2
3.75

decreases from ( 4
15 , 11

15 ) to a local minimum at ( 1
2 , 225

1024 ), and increases again to the
point ( 11

15 , 11
15 ). Since 225

1024 ≈ 0.22 < 0.267 ≈ 4
15 , this graph “escapes” the square

J× J. The qualitative behaviour of this portion of the graph is just like that of Qa
for a > 2+

√
5.

To verify that our proof applies, we need to see that the absolute value of the
derivative is greater than 1 on

J1 = {x ∈ J : Q2
3.75(x) ∈ J}.

It is notationally easier to use the generic parameter a and substitute 3.75 for a later.
To compute J1, we first solve the quadratic Qa(x) = 1

a . This has solutions

1
2
±
√

a2−4
2a

.

These are roughly 0.077 and 0.923 for a = 3.75. The points that Q2
a maps to the

endpoints of J1 are seen from the graph to be solutions of

1
2

+

√
a2−4
2a

= Qax = ax−ax2.
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x
1

y

1

FIG. 11.10 The graph of Q2
3.75, with J× J and K×K marked.

This quadratic has solutions

x± :=
1
2
±
√

a2−2a−2
√

a2−4
2a

.

For a = 3.75, we obtain J1 = [0.2667,0.4377]∪ [0.5623,0.7333]. Now the derivative
of Q2

a is monotone increasing on J1, changing sign at x = 0.5, and is symmetric about
the midpoint. So the minimal slope is obtained at the two interior endpoints

(Q2
a)
′(x+) = Q′

a(Qax+)Q′
a(x+) = a2(1−2Qax+)(1−2x+)

= a2

√
a2−4

a

√
a2−2a−2

√
a2−4

a

=
√

(a2−4)(a2−2a−2
√

a2−4)≈ 1.482.

Thus our earlier arguments apply to show that there is a Cantor set X contained
in J on which Q2

3.75 acts chaotically, and is topologically conjugate to the shift map.
Now Q3.75 maps J1 onto the interval K = [.733, .923]. The restriction of Q2

3.75 to
K×K behaves in exactly the same way, and there is another Cantor set Y on which
Q2

3.75 behaves chaotically. Moreover, Q3.75 maps the Cantor set X into Y and vice
versa. From this, it is not difficult to see that Q3.75 acts chaotically on the Cantor set
X ∪Y . See the exercises.

Just as Qa is actually chaotic for a > 4 with a more delicate proof, the same
is true for this analysis of Q2

a. It can be shown that the preceding argument works
whenever the graph in the interval J× J escapes in the middle. This occurs at about
a = 3.6786. So once a > 3.6786, the quadratic map Qa is chaotic on a Cantor set.
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Exercises for Section 11.6

A. Consider the map of [0,2π) onto the circle T by wrapping around exactly once. Show that this
map is continuous, one-to-one, and onto. Show that this is not a homeomorphism. Explain
why this does not contradict Exercise 5.4.L.

B. Show that the circle T is not homeomorphic to the interval [0,1]. HINT: If σ maps T onto
[0,1], show that there are at least two points mapping to each 0 < y < 1.

C. Map the circle to itself by T θ ≡ θ + 2π

n + ε sin(2πnx), where 0 < ε < 1/2πn.

(a) Compute T ′(θ) and deduce that T is a homeomorphism.
(b) Show that 0 and π

n are periodic points.
(c) If x 6∈O(0), prove that dist(T kx,O( π

n )) is strictly decreasing.
(d) Show that O(0) is a repelling orbit and O( π

n ) is attracting, and that ω(x) = O( π

n ) except
for x ∈O(0).

D. Show that f (x) = 1−2|x| and g(x)−1−2x2 as dynamical systems on [−1,1] are topologically
conjugate as follows:

(a) If ϕ is a homeomorphism of [−1,1] such that ϕ( f (x)) = g(ϕ(x)), show that ϕ is an odd
function such that ϕ(−1) =−1 and ϕ(0) = 0.

(b) Use fixed points to show that ϕ(1/3) = 1/2. Deduce that ϕ(2/3) =
√

3/2.
(c) Guess a trig function with the properties of ϕ and verify that it works.

E. Let f be a homeomorphism of [0,∞) with no fixed points in (0,∞).

(a) Show that f is strictly monotone increasing, and either f (x) < x or f (x) > x for all x > 0.
(b) If f (x) > x, show the orbit of x converges to +∞ and its orbit under f−1 converges to 0.
(c) Show that (0,∞) is the disjoint union of the intervals [ f k(1), f k+1(1)) for k ∈ Z.
(d) Let f and g be two homeomorphisms of [0,∞) with no fixed points in (0,∞). When are

they topologically conjugate? HINT: If f (x) > x and g(x) > x for all x > 0, define ϕ

from [1, f (1)) onto [1,g(1)). Extend this to the whole interval to obtain a conjugacy.

F. (a) Show that every quadratic function p(x) = ax2 + bx + c on R is topologically conjugate
to some q(x) = x2 + d. HINT: Use a linear map τ(x) = mx + e. Compute p(τ(x)) and
τ(q(x)) and equate coefficients to solve for m, e, and d.

(b) For which values of d is q(x) = x2 +d topologically conjugate to one of the logistic maps
Qa for a > 0? What are the dynamics of q when d is outside this range?

G. Suppose that T : I → I is given, and T 2 maps an infinite compact subset X into itself and is
chaotic on X . Show that T is chaotic on X ∪T X .

11.7 Iterated Function Systems

An iterated function system, or IFS, is a multivariable discrete dynamical system.
Under reasonable hypotheses, these systems have a unique compact invariant set.
This invariant set exhibits certain self-similarity properties. Such sets have become
known as fractals.

We begin with a finite set T = {T1, . . . ,Tr} of contractions on a closed subset
X of Rn. This family of maps determines a multivariable dynamical system. The
orbit of a point x will consist of the set of all points obtained by repeated application
of the maps Ti in any order with arbitrary repetition. That is, for each finite word
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i1i2 . . . ik over the alphabet {1, . . . ,r}, the point Ti1Ti2 . . .Tik x is in the orbit O(x). We
wish to find a compact set A with the property that

A = T1A∪T2A∪·· ·∪TrA.

Surprisingly this set turns out to be unique!
A similitude is a map T that is a scalar multiple of an isometry. That is, there is

a constant r > 0 such that ‖T x−Ty‖= r‖x− y‖ for all x,y ∈ X . Such maps are ob-
tained as compositions of rotations, translations, and scalings (see Exercise 11.7.F).
In particular, these maps are similarities in the geometric sense that they map sets to
similar sets and so preserve shape, up to a scaling factor.

In the event that each Ti is a similitude, the fact that A = T1A∪T2A∪ ·· · ∪TrA
means that each TiA is similar to A. This will be especially evident in examples
in which these r sets are disjoint. The process repeats and TiA can be decomposed
as TiA = TiT1A∪ TiT2A∪ ·· · ∪ TiTrA. After k steps, A is decomposed into rk simi-
lar pieces. This symmetry property is called self-similarity and is characteristic of
fractals arising from iterated function systems.

11.7.1. EXAMPLES.
(1) Let X = R2, and consider three affine maps T1x = 1

2 x, T2x = 1
2 x +(2,0), and

T3x = 1
2 x +(1,

√
3). Notice that each Ti is a similitude with scaling factor 1

2 . It is
easy to verify that the fixed points of these three maps are v1 = (0,0), v2 = (4,0),
and v3 = (2,2

√
3), respectively.

Let ∆ be the solid equilateral triangle with these three vertices. A computa-
tion shows that Ti∆ for i = 1,2,3 are the three equilateral triangles with half the
dimensions of the original that lie inside ∆ and share the vertex vi with ∆ . So
∆1 = T1∆ ∪T2∆ ∪T3∆ equals ∆ with the middle triangle removed.

Since ∆1 ⊂ ∆ , it follows fairly easily (see Corollary 11.7.5) that when we iterate
the procedure by setting

∆k+1 = T1∆k ∪T2∆k ∪T3∆k,

a decreasing sequence of compact sets is obtained. The intersection ∆∞ of these sets
is the Sierpiński triangle of Exercise 4.4.J (see Figure 4.4). It has the property that
we are looking for, ∆∞ = T1∆∞∪T2∆∞∪T3∆∞.

(2) Not all fractals are solid figures. The von Koch curve is obtained from an IFS
using the following four similitudes:

T1

[
x
y

]
=

[
1
3 0

0 1
3

][
x
y

]
, T2

[
x
y

]
=

[
1
3

0

]
+

[
1
6

−
√

3
6√

3
6

1
6

][
x
y

]
,

T3

[
x
y

]
=

[
1
2√
3

6

]
+

[
1
6

√
3

6
−
√

3
6

1
6

][
x
y

]
, T4

[
x
y

]
=

[
2
3

0

]
+

[
1
3 0

0 1
3

][
x
y

]
.
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Let B0 = {(x,0) : x ∈ [0,1]} and define Bk+1 = T1Bk ∪ T2Bk ∪ T3Bk ∪ T4Bk.
Graphing these figures shows an increasingly complex curve emerging in which
the previous curve is scaled by 1/3 and used to replace the four line segments of B1.
See Figure 11.11.

FIG. 11.11 The sets B1 through B4.

As we will see, this construction works in great generality, and many sets can be
obtained as the invariant sets for iterated function systems. To establish these facts,
we need a framework, in this case, a metric space. Let K(X) denote the collection
of all nonempty compact subsets of X . This is a metric space with respect to the
Hausdorff metric of Example 9.1.2 5,

dH(A,B) = max
{

sup
a∈A

dist(a,B),sup
b∈B

dist(b,A)
}

.

Our first result is the completeness of K(X) in the Hausdorff metric.

11.7.2. THEOREM. If X is a closed subset of Rn, the metric space K(X) of all
compact subsets of X with the Hausdorff metric is complete.

PROOF. Let An be a Cauchy sequence of compact sets in K(X). Define

A =
⋂
k≥1

⋃
i≥k

Ai.

Observe that for any ε > 0, there is an integer N such that dH(Ai,A j) < ε for all
i, j≥N. In particular, it follows from the definition of the Hausdorff metric that Ai ⊂
(AN)ε for all i≥ N. Consequently, A⊂ (AN)ε . Now, (AN)ε is a closed and bounded
subset of Rn, and so by the Heine–Borel Theorem is compact. It follows that A
is the decreasing intersection of nonempty compact sets; by Cantor’s Intersection
Theorem, A is a nonempty compact set.
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Having shown that A ∈ K(X), it remains only to prove that (Ai) converges to
A. We also have A ⊂ (AN)ε ⊂ ((Ai)ε)ε = (Ai)2ε for all i ≥ N. Conversely, fix ai ∈
Ai with i ≥ N. For each j > i, Ai ⊂ (A j)ε , and thus there is a point a j ∈ A j with
‖ai − a j‖ < ε . Each a j lies in the bounded set (AN)ε . By compactness, there is a
convergent subsequence lim

l→∞
a jl = a. Clearly, ‖ai−a‖ ≤ ε .

We must show that a belongs to A. Now, all but the first few terms of (a jl ) lie in⋃
j≥k A j, and so a belongs to

⋃
j≥k A j. Thus a lies in the intersection of these sets, A.

We deduce that dist(ai,A)≤ ε for each point in Ai and therefore Ai ⊂Aε . Combining
the two estimates, dH(Ai,A)≤ 2ε for all i≥ N. Therefore, Ai converges to A. �

Next we define a map from K(X) into itself by TA = T1A∪T2A∪ ·· · ∪TrA. We
need to verify that TA is in K(X) (i.e., that TA is compact). Each Ti is continuous,
and the continuous image of a compact set is compact (Theorem 5.4.3). The finite
union of compact sets is compact, and thus TA is compact. Our goal is to show that
it is a contraction. We need an easy lemma, whose proof is left as Exercise 11.7.A.

11.7.3. LEMMA. Let A1, . . . ,Ar and B1, . . . ,Br be compact subsets of Rn. Then
dH(A1∪·· ·∪Ar,B1∪·· ·∪Br)≤max

{
dH(A1,B1), . . . ,dH(Ar,Br)

}
.

11.7.4. THEOREM. Let X be a closed subset of Rn and let T1, . . . ,Tr be con-
tractions of X into itself. Let si be the Lipschitz constants for each Ti and set
s = max{s1, . . . ,sr}. Then T is a contraction of K(X) into itself with Lipschitz con-
stant s. Hence there is a unique compact subset A of X such that

A = T1A∪T2A∪·· ·∪TrA.

Moreover, if B is any compact set, we have the estimates

dH(T kB,A)≤ skdH(B,A)≤ sk

1− s
dH(B,T B).

PROOF. Let A and B be any two compact subsets of X . Observe that

dH(TiA,TiB)≤ sidH(A,B).

Indeed, if a ∈ A, then there is a point b ∈ B with ‖a− b‖ ≤ dH(A,B). Hence
‖Tia−Tib‖ ≤ sidH(A,B). So supa∈A dist(Tia,TiB)≤ sidH(A,B). Reversing the roles
of A and B, we arrive at the desired estimate. By Lemma 11.7.3, it follows that
dH(TA,T B)≤ sdH(A,B).

Theorem 11.7.2 shows that (K(X),dH) is a complete metric space. The proof of
the Contraction Principle goes through verbatim in the metric space case. Thus we
may apply the Banach Contraction Principle to T . It follows that there is a unique
fixed point A = TA. By definition of T , this is the unique compact set such that
A = T1A∪T2A∪ ·· · ∪TrA. It is also an immediate consequence of the Contraction
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Principle that A is obtained as the limit of iterates of T applied to any initial set B,
and the estimates follow directly from the estimates in the Contraction Principle. �

11.7.5. COROLLARY. Suppose that T is a contraction of K(X) into itself with
Lipschitz constant s. If B is a compact set such that T B ⊂ B, then the fixed point is
given by A =

⋂
k≥0

T kB.

PROOF. We show by induction that T k+1B⊂ T kB for k ≥ 0. If k = 0, this is true by
hypothesis. Assuming that T kB⊂ T k−1B, we have

T k+1B = T (T kB)⊂ T (T k−1B) = T kB.

By Theorem 11.7.4, the fixed point A is the limit of the sequence T kB. From the
proof of Theorem 11.7.2, this limit is given by

A =
⋂
k≥1

⋃
i≥k

T iB =
⋂
k≥1

T kB.
�

An excellent choice for the compact set B to use in computing the limit set is
modeled by the Sierpiński triangle, Example 11.7.1 (1). Another good choice for
an initial compact set B is a single point {x} that happens to belong to A. Such
points are easy to find. Each Ti is a contraction on X and thus has a unique fixed
point xi that may be found by iteration of Ti applied to any initial point. We give a
significant strengthening of this fact, which hints at the dynamical properties of the
iterated function system.

11.7.6. THEOREM. For each word w = i1i2 . . . il in the alphabet {1, . . . ,r},
there is a unique fixed point aw of Tw = Ti1Ti2 . . .Til . Each aw belongs to the fixed set
A, and the set of all of these fixed points is dense in A.

If a ∈ A, then the orbit O(a) =
{

Twa : w is a word in {1, . . . ,r}
}

is dense in A.

PROOF. First observe that the composition of contractions is a contraction (see Ex-
ercise 11.1.E). Therefore, each Tw is a contraction and hence has a unique fixed
point aw. Moreover, starting with any point x, the iterates T k

wx converge to aw. Take
x to be any point in A. Each Ti maps A into itself, showing that T k

wx is in A for all
k ≥ 0. Since A is closed, the limit aw belongs to A.

Next we prove that the set of these fixed points
{

aw :w is a word in {1, . . . ,r}
}

is
dense in A. Now A = TA = T1A∪·· ·∪TrA. So

A = T 2A =
r⋃

i=1

r⋃
j=1

TiTjA.

Repeating this N times, we obtain
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A = T NA =
⋃

words w of length N

TwA.

Fix ε > 0 and choose N so large that sN diam(A) < ε . By Exercise 11.1.E,
each Tw is a contraction with Lipschitz constant no greater than sN . Consequently,
diam(TwA) ≤ sN diam(A) < ε . If a ∈ A, choose a word w of length N such that
a∈ TwA. Since aw = Twaw, it is clear that aw ∈ TwA as well. Therefore, ‖a−aw‖< ε .
Thus the set of these fixed points is dense in A.

If a is an arbitrary point in A, it follows that Twa belongs to A for every finite
word w. Hence O(a) ⊂ A. Observe that TiTwa = Tiwa is another point in O(a).
Therefore, TO(a)⊂O(a). Let B = O(a). The continuity of T implies that T B⊂ B.
By Corollary 11.7.5, A =

⋂
k≥1 T kB⊂ B⊂ A. Therefore O(a) = A. �

This result allows us graph the fractal approximately as follows. Pick any point a.
This may not lie in A. However, b = T 100

1 a will be very close to the fixed point of T1
assuming reasonable constants. Use a computer to calculate b and then recursively
plot the sets T k{b} for sufficiently many k. This will frequently give an excellent
picture of the fractal. You can make explicit estimates to ensure good convergence.

11.7.7. EXAMPLE. Consider the maps

T1

[
x
y

]
=
[
.5 −.5
.5 .5

][
x
y

]
+
[

1
5

]
, T2

[
x
y

]
=
[
.5 −.5
.5 .5

][
x
y

]
+
[
−1

3

]
.

A simple matrix calculation shows that (−4,6) is the fixed point of T1 and (−4,2) is
the fixed point of T2. We use a computer to plot the sets A0 = {(−4,6),(−4,2)} and
Ak+1 = T1Ak ∪T2Ak for 1≤ k ≤ 11. Since A equals the closed union of all the Ak’s,
this yields a reasonable approximation. Look for the self-symmetry in Figure 11.12.

We finish with a simple result that shows that the sets that are fixed for iterated
function schemes are extremely plentiful.

11.7.8. PROPOSITION. Let C be a compact subset of Rn, and let ε > 0. Then
there is an IFS T = {T1, . . . ,Tr} with fixed set A such that dH(A,C) < ε .

PROOF. Since C is compact, we can find a finite set of points, C0 = {c1, . . . ,cr} such
that the union of the balls Bε(ci), call it B, contains C. Observe that B equals (C0)ε .
Let R be large enough that BR(0) contains B. Define

Tix =
ε

2R
(x− ci)+ ci for 1≤ i≤ r.

Since Tici = ci are fixed points, C0 is contained in the fixed set A of T . Also,
TiB ⊂ TiBR(0) ⊂ Bε(ci) ⊂ B for each i. Therefore by Corollary 11.7.5, we have
A⊂ B = (C0)ε ⊂Cε . In addition, C ⊂ (C0)ε ⊂ Aε . So, dH(A,C) < ε as required. �
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x−5

y

5

FIG. 11.12 Pointillist picture of the ‘twin dragon’ set.

Exercises for Section 11.7

A. (a) Let A1,A2,B1, and B2 be compact subsets of Rn. Show that dH(A1 ∪ A2,B1 ∪ B2) ≤
max

{
dH(A1,B1),dH(A2,B2)

}
.

(b) Use induction to prove Lemma 11.7.3.

B. (a) Let T = {T1, . . . ,Tr} be an IFS on Rn. Suppose that B is compact. Prove that there is a
unique compact set C such that C = B∪TC. HINT: Include a constant map T0(X) = B.

(b) Hence prove that there is always a compact set C containing B such that TC ⊂C.

C. Consider the four maps on R2 given by Tix = Ax + bi for i = 1,2,3,4, where A = 1
2

[ 1 1
−1 1

]
and the vectors bi are (0,0),(1,0), (0,1), and (1,1).
(a) Show that the fixed points of the Ti’s form the vertices of a square S.
(b) Compute T S and T 2S.
(c) Use a computer to generate a picture of the fixed set.

D. (a) Find an IFS on R that generates the Cantor set. HINT: Identify two self maps of C with
disjoint union equal to C.

(b) Find a different IFS that also generates C.

E. Consider the maps T = {T1,T2,T3,T4} given by

T1

[
x
y

]
=
[

0.8 0
0 0.8

][
x
y

]
+
[

0.1
0.04

]
, T2

[
x
y

]
=
[

0.5 0
0 0.5

][
x
y

]
+
[

0.25
0.4

]
,

T3

[
x
y

]
=
[

0.35 −0.35
0.35 0.35

][
x
y

]
+
[

0.27
0.08

]
, T4

[
x
y

]
=
[

0.35 0.35
−0.35 0.35

][
x
y

]
+
[

0.38
0.43

]
.

(a) Use a computer to plot the maple leaf pattern A fixed by T .



292 11 Discrete Dynamical Systems

(b) Plot TiA for 1≤ i≤ 4 to see the self-symmetries.

F. (a) Show that an isometry T with T 0 = 0 is linear.
(b) Show that every similitude T of Rn has the form T x = rUx+a, where r > 0, a ∈ Rn, and

U is a unitary matrix. HINT: Set g(x) = r−1(T x−T 0). Show that (a) applies to g.

G. The fractal dimension of a bounded subset A of Rn is computed by counting, for ε > 0, the
smallest number of cubes of side length ε that cover A; call it N(A,ε). The fractal dimension

is then the limit lim
ε→0+

logN(A,ε)
logε−1 , if it exists.

(a) Compute the fractal dimension of the unit n-cube in Rn.
(b) Show that the fractal dimension is not affected by scaling.
(c) If A⊂ Rn has interior, show that the fractal dimension is n.
(d) Compute the fractal dimension of the Cantor set C.
(e) Compute the fractal dimension of the Sierpiński triangle.
(f) Show that the fractal dimension of {0}∪{1/n : n ∈N} is 1/2. HINT: ε = 1/n−1/(n+1).
(g) Let S ⊂ [0,1] be all real numbers with decimal expansions 0.x1x2 . . . such that if i ∈ N

satisfies 22n ≤ i < 22n+1 for some n ∈N, then xi = 0. By considering ε = 10−2n for n even
or odd, show that

limsup
ε→0+

logN(S,ε)
logε−1 =

2
3
, liminf

ε→0+

logN(S,ε)
logε−1 =

1
3
.

H. The limit point A constructed in the proof of Theorem 11.7.2 is an instance of a general
construction. For (Ak) a sequence of subsets of K, a compact subset of Rn, define

limsupAk =
⋂
k∈N

⋃
m≥k

Am.

(a) Show that a ∈ limsupAk if and only if there are a sequence of integers (ki) diverging to
+∞ and elements ai ∈ Aki such that lim

i→∞
ai = a.

(b) Show that if f : K → L is continuous, L⊂ Rm, then limsup f (Ak) = f (limsupAk).

I. The von Koch curve is the image of a one-to-one path γ : [0,1]→ R2. To show this, we use
the notation of Example 11.7.1 (2) and let B∞ = ∩k∈NBk.

(a) Define f from W =
{
(i1, i2, . . .) : ik ∈ {1,2,3,4}

}
to B∞ by f (i1, i2, . . .) = ∩k∈NTi1i2...ik B0.

Using base-4 expansions of real numbers, show that f induces a well-defined, continuous
map g : [0,1]→B∞.

(b) For each word w in the letters {1,2,3,4}, let Cw be the convex set containing Tw(B0).
Show, for all words v that start with w, that Tv(B0)⊂Cw and hence Cv ⊂Cw. If v and w are
distinct words of the same length, show that Cv ∩Cw contains at most one point. Deduce
that g is one-to-one.



Chapter 12
Differential Equations

In this chapter, we apply analysis to the study of ordinary differential equations,
generally called DEs or ODEs. Ordinary is used to indicate differential equations
of a single variable, in contrast to partial differential equations (PDEs), in which
several variables, and hence partial derivatives, appear. We will see some PDEs in
the chapters on Fourier series, Chapters 13 and 14.

Most introductory courses on differential equations present methods for solving
DEs of various special types. We will not be concerned with those techniques here
except to give a few pertinent examples. Rather we are concerned with why differ-
ential equations have solutions, and why these solutions are or are not unique. This
topic, crucial to a full understanding of differential equations, is often omitted from
introductary courses because it requires the tools of real analysis. In particular, we
will require the Banach Contraction Principle (11.1.6) which was established in the
previous chapter.

12.1 Integral Equations and Contractions

We consider an example that motivates the approach of the next section. Start with
an initial value problem, which consists of two parts:

f ′(x) = ϕ(x, f (x)) for a≤ x≤ b,

f (c) = y0.

The first equation is the DE and the second is an initial value condition. The function
ϕ(x,y) is a continuous function of two variables defined on [a,b]×R and c is a given
point in [a,b]. By solving the DE or, equivalently, solving the initial value problem,
we mean finding a function f (x) that is defined and differentiable on the interval
[a,b] and satisfies both the differential equation and the initial value condition.
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This DE is of first order, since the equation involves only the first derivative. In
general, the order of a differential equation is the highest-order derivative of the
unknown function that appears in the equation.

Because of the subject’s connections to physics, chemistry, and engineering, it
is common in differential equations to suppress the dependence of the function f
on x [i.e., to write f instead of f (x)]. Typically in the sciences, each variable has a
physical significance, and it can be a matter of choice about which is the independent
variable and which is dependent. We will sometimes do this in examples, where
simplifying otherwise complicated expressions seems to be worth the extra demands
this notation makes.

Our first step is to turn this problem into a fixed-point problem by integration.
Indeed, from the fundamental theorem of calculus, our solution must satisfy

f (x) = f (c)+
∫ x

c
f ′(t)dt = y0 +

∫ x

c
ϕ(t, f (t))dt.

Conversely, a continuous solution of this integral equation is automatically differ-
entiable by the Fundamental Theorem of Calculus, and

f ′(x) =
d
dx

(
y0 +

∫ x

c
ϕ(t, f (t))dt

)
= ϕ(x, f (x))

and
f (c) = y0 +

∫ c

c
ϕ(t, f (t))dt = y0.

Thus f satisfies the DE, including the initial value condition.
This integral equation suggests studying a map from C[a,b] into itself defined by

T f (x) = y0 +
∫ x

c
ϕ(t, f (t))dt.

The solutions to the integral equation, if any, satisfy T f = f , and so correspond
precisely to the fixed points of T . The Contraction Principle (11.1.6) is well suited
to this kind of problem. There are also more sophisticated approaches that give
weaker conclusions from weaker hypotheses. However, the Contraction Principle
gives both existence and uniqueness of a solution, when it can be applied. Consider
the following specific example.

12.1.1. EXAMPLE. We will solve the initial value problem

f ′(x) = 1+ x− f (x) for − 1
2 ≤ x≤ 1

2 ,

f (0) = 1.

First convert it to the integral equation for f in C[− 1
2 , 1

2 ]:

f (x) = 1+
∫ x

0
1+ t− f (t)dt = 1+ x+ 1

2 x2−
∫ x

0
f (t)dt.
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Define a map T on C[− 1
2 , 1

2 ] by sending f to the function T f given by

T f (x) = 1+ x+ 1
2 x2−

∫ x

0
f (t)dt.

The solution of the integral equation is a fixed point of T .
To use the Contraction Principle, we must show that T is a contraction. We have

|T f (x)−T g(x)|=
∣∣∣∫ x

0
f (t)−g(t)dt

∣∣∣≤ ∣∣∣∫ x

0
| f (t)−g(t)|dt

∣∣∣
≤
∣∣∣∫ x

0
‖ f −g‖∞ dt

∣∣∣= ‖ f −g‖∞

∫ |x|

0
dt ≤ 1

2
‖ f −g‖∞.

This estimate is independent of x in [− 1
2 , 1

2 ], and thus we obtain

‖T f −T g‖∞ ≤
1
2
‖ f −g‖∞.

Hence T is a contraction.
By the Contraction Principle (11.1.6), there is a unique fixed point f∞ = T f∞

that will solve our DE. Moreover, it shows that any sequence of functions ( fn) with
fn+1 = T fn will converge to f∞ in C[− 1

2 , 1
2 ]. For example, let us take f0 to be the

constant function 1. Then

f1(x) = T f0(x) = 1+ x+ 1
2 x2−

∫ x

0
1dt = 1+ 1

2 x2.

Similarly,

f2(x) = T f1(x) = 1+ x+ 1
2 x2−

∫ x

0
1+ 1

2 t2 dt = 1+ 1
2 x2− 1

6 x3.

And

f3(x) = T f2(x) = 1+ x+ 1
2 x2−

∫ x

0
1+ 1

2 t2− 1
6 t3 dt = 1+ 1

2 x2− 1
6 x3 + 1

24 x4.

In general, we can establish by induction (do it yourself!) that

fn(x) = 1+ 1
2 x2− 1

3! x3 + 1
4! x4− 1

5! x5 + · · ·+ 1
(n+1)! (−x)n+1.

This sequence evidently consists of the partial sums of an infinite series. The new
term added at the nth stage is 1

(n+1)! (−x)n+1, which on [− 1
2 , 1

2 ] has max norm

max
|x|≤1/2

∣∣∣∣ (−x)n+1

(n+1)!

∣∣∣∣= 1
2n+1(n+1)!

.

This is summable. Therefore, this power series converges uniformly on [− 1
2 , 1

2 ] by
the Weierstrass M-test (8.4.7). Figure 12.1 gives the graphs of f0, f1, f2, and f∞ on
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y

1

1.5

f0

f1

f2

f∞

FIG. 12.1 The first three approximants and f∞ on [−1,1].

[−1,1]. The astute reader should notice that these are the Taylor polynomials for
e−x except that the term in x is missing.

We obtain

f∞(x) = x+
∞

∑
k=0

1
k!

(−x)k = e−x + x.

This shows that e−x + x is the unique solution to our integral equation. Indeed,

(e−x + x)′ =−e−x +1 = 1+ x− (e−x + x) and e−0 +0 = 1.

While our reasoning shows only that the solution is valid on [− 1
2 , 1

2 ], f∞(x) =
e−x +x is a valid solution on all of R. One way we can deal with this is to reconsider
our problem beginning at the point x = 1

2 , and try to extend to [ 1
2 ,1]. We have the

DE

f ′(x) = 1+ x− f (x) for 0≤ x≤ 1,

f ( 1
2 ) = e−1/2− 1

2 .

The exact same argument on this new interval will yield the unique attractive fixed
point f∞(x) = e−x + x valid on [0,1]. It is then easy to see that we can bootstrap our
way to the unique solution on the whole line.

In the next two sections, we show how the solutions to a large family of DEs can
be formulated as fixed-point problems. Then we may use the Contraction Principle
to show that these DEs always have solutions.
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Exercises for Section 12.1

A. Use the method of this section to solve f ′(x) = 1 + 1
2 f (x) for 0 ≤ x ≤ 1 and f (0) = 1. You

should be able to recognize the series and successfully find a closed form for the solution.
Show that, in fact, this solution is valid for all real numbers.

B. For b > 0 and a ∈ R, define T on C[0,b] by T f (x) = a +
∫ x

0 f (t)xe−xt dt. Prove that T is a
contraction. Hence show that there is a unique solution f ∈ C[0,∞) to the integral equation
f (x) = a+

∫ x
0 f (t)xe−xt dt.

C. Consider the DE f ′(x) = −2
x f (x) and f (1) = 1 for 2

3 ≤ x≤ 3
2 .

(a) Prove that the associated integral map is a contraction mapping.
(b) Look for a solution to the DE of the form f (x) = axb.
(c) Starting with f0 = 1, find a formula for fn = T n f0. Express this as a familiar power series

of logx, and hence evaluate it. HINT: Use the closed form from (b) to guide you.

D. Consider the DE y′ = 1+ y2 and y(0) = 0.

(a) Solve the DE directly.
(b) Show that the associated integral map T is not a contraction on C[−r,r] for any r > 0.
(c) Find an r > 0 such that T maps the unit ball of C[−r,r] into itself and is a contraction

mapping on this ball.
(d) Hence show that there is a unique solution on [−r,r].

E. Consider a ball falling to the ground. The downward force of gravity is counteracted by air
resistance proportional to the velocity. Find a formula for the velocity of the ball if it is at rest
at time 0 [i.e., v(0) = 0] as follows:

(a) Show that the velocity satisfies v′(t) = g− cv(t), where g is the gravity constant and c is
the constant of air resistance. What is the initial condition?

(b) Construct the associated integral map T . Starting with v0(t) = 0, iterate T and obtain a
formula for the solution v∞.

(c) Show that this solution is valid on [0,∞) (or at least until the ball hits the ground). Compute
lim
t→∞

v∞(t). This is known as the terminal velocity.

12.2 Calculus of Vector-Valued Functions

In this section, we develop differentiation and integration for vector-valued func-
tions. We will need this material in the next section, to convert an nth-order DE for
a real-valued function into a first-order DE for a vector-valued function.

Consider a function f : [a,b] → Rn, where f (x) = ( f1(x), f2(x), . . . , fn(x)) and
each coordinate function fi maps [a,b] to R. Although much of this is done by
looking at the coordinate functions, there are some crucial differences between Rn

and R. Most notably, we do not have a total order in Rn, so we cannot take the
supremum or infimum of the set f ([a,b])⊂ Rn.

12.2.1. DEFINITION. We say that a vector-valued function f : [a,b]→ Rn is
differentiable at a point x0 ∈ (a,b) if

lim
h→0

f (x0 +h)− f (x0)
h
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exists in Rn. As usual, we write f ′(x0) for the limit and call it the derivative of f at
x0. Notice that the numerator is in Rn, while the denominator is a scalar, so f ′(x0)
is a vector in Rn.

We can define left differentiable and right differentiable in the natural way,
and we say that f is differentiable on the interval [a,b] if it is differentiable at every
point of (a,b) in the sense just stated and left or right differentiable at the endpoints.

The reader should verify that if f : [a,b]→Rn is differentiable at x0 ∈ [a,b], then
f is continuous at x0.

12.2.2. PROPOSITION. Suppose that f : [a,b] → Rn is written as f (x) =
( f1(x), . . . , fn(x)), where each fi maps [a,b] into R. Then f is differentiable at
x0 ∈ [a,b] if and only if each fi is differentiable at x0. Moreover,

f ′(x0) = ( f ′1(x0), . . . , f ′n(x0)).

PROOF. Fix x0 ∈ [a,b] and consider the function

g(h) =
f (x0 +h)− f (x0)

h
,

defined for those h such that x0 + h ∈ [a,b]. If g(h) = (g1(h), . . . ,gn(h)), then we
have that gi(h) = ( fi(x0 +h)− fi(x0))/h for each i. Thus f is differentiable at x0 if
and only if the limit of g(h) exists as h→ 0, and each fi is differentiable at x0 if and
only if the limit of gi(h) exists as h→ 0. But a sequence of vectors converges if and
only if its coordinates converge. The result follows. �

The reader should verify that sums and scalar multiples of differentiable func-
tions are differentiable. Since products of real-valued differentiable functions are
differentiable, it follows easily that if f and g are vector-valued differentiable func-
tions, then the dot product f ·g is differentiable. Notice that f ·g is real-valued.

On the other hand, not all results carry over from the real-valued setting. For
example, consider the function f : [0,2π] → R2 given by f (x) = (cosx,sinx). It
is easy to see that f (2π) = f (0), but there is no x ∈ [0,2π] such that f ′(x) is the
zero vector. However, we do have the following result. The analaguous fact for real-
valued functions is a corollary of the Mean Value Theorem.

12.2.3. THEOREM. Suppose that f : [a,b] → Rn is continuous on [a,b] and
differentiable on (a,b). Then there is c ∈ (a,b) such that

‖ f (b)− f (a)‖ ≤ (b−a)‖ f ′(c)‖.

PROOF. Define v = f (b)− f (a) and a function g : [a,b] → R by g(x) = v · f (x).
Notice that if v is the zero vector, then we are done. So we may assume ‖v‖ 6= 0.

A brief calculation shows that g is differentiable and g′(x) = v · f ′(x). Applying
the Mean Value Theorem to g shows that there is c ∈ (a,b) such that
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g(b)−g(a) = (b−a)
(
v · f ′(c)

)
.

Using the definition of g and rearranging shows that g(b)− g(a) = ‖v‖2. The
Schwarz inequality (4.1.1) now gives

‖v‖2 = (b−a)v · f ′(c)≤ (b−a)‖v‖‖ f ′(c)‖.

Dividing by the nonzero quantity ‖v‖ gives the inequality. �

12.2.4. COROLLARY. For a function f : [a,b] → Rn that is C1 on [a,b], we
have ‖ f (b)− f (a)‖ ≤ (b−a)‖ f ′‖∞.

Next, we consider integration for vector-valued functions. The proof is straight-
forward, so will be omitted.

12.2.5. PROPOSITION. Fix f : [a,b]→ Rn with f (x) = ( f1(x), . . . , fn(x)) for
all x ∈ [a,b]. Then f is Riemann integrable if and only if each coordinate function
fi is Riemann integrable. In this case,∫ b

a
f (x)dx =

(∫ b

a
f1(x)dx,

∫ b

a
f2(x)dx, . . . ,

∫ b

a
fn(x)dx

)
.

Using this proposition, we can carry over many properties of integration for real-
valued functions to vector-valued functions. For example, linearity of integration
and the Fundamental Theorem of Calculus carry over in this way.

12.2.6. FUNDAMENTAL THEOREM OF CALCULUS II.
Let f : [a,b]→ Rn be a bounded Riemann integrable function and define

F(x) =
∫ x

a
f (x)dx for a≤ x≤ b.

Then F : [a,b]→ Rn is a continuous function. If f is continuous at a point x0, then
F is differentiable at x0 and F ′(x0) = f (x0).

Finally, we have a higher-dimensional analogue of taking the absolute value in-
side the integral. While the proof is similar in spirit to the scalar case, the argument
requires inner products and the Schwarz inequality (4.1.1).

12.2.7. LEMMA. Let F : [a,b]→ Rn be continuous. Then∥∥∥∫ b

a
F(x)dx

∥∥∥≤ ∫ b

a
‖F(x)‖dx.
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PROOF. Let y =
∫ b

a F(x)dx. If ‖y‖ = 0, then the inequality is trivial. Otherwise,
using the standard inner product on Rn,

‖y‖2 =
〈∫ b

a
F(x)dx,y

〉
=
∫ b

a
〈F(x),y〉dx≤

∫ b

a
|〈F(x),y〉|dx

≤
∫ b

a
‖F(x)‖ ‖y‖dx = ‖y‖

∫ b

a
‖F(x)‖dx.

The second line follows by the Schwarz inequality. Dividing through by ‖y‖ gives
the result. �

Exercises for Section 12.2

A. If f : [a,b]→ Rn is differentiable at x0 ∈ [a,b], show that f is continuous at x0.

B. Show that if α,β are real numbers and f ,g are Riemann integrable functions from [a,b] to
Rn, then α f +βg is Riemann integrable and

α

∫ b

a
f (x)dx+β

∫ b

a
g(x)dx =

∫ b

a
(α f (x)+βg(x))dx.

C. Derive Theorem 12.2.6 from the one-variable version.

D. Prove that every continuous function f : [a,b]→ Rn is Riemann integrable.

E. Define a regular curve to be a differentiable function f : [a,b]→ Rn such that f ′(x) is never
the zero vector.

(a) Given two regular curves f : [a,b] → Rn and g : [c,d] → Rn, we say that g is a repara-
metrization of f if there is a differentiable function h : [c,d]→ [a,b] such that h′(t) 6= 0
for all t and g = f ◦h. Show that g′(t) = f ′(h(t))h′(t).

(b) Define the length of a regular curve f to be L( f ) =
∫ b

a ‖ f ′(x)‖dx. Show that the length
is not affected by reparametrization. HINT: Consider reparametrizations where h′(t) is
always positive or always negative.

(c) Given a regular curve f , show there is a reparametrization g with ‖g′(t)‖ = 1 for all t.
Such a curve has unit speed. HINT: Show that x 7→

∫ x
a ‖ f (t)‖dt has an inverse function.

12.3 Differential Equations and Fixed Points

The goal of this section is to start with a DE of order n, and convert it to the problem
of finding a fixed point of an associated integral operator.

The first step is to take a fairly general form of a higher-order differential equation
and turn it into a first-order DE at the expense of making the function vector-valued.
We define an initial value problem, for functions on [a,b] and a point c ∈ [a,b], as

f (n)(x) = ϕ(x, f (x), f ′(x), . . . , f (n−1)(x)), (12.3.1)

f (c) = γ0, f ′(c) = γ1, . . . , f (n−1)(c) = γn−1, (12.3.2)

where ϕ is a real-valued continuous function on [a,b]×Rn. This is not quite the
most general situation, but it includes most important examples. The first equation
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is referred to as a differential equation of nth order, and the second set is called
the initial conditions.

A standard trick reduces this to a first-order differential equation with values in
Rn. As we shall see, this has computational advantages. Replace the function f by
the vector-valued function F : [a,b]→ Rn given by

F(x) = ( f (x), f ′(x), . . . , f (n−1)(x)) .

Then the differential equation becomes

F ′(x) =
(

f ′(x), . . . , f (n−1)(x),ϕ
(
x, f (x), . . . , f (n−1)(x)

))
,

and the initial data become

F(c) = (γ0,γ1, . . . ,γn−1).

We further simplify the notation by introducing a function Φ from [a,b]×Rn to Rn

by
Φ(x,y0, . . . ,yn−1) =

(
y1,y2, . . . ,yn−1,ϕ(x,y0, . . . ,yn−1)

)
,

and the vector
Γ = (γ0,γ1, . . . ,γn−1).

Note that Φ is continuous, since ϕ is continuous. Then (12.3.1) becomes the first-
order initial value problem with vector values

F ′(x) = Φ(x,F(x)), (12.3.3)
F(c) = Γ .

It is easy to see that a solution of (12.3.1) gives a solution of (12.3.3). To go the
other way, suppose (12.3.3) has a solution

F(x) = ( f0(x), f1(x), . . . , fn−1(x)).

Then (12.3.3) means

F ′(x) = ( f ′0(x), f ′1(x), . . . , f ′n−2(x), f ′n−1(x))
= Φ(x, f0(x), f1(x), . . . , fn−1(x))

=
(

f1(x), . . . , fn−1(x),ϕ
(
x, f (x), . . . , f (n−1)(x)

))
.

By identifying each coordinate, we obtain

f ′0(x) = f1(x), f ′1(x) = f2(x), . . . , f ′n−2(x) = fn−1(x),
f ′n−1(x) = ϕ(x, f0(x), f1(x), . . . , fn−1(x)),

Thus f1 = f ′0, f2 = f ′1 = f (2)
0 , . . . , fn−1 = f ′n−2 = f (n−1)

0 , and
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f (n)
0 (x) = f ′n−1(x) = ϕ

(
x, f0(x), f ′0(x), . . . , f (n−1)

0 (x)
)
.

The initial data become Γ = F(c) = ( f0(c), . . . , fn−1(c)), so

f0(c) = γ0, f ′0(c) = γ1, . . . , f (n−1)
0 (c) = γn−1 .

Thus (12.3.1) is satisfied by f0(x). Consequently, (12.3.3) is an equivalent formula-
tion of the original problem.

12.3.4. EXAMPLE. We will express the unknown function as y, instead of
f (x). Consider the differential equation(

1+(y′)2)y(3) = y′′ − xy′y+ sinx for −1≤ x≤ 1,

y(0) = 1,

y′(0) = 0,

y′′(0) = 2.

It is first necessary to reformulate this DE to express the highest-order derivative,
y(3), as a function of lower-order terms. This yields

y(3) =
y′′ − xy′y+ sinx

1+(y′)2 .

Then the vector function Φ defined from [−1,1]×R3 into R3 is given by

Φ
(
x, y0, y1, y2

)
=
(

y1, y2,
y2− xy1y0 + sinx

1+ y2
1

)
.

The initial vector is Γ =
(
1,0,2

)
. The DE is now reformulated as a first-order

vector-valued DE looking for a function F(x) =
(

f0(x), f1(x), f2(x)
)

defined on
[−1,1] with values in R3 such that

F ′(x) =
(

f1(x), f2(x),
f2(x)− x f1(x) f0(x)+ sinx

1+ f1(x)2

)
for −1≤ x≤ 1,

F(0) =
(
1, 0, 2

)
.

Now we can integrate this example as before. Define a mapping T from the space
C([−1,1],R3) of functions on [−1,1] with vector values in R3 into itself by sending
the vector-valued function F(x) =

(
f0(x), f1(x), f2(x)

)
to

T F(x) = Γ +
∫ x

0
Φ(t,F(t))dt

=
(

1+
∫ x

0
f1(t)dt ,

∫ x

0
f2(t)dt , 2+

∫ x

0

f2(t)− t f1(t) f0(t)+ sin t
1+ f1(t)2 dt

)
.
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This converts the differential equation into the integral equation T F = F . An argu-
ment similar to the scalar case shows that this fixed-point problem is equivalent to
the differential equation.

Returning to the general case, we need to find a suitable framework (i.e., a com-
plete normed vector space) in which to solve the problem in general. Since the
coordinate functions f0, . . . , fn−1 of F are all continuous functions on [a,b], we can
think of F as an element of C([a,b],Rn), the vector space of continuous functions
from [a,b] into Rn with the sup norm. This space is complete, by Theorem 8.2.2.
Recall that the norm is given by

‖F‖∞ = max
a≤x≤b

‖F(x)‖= max
a≤x≤b

( n−1

∑
i=0

| fi(x)|2
)1/2

.

A sequence Fk = ( f k
0 , . . . , f k

n−1) converges to F∗ = ( f ∗0 , . . . , f ∗n−1) in the max
norm if and only if each of the coordinate functions f k

i converges uniformly to f ∗i
for 0≤ i≤ n−1. To see this, notice that for each coordinate i,

‖ f k
i − f ∗i ‖= max

a≤x≤b
| f k

i (x)− f ∗i (x)|

≤
(n−1

∑
j=0
| f k

j (x)− f ∗j (x)|2
)1/2

= ‖Fk−F∗‖∞.

Therefore, the convergence of Fk to F∗ implies that f k
i converges to f ∗i for each

0≤ i≤ n−1. Conversely,

‖Fk−F∗‖∞ = max
a≤x≤b

( n−1

∑
j=0
| f k

j (x)− f ∗j (x)|2
)1/2

≤
( n−1

∑
j=0

max
a≤x≤b

| f k
j (x)− f ∗j (x)|2

)1/2
=
( n−1

∑
j=0
‖ f k

j − f ∗j ‖2
∞

)1/2
.

So if ‖ f k
i − f ∗i ‖∞ tends to zero for each i, then ‖Fk−F∗‖∞ also converges to zero.

We have found a setting for our problem (12.3.3) in which the Contraction Prin-
ciple (11.1.6) is valid, and so we can formulate the problem in terms of a fixed point.
To do this, integrate (12.3.3) from a to x to obtain

F(x) = F(c)+
∫ x

c
F ′(t)dt = Γ +

∫ x

c
Φ(t,F)dt.

This suggests defining a map on C([a,b],Rn) by

T F(x) = Γ +
∫ x

c
Φ(t,F(t))dt.
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A solution of (12.3.3) is clearly a fixed point of T . Conversely, by the Fundamen-
tal Theorem of Calculus, a fixed point of T is a solution of (12.3.3). So the prob-
lem (12.3.1) can be solved by finding the fixed point(s) of the mapping T from
C([a,b],Rn) into itself.

Exercises for Section 12.3

For each of the following three differential equations, convert the DE into a first-order vector-
valued DE and then into a fixed-point problem.

A. y(3) + y′′ − x(y′)2 = ex, y(0) = 1, y′(0) =−1, and y′′(0) = 0.

B. f ′′(x) =
(

f (x)2 + x2
)1/2− f ′(x)2, f (1) = 0, and f ′(1) = 1.

C.
d
dx

(
x

dv
dx

)
+2x2v = 0, v(1) = 1, and v′(1) = 0.

D. (a) Solve the DE y′ = xy and y(0) = 1. Deduce that the solution is valid on the whole line.
HINT: Integrate y′/y = x.

(b) Define T f (x) = 1 +
∫ x

0
t f (t)dt. Start with f0(x) = 1 and compute fn = T fn−1 for n ≥ 1.

Prove that this converges to the same solution. Where is this convergence uniform?

E. Let ϕ be a continuous positive function on R. Consider the DE f ′(x) = ϕ( f (x)) and f (c) = γ .

Let F(y) = c+
∫ y

γ

dt
ϕ(t)

. Show that f (x) = F−1(x) is the unique solution.

HINT: Integrate f ′(t)/ϕ( f (t)) from c to x.

F. Consider the DE: xyy′ = y2−1 and y(1) = 1/
√

2.

(a) Solve the DE. HINT: Integrate yy′

y2−1 = 1
x .

(b) The solution exists only for a finite interval containing 1. Explain why the solution cannot
extend further.

12.4 Solutions of Differential Equations

In this section, we use a modification of the Contraction Principle to demonstrate
the existence and uniqueness of solutions to a large class of differential equations.
The basic idea of contraction mappings is that starting with any function, iteration of
the map T leads inevitably to the solution. As we have seen for Newton’s method in
Section 11.2, it may well be the case that there is a contraction, provided that we start
near enough to the solution. Even when T is not a contraction, it may still have an
attractive fixed point. In this case, if we start at a reasonable initial approximation,
the structure of the integral mapping will force convergence, which is eventually
contractive.

To analyze the map T , we need a computational result.

12.4.1. DEFINITION. A function Φ(x,y) is Lipschitz in the y variable if
there is a constant L such that for all (x,y) and (x,z) in the domain of Φ ,

‖Φ(x,y)−Φ(x,z)‖ ≤ L‖y− z‖.
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Note that both the y variable and the range may be vectors rather than elements
of R. While this estimate does not concern variation in the x variable, it does require
that the constant L be independent of x.

12.4.2. LEMMA. Let Φ be a continuous function from [a,b]×Rn into Rn that
is Lipschitz in y with Lipschitz constant L. Let

T F(x) = Γ +
∫ x

a
Φ(t,F(t))dt.

If F,G ∈C([a,b],Rn) satisfy ‖F(x)−G(x)‖ ≤ M(x−a)k

k!
, then

‖T F(x)−T G(x)‖ ≤ LM(x−a)k+1

(k +1)!
.

In particular, T is uniformly continuous.

PROOF. Compute

‖T F(x)−T G(x)‖=
∥∥∥y0 +

∫ x

a
Φ(t,F(t))dt− y0−

∫ x

a
Φ(t,G(t))dt

∥∥∥
=
∥∥∥∫ x

a
Φ(t,F(t))−Φ(t,G(t))dt

∥∥∥
≤
∫ x

a

∥∥Φ(t,F(t))−Φ(t,G(t))
∥∥dt

≤
∫ x

a
L
∥∥F(t)−G(t)

∥∥dt

≤ LM
k!

∫ x

a
(t−a)k dt =

LM
(k +1)!

(x−a)k+1.

In particular, ‖F−G‖∞ = ‖F−G‖∞
(x−a)0

0! . It follows that

‖T F−T G‖∞ ≤ ‖F−G‖∞ L‖x−a‖∞ = ‖F−G‖∞ L(b−a).

So T has Lipschitz constant L(b−a) and therefore is uniformly continuous. �

12.4.3. GLOBAL PICARD THEOREM.
Suppose that Φ is a continuous function from [a,b]×Rn into Rn that is Lipschitz in
y. Then the differential equation

F ′(x) = Φ(x,F(x)), F(a) = Γ

has a unique solution.
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PROOF. Let T map C([a,b],Rn) into itself by

T F(x) = Γ +
∫ x

a
Φ(t,F(t))dt.

As discussed at the beginning of this section, a function F in C([a,b],Rn) is a fixed
point for T if and only if it is a solution of (12.3.3). Define a sequence of functions
by

F0(x) = Γ and Fk+1 = T Fk for k ≥ 0.

Let L be the Lipschitz constant of Φ , and set M = max
a≤x≤b

{
‖Φ(x,Γ )‖

}
. We have

the inequality

‖F1(x)−F0(x)‖=
∥∥∥∫ x

a
Φ(t,Γ )dt

∥∥∥≤ M(x−a)
1!

.

Therefore, by Lemma 12.4.2,

‖F2(x)−F1(x)‖ ≤
ML(x−a)2

2!
,

‖F3(x)−F2(x)‖ ≤
ML2(x−a)3

3!
.

and, by induction, we get

‖Fk+1(x)−Fk(x)‖ ≤
MLk(x−a)k+1

k +1!
.

As in the proof of the Banach Contraction Principle (11.1.6),

‖Fn+m(x)−Fn(x)‖ ≤
m+n−1

∑
k=n

‖Fk+1(x)−Fk(x)‖

≤
m+n−1

∑
k=n

MLk(x−a)k+1

k +1!
≤ M

L

∞

∑
k=n+1

(
L(b−a)

)k

k!
.

But the series
∞

∑
k=0

(
L(b− a)

)k
/k! converges to eL(b−a). So given any ε > 0, there is

an integer N such that the tail of the series satisfies

M
L

∞

∑
k=N

(
L(b−a)

)k

k!
< ε.

Thus if n, n+m≥N, it follows that ‖Fn+m−Fn‖∞ < ε. This means that the sequence
(Fk) is Cauchy in C([a,b],Rn), and hence converges to a limit function, call it F∗.

Since T is continuous,
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T F∗ = lim
k→∞

T Fk = lim
k→∞

Fk+1 = F∗ .

If G is another solution, then G satisfies T G = G. An argument similar to the previ-
ous paragraph shows that

‖F∗ −G‖∞ = ‖T kF∗ −T kG‖∞ ≤ ‖F∗ −G‖∞

(
L(b−a)

)k

k!
.

The left-hand side is constant and nonnegative, while the right-hand side converges
to 0 as k tends to infinity. Therefore, ‖F∗ −G‖∞ = 0. In other words, G = F∗ and
the solution is unique. �

12.4.4. EXAMPLE. Consider the initial value problem

y′′+ y+
√

y2 +(y′)2 = 0, y(0) = γ0, and y′(0) = γ1.

We set this up by letting Y = (y0,y1) and

Φ(x,Y ) = Φ(x,y0,y1) =
(
y1, −y0−

√
y2

0 + y2
1

)
=
(
y1, −y0−‖Y‖

)
.

Then the DE becomes

Y ′(x) = Φ(x,Y ) and Y (0) = Γ := (γ0,γ1).

Let us verify that Φ is Lipschitz. Let Z = (z0,z1). Recall that the triangle inequal-
ity implies that

∣∣‖Z‖−‖Y‖
∣∣≤ ‖Z−Y‖:

‖Φ(x,Y )−Φ(x,Z)‖= ‖
(
y1− z1, z0− y0 +‖Z‖−‖Y‖

)
‖

≤ ‖
(
y1− z1, z0− y0

)
‖+
∣∣‖Z‖−‖Y‖

∣∣≤ 2‖Z−Y‖.

Therefore, Picard’s Theorem applies, and this equation has a unique solution that is
valid on the whole real line.

It may be surprising that this DE actually can be solved explicitly. We may rear-
range this equation to look like

y+ y′′√
y2 +(y′)2

=−1.

There is no obvious way to integrate the left-hand side. The key observation is that(
y2 +(y′)2)′= 2yy′+2y′y′′ = 2y′(y+ y′′).

We may multiply both sides by y′, known as an integrating factor, which makes
both sides easily integrable in closed form:
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2yy′+2y′y′′

2
√

y2 +(y′)2
=−y′.

The left-hand side is the derivative of
√

y2 +(y′)2. Since y is a function of x and
we are about to introduce constants independent of x, it is helpful to switch notation
and use y(x) and y′(x) in place of y and y′.

Integrate both sides with respect to x from 0 to x to obtain√
y(x)2 + y′(x)2−‖Γ ‖= γ0− y(x).

Take ‖Γ ‖ to the other side, square, and simplify to obtain

y′(x)2 = c2−2cy(x), where c = ‖Γ ‖+ γ0.

Hence
y′(x)√

c2−2cy(x)
=±1.

Integrating again from 0 to x yields

−1
c

√
c2−2cy(x)+

1
c

√
c2−2cγ0 =±x.

It looks like we may get multiple solutions (which we know isn’t the case), but let
us persevere. Notice that√

c2−2cγ0 =
√
‖Γ ‖2− γ2

0 =±γ1.

Use this identity and simplify to obtain

c2−2cy(x) = (±cx+ γ1)2 = c2x2±2cγ1x+ c2−2cγ0.

Solving for y produces

y(x) =
−c
2

x2± γ1x+ γ0.

The condition that y′(0) = γ1 shows that the sign is + and the unique solution is

y(x) =

(
−
√

γ2
0 + γ2

1 − γ0

2

)
x2 + γ1x+ γ0.

Notice that this solution depends continuously on the initial data (γ0,γ1). This is a
general phenomenon that we explore in Section 12.7.

Exercises for Section 12.4

A. Consider the DE y′ = 1+ xy and y(0) = 0 on [−1,1].
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(a) Show that the associated integral operator is a contraction mapping.
(b) Find a convergent power series expansion for the unique solution.
(c) Use the Global Picard Theorem to show that there is a unique solution on [−b,b] for any

b < ∞. Hence deduce that there is a unique solution on R.

B. Consider the DE y′′ = y′+ xy+3x2, y(0) = 2, and y′(0) = 1 for x ∈ [0,2].

(a) Find the function Φ and vector Γ to put this DE in standard form.
(b) Calculate the constants involved in the proof of the Global Picard Theorem, and hence

find an integer N such that ‖F∗ −FN‖∞ < 10−3.

C. Consider the DE: xyy′ = (2− x)(y+2) and y(1) =−1.

(a) Separate variables and deduce that the solution y satisfies ey/2

y+2 = xex/2.
(b) Prove that both x and y are bounded.

HINT: In part (a), minimize the left-hand side and maximize the right-hand side.

D. Consider the DE f ′(x) = x f (x)+1 and f (0) = 0.

(a) Use the Global Picard Theorem to show that there is a unique solution on [−b,b] for any
b < ∞. Hence deduce that there is a unique solution on R.

(b) Find an explicit power series that solves the DE. HINT: Look for a solution of the form
f (x) = ∑

∞
n=0 anxn. Plug this into the DE and find a recurrence relation for the an.

(c) Show that this series converges uniformly on the whole real line. Validate the term-by-
term differentiation to verify that this power series is the unique solution.

E. (a) Suppose ϕ is C∞ function on [a,b]×R, and T f (x) = c+
∫ x

a
ϕ(t, f (t))dt. Show by induc-

tion that if f0 ∈C[a,b], then T n f0 has n continuous derivatives.
(b) Hence conclude that a fixed point f = T f must be C∞.

F. (a) In the previous question, suppose that ϕ is Cn. Prove that a solution to f = T f has n + 1
continuous derivatives.

(b) Let ϕ(t) = t for t ≤ 1 and ϕ(t) = 2− t for t ≥ 1. Solve the DE y′ = ϕ(y) and y(0) = 1.5
on R. Verify that the solution is C1 but is not twice differentiable.

G. Let p > 0. Suppose that u(x) is a solution of u(x) =
∫ x

0
sin(u(t))u(t)p dt. Prove that u = 0.

HINT: For a > 0 and M = sup{|u(x)| : |x| ≤ a}, show |u(x)| ≤Mpn|x|n/n! on [−a,a] for n≥ 0.

H. Suppose that Φ and Ψ are Lipschitz functions defined on [a,b]×R. Let f and g be solu-
tions of f ′ = Φ(x, f (x)) and g′ =Ψ(x,g(x)), respectively. Also suppose that f (a)≤ g(a) and
Φ(x,y)≤Ψ(x,y) for all (x,y) ∈ [a,b]×R. Show that f (x)≤ g(x) for all x ∈ [a,b].
HINT: If f (x) = g(x), what about f ′(x) and g′(x)?

I. Predator–Prey Equation. A system that models the populations of a predator p(t) and quarry

q(t) at time t is given by the DE
[

p′

q′

]
=
[
(bq−a)p
(c−d p)q

]
where a,b,c,d > 0. The quarry grows

proportionally to q decreased by a factor proportional to pq that measures interactions with
the predator. Likewise p will decline proportionally to p without prey, but is increased pro-
portional to the interactions with the quarry.

(a) Eliminate t by computing d p/dq. Separate variables and integrate to relate p and q.
(b) Prove that both populations remain bounded and do not die off. HINT: Exercise 12.4.C.

12.5 Local Solutions

The stipulation that Φ has to be Lipschitz over all of Rn is quite restrictive. However,
many functions satisfy a Lipschitz condition in y on a set of the form [a,b]×BR(Γ )
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for R < ∞. For example, if Φ has continuous partial derivatives of first order, this
follows from the Mean Value Theorem and the Extreme Value Theorem (see the
exercises). In this case, the proof would go through as long as Fn(x) always stays
in this ball. While this isn’t usually possible for all x, it is possible to verify this
condition on a small interval [a,a+h]. In this way, we get a local solution. It is then
often possible to piece these local solutions together to extend the solution to all of
[a,b]. We shall see in a few examples that such an extension is not always possible.

12.5.1. LOCAL PICARD THEOREM.
Suppose that Φ is a continuous function from [a,b]×BR(Γ ) into Rn satisfying a
Lipschitz condition in y. Then the differential equation

F ′(x) = Φ(x,F(x)), F(a) = Γ

has a unique solution on the interval [a,a+h], where h = min{b−a,R/‖Φ‖∞}.

PROOF. The proof is the same as for the Global Picard Theorem except that we
must ensure that Fn(x) remains in BR(Γ ) so that the iterations remain defined. See
Figure 12.2.

xa h b

y

Γ

BR(Γ )

‖y−Γ ‖= ‖Φ‖∞ · |x−a|

F∗

FIG. 12.2 Schematic setup for Local Picard Theorem.

This follows by induction from an easy estimate for x ∈ [a,a+h]:

‖Fn+1(x)−Γ ‖ ≤
∫ x

a
‖Φ(t,Fn(t))‖dt ≤ ‖Φ‖∞ |x−a| ≤ ‖Φ‖∞ h≤ R.

Thus Fn converges uniformly on [a,a + h] to a solution F∗ of the differential equa-
tion. The uniqueness argument remains the same. �

12.5.2. EXAMPLE. Consider the differential equation

y′ = y2, y(0) = 1, 0≤ x≤ 2.

In this case, the function is Φ(x,y) = y2. This is not Lipschitz globally because
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Φ(a,n+ 1
n )−Φ(a,n)

(n+ 1
n )−n

> 2n for all n≥ 1.

However, Φ is continuously differentiable and therefore Lipschitz on any compact
set (Exercise 12.5.A), for example, on [0,2]×B100(1). By the Local Picard Theo-
rem, this has a unique solution beginning at the origin. The maximum of |Φ | over
[0,2]×BR(1) is (R + 1)2, which leads to h = R/(R + 1)2. The optimal choice is
R = 1 and h = 1

4 .

This DE may be solved by separation of variables. Consider
y′

y2 = 1. Integrating

from t = 0 to t = x, we obtain

x =
∫ x

0
1dt =

∫ x

0

y′(t)dt
y(t)2 =− 1

y(t)

∣∣∣∣x
0
= 1− 1

y(x)
.

Therefore,

y(x) =
1

1− x
.

Evidently, this is a solution on the interval [0,1), which has a singularity at x = 1.
So the solution does not extend in any meaningful way to the rest of the interval.
The range [0,1) is better than our estimate of [0, 1

4 ] but is definitely not a solution
on all of [0,2].

Now let us consider how to improve on this situation. Start over at the point 1
4

and try to extend the solution some more. More generally, suppose that we have
used our technique to establish a unique solution on [0,a], where a < 1. Consider
the DE

y′ = y2, y(a) =
1

1−a
, 0≤ x≤ 2.

Again we take a ball BR( 1
1−a ) and maximize Φ(y) = y2 over this ball:

‖Φ‖BR(1/1−a) =
(

R+
1

1−a

)2

.

Thus Theorem 12.5.1 applies and extends the solution to the interval [a,a+h], where
h = R/‖Φ‖. A simple calculus argument maximizes h by taking R = (1− a)−1,
which yields h = (1−a)/4.

The thrust of this argument is that repeated use of the Local Picard Theorem ex-
tends the solution to increasingly larger intervals. Our first step produced a solution
on [0,a1] with a1 = 1/4. A second application extends this to [0,a2], where

a2 = a1 +
1−a1

4
=

3a1 +1
4

=
7
16

.

Generally, the solution on [0,an] is extended to [0,an+1], where
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an+1 = an +
1−an

4
=

3an +1
4

.

This is a monotone increasing sequence of real numbers all of which are readily
seen to be less than 1. Applying the Monotone Convergence Theorem (2.6.1) to the
sequence of real numbers (an), there is a limit L = lim

n→∞
an. Therefore,

L = lim
n→∞

an+1 = lim
n→∞

3an +1
4

=
3L+1

4
.

Solving yields L = 1.

x
1

y

1

5

a1 a2 a3 a4 a5 a6

FIG. 12.3 The solution to y′ = y2, y(0) = 1 with an marked.

The upshot is that repeated use of the Local Picard Theorem did extend the so-
lution until it blew up by going off to infinity at x = 1. See Figure 12.3. It is not
possible to use our method further, since we are essentially following along the so-
lution curve, which just carried us off the map.

12.5.3. EXAMPLE. Consider the differential equation

y′ = y2/3, y(0) = 0, 0≤ x≤ 2.

The function Φ(x,y) = y2/3 is not Lipschitz. Indeed,

lim
h→0

|Φ(0,h)−Φ(0,0)|
|h|

= lim
h→0

1
|h|1/3 = +∞.

So the Picard Theorems do not apply.
Nevertheless, we may attempt to solve this equation as before. Separating vari-

ables and integrating the equation y−2/3y′ = 1 from 0 to x yields
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3y1/3 = x+ c.

The initial data imply that c = 0, and thus y = x3/27. This solution is valid on the
whole real line.

However, there is another nice solution that stands out, namely y = 0. So the
solution is not unique. In fact, there are many more solutions as well. For any a > 0,
let

fa(x) =

{
0 if x≤ a,

(x−a)3/27 if x≥ a.

Then y = fa(x) is a C2 solution for every positive a.

We see that there can be existence of solutions without uniqueness. A result
known as Peano’s Theorem (see Section 12.8) establishes that the differential equa-
tion F ′(x) = Φ(x,F(x)) has a solution locally whenever Φ is continuous.

Now we will try to systematize what occurred in Example 12.5.2. The idea is to
make repeated use of the Local Picard Theorem to extend the solution until either
we reach the whole interval or the solution blows up.

12.5.4. DEFINITION. A function Φ(x,y) on [a,b]×Rn is locally Lipschitz
in the y variable if it is Lipschitz in y on each compact subset [a,b]×BR for all
positive real numbers R.

Actually a truly local definition of locally Lipschitz in y would say that for each
(x,y) ∈ [a,b]×Rn, there is a positive number ε > 0 such that Φ is Lipschitz in
y on [x− ε,x + ε]×Bε(y). However, a compactness argument shows that this is
equivalent to the definition just given. See Exercise 12.5.J.

12.5.5. CONTINUATION THEOREM.
Suppose that Φ : [a,b]×Rn → Rn is a locally Lipschitz function. Consider the dif-
ferential equation

F ′(x) = Φ(x,F(x)), F(a) = Γ .

Then either

(1) the DE has a unique solution F(x) on [a,b]; or
(2) there is a c ∈ (a,b) such that the DE has a unique solution F(x) on [a,c) and

lim
x→c−

‖F(x)‖= +∞.

PROOF. The Local Picard Theorem (12.5.1) establishes the fact that there is a
unique solution on a nontrivial interval [a,a + h]. Define c to be the supremum of
all values d for which the DE has a unique solution on [a,d]. A priori, these might
be different solutions for different values of d. However, if F1 and F2 are the unique
solutions on [a,d1] and [a,d2], respectively, for a < d1 < d2, then the restriction of
F2 to [a,d1] will also be a solution. Hence by the uniqueness, F2(x) = F1(x), where
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both are defined. Therefore, we may conclude that there is a unique solution F∗(x)
of the DE defined on [a,c) by taking the union of the solutions for d < c.

If F∗ blows up at c, then we satisfy part (2) of the theorem; and if the solution
extends to include b, we have part (1). However, it could be the case that the solution
F∗ remains bounded on some sequence approaching the point c, contradicting (2),
yet the solution does not actually extend to or beyond the point c. The proof is
complete if we can show that this is not possible. So we suppose that c < b, but
there is a sequence xn increasing to c and a constant K such that ‖F(xn)‖ ≤ K for
n≥ 1.

Consider the compact region D = [a,b]×BK+1(0). Since Φ is locally Lipschitz
in y, it is Lipschitz on the region D. Set

M = sup
(x,y)∈D

‖Φ(x,y)‖ and δ = min
{b− c

2
,

K +1
2M

}
.

Choose N large enough that c− xN < δ . We may apply the Local Picard Theo-
rem (12.5.1) to the DE

F ′(x) = Φ(x,F(x)) F(xN) = F∗(xN) for x ∈ [xN ,b].

The result is a unique solution F(x) on the interval [xN ,xN +h], where

h = min{b− xN ,(K +1)/M} ≥ 2δ .

In particular, d := xN + h > c. The uniqueness guarantees that F(x) agrees with
F∗(x) on the interval [xN ,c). Hence extending the definition of F∗ by setting F∗(x) =
F(x) on [xN ,d] produces a solution on [a,d], contradicting the definition of c.

An easy modification of this argument is possible when c = b, showing that the
solution always extends to the closed interval [a,b] if the solution does not blow up.
Take δ = (K +1)/2M. We leave the details to the reader. �

The solution obtained in the Continuation Theorem is called the maximal con-
tinuation of the solution to the DE.

12.5.6. EXAMPLE. Not all solutions of differential equations blow up in the
manner of the previous theorem. Consider the DE

x4y′′+2x3y′+ y = 0 and y( 2
π
) = 1, y′( 2

π
) = 0 for x ∈ R.

This looks like a reasonably nice linear homogeneous equation (see the next sec-
tion). However, the coefficient of y′′ is not 1, but rather a function of x that vanishes
at 0. To put this in our standard form, we divide by x4 to obtain

y′′+
2
x

y′+
1
x4 y = 0.

The function Φ is just Φ(x,y0,y1) =
(
y1,− 2

x y1− 1
x4 y0

)
. This satisfies
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‖Φ(x,y0,y1)−Φ(x,z0,z1)‖=
∥∥∥∥(y1− z1,

2
x
(z1− y1)+

1
x4 (z0− y0)

)∥∥∥∥
≤ |y1− z1|

(
1+

2
|x|

)
+

1
x4 |z0− y0|

≤
(

1+
2
|x|

+
1
x4

)
‖y− z‖.

So Φ satisfies a global Lipschitz condition in y, provided that x remains bounded
away from 0. Thus the Global Picard Theorem (12.4.3) applies on the interval [ε,R]
for any 0 < ε < 1

π
< R < ∞. It follows that there is a unique solution on (0,∞).

We will not demonstrate how to solve this equation. However, it is easy to check
(do it!) that the solution is f (x) = sin(1/x). This solution has a very nasty discon-
tinuity at x = 0, but it does not blow up—it remains bounded by 1. This does not
contradict the Continuation Theorem (12.5.5). The reason is that the function Φ is
not locally Lipschitz on R×R2. It is not even defined for x = 0 and has a bad dis-
continuity there. This shows why we cannot expect to have a global solution to a
DE where the coefficient of the highest-order term y(n) vanishes.

Exercises for Section 12.5

A. Suppose that Φ(x,y) and ∂

∂y Φ(x,y) are continuous functions on the region [a,b]× [c,d]. Use

the Mean Value Theorem to show that Φ is Lipschitz in y. HINT: Let L =
∥∥ ∂

∂y Φ(x,y)
∥∥

∞
.

B. Suppose that Φ(x,y0,y1) is C1 on [a,b]×BR(0). Show that Φ is Lipschitz in y.
HINT: Estimate Φ(x,y0,y1)−Φ(x,z0,z1) by subtracting and adding Φ(x,z0,y1).

C. Reformulate Theorem 12.5.1 so that it is valid when the initial conditions apply to a point c
in the interior of [a,b].

D. Provide the details for the proof of Theorem 12.5.5 for the case c = b.

E. For each of the following DEs, write down the function Φ and decide whether it satisfies
(i) a global Lipschitz condition in y, (ii) a local Lipschitz condition in y, or (iii) a Lipschitz
condition on a smaller region that allows a local solution.

(a) y′′ = yy′ and y(0) = y′(0) = 1 for 0≤ x≤ 10
(b) y′ =

√
1+ y2 and y(0) = 0 for 0≤ x≤ 1

(c) f ′(x)+ f (x)2 = 4x f (x)−4x2 +2 and f (0) = 2
(d) (x2− x−2) f ′(x)+3x f (x)−3x = 0 and f (0) = 2 for −10≤ x≤ 10

F. Solve Exercise C (c) explicitly. Find the maximal continuation of the solution.
HINT: Find the DE satisfied by g(x) = f (x)−2x and solve it.

G. Solve Exercise C (d) explicitly. Find the maximal continuation of the solution.
HINT: Find the DE satisfied by g(x) = f (x)−1 and solve it.

H. Consider y′ = sin
(

x3 + x2−1√
101− y2

)
and y(2) = 3. Prove that there is a solution on [−5,9].

HINT: Show that |y| ≤ 10 first. Then obtain a Lipschitz condition.

I. Consider the DE y′ = 3xy1/3 for x ∈ R and y(0) = c≥ 0. Let Aε = {y : |y| ≥ ε}.

(a) Show that 3xy1/3 is Lipschitz in y on [a,b]×Aε but not on [a,b]× [−1,1].
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(b) Solve the DE when c > 0.
(c) Find at least two solutions when c = 0.

J. Show that the two definitions of locally Lipschitz given in Definition 12.5.4 and the subse-
quent paragraph are equivalent. HINT: Cover [a,b]×BR(0) by open sets on which Φ is
Lipschitz in y. Use the Borel–Lebesgue Theorem (9.2.3).

K. Consider the DE f (x) f ′(x) = 1 and f (0) = a for x ∈ R.

(a) Solve this equation explicitly.
(b) Show that there is a unique solution on an interval about 0 if a 6= 0 but that it extends to

only a proper subset of R, even though the solution does not blow up. Why does this not
contradict the Continuation Theorem?

(c) Show that there are two solutions when a = 0 valid on [0,∞).Why does this not contradict
the Local Picard Theorem?

L. Show that y′′ =
(
1+(y′)2

)3/2, y(0) = y′(0) = 1 has f (x) = 1−
√

1− x2 as its unique solution
on [−1,1]. This solution cannot be continued beyond x = 1, yet | f (x)| ≤ 1. Why does this not
contradict the Continuation Theorem? HINT: How does F(x) =

(
f (x), f ′(x)

)
behave?

M. Consider the DE: y′ = x2 + y2 and y(0) = 0.

(a) Show that this DE satisfies a local Lipschitz condition but not a global one.
(b) Integrate the inequality y′ ≥ 1 + y2 for x ≥ 1 to prove that the solution must go off to

infinity in a finite time. (See Exercise 12.4.H.)

12.6 Linear Differential Equations

In this section, we explore a very important class of differential equations in greater
depth. This class occurs frequently in applications and is also especially amenable
to analysis. Consider the differential equation

f (n)(x) = p(x)+q0(x) f (x)+q1(x) f ′(x)+· · ·+qn−1(x) f (n−1)(x), (12.6.1)

f (c) = γ0, f ′(c) = γ1, . . . , f (n−1)(c) = γn−1,

where p(x) and qk(x) are continuous functions on [a,b] and c is a point in [a,b]. This
is called a linear differential equation because the function

ϕ(x,y) = p(x)+q0(x)y0 +q1(x)y1 + · · ·+qn−1(x)yn−1

defined on [a,b]×Rn is linear in the second variable y = (y0,y1, . . . ,yn−1).
Using the reduction in Section 12.3, we obtain the reformulated first-order dif-

ferential equation

F ′(x) = Φ(x,F(x)) and F(c) = Γ = (γ0,γ1, . . . ,γn−1),

where
Φ(x,y0, . . . ,yn−1) =

(
y1, . . . ,yn−1,ϕ(x,y)

)
.

We will verify that Φ is Lipschitz in y. Set M = max
0≤k≤n−1

‖qk‖∞. Then for any

x ∈ [a,b] and y = (y0, . . . ,yn−1) and z = (z0, . . . ,zn−1) in Rn,
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‖Φ(x,y)−Φ(x,z)‖=
∥∥∥(y1− z1, . . . ,yn−1− zn−1,

n−1

∑
k=0

qk(x)(yk− zk)
)∥∥∥

=
(n−1

∑
i=1

|yi− zi|2 +
∣∣∣ n−1

∑
k=0

qk(x)(yk− zk)
∣∣∣2)1/2

≤
(
‖y− z‖2 +(nM‖y− z‖)2)1/2 ≤ (1+nM)‖y− z‖.

So Φ satisfies the Lipschitz condition with L = 1+nM.
Therefore, by the Global Picard Theorem (12.4.3), this equation has a unique

solution for each choice of initial values Γ .
The most important consequence of linearity is the relationship between solu-

tions of the same DE with different initial values. Suppose that f and g are solutions
of (12.6.1) with initial data Γ and ∆ = (δ0, . . . ,δn−1), respectively. Then the function
h(x) = g(x)− f (x) satisfies

h(n)(x) = p(x)+
n−1

∑
k=0

qk(x)g(k)(x)− p(x)+
n−1

∑
k=0

qk(x) f (k)(x) (12.6.2)

= q0(x)h(x)+q1(x)h′(x)+ · · ·+qn−1(x)h(n−1)(x)

and satisfies the initial conditions

h(k)(c) = γk−δk for 0≤ k ≤ n−1.

This is a linear equation with the term p(x) missing. This DE satisfied by h is called
a homogeneous linear DE, while the equation (12.6.1) with a nonzero forcing term
p(x) is called an inhomogeneous linear DE.

Generally the homogeneous DE is much easier to solve. Let Γi denote the initial
conditions γi = 1, γ j = 0 for j 6= i, 0 ≤ j ≤ n− 1. In other words, the vectors Γi
correspond to the standard basis vectors of Rn. For each 0 ≤ i ≤ n−1, let hi(x) be
the unique solution of the homogeneous DE (12.6.2). Then let Γ = (γ0,γ1, . . . ,γn−1)
be an arbitrary vector. Consider

h(x) =
n−1

∑
i=0

γihi(x).

It is easy to calculate that h(k)(c) = γk for 0≤ k ≤ n−1 and

h(n)(x) =
n−1

∑
k=0

qk(x)h(k)(x) =
n−1

∑
j=0

γ j

n−1

∑
k=0

qk(x)h
(k)
j (x) = 0.

In other words, the solutions of (12.6.2) are linear combinations of the special solu-
tions hi(x), 0≤ i≤ n−1. So these n functions form a basis for the solution space of
the homogeneous DE, which is an n-dimensional subspace of C[a,b].
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Now one searches for a single solution fp of the inhomogeneous DE (12.6.1)
without regard to the initial conditions. This solution is called a particular solution,
to distinguish it from the general solution. We have shown that the general solution
of this DE has the form fp +h for some solution h of the homogeneous DE (12.6.2).

Suppose that fp is the solution of the inhomogeneous DE (12.6.1) with initial
data Γ . Let g be the solution of (12.6.1) for initial data ∆ . Then h(x) = g(x)− fp(x)
is the solution of the homogeneous DE with initial data ∆ −Γ . Thus

g(x) = fp(x)+h(x) = fp(x)+
n−1

∑
i=0

(δi− γi)hi(x).

Summing up, we have the following useful result.

12.6.3. THEOREM. The homogeneous equation (12.6.2) has n linearly inde-
pendent solutions h0, . . . , hn−1; and every solution is a linear combination of them.

If fp is a particular solution of the inhomogeneous DE, then every solution (for
arbitrary initial conditions) is the sum of fp and a solution of the homogeneous DE.

Some techniques for solving linear DEs will be explored in the exercises. We
now consider a special case in which all the functions qk are constant.

12.6.4. EXAMPLE. Consider the second-order linear DE with constant coeffi-
cients

y′′(x)−5y′(x)+6y(x) = sinx for x ∈ R,

y(0) = 1, y′(0) = 0.

The first task is to solve the homogeneous equation y′′ −5y′+6y = 0. It is useful
to consider the linear map D that sends each function to its derivative: D f = f ′. Our
equation may be written as (D2−5D+6I)y = 0, where I is the identity map I f = f .
This quadratic may be factored as

D2−5D+6I = (D−2I)(D−3I),

where 2 and 3 are the roots of the quadratic equation x2−5x+6 = 0.
Note that the equation (D−2I)y = 0 is just y′ = 2y. We can recognize by inspec-

tion that f (x) = e2x is a solution. Then we may compute

(D2−5D+6I)e2x = (4−10+6)e2x = 0.

Similarly, e3x is a solution of (D−3I)y = 0 and

(D2−5D+6I)e3x = (9−15+6)e3x = 0.

So h1(x) = e2x and h2(x) = e3x are both solutions of this equation.
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Let Γ1 = (h1(0),h′1(0)) = (1,2) and Γ2 = (h2(0),h′2(0)) = (1,3) be the initial
conditions. These two vectors are evidently independent. Thus every possible vector
of initial conditions is a linear combination of Γ1 and Γ2. From this, we see that every
solution of the homogeneous DE is of the form h(x) = ae2x +be3x.

Now let us return to the inhomogeneous problem. A technique called the method
of undetermined coefficients works well here. This is just a fancy name for good
guesswork. It works for forcing functions that are (sums of) exponentials, polynomi-
als, sines, and cosines. We look for a solution of the same type. Here we hypothesize
a solution of the form

f (x) = csinx+d cosx,

where c and d are constants. Plug f into our differential equation:

f ′′−5 f ′+6 f = (−csinx−d cosx)−5(ccosx−d sinx)+6(csinx+d cosx)
= (5c+5d)sinx+(5d−5c)cosx.

So we may solve the system of linear equations

5c+5d = 1,

5c−5d = 0,

to obtain c = d = 0.1. This is a particular solution.
Now the general solution to the inhomogeneous equation is of the form

f (x) = 0.1sinx+0.1cosx+ae2x +be3x.

We compute the initial conditions

1 = f (0) = 0.1+a+b,

0 = f ′(0) = 0.1+2a+3b.

Solving this linear system yields a = 2.8 and b =−1.9. Thus the solution is

f (x) = 0.1sinx+0.1cosx+2.8e2x−1.9e3x.

Exercises for Section 12.6

A. Solve y′′+3y′ −10y = 8e3x, y(0) = 3, and y′(0) = 0.

B. Consider y′′+by′+ cy = 0. Factor the quadratic x2 +bx+ c = (x− r)(x− s).

(a) Solve the DE when r and s are distinct real roots.
(b) When r = a + ib and s = a− ib are distinct complex roots, show that eax sinbx and

eax cosbx are solutions.
(c) When r is a double real root, show that erx and xerx are solutions.

C. Observe that x is a solution of y′′ − x−2y′+ x−3y = 0. Look for a second solution of the form
f (x) = xg(x). HINT: Find a first-order DE for g′.
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D. Let A be an n×n matrix, and let y = (y1, . . . ,yn). Consider y′ = Ay and y(a) = Γ .

(a) Set up the integral equation for this DE.
(b) Starting with f0 = Γ , show that the iterates obtained are fk(x) = ∑

k
i=0

1
i! (xA)iΓ .

(c) Deduce that this series converges for any matrix A. The limit is exAΓ .

E. Solve the DE of the previous exercise explicitly for A =
[ 3 −1
−1 3

]
and Γ = (1,2).

HINT: Find a basis that diagonalizes A.

F. Consider the DE y′′+ xy′+ y = 0.

(a) Look for a power series solution y = ∑n≥0 anxn. That is, plug this series into the DE and
solve for an in terms of a0 and a1.

(b) Find the radius of convergence of these solutions.
(c) Identify one of the resulting series in closed form h1(x). Look for a second solution of the

form f (x) = h1(x)g(x). Obtain a DE for g and solve it.
(d) Use the power series expansion to find a particular polynomial solution of y′′+xy′+y = x3.

G. Bessel’s DE. Consider the DE x2y′′+ xy′+(x2−N2)y = 0, where N ∈ N.

(a) Find a power series solution y = ∑n≥0 anxn. HINT: Show an = 0 for n < N and n−N odd.
(b) Find the radius of convergence of this power series.
(c) The Bessel function (of the first kind) of order N, denoted by JN(x), is the multiple of this

solution with aN = 1/(2NN!). Find a concise expression for the power series expansion
JN in terms of x/2 and factorials.

H. Variation of Parameters. Let h1 and h2 be a basis for the solutions of the homogeneous
linear DE y′′ + q1(x)y′ + q0(x)y = 0. Define the Wronskian determinant to be the function
W (x) = h1(x)h′2(x)−h′1(x)h2(x).

(a) Show that W ′(x)+q1(x)W (x) = 0 and W (c) 6= 0.
(b) Solve for W (x). Hence show that W (x) is never 0. HINT: Integrate W ′/W =−q1.
(c) Let p(x) be a forcing function. Show that

f (x) =−h1(x)
∫ x

c

h2(t)p(t)
W (t)

dt +h2(x)
∫ x

c

h1(t)p(t)
W (t)

dt

is a particular solution of y′′+q1(x)y′+q0(x)y = p(x).

I. Use variation of parameters to solve y′′ −5y′+6y = 4xex, y(0) = 0, and y′(0) =−6.

12.7 Perturbation and Stability of DEs

Another point of interest that can be readily achieved by our methods is the contin-
uous dependence of the solution F on the initial data F(a) = Γ . It is important in
applications that nearby initial values should lead to nearby solutions, and nearby
equations have solutions that are also close. This is a variation on the notion of
sensitive dependence on initial conditions, which we studied in Section 11.5.

The main theorem of this section is a bit complicated because of the explicit
estimates. You should interpret this theorem more qualitatively: If two DEs are close
and at least one is Lipschitz, then their solutions are close.
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12.7.1. PERTURBATION THEOREM.
Let Φ(x,y) be a continuous function on a region D = [a,b]×BR(Γ ) satisfying a Lip-
schitz condition in y with constant L. Suppose that Ψ is another continuous function
on D such that ‖Ψ −Φ‖∞ ≤ ε . (Note that Ψ is not assumed to be Lipschitz.) Let F
and G be the solutions of the differential equations

F ′(x) = Φ(x,F(x)), F(a) = Γ and G(x)′ = Ψ(x,G(x)), G(a) = ∆

respectively, such that (x,F(x)) and (x,G(x)) belong to D for a≤ x ≤ b. Also, sup-
pose that ‖∆ −Γ ‖ ≤ δ . Then, for all x ∈ (a,b),

‖G(x)−F(x)‖ ≤ δeL|x−a|+
ε

L
(eL|x−a| −1).

Thus
‖G−F‖∞ ≤ δeL|b−a|+

ε

L
(eL|b−a| −1).

PROOF. Define

τ(x) = ‖G(x)−F(x)‖=
(n−1

∑
i=0

(
gi(x)− fi(x)

)2
)1/2

.

In particular, τ(a) = ‖∆ −Γ ‖< δ . Then by the Cauchy–Schwarz inequality,

2τ(x)τ ′(x) = (τ(x)2)′ =
n−1

∑
i=0

2
(
gi(x)− fi(x)

)(
g′i(x)− f ′i (x)

)
≤ 2
(n−1

∑
i=0

(
gi(x)− fi(x)

)2
)1/2(n−1

∑
i=0

(
g′i(x)− f ′i (x)

)2
)1/2

= 2τ(x)‖G′(x)−F ′(x)‖.

Now compute

‖G′(x)−F ′(x)‖= ‖Ψ(x,G(x))−Φ(x,F(x))‖
≤ ‖Ψ(x,G(x))−Φ(x,G(x))‖+‖Φ(x,G(x))−Φ(x,F(x))‖
≤ ε +L‖G(x)−F(x)‖= ε +Lτ(x).

Combining these two estimates, we obtain a differential inequality

τ
′(x)≤ ‖G′(x)−F ′(x)‖ ≤ ε +Lτ(x).

Hence

x−a =
∫ x

a
dt ≥

∫ x

a

τ ′(t)
ε +Lτ(t)

dt =
1
L

log(Lτ + ε)
∣∣∣x
a
=

1
L

log
(Lτ(x)+ ε

Lτ(a)+ ε

)
.

Solving for τ(x) yields
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Lτ(x)+ ε ≤ eL(x−a)(Lτ(a)+ ε)≤ eL(x−a)(Lδ + ε),

whence
‖G(x)−F(x)‖= τ(x)≤ δeL|x−a|+

ε

L
(eL|x−a| −1). �

An immediate and important consequence of this result is continuous dependence
of the solution of a DE (with Lipschitz condition) as a function of the parameter Γ .
For simplicity only, we assume a global Lipschitz condition.

12.7.2. COROLLARY. Suppose that Φ satisfies a global Lipschitz condition
in y on [a,b]×Rn. Then the solution FΓ of

F ′(x) = Φ(x,F(x)), F(a) = Γ

is a continuous function of Γ .

PROOF. Let L be the Lipschitz constant. Since the Lipschitz condition is global,
there is no need to check whether the values of F(x) remain in the domain. Also,
there is no need to keep δ small.

In this application of Theorem 12.7.1, we take ε = 0, since the function Φ is used
for both functions. Hence we obtain

‖FΓ −F∆‖∞ ≤ ‖Γ −∆‖eL|b−a|.

In particular, it follows that F∆ converges uniformly to FΓ as ∆ converges to Γ . This
is referred to as continuous dependence on parameters. �

12.7.3. EXAMPLE. Consider the linear DE (12.6.1) of Section 12.6. We
showed there that linear DEs satisfy a global Lipschitz condition in y. The solution
is a function fΓ of the initial conditions. However, the estimates are expressed in
terms of the vector-valued function FΓ =

(
fΓ , f ′

Γ
, . . . , f (n−1)

Γ

)
. By Corollary 12.7.2,

the solution is a continuous function of the initial data:

‖FΓ −F∆‖∞ ≤ ‖Γ −∆‖eL|b−a|.

Hence we obtain that

‖ f (k)
Γ
− f (k)

∆
‖∞ ≤ ‖Γ −∆‖eL|b−a| for all 0≤ k ≤ n−1.

So the first n− 1 derivatives also depend continuously on the initial data. Conse-
quently, f (n)

Γ
= ϕ(x,FΓ ) is also a continuous function of Γ . Therefore, fΓ is a con-

tinuous function of Γ in the Cn[a,b] norm.
In this case, this is evident from the form of the solution. Recall that we let

f0 be the particular solution with Γ = 0 and found a basis of solutions hi for the
homogeneous equation (12.6.2) for initial data Γi. The general solution is given by
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fγ(x) = f0(x)+
n−1

∑
i=0

γihi(x).

From this, the continuous dependence of fγ and its derivatives on Γ is evident.

Theorem 12.7.1 can be interpreted as a stability result. If the differential equa-
tion and initial data are measured empirically, then this theorem assures us that the
approximate solution based on the measurements remains reasonably accurate. It
is rare that differential equations that arise in practice can be explicitly solved in
closed form. However, general behaviour can be deduced if the DE is close to a nice
one.

12.7.4. EXAMPLE. Suppose that g(x) is a solution of

y′′+ y = e(x,y,y′), y(0) = 0, and y′(0) = 1 for x ∈ [−2π,2π],

where e(x,y,y′) is a small function bounded by ε . Then g should be close to the
solution of

y′′+ y = 0, y(0) = 0, and y′(0) = 1 for x ∈ [−2π,2π],

which is known to be f (x) = sinx. This unperturbed DE corresponds to the function
Φ(x,y0,y1) = (y1,−y0), which has Lipschitz constant 1. We apply Theorem 12.7.1,
with δ = 0, to obtain∥∥(g(x)− sinx, g′(x)− cosx

)∥∥≤ ε(e|x| −1).

It follows that g(x) is bounded between sin(x)− ε(e|x| −1) and sin(x)+ ε(e|x| −1);
see Figure 12.4.

By using the bound on g′, we can describe g more precisely. Let us assume that
ε < 0.01. Since cosx > 0.02 on [−1.55,1.55], it follows that g′(x) > 0 on this range,
and hence g is strictly increasing. So 0 is the only zero of g in this range. Similarly,
g is strictly decreasing on [1.59,4.69]. We see that

g(2.9) > sin(2.9)−0.01(e2.9−1) > 0.06.

Similarly, g(3.5) < 0. It follows that g has a single zero in the interval (2.9,3.5). So
on [0,3.5], g oscillates much like the sine function.

Exercises for Section 12.7

A. It is known that f (x) is an exact solution of y′′ + x2y′ + 2xy = sinx on [0,1]. However, the
initial data must be measured experimentally. How accurate must the measurements of f (0)
and f ′(0) be in order to be able to predict f (1) and f ′(1) to within an accuracy of 0.00005?

B. Let f (x) be the solution of the DE y′ = exy and y(0) = 1 for x ∈ [−1,1]. Suppose that fn(x) is

the solution of y′ = ∑
n
k=0

(xy)k

k! and y(0) = 1 for x ∈ [−1,1].
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x
1 2 3

y
1

−1

y = sin(x)

y = sin(x)+0.01(e|x| −1)

y = sin(x)−0.01(e|x| −1)

FIG. 12.4 The bounds for g(x).
.

(a) Show that fn(x) converges to f (x) uniformly on [−1,1].
(b) Find an N such that ‖ f − fN‖∞ < 0.0001.

C. Let Aε =
[

1 ε

ε 1

]
. Consider the DE: F ′

ε (x) = Aε F(x) and F(0) = (2,3) on [0,1].

(a) Solve explicitly for Fε . HINT: Exercise 12.6.E
(b) Compute ‖Fε −F0‖∞.
(c) Compare (b) with the bound provided by Theorem 12.7.1.

D. For each n ≥ 1, define a piecewise linear function gn(x) on [0,1] by setting gn(0) = 1 and
then defining gn(x) = gn( k

n )
(
1+3(x− k

n )
)

for k
n < x≤ k+1

n and 0≤ k ≤ n−1.

(a) Sketch g10(x) and e3x on the same graph.
(b) Use the fact that gn is an approximate solution to the DE y′ = 3y and y(0) = 1 on [0,1] to

estimate ‖gn− e3x‖∞.
(c) How does this estimate compare with the exact value?
(d) Show that gn(x) converges uniformly to e3x.

E. Let F satisfy F ′(x) = Φ(x,F(x)) and F(a) = Γ , where Φ is continuous on [a,b]×Rn and Lip-
schitz in y with constant L. Suppose G is differentiable and satisfies ‖G′(x)−Φ(x,G(x))‖≤ ε

and ‖G(a)−Γ ‖ ≤ δ . Show that ‖G(x)−F(x)‖ ≤ δeL|x−a|+ ε

L (eL|x−a| −1).
HINT: Apply the proof of Theorem 12.7.1.

12.8 Existence Without Uniqueness

So far, all of our theorems establishing the existence of solutions required a Lip-
schitz condition. While this is frequently the case in applications, there do exist
common situations for which there is no Lipschitz condition near a critical point
of some sort. As we saw in Example 12.5.3, this might result in the existence of
multiple solutions. It turns out that by merely assuming continuity of the function
Φ (which is surely not too much to ask), the existence of a solution is guaranteed
in a small interval. We could again use continuation methods to obtain solutions on
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larger intervals. However, we will not do that here. The additional tool we need in
order to proceed is a compactness theorem for functions, the Arzelà–Ascoli Theo-
rem (8.6.9).

This is the key tool that leads to the main result of this section.

12.8.1. PEANO’S THEOREM.
Suppose that Γ ∈ Rn and Φ is a continuous function from D = [a,b]×BR(Γ ) into
Rn. Then the differential equation

F ′(x) = Φ(x,F(x)), f (a) = Γ for a≤ x≤ b

has a solution on [a,a+h], where h = min{b−a,R/M} and M = ‖Φ‖∞ is the max
norm of Φ over the set D.

PROOF. As in Picard’s proof, we convert the problem to finding a fixed point for
the integral mapping

T F(x) = Γ +
∫ x

a
Φ(t,F(t))dt.

For each n≥ 1, we define a function Fn(x) on [a,a+h] as follows:

Fn(x) =

{
Γ for a≤ x≤ a+ 1

n ,

Γ +
∫ x−1/n

a Φ(t,Fn(t))dt for a+ 1
n ≤ x≤ a+h.

Notice that the integral defines Fn(x) in terms of the values of Fn(x) in the interval
[a,x− 1

n ]. Since Fn is defined to be the constant Γ on [a,a+ 1
n ], the definition of Fn

as an integral makes sense on the interval [a+ 1
n ,a+ 2

n ]. Once this is accomplished,
it then follows that the integral definition makes sense on the interval [a+ 2

n ,a+ 3
n ].

Proceeding in this way, we see that the definition makes sense on all of [a,a + h],
provided that we verify that Fn(x) remains in BR(Γ ). This is an easy estimate:

‖Fn(x)−Γ ‖ ≤
∫ x−1/n

a
‖Φ(t,Fn(t))‖dt ≤M|x−a| ≤Mh≤ R.

It is also easy to show that Fn is an approximate solution to the fixed-point prob-
lem. For a≤ x≤ a+ 1

n ,

‖T Fn(x)−Fn(x)‖=
∥∥∥Γ +

∫ x

a
Φ(t,Fn(t))dt−Γ

∥∥∥
≤
∫ x

a
‖Φ(t,Fn(t))‖dt ≤M(x−a)≤ M

n
.

For a+ 1
n ≤ x≤ a+h,

‖T Fn(x)−Fn(x)‖=
∥∥∥∫ x

x−1/n
Φ(t,Fn(t))dt

∥∥∥≤ ∫ x

x−1/n
‖Φ(t,Fn(t))‖dt ≤ M

n
.
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So ‖T Fn−Fn‖∞ ≤M/n.
We will show that the family {Fn : n≥ 1} is equicontinuous. Indeed, given ε > 0,

let δ = ε/M. If a≤ x1 < x2 ≤ a+h and |x2− x1|< δ , then

‖Fn(x2)−Fn(x1)‖ ≤
∫ x2−1/n

x1−1/n
‖Φ(t,Fn(t))‖dt

≤M‖(x1−1/n)− (x2−1/n)‖< Mδ = ε.

Therefore we may apply the Arzelà–Ascoli Theorem. The family of functions
{Fn : n≥ 1} is bounded by ‖Γ ‖+R and is equicontinuous. So its closure is compact.
Thus we can extract an increasing sequence nk such that the Fnk converge uniformly
on [a,a + h] to a function F∗(x). We will show that F∗ is a fixed point of T , and
hence the desired solution. Compute

‖F∗(x)−T F∗(x)‖ ≤ ‖F∗(x)−Fnk(x)‖+‖Fnk(x)−T Fnk(x)‖+‖T Fnk(x)−T F∗(x)‖

≤ ‖F∗ −Fnk‖∞ +
M
nk

+
∫ a+h

a

∥∥Φ(t,F∗(t))−Φ(t,Fnk(t))
∥∥dt.

Now Φ is uniformly continuous on the compact set D by Theorem 5.5.9. Since
Fnk converges uniformly to F∗ on [a,a + h], it follows that Φ(x,Fnk(x)) converges
uniformly to Φ(x,F∗(x)). Hence by Theorem 8.3.1,

lim
k→∞

∫ a+h

a

∥∥Φ(t,F∗(t))−Φ(t,Fnk(t))
∥∥dt = 0.

Putting all of our estimates together and letting k tend to ∞, we obtain T F∗ = F∗,
completing the argument. �

Exercises for Section 12.8

A. Show that the DE y(4) = 120y1/5 and y(0) = y′(0) = y(2)(0) = y(3)(0) = 0 has infinitely many
solutions on the whole real line. HINT: Compare with Example 12.5.3.

B. Let γ ∈ R and let Φ be a continuous real-valued function on [a,b]× [γ −R,γ + R]. Consider
the DE y′(x) = Φ(x,y) and y(a) = γ , and suppose that Peano’s Theorem guarantees a solution
on [a,a+h]. If f and g are both solutions on [a,a+h], show that their maximum f ∨g(x) =
max{ f (x),g(x)} and minimum f ∧g(x) = min{ f (x),g(x)} are also solutions. HINT: Verify
the DE in U = {x : f (x) > g(x)}, V = {x : f (x) < g(x)}, and X = {x : f (x) = g(x)} separately.

C. Let Φ be a continuous function on [a,b]×R such that Φ(x,y) is a decreasing function of y
for each fixed x.

(a) Suppose that f and g are solutions of y′(x) = Φ(x,y(x)). Show that | f (x)− g(x)| is a
decreasing function of x. HINT: If f (x) > g(x) on an interval I and x1 < x2 ∈ I, express(

f (x2)−g(x2)
)
−
(

f (x1)−g(x1)
)

as an integral.
(b) Show that this DE has a unique solution for the initial condition y(a) = γ .

D. Show that the set of all solutions on [a,a + h] to the DE of Peano’s Theorem is closed,
bounded, and equicontinuous.
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E. Consider the setup of Exercise 12.8.B. Prove that the set of all solutions on [a,a + h] has a
largest and smallest solution. HINT: Use Exercise 12.8.D to obtain a countable dense subset
{ fn} of the set of solutions. Let gk = max{ f1, . . . , fk} for k ≥ 1. Show that gk converges to
the maximal solution fmax.

F. Again the setup as in Exercise 12.8.B. Let x0 ∈ [a,a+h]. Show that { f (x0) : f solves the DE}
is a closed interval. HINT: If c ∈ [ fmin(x0), fmax(x0)], show that f ′(x) = Φ(x, f (x)) and
f (x0) = c has a solution f on [a,c]. Consider g(x) = ( fmax∧ f )∨ fmin.



Chapter 13
Fourier Series and Physics

Fourier series were first developed to solve partial differential equations that arise
in physical problems, such as heat flow and vibration. We will look at the physics
problem of heat flow to see how Fourier series arise and why they are useful. Then
we will proceed with the solution, which leads to a lot of very interesting mathemat-
ics. We will also see that the problem of a vibrating string leads to a different PDE
that requires similar techniques to solve.

While these problems sound very applied, the infinite series that arise as solu-
tions forced mathematicians to delve deeply into the foundations of analysis. When
d’Alembert proposed his solution for the motion of a vibrating string in 1754, there
were no clear, precise definitions of limit, function, or even of the real numbers—
all things taken for granted in most calculus courses today. D’Alembert’s solution
has a closed form, and thus did not really challenge deep principles. However, the
solution to the heat problem that Fourier proposed in 1807 required notions of con-
vergence that mathematicians of that time did not have. Fourier won a major prize
in 1812 for this work, but the judges, Laplace, Lagrange, and Legendre, criticized
Fourier for lack of rigour. Work in the nineteenth century by many now famous
mathematicians eventually resolved these questions by developing the modern def-
initions of limit, continuity, and uniform convergence. These tools were developed
not because of some fetish for finding complicated things, but because they were
essential to understanding Fourier series.

13.1 The Steady-State Heat Equation

The purpose of this section is to derive from physical principles the partial differen-
tial equation satisfied by heat flow on a surface.

Consider the problem of determining the temperature on a thin metal disk given
that the temperature on the boundary circle is fixed. We assume that there is no heat
loss in the third dimension. Perhaps this disk is placed between two insulating pads.
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We also assume that the system is at equilibrium. As a consequence, the temperature
at each point remains constant over time. This is the steady-state heat problem.

It is convenient to work in polar coordinates in order to exploit the symmetry.
The disk will be given as the set

D = {(x,y) : x2 + y2 ≤ 1}= {(r,θ) : 0≤ r ≤ 1, −π ≤ θ ≤ π},

where (0,θ) represents the origin for all values of θ ; and we identify (r,−π) = (r,π)
for all r ≥ 0. More generally, we allow (r,θ) for any real value of θ and make the
identification (r,θ +2π) = (r,θ).

Let us denote the temperature distribution over the disk by a function u(r,θ), and
let the given function on the boundary circle be f (θ).

As usual in physical problems such as this, we need to know a mathematical form
of the appropriate physical law in order to determine a differential equation that
governs the behaviour of the system. In this case, the law is that the heat flow across
a boundary is proportional to the temperature difference between the two sides of
the curve. Of course, our temperature distribution function will be continuous. So
we must deal with the infinitesimal version of temperature change, which is the
derivative of the temperature in the direction perpendicular to the boundary, known
as the normal derivative.

With this assumption, we can write down a formula expressing the fact that given
any region R in the disk with piecewise smooth boundary C , the total amount of heat
crossing the boundary C is 0. This yields the heat conservation equation

0 =
∫

C

∂u
∂n

ds.

Here ∂u/∂n denotes the normal derivative in the outward direction perpendicular to
the tangent, and ds indicates integration over arc length along the curve.

Those students comfortable with multivariable calculus will recognize a version
of the Divergence Theorem: ∫

C

∂u
∂n

ds =
∫

R
∆udA,

where ∆u = uxx + uyy is the Laplacian and dA represents integration with respect
to area. Whenever a continuous function integrates to 0 over every nice region (say
squares or disks), then the function must be 0 everywhere, which leads to the equa-
tion ∆u = 0. This is the desired differential equation, except that it is necessary to
express the Laplacian in polar coordinates. A (routine but nontrivial) exercise using
the multivariate chain rule shows that

∆u = urr +
1
r

ur +
1
r2 uθθ .

For the convenience of students unfamiliar with ideas in the previous paragraph,
we show how to derive this equation directly. This has the advantage that we can
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work in polar coordinates and avoid the need for a messy change of variables. The
idea is to take R to be the region graphed in Figure 13.1, namely

R = {(r,θ) : r0 ≤ r ≤ r1, θ0 ≤ θ ≤ θ1}.

L0

L1

A0

A1

FIG. 13.1 The region R with boundary and outward normal vectors.

The boundary C of R consists of two radial line segments

L0 = {(r,θ0) : r0 ≤ r ≤ r1} and L1 = {(r,θ1) : r0 ≤ r ≤ r1}

and two arcs

A0 = {(r0,θ) : θ0 ≤ θ ≤ θ1} and A1 = {(r1,θ) : θ0 ≤ θ ≤ θ1}.

Taking orientation into account, C = L0 + A1 − L1 − A0. Along L1, the outward
normal at (r,θ1) is in the θ direction, and arc length along the circle with angle h is
rh; thus

∂u
∂n

(r,θ1) = lim
h→0

u(r,θ1 +h)−u(r,θ1)
rh

=
1
r

uθ (r,θ1).

Along the arc A1, the outward normal is the radial direction, and thus the normal
derivative is ur(r1,θ). The arc length ds along the radii L0 and L1 is just dr, while
arc length along an arc of radius r is r dθ . Thus by adding over the four pieces of
the boundary, we obtain the conservation law

0 =
∫ r1

r0

1
r

(
uθ (r,θ1)−uθ (r,θ0)

)
dr +

∫
θ1

θ0

ur(r1,θ)r1 dθ −
∫

θ1

θ0

ur(r0,θ)r0 dθ

=
∫ r1

r0

1
r

(
uθ (r,θ1)−uθ (r,θ0)

)
dr +

∫
θ1

θ0

(
r1ur(r1,θ)− r0ur(r0,θ)

)
dθ .

Divide by θ1−θ0 and take the limit as θ1 decreases to θ0. The first term is inte-
grated with respect to r, which is independent of θ , and thus the limit is evaluated
using the Leibniz rule (8.3.4). For the second term, the limit follows from the Fun-
damental Theorem of Calculus:
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0 =
∫ r1

r0

1
r

lim
θ1→θ0

uθ (r,θ1)−uθ (r,θ0)
θ1 −θ0

dr+ lim
θ1→θ0

1
θ1−θ0

∫
θ1

θ0

(
r1ur(r1,θ)−r0ur(r0,θ)

)
dθ

=
∫ r1

r0

1
r

uθθ (r,θ0)dr + r1ur(r1,θ0)− r0ur(r0,θ0).

Now divide by r1− r0 and take the limit as r1 decreases to r0. We obtain

0 = lim
r1→r0

1
r1− r0

∫ r1

r0

1
r

uθθ (r,θ0)dr +
r1ur(r1,θ0)− r0ur(r0,θ0)

r1− r0

=
1
r0

uθθ (r0,θ0)+
∂

∂ r
(rur)(r0,θ0)

=
1
r0

uθθ (r0,θ0)+ur(r0,θ0)+ r0urr(r0,θ0) = r0∆u(r0,θ0).

Thus our differential equation and boundary condition become

∆u := urr +
1
r

ur +
1
r2 uθθ = 0 for 0≤ r < 1, −π ≤ θ ≤ π,

u(1,θ) = f (θ) for −π ≤ θ ≤ π.

Exercises for Section 13.1

A. Do the change of variables calculation converting uxx +uyy to polar coordinates.

B. Let u(r,θ) = logr. Compute ∆u and u(1,θ). Explain why u is not a solution of the heat
equation for the boundary function f (θ) = 0.

C. Suppose that u solves the steady-state heat equation for the annulus A = {(r,θ) : r0 ≤ r≤ r1}.

(a) If u depends only on r, and not on θ , what ODE does u satisfy? Solve the heat equation
for the boundary conditions u(r0,θ) = a0 and u(r1,θ) = a1.

(b) Show that if u depends only on θ , then it is constant.

D. Show that u(r,θ) = (3−4r2 + r4)+(8r2−8r4)sin2
θ +8r4 sin4

θ satisfies ∆u(r,θ) = 0 and
u(1,θ) = 8sin4

θ .

E. Let S = {(x,y) : 0≤ x≤ 1,y ∈ R} and consider the steady-state heat problem on this strip.

(a) Show that enπy sinnπx is a solution for the problem of zero boundary values.
(b) Do you believe that this is a reasonable solution to the physical problem? Discuss.

F. Suppose that an infinite rod has a temperature distribution u(x, t) at the point x ∈ R at time
t > 0. The heat equation is ut = uxx.

(a) Prove that u(x, t) = 1√
4πt

e−x2/4t is a solution.

(b) Evaluate the total heat at time t:
∫

∞

−∞

u(x, t)dx. HINT: Let I =
∫

∞

−∞

e−x2/2 dx. Express I2

as a double integral over the plane, and convert to polar coordinates. Or use Example 8.3.5.
(c) Evaluate lim

t→0
u(x, t). Can you give a physical explanation of what this limit represents?



332 13 Fourier Series and Physics

13.2 Formal Solution

The steady-state heat equation is a difficult problem to solve. We approach it first
by making the completely unjustified assumption that there will be solutions of a
special form. By combining these solutions, we will obtain a quite general solution,
ignoring all convergence issues. After that, we will work backward and show rigor-
ously that these solutions in fact make good sense and are completely general. We
justify our first steps as experiments that lead us to a likely candidate for the solution
but do not in themselves constitute a proper derivation of the solution. In subsequent
sections, we will use our analysis techniques to justify why it works.

Our method, called separation of variables, is to look for solutions of the form
u(r,θ) = R(r)Θ(θ), where R is a function only of r and Θ is a function only of θ .
This enables us to split the partial differential equation into two ordinary differential
equations of a single variable each. Indeed, the DE ∆u = 0 becomes

R′′(r)Θ(θ)+
1
r

R′(r)Θ(θ)+
1
r2 R(r)Θ ′′(θ) = 0.

Manipulate this by taking all dependence on r to one side of the equation and all
dependence on θ to the other to obtain

r2R′′(r)+ rR′(r)
R(r)

=
−Θ ′′(θ)

Θ(θ)
.

The left-hand side does not depend on θ and the right-hand side does not depend on
r. Since they are equal, they are both independent of all variables and so are equal
to a constant c:

r2R′′(r)+ rR′(r)
R(r)

= c =
−Θ ′′(θ)

Θ(θ)
.

These equations can now be rewritten as

Θ
′′(θ)+ cΘ(θ) = 0

and
r2R′′(r)+ rR′(r)− cR(r) = 0.

The first equation is a well-known linear DE with constant coefficients. We know
from Section 12.6 that this DE has a two-parameter space of solutions corresponding
to the possible initial values. We can solve the equation (D2 + cI)y = 0 making use
of the quadratic equation x2 + c = 0, which has roots ±

√
−c if c < 0, a double root

at 0 for c = 0, and two imaginary roots±
√

ci when c > 0. Hence by Exercise 12.6.B,
we obtain the solutions

Θ(θ) = Acos(
√

cθ)+Bsin(
√

cθ) for c > 0,

Θ(θ) = A+Bθ for c = 0,

Θ(θ) = Ae
√
−cθ +Be−

√
−cθ for c < 0.
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However, not all of these solutions fit our problem. Our solutions must be 2π-
periodic because (r,−π) and (r,π) represent the same point; and more generally
(r,θ) and (r,θ +2π) represent the same point. Hence

Θ(−π) = Θ(π) and Θ
′(−π) = Θ

′(π).

This eliminates the case c < 0 and limits the c = 0 case to the constant functions.
For c > 0, this forces

√
c to be an integer. Hence we obtain

Θ(θ) =

{
Acosnθ +Bsinnθ for c = n2 ≥ 1,

A for c = 0.

Now for each c = n2, n≥ 0, we must solve the equation

r2R′′(r)+ rR′(r)−n2R(r) = 0.

This is not as easy to solve, but a trick, the substitution r = et , leads to the answer.
Differentiation yields

dR
dt

=
dR
dr

dr
dt

= R′r

and d2R
dt2 =

d
dr

(R′r)
dr
dt

= (R′′r +R′)r = r2R′′+ rR′.

Hence our DE becomes
d2R
dt2 = n2R. This is a linear DE with constant coefficients,

which has the solutions

R = aent +be−nt = arn +br−n for n≥ 1
R = a+bt = a+b logr for n = 0.

Again physical considerations demand that R be continuous at r = 0. This eliminates
the solutions r−n and logr. That leaves the solutions R(r) = arn for each n≥ 0.

Combining these two solutions for each c = n2 provides the solutions

u(r,θ) = Anrn cosnθ +Bnrn sinnθ for n≥ 0.

The case n = 0 is special and yields u(r,θ) = A0. Since the sum of solutions for a
homogeneous DE such as ours will also be a solution, we obtain a formal solution
(ignoring convergence issues)

u(r,θ) = A0 +
∞

∑
n=1

Anrn cosnθ +Bnrn sinnθ .

Continuing to ignore the question of convergence, we let r = 1 and use our boundary
condition to obtain
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f (θ) = A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ .

This is a Fourier series, which we considered in Section 7.6.

Exercises for Section 13.2

A. (a) Verify that ∆u = 0 = ∆v implies that ∆(au+bv) = 0 for all scalars a,b ∈ R.
(b) Solve the DE y′ =−y2. Show that the sum of any two solutions can never be a solution.
(c) Explain the difference in these two situations.

B. Adapt the method of this section (i.e., separation of variables) to find the possible solutions of
∆u(r,θ) = 0 on the region U = {(r,θ) : r > 1} that are continuous on U and are continuous
at infinity in the sense that lim

r→∞
u(r,θ) = L exists, independent of θ .

C. Find the Fourier expansion for the function f (θ) = 8sin4
θ of Exercise 13.1.D.

D. Let HS = {(x,y) : 0 ≤ x ≤ 1, y ≥ 0}, and consider the steady-state heat problem on HS with
boundary conditions u(0,y) = u(1,y) = 0 and u(x,0) = x− x2.

(a) Use separation of variables to obtain a family of basic solutions.
(b) Show that the conditions on the two infinite bounding lines restrict the possible solutions.

If in addition, you stipulate that the solution must be bounded, express the resulting solu-
tion as a formal series.

(c) What does the boundary condition on [0,1] imply for this formal series?

E. Consider a circular drum membrane of radius 1. At time t, the point (r,θ) on the surface has
a vertical deviation of u(r,θ , t). The wave equation for the motion is utt = c2∆u, where c is
a constant. In this exercise, we will consider only solutions that have radial symmetry (no
dependence on θ ).

(a) What boundary condition should apply to u(1,θ , t)?
(b) Look for solutions to the PDE of the form u(r,θ , t) = R(r)T (t). Use separation of variables

to obtain ODEs for R and T . An unknown constant must be introduced.
(c) What conditions on the ODE for T are needed to guarantee that T remains bounded (a

reasonable physical hypothesis)?
(d) The DE for R is called Bessel’s DE. What degeneracy of the DE requires us to add another

condition that R remain bounded at r = 0?

F. In Exercise 13.2.D, find the Fourier coefficients necessary to satisfy the boundary condition
on the unit interval.

13.3 Convergence in the Open Disk

It is now time to return to the original problem and systematically analyze our pro-
posed solutions. The behaviour of the function u on the open disk

D = {(r,θ) : 0≤ r < 1, −π ≤ θ ≤ π}

is much easier than the analysis of the boundary behaviour. We deal with that first,
and we will find that it leads to a method for understanding the Fourier series of f .
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Often results about the behaviour of u on D will follow from a stronger result on
each smaller closed disk

DR = {(r,θ) : 0≤ r ≤ R, −π ≤ θ ≤ π} for R < 1.

13.3.1. PROPOSITION. Let f be an absolutely integrable function on [−π,π]
with Fourier series f ∼ A0 +∑

∞
n=1 An cosnθ +Bn sinnθ . Then the series

A0 +
∞

∑
n=1

Anrn cosnθ +Bnrn sinnθ

converges uniformly on DR for any R < 1 and thus converges everywhere on the
open disk D to a continuous function u(r,θ).

PROOF. This follows from the Weierstrass M-test (8.4.7). First,∥∥Anrn cosnθ +Bnrn sinnθ
∥∥

DR
= max

(r,θ)∈DR

∣∣Anrn cosnθ +Bnrn sinnθ
∣∣

≤ (|An|+ |Bn|)Rn ≤ 4‖ f‖1Rn,

where the last inequality follows from Proposition 7.6.4. Since

∞

∑
n=0

4‖ f‖1Rn =
4‖ f‖1

1−R
< ∞,

the M-test guarantees that the series converges uniformly on DR. The uniform limit
of continuous functions is continuous by Theorem 8.2.1. Thus, u(r,θ) is continuous
on DR. This is true for each R < 1, so u is continuous on the whole open disk D. �

Now we extend this argument to apply to the various partial derivatives of u. This
procedure justifies term-by-term differentiation under appropriate conditions on
the convergence.

13.3.2. LEMMA. Suppose that un(x,y) are C1 functions on an open set R for

n ≥ 0 such that
∞

∑
n=0

un(x,y) converges uniformly to u(x,y) and
∞

∑
n=0

∂

∂x un(x,y) con-

verges uniformly to v(x,y). Then ∂

∂x u(x,y) = v(x,y).

PROOF. It is enough to verify the theorem on a small square about an arbitrary point
(x0,y0) in R. By limiting ourselves to a square, the whole line segment from (x0,y)
to (x,y) will lie in R. We define functions on this small square by

wn(x,y) =
n

∑
k=0

uk(x,y) =
n

∑
k=0

uk(x0,y)+
∫ x

x0

∂

∂x

n

∑
k=0

uk(t,y)dt

and
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w(x,y) = u(x0,y)+
∫ x

x0

v(t,y)dt.

Since the integrands ∂

∂x

n
∑

k=0
un(t,y) converge uniformly to v(t,y), Corollary 8.3.2

shows that wn(x,y) converges uniformly to w(x,y). But this limit is u(x,y). There-
fore, by the Fundamental Theorem of Calculus,

∂

∂x
u(x,y) =

∂

∂x
w(x,y) =

∂

∂x

(
u(x0,y)+

∫ x

x0

v(t,y)dt
)
(x,y) = v(x,y).

�

We may apply this to our function u(r,θ).

13.3.3. THEOREM. Let f be an absolutely integrable function with associ-
ated function u(r,θ) = A0 +∑

∞
n=1 Anrn cosnθ +Bnrn sinnθ . Then u satisfies the heat

equation ∆u(r,θ) = 0 in the open disk D.

PROOF. Let un(r,θ) = Anrn cosnθ +Bnrn sinnθ . Then

∂

∂ r un(r,θ) = nAnrn−1 cosnθ +nBnrn−1 sinnθ ,

∂ 2

∂ r2 un(r,θ) = n(n−1)Anrn−2 cosnθ +n(n−1)Bnrn−2 sinnθ ,

∂

∂θ
un(r,θ) =−nAnrn sinnθ +nBnrn cosnθ ,

∂ 2

∂θ 2 un(r,θ) =−n2Anrn cosnθ −n2Bnrn sinnθ .

We will apply the M-test to the series
∞

∑
n=0

un(r,θ) and to each series of partial

derivatives. Indeed, on the disk DR for 0 ≤ R < 1, each of the preceding terms is
uniformly bounded by 4‖ f‖1n2Rn−2. Apply the Ratio Test (Exercise 3.2.I) to the

series
∞

∑
n=0

4‖ f‖1n2Rn−2:

lim
n→∞

4‖ f‖1(n+1)2Rn−1

4‖ f‖1n2Rn−2 = R < 1.

Thus this series converges; and therefore it follows from the Weierstrass M-test that
each series of partial derivatives converges uniformly on DR.

Therefore, by Lemma 13.3.2, the partial derivative of the sum equals the sum of
the partial derivatives. This means that

∂

∂ r u(r,θ) =
∞

∑
n=0

∂

∂ r un(r,θ), ∂ 2

∂ r2 u(r,θ) =
∞

∑
n=0

∂ 2

∂ r2 un(r,θ),

∂

∂θ
u(r,θ) =

∞

∑
n=0

∂

∂θ
un(r,θ), ∂ 2

∂θ 2 u(r,θ) =
∞

∑
n=0

∂ 2

∂θ 2 un(r,θ).

This convergence is uniform on every disk DR for R < 1.
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Using ∆u = urr + 1
r ur + 1

r2 uθθ , we deduce from Lemma 13.3.2 that

∆u(r,θ) =
∞

∑
n=0

∆un(r,θ)

and that this convergence is uniform on any disk DR. However, we constructed the
functions rn cosnθ and rn sinnθ as solutions of ∆u = 0. Thus the right-hand side of
this equation is zero. Hence ∆u(r,θ) = 0 everywhere in the open disk D. �

13.3.4. DEFINITION. A function u such that ∆u = 0 is called a harmonic
function. The function u(r,θ) determined by the Fourier series of a 2π-periodic f
is called the harmonic extension of f .

Exercises for Section 13.3

A. Find the Fourier series of f (θ) = θ 2 for −π ≤ θ ≤ π .

(a) Show that the series for u(r,θ) converges uniformly on the closed disk D.
(b) Show that the series for uθθ does not converge uniformly on D.

B. Let An and Bn be the Fourier coefficients of a continuous function f (θ).

(a) Show that vt(r,θ) = u(rt,θ) = A0 + ∑
∞
n=1 An(rt)n cosnθ + Bn(rt)n sinnθ converges uni-

formly on the closed disk D for 0 < t < 1.
(b) Show that vt converges uniformly to u on D as t → 1− if and only if u extends to a

continuous function on D.

C. (a) Show that the Fourier series of a 2π-periodic C1 function f satisies |An|+ |Bn| ≤C/n for
some constant C. HINT: Integrate by parts and compare with Proposition 7.6.4.

(b) Show by induction that if f is Ck, then |An|+ |Bn| ≤Cn−k for some constant C.

D. Show that u(r,θ) has partial derivatives ∂ j+k

∂ r j∂θ k u of all orders. Hence show that u is C∞.
HINT: First verify this for the functions un(r,θ). Then show that the sequence of partial
derivatives converges uniformly on each DR.

E. Suppose that DR is the disk of radius R > 0 about (x0,y0), and f (θ) is a continuous 2π-
periodic function. Let u(x0 +r cosθ ,y0 +r sinθ) be the solution to the steady-state heat prob-
lem on DR such that u(x0 + Rcosθ ,y0 + Rsinθ) = f (θ). The formal solution is a series
u(x0 + r cosθ ,y0 + r sinθ) = A0 +∑n≥1 Anrn cosnθ +Bnrn sinnθ .

(a) What bounds do you obtain for An and Bn from f ?
(b) State the analogue of Proposition 13.3.1 for DR.

13.4 The Poisson Formula

We seek a formula for u(r,θ) in terms of the boundary function f (θ). The basic idea
is to substitute the formula for each Fourier coefficient and interchange the order of
the summation and integration. This again requires uniform convergence.

Compute u(r,θ) for a bounded integrable function f :
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u(r,θ) = A0 +
∞

∑
n=1

Anrn cosnθ +Bnrn sinnθ

=
1

2π

∫
π

−π

f (t)dt +
1
π

∞

∑
n=1

∫
π

−π

f (t)cosnt dt rn cosnθ +
∫

π

−π

f (t)sinnt dt rn sinnθ

=
1

2π

∫
π

−π

f (t)dt +
∞

∑
n=1

1
π

∫
π

−π

f (t)rn(cosnt cosnθ + sinnt sinnθ
)

dt

=
1

2π

∫
π

−π

f (t)dt +
∞

∑
n=1

1
π

∫
π

−π

f (t)rn cosn(θ − t)dt.

Yet again, we apply the M-test. Since

‖ f (t)rn cosn(θ − t)‖ ≤ ‖ f‖∞Rn for 0≤ r ≤ R,

and
∞

∑
n=0

‖ f‖∞Rn = ‖ f‖∞/(1−R) < ∞, the series converges uniformly on DR. There-

fore, by Theorem 8.3.1, we can interchange the order of the summation and the
integral

u(r,θ) =
∫

π

−π

f (t)
1

2π

(
1+2

∞

∑
n=1

rn cosn(θ − t)
)

dt

=
∫

π

−π

f (t)P(r,θ − t)dt =
∫

π

−π

f (θ −u)P(r,u)du.

We have introduced the function

P(r,θ) =
1

2π

(
1+2

∞

∑
n=1

rn cosnθ

)
for 0≤ r < 1, θ ∈ R.

Notice that the last step is a change of variables in which we make use of the fact
that both f and P are 2π-periodic in θ .

The function P(r,θ) is known as the Poisson kernel. The purpose of this section
is to develop its basic properties.

We will use the fact that exponentiation and trigonometric functions are related
using complex variables. (See Appendix 13.9.)

13.4.1. THE POISSON FORMULA.
Let f be a bounded integrable function on [−π,π]. For 0≤ r < 1 and −π ≤ θ ≤ π ,
the harmonic extension of f is given by

u(r,θ) =
∫

π

−π

f (θ − t)P(r, t)dt,

where P(r, t) =
1

2π

1− r2

1−2r cos t + r2 .
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PROOF. From the discussion preceding the theorem, it remains only to evaluate the
series for P(r, t). Changing the cosines to complex exponentials allows us to sum a
geometric series:

2πP(r, t) = 1+2
∞

∑
n=1

rn cosnt = 1+
∞

∑
n=1

rn(eint + e−int)

= 1+
∞

∑
n=1

(reit)n +
∞

∑
n=1

(re−it)n = 1+
reit

1− reit +
re−it

1− re−it

=
(1− reit − re−it + r2)+(reit − r2)+(re−it − r2)

(1− reit)(1− re−it)

=
1− r2

1− r(eit + e−it)+ r2 =
1− r2

1−2r cos t + r2 �

The Poisson kernel has a number of very nice properties. The most important are
that P(r, t) is positive and that it integrates to 1. Hence u(r,θ) is a weighted average
of the values f (θ − t). The function P(r, t) peaks dramatically at t = 0 when r is
close to 1, and thus eventually u(r,θ) depends mostly on the values of f (u) for u
close to θ . See Figure 13.2. The graph of P(15/16, t) has been truncated to fit the
y-axis range from 0 to 3. In fact, P(15/16,0) is about 4.93.

13.4.2. PROPERTIES OF THE POISSON KERNEL.
For 0≤ r < 1 and −π ≤ t ≤ π ,

(1) P(r, t) > 0.
(2) P(r,−t) = P(r, t).

(3)
∫

π

−π

P(r, t)dt = 1.

(4) P(r, t) is decreasing in t on [0,π] for fixed r.
(5) For any δ > 0, lim

r→1−
max

δ≤|t|≤π

P(r, t) = 0.

PROOF. Statements (1) and (2) are routine. For (3), take f = 1. The Fourier series
of f is A0 = 1 and An = Bn = 0 for n≥ 1. Hence u(r,θ) = 1. Plugging this into the
Poisson formula, we obtain

1 = u(r,θ) =
∫

π

−π

P(r, t)dt.

For fixed r, the numerator 1− r2 of P(r, t) is constant, while the denominator is the
monotone increasing function 1−2r cos t + r2 on [0,π], whence P(r, t) is monotone
decreasing in t. This verifies (4). Finally, from (2) and (4), we see that

lim
r→1−

max
δ≤|t|≤π

P(r, t) = lim
r→1−

P(r,δ ) = lim
r→1−

1− r2

1−2r cosδ + r2 =
0

2(1− cosδ )
= 0.

�
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FIG. 13.2 Graphs of P(r, t) for r = 1/2, 3/4, 7/8, and 15/16.
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In the next chapter, we will develop two other integral kernels, the Dirichlet ker-
nel and the Fejér kernel. The reader may want to compare their properties and com-
pare Figures 13.2, 14.1, and 14.3.

Exercises for Section 13.4

A. Compute the Fourier series of f (θ) = P(s,θ) for 0≤ s < 1.

B. Find an explicit value of r < 1 for which
∫ 0.01

−0.01
P(r, t)dt > 0.999.

C. Prove that
1− r
1+ r

≤ 2πP(r,θ)≤ 1+ r
1− r

.

D. Let f be a positive continuous 2π-periodic function with harmonic extension u(r,θ).

(a) Prove that u(r,θ)≥ 0.

(b) Prove Harnack’s inequality:
1− r
1+ r

u(0,0)≤ u(r,θ)≤ 1+ r
1− r

u(0,0).

E. Suppose that f is a 2π-periodic integrable function such that L≤ f (θ)≤M for −π ≤ θ ≤ π .
Let u(r,θ) be the harmonic extension of f . Show that L≤ u(r,θ)≤M.

F. Show that if f (θ) is absolutely integrable on [−π,π] and gn(θ) are continuous functions

that converge uniformly to g(θ) on [−π,π], then lim
n→∞

∫
π

−π

f (θ)gn(θ)dθ =
∫

π

−π

f (θ)g(θ)dθ .

HINT: Look at the proof of Theorem 8.3.1.

G. Use the previous exercise to show that the Poisson formula is valid for absolutely integrable
functions on [−π,π].

H. Prove that
∫

π

−π

P(r,θ − t)P(s, t)dt = P(rs,θ). HINT: Use the series expansion.

I. Let f (θ) be a continuous 2π-periodic function. Let u(r,θ) be the harmonic extension of f .
Let 0 < s < 1, and define g(θ) = u(s,θ). Prove that the harmonic extension of g is u(rs,θ).
HINT: Use the Poisson formula twice to obtain the harmonic extension of g as a double
integral, and interchange the order of integration.

13.5 Poisson’s Theorem

Using the properties of the Poisson kernel, it is now possible to show that u(r,θ)
approaches f (θ) uniformly as r tends to 1. This means that our proposed solution to
the heat problem is continuous on the closed disk and has the desired boundary val-
ues. This puts us very close to solving the steady-state heat problem. It also provides
a stronger reason for calling u(r,θ) an extension of f .

13.5.1. POISSON’S THEOREM.
Let f be a continuous 2π-periodic function on [−π,π] with harmonic extension
u(r,θ). Then fr(θ) := u(r,θ) converges uniformly to f on [−π,π] as r → 1−. So
u(r,θ) may be defined on the boundary of D by u(1,θ) = f (θ) to obtain a continu-
ous function on D that is harmonic on D and agrees with f on the boundary.
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PROOF. Let ε > 0 be given. We will find an r0 < 1 such that

| f (θ)− fr(θ)| ≤ ε for all r0 ≤ r < 1, −π ≤ θ ≤ π,

which will establish uniform convergence.
Let M = ‖ f‖∞ and set ε0 = (4πM + 1)−1ε . By Theorem 5.5.9, f is uniformly

continuous. Therefore, there is a δ > 0 such that

| f (θ)− f (t)| ≤ ε0 for all |θ − t| ≤ δ .

By property (5), there is an R < 1 such that

max
δ≤|t|≤π

P(r, t)≤ ε0 for all R≤ r < 1.

Now, using the Poisson formula, compute

f (θ)− fr(θ) = f (θ)
∫

π

−π

P(r, t)dt−
∫

π

−π

f (θ − t)P(r, t)dt

=
∫

π

−π

(
f (θ)− f (θ − t)

)
P(r, t)dt.

For R≤ r < 1, split this integral into two pieces to estimate | f (θ)− fr(θ)|

≤
∫

δ

−δ

| f (θ)− f (θ − t)|P(r, t)dt +
∫ −δ

−π

+
∫

π

δ

| f (θ)− f (θ − t)|P(r, t)dt

≤
∫

δ

−δ

ε0P(r, t)dt +
∫ −δ

−π

+
∫

π

δ

2Mε0 dt

≤ ε0 +2π(2Mε0) = (4πM +1)ε0 = ε.

This establishes that ‖ f − fr‖∞ < ε for R ≤ r < 1. Hence fr(θ) converges uni-
formly to f (θ) on [−π,π].

Extend the definition of u(r,θ) to the boundary of the closed disk by setting
u(1,θ) = f (θ). The previous paragraphs show that this function is continuous on
the closed disk D. By Theorem 13.3.3, u is harmonic on the interior of the disk. �

This result yields several important consequences quite easily. The first is the ex-
istence of a solution to the heat problem. The question of uniqueness of the solution
will be handled in the next section.

13.5.2. COROLLARY. Let f be a continuous 2π-periodic function. Then the
steady-state heat equation ∆u = 0 and u(1,θ) = f (θ) has a continuous solution.

PROOF. By Theorem 13.3.3, the function u(r,θ) is differentiable on the open disk
D and satisfies ∆u = 0. By Poisson’s Theorem, u extends to be continuous on the
closed unit disk D and attains the boundary values u(1,θ) = f (θ). �
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This next corollary shows that the Fourier series of a continuous function deter-
mines the function uniquely. Continuity is essential for this result. For example, the
function that is zero except for a discontinuous point f (0) = 1 will have the zero
Fourier series but is not the zero function.

13.5.3. COROLLARY. If two continuous 2π-periodic functions on R have
equal Fourier series, then they are equal functions.

PROOF. Suppose that f and g have the same Fourier series. Since the harmonic
extension u(r,θ) is defined only in terms of the Fourier coefficients, this is the same
function for both f and g. Now, by Poisson’s Theorem,

f (θ) = lim
r→1−

u(r,θ) = g(θ) for −π ≤ θ ≤ π.

Thus f = g. �

The final application concerns the case in which the Fourier series itself con-
verges uniformly. This is not always the case, and the delicate question of the con-
vergence of the Fourier series will be dealt with later.

13.5.4. COROLLARY. Suppose that the Fourier series of a continuous func-
tion f converges uniformly. Then the series converges uniformly to f .

PROOF. Let f ∼A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ , and let the uniform limit of the series

be g. By Theorem 8.2.1, g is continuous; and it is 2π-periodic because it is the limit
of 2π-periodic functions. Compute the Fourier series of g using Theorem 8.3.1:

1
π

∫
π

−π

g(t)sinnt dt = lim
N→∞

1
π

∫
π

−π

(
A0 +

N

∑
k=1

Ak coskt +Bk sinkt
)

sinnt dt

= lim
N→∞

Bn = Bn.

The other coefficients are computed in the same way. It follows that f and g have
the same Fourier series. Thus by the previous corollary, they are equal. That is, the
Fourier series converges uniformly to f . �

13.5.5. EXAMPLE. Recall Example 7.6.3. It was shown that

|θ | ∼ π

2
− 4

π

∞

∑
k=0

cos((2k +1)θ)
(2k +1)2 .

Since π

2 + 4
π ∑

∞
k=0

1
(2k+1)2 converges (by the integral test or by comparison with 1

n2 ),
it follows from the Weierstrass M-test (8.4.7) that this series converges uniformly.
By Corollary 13.5.4, it follows that the Fourier series converges uniformly to |θ |.
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Let us evaluate this at θ = 0:

0 =
π

2
− 4

π

∞

∑
k=0

1
(2k +1)2 .

Therefore,
∞

∑
k=0

1
(2k +1)2 =

π2

8
.

A little manipulation yields that

∞

∑
k=1

1
k2 =

∞

∑
k=0

1
(2k +1)2 +

∞

∑
k=1

1
(2k)2 =

π2

8
+

1
4

∞

∑
k=1

1
k2 .

Solving, we obtain a famous identity of Euler (by different methods):
∞

∑
k=1

1
k2 =

π2

6
.

We conclude this section with an important application of Poisson’s Theorem
to approximation by trigonometric polynomials. Another proof of this fact will be
given in Theorem 14.4.5.

13.5.6. COROLLARY. Every continuous 2π-periodic function is the uniform
limit of a sequence of trigonometric polynomials.

PROOF. Let f be a continuous 2π-periodic function. Given n ≥ 1, Poisson’s Theo-
rem (13.5.1) shows that there is an r < 1 such that ‖ f − fr‖∞ < 1

2n . Let M = ‖ f‖1

and choose K so large that
∞

∑
k=K+1

4Mrk < 1
2n . Then the trigonometric polynomial

tn(θ) = A0 +∑
K
k=1 Akrk coskθ +Bkrk sinkθ satisfies

‖ f − tn‖∞ ≤ ‖ f − fr‖∞ +‖ fr− tn‖∞

≤ 1
2n

+
∞

∑
k=K+1

∥∥Akrk coskθ +Bkrk sinkθ
∥∥

≤ 1
2n

+
∞

∑
k=N+1

4Mrk <
1
n
.

Therefore, (tn)
∞

n=1 converges uniformly to f . �

Exercises for Section 13.5

A. (a) Compute the Fourier series of f (θ) = θ 2 for −π ≤ θ ≤ π .

(b) Hence evaluate ∑
n≥1

(−1)n

n2 .

B. (a) Compute the Fourier series of the function f (θ) = |sinθ |.
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(b) Hence evaluate ∑
n≥1

(−1)n

4n2−1
.

C. Suppose Q(r,θ) is a function on D satisfying properties (1), (3), and (5) of Proposition 13.4.2.

If f is a continuous function on the unit circle, define v(r,θ) =
∫

π

−π

f (θ − t)Q(r, t)dt. Prove

that fr(θ) = v(r,θ) converges to f uniformly on [−π,π].

D. Use rectangular coordinates for the disk D = {(x,y) : x2 + y2 < 1}, and define a function
u(x,y) = arctan

( y
1+x

)
.

(a) Show that ∆u = uxx +uyy = 0.
(b) Show that u is continuous on D except at (−1,0).
(c) Show that u is constant on straight line segments through (−1,0). Hence evaluate f (θ) :=

limr→1− u(r cosθ ,r sinθ).
(d) Find the Fourier series for f , and hence find an expression for u in polar coordinates.

E. Suppose f ∼A0 + ∑
n≥1

An cosnθ +Bn sinnθ is a 2π-periodic continuous function and ∑
n≥1

|An|+

|Bn|< ∞. Prove that the Fourier series converges uniformly to f .

F. A 2π-periodic continuous function f ∼ A0 + ∑
n≥1

An cosnθ + Bn sinnθ satisfies ∑
n≥1

n|An|+

n|Bn| < ∞. Show that ∑
n≥1

−nAn sinnθ + nBn cosnθ converges uniformly to f ′. HINT:

Lemma 13.3.2.

G. The Fourier coefficients of a 2π-periodic continuous function f satisfy |An|+ |Bn| ≤Cn−k for
an integer k ≥ 2. Show that f is in the class Ck−2. HINT: Term-by-term differentiation and
the M-test.

H. Give necessary and sufficient conditions for A0 +∑
∞
n=1 An cosnθ +Bn sinnθ to be the Fourier

series of a C∞ function. HINT: Combine Exercises 13.3.C and 13.5.G.

13.6 The Maximum Principle

The remaining point to be dealt with in the heat problem is the question of unique-
ness of solutions. Physically, it is intuitively clear that a fixed temperature distribu-
tion on the boundary circle will result in a uniquely determined distribution over the
whole disk. We will show this to be the case by establishing a maximal principle
showing that a harmonic function must attain its maximum on the boundary circle.

13.6.1. MAXIMUM PRINCIPLE.
Suppose that u is continuous on the closed disk D and ∆u = 0 on the open disk D.
Then

max
(r,θ)∈D

u(r,θ) = max
−π≤θ≤π

u(1,θ).

PROOF. First suppose that v(r,θ) satisfies ∆v≥ ε > 0. If v attained its maximum at
an interior point (r0,θ0), then the first-order partial derivatives would be zero,

vr(r0,θ0) = 0 = vθ (r0,θ0),

and the second-order derivatives would be negative,
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vrr(r0,θ0)≤ 0 and vθθ (r0,θ0)≤ 0.

Therefore,

ε ≤ ∆v(r0,θ0) = vrr(r0,θ0)+
1
r0

vr(r0,θ0)+
1
r2

0
vθθ (r0,θ0)≤ 0.

This contradiction shows that v attains its maximum only on the boundary.
Now consider u. Let vn(r,θ) = u(r,θ)+ 1

n r2. A simple computation shows that

∆vn = ∆u+ 1
n ∆r2 = 1

n

(
(r2)′′+ 1

r (r
2)′+ 1

r2 (r2)θθ

)
= 4

n > 0.

So vn attains it maximum only on the boundary circle. Since vn converges uniformly
to u, we obtain

max
(r,θ)∈D

u(r,θ) = lim
n→∞

max
(r,θ)∈D

vn(r,θ)

= lim
n→∞

max
−π≤θ≤π

vn(1,θ) = max
−π≤θ≤π

u(1,θ).
�

13.6.2. COROLLARY. Suppose that u is continuous on the closed disk D and
∆u = 0 on the open disk D and u(1,θ) = 0 for −π ≤ θ ≤ π . Then u = 0.

PROOF. By the Maximum Principle, u(r,θ) ≤ 0 on D. However, −u is also a con-
tinuous harmonic function, and thus the Maximum Principle implies that u(r,θ)≥ 0
on D. Hence u = 0. �

All the ingredients are now in place for a complete solution to the heat problem
on the disk.

13.6.3. THEOREM. Let f (θ) be a continuous 2π-periodic function. There ex-
ists a unique solution to the steady-state heat problem

∆u = 0, u(1,θ) = f (θ),

given by the Poisson integral of f .

PROOF. By Corollary 13.5.2, the Poisson integral of f provides a solution u(r,θ) to
the heat problem. It remains to discuss uniqueness. Suppose that v(r,θ) is another
solution. Then consider w(r,θ) = u(r,θ)− v(r,θ). It follows that

∆w = ∆u−∆v = 0 and w(1,θ) = u(1,θ)− v(1,θ) = 0.

Thus by Corollary 13.6.2, w = 0, and so v = u is the only solution. �
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Exercises for Section 13.6

A. Suppose u(x,y) is a solution of the heat problem on D (in rectangular coordinates). Let
DR(x0,y0) be a small disk contained inside D. Establish the mean value property:

u(x0,y0) =
1

2π

∫ 2π

0
u(x0 +Rcosθ ,y0 +Rsinθ)dθ .

HINT: The restriction of u to DR(x0,y0) is the solution to the heat problem on this disk. Use
the Poisson formula for the value at the centre of the disk.

B. (a) Suppose that u(x,y) is a continuous function on D that satisfies the mean value property
of the previous exercise. Prove that u attains its maximum on the boundary.

(b) Prove that if u attains its maximum value at an interior point, then it must be constant.

C. Prove that a continuous function on D that satisfies the mean value property is harmonic.
HINT: Fix a point (x0,y0) in D and let DR(x0,y0) be a small disk contained inside D. Let
v(x,y) be the solution of the steady-state heat problem on DR(x0,y0) that agrees with u on the
boundary circle. Show that u = v, and hence deduce that ∆u(x0,y0) = 0.

D. Let u(x,y) be a positive harmonic function on an open subset Ω of the plane. Suppose that
DR(x0,y0) is contained in Ω . Use Exercise 13.4.D to prove that

R− r
R+ r

u(x0,y0)≤ u(x0 + r cosθ ,y0 + r sinθ)≤ R+ r
R− r

u(x0,y0) for 0≤ r < R.

E. Let Ω be a bounded open subset of the plane with smooth boundary Γ . A function v on Ω is
harmonic if ∆v = 0 on Ω .

(a) Show that if v is continuous on Ω , then it must attain its maximum value on Γ .
(b) Hence show that if f is a continuous function on Γ , there is at most one continuous

function on Ω which is harmonic on Ω and has boundary values equal to f .

F. Let u(r,θ) =
r(1− r2)sinθ

(1−2r cosθ + r2)2 on D.

(a) Prove that u is harmonic on D.
(b) Show that lim

r→1−
u(r,θ) = 0 for all values of θ .

(c) Why does this not contradict the Maximum Principle?
(d) Is u bounded?

13.7 The Vibrating String (Formal Solution)

The mathematics of a vibrating string was one of the first problems studied us-
ing Fourier series. It arose in a discussion on the oscillations of a violin string by
d’Alembert in 1747, twenty-two years before Fourier was born.

Most readers will be familiar with swinging a skipping rope. The simplest mode
is a single lobe oscillating between the two fixed ends. However, it is possible to set
up a wave with two lobes or even three. These vibrations with more lobes are called
harmonics. They exist in the vibration of any stringed instrument and tend to be
characteristic of the instrument, giving it a distinctive sound. For example, violins
have significant order-five harmonics.



348 13 Fourier Series and Physics

Our problem is to describe the motion of a vibrating string. We imagine a uni-
form string stretched between two fixed endpoints under tension. We further assume
that the oscillations are small compared with the length of the string. This is a rea-
sonable assumption for a stiff string like one found on a violin or piano. This leads
to the simplifying assumption that each point on the string moves only in a vertical
direction. We ignore all forces other than the effect of string tension, such as the
weight of the string and air resistance.

Orient the string along the x-axis of the plane, and choose units such that the
endpoints are (0,0) and (π,0). The vertical displacement of the string will be given
by a function y(x, t), the function giving the horizontal position at the point x∈ [0,π]
at the time t. For convenience, we assume that time begins at time t = 0. Let τ denote
the tension force, and let ρ be the density of the string.

Fix x and t and consider the forces acting on the string segment between the
nearby points A = (x,y) =

(
x,y(x, t)

)
and B = (x + ∆x,y + ∆y), where y + ∆y =

y(x +∆x, t). The tension τ on the string results in forces acting on both ends of the
segment in the direction of the tangent, as shown in Figure 13.3.

0 πx x+∆x

FIG. 13.3 Forces acting on a segment of the string.

The force at A is

−τ

(
1, ∂y

∂x (x, t)
)√

1+ ∂y
∂x (x, t)

2
≈
(
−τ,−τ

∂y
∂x

(x, t)
)

.

The approximation is reasonable since y and ∂y
∂x are assumed to be small relative to

1. Likewise, the tensile force at B is approximately(
τ,τ

∂y
∂x

(x+∆x, t)
)

.

The horizontal forces cancel, while the combined vertical force is

∆V (x, t) = τ
∂y
∂x

(x+∆x, t)− τ
∂y
∂x

(x, t)≈ τ∆x
∂ 2y
∂x2 (x, t).

By Newton’s law, we have F = ma, where we have a segment of mass ρ∆x and
acceleration equal to the second derivative of y(x, t) with respect to t. Substitute this
in, divide by ρ∆x, and take the limit as ∆x tends to 0 to obtain the linear partial
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differential equation
∂ 2y
∂ t2 (x, t) =

τ

ρ

∂ 2y
∂x2 (x, t).

Set ω2 = τ/ρ . This is known as the one-dimensional wave equation:

∂ 2y
∂ t2 (x, t) = ω

2 ∂ 2y
∂x2 (x, t). (13.7.1)

Since the endpoints are fixed, there are boundary conditions

y(0, t) = y(π, t) = 0 for all t ≥ 0. (13.7.2)

Finally, there are initial conditions: Imagine that the string is initially stretched to
some (continuous) shape f (x) and is moving with initial velocity g(x). This gives
the conditions

y(x,0) = f (x),
∂y
∂ t

(x,0) = g(x) for all x ∈ [0,π]. (13.7.3)

These boundary conditions, together with the wave equation governing subsequent
motion of the string, determine a unique solution. We shall see that it can be solved
in a manner similar to our analysis of the steady-state heat problem.

As before, we begin by using separation of variables to look for solutions of the
special form y(x, t) = X(x)T (t). There is no way to know in advance that there are
solutions of this type, but in fact there are many such solutions, which can then be
combined to exhaust all possibilities. Substituting y(x, t) = X(x)T (t) into the wave
equation gives

X(x)T ′′(t) = ω
2X ′′(x)T (t).

Isolating the variables x and t, we obtain

T ′′(t)
T (t)

= ω
2 X ′′(x)

X(x)
.

The left-hand side of this equation is independent of x and the right-hand side is
independent of t. Thus both sides are independent of both variables and therefore
are equal to some constant c.

This results in two ordinary differential equations:

X ′′(x)− c
ω2 X(x) = 0 and T ′′(t)− cT (t) = 0.

The boundary condition (13.7.2) simplifies to yield X(0) = X(π) = 0. At this stage,
we must ignore the initial shape conditions (13.7.3).

The equation for X is essentially the same as the equation for Θ in Section 13.2.
Depending on the sign of c, the solutions are sinusoidal, linear, or exponential:
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X(x) =


Acos

(√
|c|

ω
x
)

+Bsin
(√

|c|
ω

x
)

for c < 0,

A+Bx for c = 0,

Ae
√

cx/ω +Be−
√

cx/ω for c > 0.

However, the boundary conditions eliminate both the linear and the exponential
solutions. Thus the constant −c/ω2 is strictly positive, say γ2. The solutions are

X(x) = acosγx+bsinγx.

Since X(0) = 0, this forces a = 0. And X(π) = 0 yields bsinγπ = 0. Thus a nonzero
solution is possible only if γ is an integer n. Therefore, the possible solutions are

Xn(x) = bsinnx for n≥ 1.

Now return to the equation for T . Since c = −γ2ω2 = −n2ω2, the DE for T
becomes

T ′′(t)+(nω)2T (t) = 0.

Again this has solutions

T (t) = Asinnωt +Bcosnωt.

Putting these together, we obtain solutions for y(x, t) of the form

yn(x, t) = An sinnx cosnωt +Bn sinnx sinnωt for n≥ 1.

The functions yn(x, t) correspond to the modes of vibration of the string. For
n = 1, we have a string shape of a single sinusoidal loop oscillating up and down.
This is the fundamental vibration mode of the string with the lowest frequency
ω . However, for n = 2, we obtain a function that has two “arches” that swing back
and forth. The frequency is twice the fundamental frequency. For general n, we
have higher-frequency oscillations with frequency nω that oscillate n times between
the two fixed endpoints at n times the rate. As we mentioned before, these higher
frequencies are called harmonics.

The differential equation (13.7.1) is linear, so linear combinations of solutions are
solutions. Thinking of solutions as waves, this combination of solutions is called
superposition; see Figure 13.4. Ignoring convergence questions, we have a large
family of possible solutions, all of the form

y(x, t) =
∞

∑
n=1

An sinnx cosnωt +Bn sinnx sinnωt.

Now consider the initial condition (13.7.3). Substituting t = 0 into this, we arrive at
the boundary condition
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f (x) = y(x,0) =
∞

∑
n=1

An sinnx.

Likewise, allowing term-by-term differentiation with respect to t, we obtain

∂y
∂ t

(x, t) =
∞

∑
n=1

−nωAn sinnx sinnωt +nωBn sinnx cosnωt.

Substituting in the boundary condition at t = 0 yields g(x) =
∞

∑
n=1

nωBn sinnx.

0 π

0 π

FIG. 13.4 Superposition of two sine waves.

These are Fourier series. In fact, they are sine series because f and g are de-
fined only on [0,π]. We have seen that summing them requires a certain amount
of delicacy. Notice that since the string is fixed at 0 and π , the boundary functions
satisfy

f (0) = f (π) = g(0) = g(π) = 0.

Let us extend f and g to [−π,π] as odd functions by setting f (−x) = − f (x) and
g(−x) = −g(x). Then extend them to be 2π-periodic functions on the whole real
line. The values of the coefficients An and Bn for n≥ 1 are read off from the Fourier
(sine) coefficients of f and g.

An =
1
π

∫
π

−π

f (t)sinnt dt =
2
π

∫
π

0
f (t)sinnt dt

and

Bn =
1

nωπ

∫
π

−π

g(t)sinnt dt =
2

nωπ

∫
π

0
g(t)sinnt dt.
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This form of the solution was proposed by Euler in 1748, and the same idea was
advanced by D. Bernoulli in 1753 and Lagrange in 1759. However, we want to find
a closed-form solution discovered by d’Alembert in 1747.

Returning to our proposed series solution, use the trig identity

2sinnx cosnωt = sinn(x+ωt)+ sinn(x−ωt)

and substitute into

∞

∑
n=1

An sinnx cosnωt =
1
2

∞

∑
n=1

An sinn(x+ωt)+
1
2

∞

∑
n=1

An sinn(x−ωt)

=
1
2

f (x+ωt)+
1
2

f (x−ωt).

Similarly,
∞

∑
n=1

nωBn sinnx cosnωt =
1
2

g(x+ωt)+
1
2

g(x−ωt).

Thus

∞

∑
n=1

Bn sinnx sinnωt =
1
2

∫ t

0
g(x+ωt)dt +

1
2

∫ t

0
g(x−ωt)dt

=
1

2ω

∫ x+ωt

x−ωt
g(s)ds.

Adding, we obtain the closed-form solution

y(x, t) =
1
2

f (x+ωt)+
1
2

f (x−ωt)+
1

2ω

∫ x+ωt

x−ωt
g(s)ds.

We have obtained d’Alembert’s form of the solution. It is worth noting that this form
no longer involves a series. It doesn’t matter what method was used to get here.

The role of ω becomes apparent in this formulation of the solution. Notice that
y(x, t) depends on the values of f and g only in the range [x−ωt,x+ωt]. We should
think of ω as the speed of propagation of the signal. In particular, if g = 0 and f is a
small “bump” supported on [π

2 , π

2 + ε], then for ε

ω
≤ t ≤ 1− ε

ω
, the function y(x, t)

consists of two identical bumps moving out toward the ends of the string at speed
ω . When they reach the end, they bounce back. When the bumps overlap, they are
superimposed (added). But the shape of the bumps is not lost; the message of the
bump is transmitted accurately forever. In particular, the wave equation for light has
the constant c, the speed of light, in place of ω .
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13.8 The Vibrating String (Rigorous Solution)

We may check directly that d’Alembert’s formula yields the solution to the vibrating
string problem without returning to the Fourier series expansion. Our assumption
that y satisfies a second-order PDE forces f to be C2 and g to be C1. We will consider
more general initial data afterward.

13.8.1. THEOREM. Consider the vibrating string equation

∂ 2y
∂ t2 (x, t) = ω

2 ∂ 2y
∂x2 (x, t)

with initial conditions

y(x,0) = f (x) and
∂y
∂ t

(x,0) = g(x)

such that f is C2 and g is C1 and f (0) = g(0) = f (π) = g(π) = 0. This has a unique
solution for all t > 0 given by

y(x, t) =
1
2

f (x+ωt)+
1
2

f (x−ωt)+
1

2ω

∫ x+ωt

x−ωt
g(s)ds,

where f and g have been extended (uniquely) to the whole real line as 2π-periodic
odd functions.

PROOF. First, we verify that this is indeed a valid solution. Compute

∂y
∂x

(x, t) =
1
2

f ′(x+ωt)+
1
2

f ′(x−ωt)+
1

2ω
g(x+ωt)− 1

2ω
g(x−ωt),

∂ 2y
∂x2 (x, t) =

1
2

f ′′(x+ωt)+
1
2

f ′′(x−ωt)+
1

2ω
g′(x+ωt)− 1

2ω
g′(x−ωt),

∂y
∂ t

(x, t) =
ω

2
f ′(x+ωt)− ω

2
f ′(x−ωt)+

1
2

g(x+ωt)+
1
2

g(x−ωt),

∂ 2y
∂ t2 (x, t) =

ω2

2
f ′′(x+ωt)+

ω2

2
f ′′(x−ωt)+

ω

2
g′(x+ωt)− ω

2
g′(x−ωt).

Thus
∂ 2y
∂ t2 (x, t) = ω2 ∂ 2y

∂x2 (x, t) and y(x,0) = f (x) and
∂y
∂ t

(x,0) = g(x).

The question of uniqueness of solutions remains. As with the heat equation, phys-
ical properties yield a clue. The argument in this case is based on conservation of
energy. Without actually justifying the physical interpretation, we introduce a quan-
tity called total energy obtained by adding the potential and kinetic energies of the
string:

E(t) = E(y, t) =
∫

π

0

(
∂y
∂x

(x, t)
)2

+
1

ω2

(
∂y
∂ t

(x, t)
)2

dx.
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This is defined for any solution y of our vibration problem. For convenience, we
switch to the notation yx, yt , and so on for partial derivatives. Use the Leibniz
rule (8.3.4) to compute

E ′(t) =
∂

∂ t

∫
π

0

(
yx(x, t)

)2 +
1

ω2

(
yt(x, t)

)2 dx =
∫

π

0
2yxyxt(x, t)+

1
ω2 2ytytt(x, t)dx.

Substitute ytt = ω2yxx:

=
∫

π

0
2yxyxt(x, t)+2ytyxx(x, t)dx =

∫
π

0

∂

∂x

(
yxyt(x, t)

)
dx = yxyt(x, t)

∣∣∣∣x=π

x=0
= 0.

The last equality follows since the string is fixed at both endpoints, forcing the
relation yt(0, t) = yt(π, t) = 0. This shows that the energy is preserved (constant).

Now suppose that y2(x, t) is another solution to the wave problem. Then the dif-
ference z(x, t) = y(x, t)− y2(x, t) is also a solution of the wave equation and initial
boundary conditions:

ztt = ω
2zxx, z(x,0) = zt(x,0) = 0.

It follows that zx(x,0) = 0 too, and hence the energy of the system is

E =
∫

π

0
zx(s,0)2 + zt(s,0)2 ds = 0.

By conservation of energy, we deduce that∫
π

0
zx(s, t)2 + zt(s, t)2 ds = 0 for all t ≥ 0.

In other words, zx(s, t) = zt(s, t) = 0 for all s and t. Therefore, z = 0, establishing
uniqueness. �

We know from real-world experience that a string may be bent into a non-C2

shape. What happens then? In this case, we may approximate f uniformly by a
sequence of C2 functions fn. Likewise, g may be approximated uniformly by a se-
quence gn of C1 functions. The wave equation with initial data y(x,0) = fn(x) and
yx(x,0) = gn(x) yields the solution

yn(x, t) = 1
2 fn(x+ωt)+ 1

2 fn(x−ωt)+
1

2ω

∫ x+ωt

x−ωt
gn(s)ds.

This sequence of solutions converges uniformly to

y(x, t) = 1
2 f (x+ωt)+ 1

2 f (x−ωt)+
1

2ω

∫ x+ωt

x−ωt
g(s)ds.
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Thus, even though this function y may not be differentiable (so that it does not make
sense to plug y into our PDE), we obtain a reasonable solution to the wave problem.

One very interesting aspect of this solution is the fact that y(x, t) is not any
smoother for large t than it is at time t = 0. Indeed, for every integer n≥ 0,

y(x, 2nπ

ω
) = 1

2 f (x+2nπ)+ 1
2 f (x−2nπ)+

1
2ω

∫ x+2nπ

x−2nπ

g(s)ds = f (x).

This uses the fact that g has been extended to an odd 2π-periodic function and thus
g integrates to 0 over any interval of length (a multiple of) 2π . Similarly,

yt
(
x, 2nπ

ω

)
=

ω

2
f ′(x+2nπ)− ω

2
f ′(x−2nπ)+

1
2

g(x+2nπ)+
1
2

g(x−2nπ) = g(x).

Thus if the initial data f fails to be smooth at x0, this property persists along the lines
x(t) = x0±ωt. This is known as propagation of singularities. And because our so-
lutions are odd 2π-periodic functions, these singularities recur within our range.
Following the solution only within the interval [0,π], these singularities appear to
reflect off the boundary and reenter the interval. This property is distinctly different
from the solution of the heat equation, which becomes C∞ for t > 0 (see Exer-
cise 13.3.D) because the initial heat distribution gets averaged out over time.

The lack of averaging or damping in the wave equation is very important in real
life. It makes it possible for us to see, and to transmit radio and television signals
over long distances without significant distortion.

The Fourier series approach still has more to tell us. The Fourier coefficients in
the expansion of the solution y(x, t) decompose the wave into a sum of harmonics
of order n for n≥ 1. In fact, the term

yn(x, t) = An sinnx cosnωt +Bn sinnx sinnωt

may be rewritten as
yn(x, t) = Cn sinnx sin(nωt + τn),

where Cn =
√

A2
n +B2

n and the phase shift τn is chosen so that sinτn = An/Cn and
cosτn = Bn/Cn. Thus as t increases, yn modulates through multiples of sinnx from
Cn down to −Cn and back.

The combination of different harmonics gives a wave its shape. In electrical engi-
neering, one often attempts to break down a wave into its component parts or build
a new wave by putting harmonics together. This amounts to finding a Fourier series
whose sum is a specified function. That is the problem we will investigate further in
the next chapter.

Exercises for Section 13.8

A. Using the series for y(x, t) and the orthogonality relations, show that

E =
∫

π

0

1
2

f ′(x)2 +
1

2ω2 g(x)2 dx =
π

2

∞

∑
n=1

n2(|An|2 + |Bn|2).
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B. Consider a guitar string that is plucked in the centre to a height h starting at rest. Assume that
the initial position is piecewise linear with a sharp cusp in the centre.

(a) What is the odd 2π-periodic extension of the initial position function f ? Sketch it.
(b) Plot the graph of the solution y(x, t) for t = 0, π

3ω
, π

2ω
, π

ω
, 2π

ω
.

(c) How does the cusp move? Find a formula.
(d) Compute the energy for this string.

C. Verify the formula An sinnx cosnωt +Bn sinnx sinnωt = Cn sinnx sin(nωt +τn), where Cn =√
A2

n +B2
n and τn is chosen such that sinτn = An/Cn and cosτn = Bn/Cn.

D. Let F and G be C2 functions on the line.

(a) Show that y(x, t) = F(x + ωt)+ G(x−ωt) for x ∈ R and t ≥ 0 is a solution of the wave
equation the whole line.

(b) What are the initial position f and velocity g in terms of F and G? Express F and G in
terms of f and g.

(c) Show that the value of y(x, t) depends only on the values of f and g in [x−ωt,x+ωt].
(d) Explain the physical significance of (c) in terms of the speed of propagation of the wave.

E. Consider the wave equation on R. Let u = x+ωt and v = x−ωt.

(a) Show that ∂

∂u = 1
2

∂

∂x + 1
2ω

∂

∂ t and ∂

∂v = 1
2

∂

∂x −
1

2ω

∂

∂ t . Hence deduce that after a change of

variables, the wave equation becomes ∂

∂u
∂

∂v y = 0.
(b) Hence show that every solution has the form y = F(u)+G(v).
(c) Combine this with the previous exercise to show that the wave equation has a unique

solution on the line.

F. Let w(x) be a strictly positive function on [0,1]. Consider the PDE

∂ 2y
∂ t2 (x, t) = w(x)2 ∂ 2y

∂x2 (x, t)+H(x, t)

defined for 0 ≤ x ≤ 1 and t ≥ 0 with boundary conditions y(x,0) = f (x), yt(x,0) = g(x),
and y(0, t) = y(1, t) = 0. Suppose that y(x, t) and z(x, t) are two solutions, and let u = y− z.
Consider the quantity

E(t) =
∫ 1

0
u2

x(x, t)+
u2

t (x, t)
w(x)2 dx.

Show that E is the zero function, and hence deduce that the solution of the PDE is unique.

13.9 Appendix: The Complex Exponential

Our goal in this section is to extend the definition of the exponential function to all
complex numbers. We quickly review the basic ideas of complex numbers C.

A complex number may be written uniquely as a + ib for a,b ∈ R. Addition is
just given by the rule (a + ib)+ (c + id) = (a + c)+ i(b + d). Multiplication uses
distributivity and the rule i2 =−1. So

(a+ ib)(c+ id) = (ac−bd)+ i(ad +bc).

The conjugate of a complex number z = a+ ib is the number z := a− ib. The abso-
lute value or modulus is given by |z| = (zz)1/2 = (a2 + b2)1/2. The set of all com-
plex numbers is closed under addition and subtraction, multiplication, and division
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by nonzero elements. In particular, if z = a+ ib 6= 0, then

1
z

=
z
zz

=
a− ib

a2 +b2 =
a

a2 +b2 + i
−b

a2 +b2 .

This makes C into a field properly containing the reals. Define the real part and
imaginary part of a complex number by Re(a+ ib) = a and Im(a+ ib) = b.

Distance is defined between points w and z by |w− z|. Observe that under addi-
tion, C is a vector space over R with basis 1 and i. The natural map of C onto R2

sending x+ iy to (x,y) preserves the distance. So we can talk about convergence by
using the topology of R2.

The exponential function can be defined as a power series by ex = ∑n≥0
1
n! xn.

This converges absolutely for all x ∈ R and is uniform on Br(0) for any r > 0. We
use this same formula to define ez.

13.9.1. THEOREM. The power series ez = ∑
n≥0

1
n! zn converges absolutely for

all z ∈ C and this convergence is uniform on {z : |z| ≤ r} for all r > 0. Moreover,

(1) ewez = ew+z for all w,z ∈ C.
(2) ex+iy = ex cosy+ iex siny for all x,y ∈ R.
(3) |ez|= eRez. In particular, |eiy|= 1 for y ∈ R.

PROOF. Observe that for z ∈ C on the set {z : |z| ≤ r}, ‖zn‖∞ = rn. So

∑
n≥0

1
n!
‖zn‖∞ = ∑

n≥0

1
n!

rn = er.

Therefore this series converges absolutely and uniformly on {z : |z| ≤ r} by the
Weierstrass M-test (8.4.7). So ez is well defined for all z ∈ C.

Hence the double series for ewez converges absolutely. So the terms may be re-
arranged in any order, and the same sum results by Theorem 3.3.5. So we may
calculate for w,z ∈ C by collecting terms wkzl for k + l = n and using the binomial
theorem:

ewez =
∞

∑
k=0

∞

∑
l=0

1
k!l!

wkzl =
∞

∑
n=0

1
n!

n

∑
k=0

n!
k!(n− k)!

wkzn−k =
∞

∑
n=0

1
n!

(w+ z)n = ew+z.

We may calculate eiy directly noting that i2n = (−1)n and i2n+1 = (−1)ni:

eiy =
∞

∑
n=0

1
n!

(iy)n =
∞

∑
n=0

(−1)n

(2n)!
y2n + i

∞

∑
n=0

(−1)n

(2n+1)!
y2n+1 = cosy+ isiny,

where the last equality comes from recognizing the power series for cosy and siny.
Therefore we obtain ex+iy = ex cosy+ iex siny for all x,y ∈ R. Hence

|ex+iy|=
(
e2x(cos2 y+ sin2 y)

)1/2 = ex = eRe(x+iy). �
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If z = a+ ib is any complex number, let r = |z|. Then z/r = a/r + ib/r has mod-
ulus 1 and hence lies on the unit circle. There is an angle θ , unique up to a multiple
of 2π , such that z/r = cosθ + isinθ = eiθ . So z = reiθ . This is called the polar
form, since z is represented as (r,θ) in the polar coordinates of the plane. Note that
z̄ = re−iθ .

Manipulating einθ = cosnθ + isinnθ and e−inθ = cosnθ − isinnθ yields

cosnθ = Re(einθ ) =
einθ + e−inθ

2
and sinnθ = Im(einθ ) =

einθ − e−inθ

2i
.

Therefore the pairs {cosnθ ,sinnθ} and {einθ ,e−inθ} both span the same two di-
mensional vector space (using complex coefficients). Moreover, in the (complex)
inner product on C[−π,π] given by

〈 f ,g〉=
1

2π

∫
π

−π

f (eiθ )g(eiθ )dθ ,

we have

〈eimθ ,einθ 〉=
1

2π

∫
π

−π

eimθ einθ dθ
1

2π

∫
π

−π

ei(m−n)θ dθ = δm,n.

So each einθ is a unit vector, and they form an orthonormal set.
It follows that a Fourier series of a function f on [−π,π] may be rewritten using

complex exponentials to obtain the complex Fourier series

f (θ)∼
∞

∑
n=−∞

〈 f ,einθ 〉einθ =
∞

∑
n=−∞

cneinθ , (13.9.2)

where the complex Fourier coefficients are given by

cn = 〈 f ,einθ 〉=
1

2π

∫
π

−π

f (θ)e−inθ dθ . (13.9.3)

We have already seen that we could sum the Poisson kernel using complex expo-
nentials and the formula for summing geometric series. This idea has many appli-
cations in Fourier series. Here is another example.

13.9.4. LEMMA. 1+2
n
∑

k=1
coskt =

 2n+1 if t = 2πm for m ∈ Z,
sin(n+1/2)t

sin t/2
if t 6= 2πm.

PROOF. When t = 2πm, coskt = cos2mkπ = 1 for all k ∈ Z, so the sum is 2n +1.
Otherwise eit 6= 1, and we sum of a geometric series:
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1+2
n−1

∑
k=1

coskt = 1+
n

∑
k=1

eikt + e−ikt =
n

∑
k=−n

eikt =
ei(n+1)t − e−int

eit −1

=
ei(n+1/2)t − e−i(n+1/2)t

2i
2i

eit/2− e−it/2 =
sin(n+1/2)t

sin t/2
.

�

The function Dn(t) = 1
2π

(
1 + 2

n
∑

k=1
coskt

)
is called the Dirichlet kernel. It plays

a central role in summing Fourier series. The next example is known as the Fejér
kernel, Kn(t) = 1

n ∑
n−1
k=0 Dk(t) = 1

2π

(
1+∑

n
k=1
(
1− k

n

)
coskt

)
.

13.9.5. LEMMA. 1+
n−1

∑
k=1

(
1− k

n

)
coskt =

{
n if t = 2mπ,

sin2(nt/2)
nsin2(t/2)

if t 6= 2mπ.

PROOF. This is clear when t = 2mπ . As observed above, and using Lemma 13.9.4

1+
n

∑
k=1

(
1− k

n

)
coskt =

1
n

n−1

∑
j=0

(
1+

j

∑
k=1

coskt
)

=
1
n

n−1

∑
j=0

sin( j +1/2)t
sin t/2

=
1

2insin(t/2)

n−1

∑
j=0

ei( j+1/2)t − e−i( j+1/2)t

=
1

2insin(t/2)

(
ei(n+1/2)t − eit/2

eit −1
− e−i(n+1/2)t − e−it/2

e−it −1

)
=

1
nsin(t/2)

(eint −1)+(e−int −1)
(2i)2

2i
eit/2− e−it/2

=
1

nsin2(t/2)

(
eint/2−1

2i

)2

=
sin2(nt/2)
nsin2(t/2)

.
�

Exercises for Section 13.9
A. Use trig identities to show that (cosx+ isinx)(cosy+ isiny) = cos(x+ y)+ isin(x+ y).

B. (a) Graph the image of a line parallel to the y-axis under the exponential map.
(b) Graph the image of a line parallel to the x-axis under the exponential map.
(c) Show that the strip {z = x + iy | 0 ≤ y < 2π} is mapped by the exponential function one-

to-one and onto the whole complex plane except for the point 0.

C. Express f (θ) = An cosnθ +Bn sinnθ as cneinθ +c−ne−inθ . Hence show that the Fourier series
of a continuous function f (θ) is converted to the complex form (13.9.2).

D. Sum the Fourier series
∞

∑
n=0

2−n cosnθ and
∞

∑
n=1

2−n sinnθ . HINT: Compute ∑
∞
n=0 2−neinθ .

E. Define cosz = (eiz + e−iz)/2 and sinz = (eiz− e−iz)/2i for all z ∈ C.

(a) Prove that sin(w+ z) = sinwcosz+ coswsinz.
(b) Find all solutions of sinz = 2.

F. (a) Evaluate Sn(θ) = ∑
n
k=1 sinkθ .

(b) Show that |Sn(θ)| ≤ πε−1 on [ε,2π− ε] for all n≥ 1.



Chapter 14
Fourier Series and Approximation

A natural problem is to take a wave output and decompose it into its harmonic parts.
Engineers are able to do this with an oscilloscope. A real difficultly occurs when we
try to put the parts back together. Mathematically, this amounts to summing up the
series obtained from decomposing the original wave. In this chapter, we examine
this delicate question: Under what conditions does a Fourier series converge?

We start by looking at the behaviour of the Fourier coefficients. It turns out that
they go to zero; and the smoother the function, the faster they go. Then we turn to
the more subtle questions of pointwise and uniform convergence. The idea of kernel
functions, analogous to the Poisson kernel from the previous chapter, provides an
elegant method for understanding these notions of convergence. Then we turn to the
L2 norm, where there is a very clean answer. Nice applications of this include the
isoperimetric inequality and sums of various interesting series. Finally, we consider
applications to polynomial approximation.

14.1 The Riemann–Lebesgue Lemma

An important step in establishing convergence is the apparently modest goal of
showing that at least the Fourier coefficients converge to 0. This is clearly a nec-
essary condition for any kind of convergence. This was by no means clear in the
1850s when Riemann did his fundamental work. In fact, he introduced the modern
notion of integral in order to address the question of convergence of Fourier series.

Although we need the result only for piecewise continuous functions, it is true
much more generally, for absolutely integrable functions in fact.

14.1.1. THE RIEMANN–LEBESGUE LEMMA.
If f is piecewise continuous on [a,b] and τ ∈ R, then

lim
n→∞

∫ b

a
f (x)sin(nx+ τ)dx = 0.
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PROOF. We may assume that b− a ≤ π . For otherwise, we just chop the interval
[a,b] into pieces of length at most π and prove the lemma on each piece separately.
Translation by a multiple of π does not affect anything except possibly the sign of
the integral. So we may assume that [a,b] is contained in [−π,π]. Now extend the
definition of f to all of [−π,π] by setting f (x) = 0 outside of [a,b].

By Proposition 7.6.1, {1,
√

2cosnθ ,
√

2sinnθ : n ≥ 1} is an orthonormal set in
the inner product space of piecewise continuous functions with the L2 inner product.
Applying Bessel’s inequality (7.7.1), we have

A2
0 +

1
2

∞

∑
n=1

A2
n +B2

n ≤ ‖ f‖2
2 < ∞.

In particular, the series on the left-hand side must converge and its terms must tend
to zero. That is,

lim
n→∞

A2
n +B2

n = 0.

So we compute∣∣∣∣∫ π

−π

f (x)sin(nx+ τ)dx
∣∣∣∣= ∣∣∣∣∫ π

−π

f (x)cosnx sinτ + sinnx cosτ dx
∣∣∣∣

=
∣∣An sinτ +Bn cosτ

∣∣≤√A2
n +B2

n −→ 0.

The last estimate (included only for elegance) used the Schwarz inequality. �

14.1.2. COROLLARY. If f is a piecewise-continuous 2π-periodic function
with Fourier series

f ∼ A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ ,

then lim
n→∞

An = lim
n→∞

Bn = 0.

PROOF. Take the definitions of An and Bn and apply the Riemann–Lebesgue Lemma
for the interval [−π,π] and displacements τ = π/2 and τ = 0, respectively. �

The more derivatives a function has, the faster the Fourier coefficients go to zero.
First, we need to connect the two Fourier series for the function and its derivative.

14.1.3. DEFINITION. A function f is piecewise Ck on [a,b] if f is k-times
differentiable except at finitely many points, and f (k) is piecewise continuous.

For example, the Heaviside function H from Example 5.2.2 is piecewise C1, as
is the function f (x) = x−bxc, where bxc indicates the largest integer n≤ x.

We need to show that integration by parts is valid if one of the functions is con-
tinuous but only piecewise C1.
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14.1.4. LEMMA. If f is continuous and piecewise C1 on [a,b] and g∈C1[a,b],
then ∫ b

a
f ′(t)g(t)dt = f (t)g(t)

∣∣∣b
a
−
∫ b

a
f (t)g′(t)dt.

PROOF. Let a = a0 < a1 < · · ·< an = b be chosen such that f is C1 on [ai−1,ai] for
1≤ i≤ n. Then integration by parts is valid on each interval, so∫ b

a
f ′(t)g(t)dt =

n

∑
i=1

∫ ai

ai−1

f ′(t)g(t)dt

=
n

∑
i=1

f (t)g(t)
∣∣∣ai

ai−1
−
∫ ai

ai−1

f (t)g′(t)dt

= f (t)g(t)
∣∣∣b
a
−
∫ b

a
f (t)g′(t)dt

because ∑
n
i=1 f (t)g(t)

∣∣ai
ai−1

is a telescoping sum, since f is continuous. �

14.1.5. LEMMA. If f : R → R is a 2π-periodic continuous function that is

piecewise C1, and f ∼ A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ , then f ′ has Fourier series

f ′ ∼
∞

∑
n=1

nBn cosnθ −nAn sinnθ .

PROOF. Integrating by parts yields

1
π

∫
π

−π

f ′(t)cosnt dt =
1
π

f (t)cosnt
∣∣∣π
−π

+
1
π

∫
π

−π

f (t)nsinnt dt = nBn.

Similarly,

1
π

∫
π

−π

f ′(t)sinnt dt =
1
π

f (t)sinnt
∣∣∣π
−π

− 1
π

∫
π

−π

f (t)ncosnt dt =−nAn.

And
1

2π

∫
π

−π

f ′(t)dt =
1

2π
f (t)
∣∣∣π
−π

=
1

2π

(
f (π)− f (−π)

)
= 0. �

14.1.6. THEOREM. If f : R→R is a 2π-periodic Ck−1 function that is piece-

wise Ck, and f ∼ A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ , then there is a constant M such that

for all n≥ k,

|An| ≤
M
nk and |Bn| ≤

M
nk .
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PROOF. We use induction on k. For k = 1, let M = 2‖ f ′‖1. By Lemma 14.1.5, the
Fourier coefficients of f ′ are nBn and−nAn. Applying Proposition 7.6.4 to f ′ shows
that |nAn| and |nBn| are bounded by M. Thus |An| and |Bn| are bounded by M/n.

For general k, applying the result for k− 1 to f ′ and using Lemma 14.1.5 gives
that |nAn| and |nBn| are bounded by M/nk−1. Dividing by n gives the result. �

14.1.7. EXAMPLE. Consider the function f (θ) = θ 3−π2θ for −π ≤ θ ≤ π .
Notice that f (−π) = f (π) = 0, whence f is a continuous 2π-periodic function.
Moreover, f ′(θ)= 3θ 2−π2 and we have f ′(−π)= f ′(π)= 2π2. So f is C1. Finally,
f ′′(θ) = 6θ . Since f ′′(−π) 6= f ′′(π), the function f is piecewise C2 but not C2.

By Theorem 14.1.6, the Fourier coefficients are bounded by M/n2 for n ≥ 2.
Since ∑n≥1 n−2 converges, we know that the Fourier series converges uniformly by
the Weierstrass M-test.

Let us compute the Fourier coefficients of f . Since f is odd, we need only com-
pute the sine terms. We integrate by parts three times:

Bn =
1
π

∫
π

−π

(θ 3−π
2
θ)sinnθ dθ

=

(
θ 3−π2θ

)
π

−cosnθ

n

∣∣∣∣∣
π

−π

+
∫

π

−π

3θ 2−π2

nπ
cosnθ dθ

= 0+
3θ 2−π2

n2π
sinnθ

∣∣∣∣∣
π

−π

−
∫

π

−π

6θ

n2π
sinnθ dθ

= 0+
6θ

n3π
cosnθ

∣∣∣∣∣
π

−π

−
∫

π

−π

6
n3π

cosnθ dθ

=
6π

n3π
(−1)n− −6π

n3π
(−1)n−0 = (−1)n 12

n3 .

So we could have applied the M-test directly to the Fourier series. We do not yet
know that the limit of the Fourier series is f .

Exercises for Section 14.1

A. Let f be a monotone function on [−π,π] with f ∼ A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ . Prove that

the Fourier coefficients satisfy max{|An|, |Bn|} ≤ 2M/nπ , where M = | f (π)− f (−π)|.
HINT: Express Bn as the sum of integrals over intervals on which sinnθ has constant sign,
and combine into a single integral.

B. Consider the DE y′′+4y = g, where g is an odd C2 function with Fourier series ∑n≥1 Bn sinnx.

(a) If B2 = 0, find the Fourier series of the solution.
(b) Verify that this series and its second derivative converge uniformly and provide a solution.
(c) Show that y =− 1

4 xcos2x is the solution for g(x) = sin2x.
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C. Show that if f is a Lipschitz function on [−π,π] with Lipschitz constant L, then the Fourier
coefficients satisfy |An| ≤ 2L

n and |Bn| ≤ 2L
n for n≥ 1. HINT: Split the integral into n pieces

and replace each integral by
∫ ck+π/n

ck−π/n

(
f (x)− f (ck)

)
sinnxdx. Then estimate each piece.

D. Suppose that f ∼ A0 +
∞

∑
n=1

An cosnθ +Bn sinnθ satisfies f ∈ Lipα (see Exercise 5.5.K).

(a) Prove that (A2
n +B2

n)
1/2 ≤ ω( f ; π

n ), where ω( f ;δ ) is the modulus of continuity (see Defi-
nition 10.4.2) HINT: Show that An = 1

2π

∫
π

−π

(
f (t)− f (t + π

n )
)

cos(nt)dt.
(b) If f ∈ Lipα , prove that there is a constant C such that (A2

n + B2
n)

1/2 ≤Cn−α . Hence |An|
and |Bn| are bounded by Cn−α .

(c) If f is Cp and f (p) ∈ Lipα , show that (A2
n +B2

n)
1/2 ≤Cn−p−α .

E. Let g be an odd function such that g(θ)≥ 0 on [0,π].

(a) Show by induction that |sinnθ |< nsinθ on (0,π).
(b) Prove that the Fourier coefficients satisfy |Bn|< nB1.
(c) Show by a series of examples that the previous inequality cannot be improved in general.

F. (a) Show that liminf
n→∞

∫ b
a |cos(nx+αn)|dx≥ b−a

2 for any a < b and any real αn, n≥ 1.

(b) Show that if rn > 0 satisfy ∑
∞
n=1 rn|cos(nx+αn)| ≤C for a≤ x≤ b, then ∑

∞
n=1 rn < ∞.

G. Prove the Riemann–Lebesgue Lemma for absolutely integrable functions.
HINT: Approximate the function by a step function in the L1 norm.

14.2 Pointwise Convergence of Fourier Series

Given a piecewise-continuous 2π-periodic function f : R → R with Fourier series
f ∼ A0 +∑

∞
k=1 Ak coskθ +Bk sinkθ , we denote the nth partial sum by

Sn f (θ) = A0 +
N

∑
k=1

Ak coskθ +Bk sinkθ .

It follows from the Projection Theorem (7.5.11) that Sn f is the best approximation to
f in the subspace spanned by 1 and {coskx,sinkx : 1≤ k≤ n}, with respect to the L2

norm. But this is not same thing as saying that for each number x, Sn f (x) coverges
to f (x). In fact, there are continuous functions f such that there is a number x where
Sn f (x) goes to infinity. Such an example was first found by du Bois Reymond in
1876. We outline the construction of such a function in Exercise 14.7.E later. Further
examples have been found by Fejér and by Lebesgue. Much more recently, in 1966,
Carleson solved a long-standing problem conjectured 50 years earlier by Lusin. He
showed that the Fourier series of a continuous function (and indeed any L2 function)
converges for all θ except for a ‘small set’, precisely, except for a set of measure
zero. These examples and results are beyond the scope of this text.

If we require the function to be piecewise Lipschitz, then we can establish point-
wise convergence of the Fourier series. First, a better method is needed for comput-
ing the partial sums. Again there is an integral formula using a kernel. While it is
not nearly as nicely behaved as the Poisson kernel of Section 13.4, this kernel still
provides a better estimate than looking at terms individually.
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14.2.1. DEFINITION. The sequence of functions Dn : R→ R given by

Dn(t) =
sin(n+ 1

2 )t
2π sin t/2

if t 6= 2πm and Dn(2πm) =
2n+1

2π
for m ∈ Z

for n = 1,2, . . . is called the Dirichlet kernel.

To see that Dn is continuous at 0 (and hence also at 2πm), compute

lim
t→0

Dn(t) = lim
t→0

sin(n+ 1
2 )t

t
t

2π sin t/2
=

n+ 1
2

2π/2
=

2n+1
2π

.

Another motivation for the definition of Dn(2πm) is the following trig identity,
whose proof we leave as an exercise. It can also be established using complex ex-
ponentials (see Lemma 13.9.4).

14.2.2. LEMMA. Dn(t) =
1

2π

(
1+2

n
∑

k=1
coskt

)
.

The following theorem connects Dn to Fourier series.

14.2.3. THEOREM. Let f be a piecewise-continuous 2π-periodic function.
For each x ∈ R,

Sn f (x) =
∫

π

−π

f (x+ t)Dn(t)dt.

PROOF. Substituting the formulae for Ak and Bk into the definition of Sn f yields

Sn f (x) = A0 +
n

∑
k=1

Ak coskx+Bk sinkx

=
1

2π

∫
π

−π

f (t)dt +
n

∑
k=1

1
π

∫
π

−π

f (t)coskt dt coskx+
n

∑
k=1

1
π

∫
π

−π

f (t)sinkt dt sinkx

=
1

2π

∫
π

−π

f (t)
(

1+2
n

∑
k=1

coskt coskx+ sinkt sinkx
)

dt

=
1

2π

∫
π

−π

f (t)
(

1+2
n

∑
k=1

cosk(t− x)
)

dt

using the identity cos(A−B) = cosAcosB+ sinAsinB. Then, substituting u = t−x
and using the 2π-periodicity of f , we have

=
∫

π

−π

f (x+u)
( 1

2π
+

1
π

n

∑
k=1

cosku
)

du.

Invoking Lemma 14.2.2 completes the proof. �
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The Dirichlet kernel is inferior to the Poisson kernel because it is not positive. In-
deed, properties (2) and (3) of the next result together show that significant cancella-
tion must occur in integrating Dn for large n. Compare Figure 14.1 with Figure 13.2.

14.2.4. PROPERTIES OF THE DIRICHLET KERNEL.
The Dirichlet kernel has the following properties:

(1) For each n, Dn is a continuous, 2π-periodic, even function.

(2)
∫

π

−π

Dn(t)dt = 1.

(3) For each n, 0.28+0.4logn≤
∫

π

−π

|Dn| ≤ 2+ logn

PROOF. By periodicity, it suffices to show that Dn is continuous at 0, which we did
just after the definition. Lemma 14.2.2 shows that Dn is even and 2π-periodic.

For (2), taking f = 1 in Theorem 14.2.3, we have,∫
π

−π

Dn(t)dt = Sn f (0) = 1.

The reader can check that
∫

π

−π
|D1(t)|dt =

∫
π

−π
(|1 + 2cos t|/(2π)dt < 1.5. To

provide the upper bound on
∫
|Dn| for n≥ 2, we first observe that

∫
π

−π

|Dn(t)|dt = 2
∫

π

0
|Dn(t)|dt =

∫ 1/n

0
2|Dn(t)|dt +

∫
π

1/n

∣∣∣∣ sin(n+ 1
2 )t

π sin t/2

∣∣∣∣dt.

The first integral is estimated for n≥ 2 as∫ 1/n

0
2|Dn(t)|dt =

1
π

∫ 1/n

0

∣∣∣1+2
n

∑
k=1

coskt
∣∣∣dt ≤ 1

π

1
n
(1+2n)≤ 2.5

π
< 0.8.

Next, use use the inequalities π sin(t/2)≥ t for t ≥ 0 and |sin(n+ 1
2 )t| ≤ 1 to obtain∫

π

1/n

∣∣∣∣ sin(n+1/2)t
π sin t/2

∣∣∣∣ dt ≤
∫

π

1/n

1
t

dt = logπ− log
1
n

< 1.2+ logn.

Combining these two integrals, we have∫
π

−π

|Dn(t)|dt ≤ 2+ logn.

For the lower bound, first note that∫ (k+1)π/(2n+1)

kπ/(2n+1)
|sin(n+1/2)t|dt =

∫
π/(2n+1)

0
sin(n+1/2)t dt

=
2

2n+1

∫
π/2

0
sin t dt =

2
2n+1

.
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FIG. 14.1 The graphs of D1 through D5.
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Now use the inequality sin t ≤ t for t ≥ 0 to obtain

∫
π

−π

|Dn(t)|dt = 2
∫

π

0

∣∣∣∣ sin(n+1/2)t
2π sin t/2

∣∣∣∣ dt ≥ 2
∫

π

0

∣∣∣∣∣ sin(n+ 1
2 )t

πt

∣∣∣∣∣ dt

= 2
2n

∑
k=0

∫ (k+1)π/(2n+1)

kπ/(2n+1)

|sin(n+1/2)t|
πt

dt

≥ 2
2n

∑
k=0

2n+1
(k +1)π2

∫ (k+1)π/(2n+1)

kπ/(2n+1)
|sin(n+1/2)t|dt

≥ 2
2n

∑
k=0

2n+1
(k +1)π2

2
2n+1

=
4

π2

2n

∑
k=0

1
k +1

.

The Integral Test (Exercise 3.2.N) shows that
2n
∑

k=0
(k +1)−1 ≥ log(2n+2), so

∫
π

−π

|Dn(t)|dt ≥ 4
π2 (log2+ log(n+1)) > 0.28+0.4logn.

�

Next, we apply the Dirichlet kernel to analyze pointwise convergence of Fourier
series. Dirichlet proved a crucial special case of the next theorem in 1829. In his
treatise, he introduced the notion of function that mathematicians use today. Prior to
this work, a function was typically assumed to be given by a single analytic formula.

14.2.5. DEFINITION. A function f is piecewise Lipschitz if f is piecewise
continuous and there is a constant L such that on each interval of continuity, f is
Lipschitz with constant at most L.

Being piecewise C1 implies piecewise Lipschitz with constant L = ‖ f ′‖∞. In-
deed, f ′ is bounded on each (closed) interval on which it is continuous by the Ex-
treme Value Theorem (5.4.4); and hence it is bounded on [−π,π]. On any interval
of continuity for f ′, the Mean Value Theorem shows that

| f (x)− f (y)| ≤ ‖ f ′‖∞|x− y|.

These estimates can then be spliced together when the function is continuous on an
interval even if the derivative is not continuous.

For an example of a Lipschitz function that is not piecewise C1, consider f (x) =
x2 sin 1

x for x 6= 0 and f (0) = 0. The derivative is defined everywhere:

f ′(x) =

{
2xsin 1

x − cos 1
x for x 6= 0,

0 for x = 0.

This is bounded by 3 on R, so the Mean Value Theorem argument is valid. However,
f ′ has a nasty discontinuity at the origin. So f ′ is not piecewise continuous.
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To prove the following result, we will use the integral formula for Dn. The
argument has some similarity to the proof of Poisson’s Theorem (13.5.1), but
property (3) of the previous proposition forces us to be circumspect. At a certain
point, we will need to combine the Lipschitz condition with the Riemann–Lebesgue
Lemma to obtain the desired estimate.

We write f (θ+) and f (θ−) for the one-sided limits of f at θ .

14.2.6. THE DIRICHLET–JORDAN THEOREM.
If f : R→ R is piecewise Lipschitz and 2π-periodic, then

lim
n→∞

Sn f (θ) =
f (θ+)+ f (θ−)

2
.

In particular, if f is continuous at θ , then lim
n→∞

Sn f (θ) = f (θ).

PROOF. By Theorem 14.2.4 (2),

f (θ+) = f (θ+)
∫

π

−π

Dn(t)dt = 2
∫

π

0
f (θ+)Dn(t)dt,

and a similar equality holds for f (θ−). Using Theorem 14.2.3,

Sn f (θ) =
∫

π

−π

f (θ − t)Dn(t)dt =
∫

π

0

(
f (θ + t)+ f (θ − t)

)
Dn(t)dt.

Using this formula for Sn f (θ) with the previous two equalities gives

Sn f (θ)− f (θ+)+ f (θ−)
2

=
∫

π

0

(
f (θ + t)+ f (θ − t)

)
Dn(t)dt−

∫
π

0

(
f (θ+)+ f (θ−)

)
Dn(t)dt

=
∫

π

0

(
f (θ + t)− f (θ+)

)
Dn(t)dt +

∫
π

0

(
f (θ − t)− f (θ−)

)
Dn(t)dt.

We now consider these two integrals separately. First we prove that

lim
n→∞

∫
π

0

(
f (θ + t)− f (θ+)

)
Dn(t)dt = 0.

An entirely similar argument will show that the second integral also goes to zero as
n goes to infinity. Combining these two results proves the theorem.

Let L be the Lipschitz constant for f , and let ε > 0 be given. Choose a positive
δ < ε/L that is so small that f is continuous on [θ ,θ +δ ]. Hence

| f (θ + t)− f (θ+)|< Lt for all θ + t ∈ [θ ,θ +δ ].

Since |sin(t/2)| ≥ |t|/π for all t in [−π,π], it follows that
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|Dn(t)|=
∣∣∣∣ sin(n+ 1

2 )t
2π sin t/2

∣∣∣∣≤ 1
2|t|

for all t ∈ [−π,π].

Therefore, ∣∣∣∣∫ δ

0

(
f (θ + t)− f (θ+)

)
Dn(t)dt

∣∣∣∣≤ ∫ δ

0
Lt

1
2t

dt ≤ Lδ

2
<

ε

2
.

For the integral from δ to π , we have∫
π

δ

(
f (θ + t)− f (θ+)

)
Dn(t)dt =

∫
π

δ

f (θ + t)− f (θ+)
2π sin t/2

sin(n+ 1
2 )t dt

=
∫

π

δ

g(t)sin(n+ 1
2 )t dt,

where

g(t) =
f (θ + t)− f (θ+)

2π sin t/2
.

Since g is piecewise continuous on [δ ,π], we can apply the Riemann–Lebesgue
Lemma (14.1.1) to this last integral. Thus, for all n sufficiently large,∣∣∣∣∫ π

δ

(
f (θ + t)− f (θ+)

)
Dn(t)dt

∣∣∣∣= ∣∣∣∣∫ π

δ

g(t)sin(n+ 1
2 )t dt

∣∣∣∣< ε

2
.

Combining these two estimates, we have∣∣∣∣∫ π

0

(
f (θ + t)− f (θ+)

)
Dn(t)dt

∣∣∣∣< ε

for all n sufficiently large, and thus the limit is zero. �

14.2.7. EXAMPLE. Let h be the following variant on the Heaviside step func-
tion:

h(x) =

{
−1 if −π < x < 0,

1 if 0≤ x≤ π.

Evidently, this function is piecewise C1. Since h is odd, its Fourier series has only
sine terms, which we compute as follows:

Bn =
1
π

∫
π

−π

h(x)sinnxdx =
2
π

∫
π

0
sinnxdx =

−2
nπ

cosnx
∣∣∣∣π
0

=

{
0 if n is even,
4

nπ
if n is odd.

Thus h∼
∞

∑
k=0

4
(2k +1)π

sin(2k +1)x. See Figure 14.4 for a graph of S29h.
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The Dirichlet–Jordan Theorem tells us that this series converges to 1 on (0,π)
and to −1 for (−π,0). At the points of discontinuity, it converges to the average,
0. This latter fact is clear, since sinkπ = 0 for all integers k. Let us plug in a few
points. For example, take x = π/2. Since sin(2k +1)π/2 = (−1)k,

1 = h
(

π

2

)
=

4
π

∞

∑
k=0

(−1)k

2k +1
.

Therefore,

1− 1
3

+
1
5
− 1

7
+ · · ·= π

4
.

Similarly, plugging in x = 1, we obtain

sin1+
1
3

sin3+
1
5

sin5+ · · ·= π

4
.

Both of these series converge exceedingly slowly, so they have no real computa-
tional value. We will consider this function again in Example 14.4.6.

14.2.8. EXAMPLE. Consider the function f of Example 14.1.7. The Fourier
series of f converges pointwise to f by the Dirichlet–Jordan theorem. That is,

θ
3−π

2
θ =

∞

∑
n=1

(−1)n12
n3 sinnθ for all θ ∈ [−π,π].

For example, let θ = π/2. Since sin(2k +1)π/2 = (−1)k and sin(2k)π/2 = 0,(
π

2

)3
−π

2 π

2
=

∞

∑
k=0

(−1)2k+112
(2k +1)3 (−1)k.

Solving, we find that
∞

∑
k=0

(−1)k

(2k +1)3 =
π3

32
.

Now consider the derivative f ′(θ) = 3θ 2−π2. The Fourier series of f may be
differentiated term by term, since the differentiated series converges uniformly by
the M-test (8.4.7), since ∑

∞
n=1 n|Bn|= ∑

∞
n=1

12
n2 < ∞. Thus, for all θ ∈ [−π,π],

3θ
2−π

2 =
∞

∑
n=1

(−1)n12
n2 cosnθ .

Let us substitute θ = π

2 here as well. Here cos (2k+1)π
2 = 0 and cos 2kπ

2 = (−1)k. So

−π2

4
=

∞

∑
k=1

12
4k2 (−1)k =−3

∞

∑
k=1

(−1)k−1

k2 .
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Therefore,

π2

12
=

∞

∑
k=1

(−1)k−1

k2 =
∞

∑
k=1

1
k2 −2

∞

∑
k=1

1
(2k)2 =

1
2

∞

∑
k=1

1
k2 .

So we again obtain Euler’s sum ∑
∞
k=1

1
k2 = π2/6.

In fact the series for f and f ′ converge uniformly, but this needs further work. A
sufficient condition on a function f to conclude that Sn f converges uniformly to f
is given in Theorem 14.7.3.

Exercises for Section 14.2

A. Prove Lemma 14.2.2. HINT: If t 6= 0, multiply by sin t/2 and use a trig identity.

B. Compute the Fourier series for f (x) = x for −π ≤ x≤ π , and sum of the series.

C. (a) Find the Fourier series for f (θ) = sinh(θ) for |θ | ≤ π .
(b) Find a constant c such that the Fourier series for f (θ)− cθ converges uniformly on

[−π,π].

D. Show that
∞

∑
n=2

(−1)n2n3

n4−1
sinnx is the Fourier series of a piecewise C1 function.

HINT: Use Exercise C to subtract a multiple of x, leaving the Fourier series of a C1 function.

E. Sum the series
∞

∑
n=1

sinnθ

n
. HINT: Exercise B and Exercise 7.6.F.

F. (a) Show that the function h(x) = cos(x/2) for −π ≤ x≤ π is continuous and piecewise C1.
(b) Find the Fourier series for h. HINT: An = (−1)n−14/(π(4n2−1)).
(c) Sum the series at the point x = 0 in two ways, and show that they yield the same result.

HINT: 2/(4n2−1) = 1/(2n−1)−1/(2n+1).

G. Prove Dini’s Test: If f is a piecewise-continuous 2π-periodic function such that∫
π

0

1
t

∣∣∣ f (θ0 + t)+ f (θ0− t)
2

− s
∣∣∣dt < ∞,

then lim
n→∞

Sn f (θ0) = s. HINT: Look for a spot in the proof of the Dirichlet–Jordan Theorem

where this integral condition may be used instead of the Lipshitz condition.

14.3 Gibbs’s Phenomenon

In this section, we show that pointwise convergence of Fourier series, which we
established in the previous section, is not good enough for many applications. In
particular, a sequence of functions can converge pointwise without “looking like”
their limit.

We have seen in Section 8.1 that pointwise convergence of functions allows sur-
prisingly bad behaviour. Such a phenomenon arises for the functions Sn f near any
jump discontinuity of f . This was first discovered by an English mathematician,
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Wilbraham, in 1848. Around the turn of the century, it was rediscovered by Michel-
son and then explained by Gibbs, a (now) famous American physicist, in a letter to
the journal Nature. For a discussion of this history, see [39]. Put simply, whenever f
has a jump discontinuity, the graphs of Sn f overshoot f near the discontinuity and
increasing n does not reduce the error; it only pushes the overshoot nearer to the
discontinuity. See Figure 14.2, for example.

As an example, we demonstrate the phenomenon for the 2π-periodic function
given by

f (x) =

{
x if x ∈ (−π,π),
0 if x =±π.

The Dirichlet–Jordan Theorem (14.2.6) shows that lim
n→∞

Sn f (x) = f (x), for all x∈R.

Nonetheless, Sn f (x) always overshoots f (x) at some point near the discontinuity by
about 9% of the gap (which is 2π in this case).

x-2 2

y

2

-2

x-2 2

y

2

-2

FIG. 14.2 The graphs of S10 f and S100 f , each plotted with f .
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14.3.1. THEOREM. Let A =
2
π

∫
π

0

sin(x)
x

dx≈ 1.178979744. For the function

f just defined, we have

lim
n→∞

Sn f
(
π(1− 1

n )
)

= Aπ and lim
n→∞

Sn f
(
−π(1− 1

n )
)

=−Aπ.

PROOF. Note that f is an odd function and hence has a sine series. An integration
by parts argument (see Exercise 14.2.B) shows that

f (x)∼ 2
∞

∑
k=1

(−1)k+1

k
sinkx.

Thus,

Sn f
(
π(1− 1

n )
)

= 2
n

∑
k=1

(−1)k+1

k
sin
(

kπ− kπ

n

)
= 2

n

∑
k=1

(−1)k+1

k

(
sinkπ cos

kπ

n
− coskπ sin

kπ

n

)
,

and since sinkπ = 0 and coskπ = (−1)k,

= 2
n

∑
k=1

1
k

sin
kπ

n
=

π

n

n

∑
k=1

2sin(kπ/n)
kπ/n

.

Remembering the formula for Riemann sums, we observe that this is the Riemann
sum for the integral of the function (2sinx)/x on the interval [0,π] using the par-
tition 0,π/n,2π/n, . . . ,π . Since the limit of (sinx)/x as x → 0 is 1, this function
is bounded and continuous on [0,π]. Therefore, the Riemann sums converge to the
integral. Thus, we have

lim
n→∞

Sn f
(
π(1− 1

n )
)

=
∫

π

0

2sinx
x

dx = πA

and, similarly, lim
n→∞

Sn f
(
−π(1− 1

n )
)

=−
∫

π

0
2sinx

x dx =−πA.

It remains to estimate the integral A. The function (sinx)/x does not have a
closed-form integral. However, we can get good mileage out of the Taylor series
for sinx because it converges so rapidly. Indeed, we obtain that

sinx
x

=
∞

∑
k=0

(−1)k

(2k +1)!
x2k

for all real x. Since this converges uniformly on [0,π], we may integrate term by
term by Theorem 8.3.1. Therefore,
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A =
2
π

∫
π

0

sin(x)
x

dx =
2
π

∫
π

0

∞

∑
k=0

(−1)k

(2k +1)!
x2k dx

=
∞

∑
k=0

2
π

∫
π

0

(−1)k

(2k +1)!
x2k dx =

∞

∑
k=0

2
π

(−1)k

(2k +1)!
π2k+1

(2k +1)

= 2
∞

∑
k=0

(−1)kπ2k

(2k +1)!(2k +1)
= 2− π2

9
+

π4

300
− π6

17640
+ · · · .

This is an alternating series in which the terms decrease monotonically to 0, so

1.17357≈ 2− π2

9
+

π4

300
− π6

17640
< A

< 2− π2

9
+

π4

300
− π6

17640
+

π8

1632960
≈ 1.17938.

This is enough for our purposes. In fact, A is approximately 1.178979744. �

Gibbs’s phenomenon is not special to Fourier series. Similar behaviour can be
constructed using piecewise linear functions, as considered in Section 10.8, in place
of trigonometric functions. See [40] for an example involving a rescaling of the
function h of Example 14.2.7 and an equally spaced partition. The crucial point is
that best approximations in the L2-norm are, near jump discontinuities, going to
behave badly in the uniform norm.

Exercises for Section 14.3
A. (a) Suppose h is a C2 function on [−π,π] with h(π) = h(−π) but possibly h′(π) 6= h′(−π).

Show that Snh converges uniformly to h.
(b) Suppose that g is a C2 function on [−π,π] but g(π) 6= g(−π). Subtract a multiple of the

function f used in this section from g to obtain a function h as in part (a). Hence show that
g also exhibits Gibbs’s phenomenon.

B. (a) Following the proof of Gibbs’s phenomenon, show that lim
n→∞

Sn f
(
π− a

n

)
=
∫ a

0

sinx
x

dx.

(b) Let tn =
∫ nπ

(n−1)π

sinx
x

dx. Show that tn alternates in sign, |tn+1|< |tn|, and lim
n→∞

tn = 0.

(c) Hence show that sup
a>0

∣∣∣∣∫ a

0

sinx
x

dx
∣∣∣∣= ∫

π

0

sinx
x

dx.

(d) Establish the existence of the improper Riemann integral
∫

∞

0

sinx
x

dx = lim
a→∞

∫ a

0

sinx
x

dx.

C. (a) Use Lemma 14.2.2 to show that
∫

π−a
0 2πDn(x)dx = π−a+Sn f (a), where 0 < a < π and

f (x) = x for −π ≤ x≤ π .

(b) Hence show that |Sn f (a)−a|=
∣∣∣∣∫ (n+ 1

2 )(π−a)

0

2sinx
(2n+1)sin x

2n+1
dx−π

∣∣∣∣.
(c) Use the Riemann–Lebesgue Lemma to show that

∫ (n+ 1
2 ) π

2

0

2sinx
(2n+1)sin x

2n+1
− 2sinx

x
dx =

∫ π
2

0
g(x)sin(n+ 1

2 )xdx

(for a certain continuous function g) tends to 0 as n goes to +∞.
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(d) Use the Dirichlet–Jordan Theorem to deduce that
∫

∞

0

sinx
x

dx =
π

2
.

14.4 Cesàro Summation of Fourier Series

It is natural to try to recombine the harmonics of a function f simply by adding
the first several terms. However, proving that such approximations converge point-
wise to f as the number of terms goes to infinity requires a Lipschitz condition
(Dirichlet-Jordan Theorem (14.2.6)). Even worse is Gibbs’s phenomenon, although
we cannot hope for continuous approximants to converge uniformly to a discontin-
uous function. In this section we consider a new sequence of approximations, built
from the Fourier coefficients of f , that converges uniformly to the function f for all
continuous functions f . The results of this section were found about 1900 by Fejér,
a Hungarian mathematician, at the age of 19.

In order to obtain this better behaviour, we replace the sequence of functions Sn f
with their averages, known as Cesàro means:

σn f (x) =
1

n+1

n

∑
k=0

Sk f (x).

This is defined whenever the Fourier coefficients of f are defined, which includes
all absolutely integrable functions. Our primary interest will be for continuous func-
tions. This new sequence of functions has an associated kernel that is much better
behaved than the Dirichlet kernel. It shares many of the good properties of the Pois-
son kernel. In fact, it is better than the Poisson kernel, since computing σn f does
not require an infinite sum. Indeed,

σn f (x) =
1

n+1

n

∑
k=0

(
A0 +

k

∑
j=1

A j cos jx+B j sin jx
)

= A0 +
n

∑
j=1

(
1− j

n+1
)(

A j cos jx+B j sin jx
)
.

One deficiency of σn f compared to Sn f is that for f a trig polynomial of degree at
most n, Sn f equals f but σn f may not. This is more than compensated by superior
convergence of the sequence.

Our first result is to turn this summation into an integral formula . The following
result can be deduced using trig identities or complex exponentials (Lemma 13.9.5).

14.4.1. LEMMA. The Fejér kernel is the sequence Kn(t) for n≥ 1 given by

1
2π sin2 t/2

n

∑
k=0

sin(k + 1
2 )t =


n+1
2π

if t = 2mπ, m ∈ Z,

1
2π(n+1)

(
sin n+1

2 t
sin t/2

)2

if t 6= 2mπ.
.
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Each Kn is continuous at zero. This follows from limt→0(sinat)/t = a. We leave
it as an exercise.

You should compare Figure 14.3 with the graphs of the Poisson and Dirichlet
kernels, Figures 13.2 and 14.1. The key difference between the kernels Kn and Dn
is that the Kn are positive. Moreover, for t /∈ 2πZ, Kn(t) → 0 as n goes to infinity,
unlike Dn(t). However, Kn(0)→∞ as n goes to infinity, exactly like Dn. It is helpful
to think of the Kn as functions that become more and more like spikes (i.e., large at
zero and small elsewhere), as n goes to infinity. All of these properties are shared
with the Poisson kernel, which leads us to define a general positive kernel below.

14.4.2. THEOREM. If f : R → R is piecewise continuous and 2π-periodic,
then

σn f (x) =
∫

π

−π

f (x+ t)Kn(t)dt.

PROOF. Using Theorem 14.2.3, we have

σn f (x) =
1

n+1

n

∑
k=0

∫
π

−π

f (t + x)
sin(k + 1

2 )t
2π sin t/2

dt

=
∫

π

−π

f (t + x)
1

2π(n+1)sin t/2

n

∑
k=0

sin
(

k +
1
2

)
t dt,

and applying Lemma 14.4.1 completes the proof. �

14.4.3. PROPERTIES OF THE FEJÉR KERNEL.
(1) For each n, Kn is a positive, continuous, 2π-periodic, even function.

(2)
∫

π

−π

Kn(t)dt = 1.

(3) For δ ∈ (0,π), Kn converges uniformly to zero on [−π,−δ ]∪ [δ ,π].

(4) For δ ∈ (0,π), lim
n→∞

(∫ −δ

−π

Kn +
∫

π

δ

Kn

)
= 0.

PROOF. It is evident from the formula that Kn is positive, even, 2π-periodic, and
continuous except possibly at multiples of 2π . Because of the periodicity, it suffices
to check continuity at 0, which we have asserted is true.

For (2), taking f = 1 in Theorem 14.4.2, we have∫
π

−π

Kn(t)dt = σn f (0) = 1.

For (3), we let ε > 0. Observe that |sin t/2| ≥ sinδ/2 for t such that δ ≤ |t| ≤ π .
Thus,

|Kn(t)| ≤
1

2(n+1)
1

|sinδ/2|
for all t ∈ [−π,−δ ]∪ [δ ,π].
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FIG. 14.3 The graphs of K1 through K5.
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Since δ is fixed, if we choose any N ≥ ε/(2sinδ/2), then for all n≥ N,

|Kn(t)| ≤ ε for all t ∈ [−π,−δ ]∪ [δ ,π].

That is, Kn converges uniformly to zero on [−π,−δ ]∪ [δ ,π].
Finally, (4) is an immediate consequence of (3). �

Since we have two examples, it seems appropriate to introduce the following
general definition and prove the main theorem of this section for positive kernels.

14.4.4. DEFINITION. We call a family of 2π-periodic continuous functions
kn, n = 1,2,3 . . ., a positive kernel if

(1) For all t ∈ R, kn(t)≥ 0.

(2)
∫

π

−π

kn(t)dt = 1.

(3) For δ ∈ (0,π), kn converges uniformly to zero on [−π,−δ ]∪ [δ ,π].

We will write Σn f (x) for
∫

π

−π

f (x+ t)kn(t)dt.

Examples include Kn, a subsequence of the Poisson kernel, such as P(1/n, t),
n≥ 1, and the de la Vallée Poussin kernel, which is given in the exercises.

We can now prove the main result.

14.4.5. FEJÉR’S THEOREM.
If f is continuous and 2π-periodic and kn is a positive kernel, then Σn f converges
uniformly to f .

PROOF. Conceptually, this proof is much like the proof of Poisson’s Theorem. We
write Σn f (x) as an integral from −π to π and then split the integral into two parts:
the interval [−δ ,δ ], and second, the rest, namely [−π,−δ ]∪ [δ ,π]. We control the
first integral using the uniform continuity of f ; we control the second using the
uniform convergence of the kn to zero.

Let M = ‖ f‖∞ = max{| f (x)| : x ∈ [−π,π]} and let ε > 0. Since f is continuous
on the compact set [−π,π], it is uniformly continuous by Theorem 5.5.9. Hence
there is some δ > 0 such that

| f (x)− f (y)|< ε

2
whenever |x− y|< δ .

With this δ fixed, we apply Definition 14.4.4 (3), to conclude that there is an integer
N such that

kn(x) <
ε

8πM
for all x ∈ [−π,−δ ]∪ [δ ,π] and n≥ N.

Using the definition of Σn f and Definition 14.4.4 (2), we have
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|σn f (x)− f (x)|=
∣∣∣∣∫ π

−π

f (x+ t)kn(t)dt− f (x)
∫

π

−π

kn(t)dt
∣∣∣∣

=
∣∣∣∣∫ π

−π

(
f (x+ t)− f (x)

)
kn(t)dt

∣∣∣∣
≤
∫

π

−π

| f (x+ t)− f (x)|kn(t)dt.

Now, we split this integral into two parts, as promised above. Let I1 = [−δ ,δ ] and
I2 = [−π,−δ ]∪ [δ ,π]. If t ∈ I1, then | f (x+ t)− f (x)|< ε/2, and so∫

I1
| f (x+ t)− f (x)|kn(t)dt ≤

∫
I1

ε

2
kn(t)dt ≤ ε

2

∫
π

−π

kn(t)dt =
ε

2
.

If t ∈ I2, then |kn(t)| ≤ ε/(8πM), and so∫
I2
| f (x+ t)− f (x)|kn(t)dt ≤

∫
I2

2Mkn(t)dt ≤ 2M
∫

I2

ε

8πM
dt <

ε

4π

∫
π

−π

dt =
ε

2
.

Adding these two results, we have

|Σn f (x)− f (x)| ≤
∫

π

−π

| f (x+ t)− f (x)|kn(t)dt ≤ ε

2
+

ε

2
= ε

for all x ∈ [−π,π] and all n ≥ N. Thus, by the definition of uniform convergence,
σn f converges uniformly to f . �

This proof has a strong resemblance to our proof of the Weierstrass Approxima-
tion Theorem. The common underlying technique here is controlling the integral of
a product by splitting the integral into two parts, where one factor of the product is
well behaved on each part. For more examples, review the proofs of the inequalities
in Theorem 14.2.4 (3).

In fact, it is possible to prove the Weierstrass Approximation Theorem using
Fejér’s Theorem. One proof is outlined in the exercises. Another will be given in
Section 14.9.

14.4.6. EXAMPLE. Consider the function h introduced in Example 14.2.7,

h(x) =

{
1 for 0≤ x≤ π,

−1 for −π < x < 0.

The sequence Snh will exhibit Gibbs’s phenomenon (see Exercise 14.3.A) as shown
in Figure 14.4. We will compute the Cesàro means for this function using the Fejér
kernel. Since h is an odd function, the approximants Snh and σnh are also all odd.
Also, h(π−x) = h(x), and so Snh and σnh also have this symmetry. Consider a point
x in [0,π/2]:
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σnh(x) =
∫

π

−π

h(x+ t)Kn(t)dt

=−
∫ −x

−π

Kn(t)dt +
∫

π−x

−x
Kn(t)dt−

∫
π

π−x
Kn(t)dt

=
∫ x

−x
Kn(t)dt−

∫
π+x

π−x
Kn(t)dt.

Here we have exploited the fact that Kn is even to cancel the integral from x to π−x
with the integral from x−π to −x.

x-2 2

y
1

-1

x-2 2

y
1

-1

FIG. 14.4 The graphs of S29h and σ29h, each plotted with h.

By Proposition 14.4.3, the first integral converges to 1 for x in (0,π/2], while the
second term tends to 0. On the other hand, σnh(0) = 0 for any n. Rewrite σnh(x)

as 2
∫ x

0
Kn(t)−Kn(π−t)dt. Since Kn is positive on [0,π], it follows that σnh(x) is

monotone increasing on [0,π/2], then decreases symmetrically back down to 0 at π .

Also, 0 < σnh(x) < 1 here because
∫ x

−x
Kn(t)dt < 1. Likewise, by symmetry, σnh(x)

converges to −1 on (−π,0) and σnh(−π) = 0 for all n.
From the monotonicity, we can deduce that this convergence is uniform on inter-

vals [ε,π− ε]∪ [ε−π,−ε] for ε > 0. Since the function h has jump discontinuities
at the points 0 or ±π , continuous functions cannot converge uniformly to it near
these points.
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There are some important consequences of Fejér’s Theorem (14.4.5) that have
already been deduced from Poisson’s Theorem (13.5.1) in the previous chapter. If
you are reading this chapter without the previous one, then look at Exercises G, H,
and I below.

Exercises for Section 14.4
A. Show that Kn is continuous at zero.

B. Prove Lemma 14.4.1. HINT: Multiply through by sin2 t/2 and use a trig identity.

C. Show that if f is an absolutely integrable function with lim
n→∞

Sn f (θ) = a, then lim
n→∞

σn f (θ) = a.

D. The de la Vallée Poussin kernel is Vn(x) = 2K2n−1(x)−Kn−1(x) for x ∈ R and n ∈ N.

(a) Show that the functions Vn form a positive kernel.
(b) Show that if f ∼ A0 +∑k Ak coskx+Bk sinkx, then

∫
π

−π

f (x+ t)Vn(t)dt = A0 +
n

∑
k=1

Ak coskx+Bk sinkx+
2n

∑
k=n+1

(
2− k

n

)
(Ak coskx+Bk sinkx).

E. Show that if f is a piecewise continuous function with a jump discontinuity at θ , then

lim
n→∞

σn f (θ) =
f (θ+)+ f (θ−)

2
. HINT: Write f as the sum of a continuous function g and

a piecewise C1 function h. Use Example 14.4.6.

F. Show that ‖σn f‖∞ ≤ ‖ f‖∞.

G. Use Fejér’s Theorem to prove that if f and g are two continuous 2π-periodic functions with
the same Fourier series, then f = g.

H. Use Fejér’s Theorem to prove that if the Fourier series Sn f of a 2π-periodic continuous func-
tion f converges uniformly, then it converges to f .

I. (a) Find the Fourier series of f (t) = |t|3 on [−π,π].
(b) Evaluate the series at t = 0. Hence compute ∑

∞
n=1 n−4.

J. (Localization) Prove that if f is a bounded 2π-periodic function that is continuous on [a,b]
including two-sided at the endpoints, then σn( f ) converges uniformly to f on [a,b].
HINT: Follow the proof of Fejér’s Theorem.

K. Let ∑ j≥0 a j be an infinite series. Define sn = ∑
n
j=0 a j and σn = 1

n ∑
n−1
j=0 s j .

(a) If lim
n→∞

sn = L, show that lim
n→∞

σn = L.
(b) Show by example that the converse of (a) is false.
(c) Hardy’s Tauberian Theorem: Show that if lim

n→∞
nan = 0 and lim

n→∞
σn = L, then lim

n→∞
sn = L.

HINT: Verify that sN −σN+1 = 1
N+1 ∑

N
j=1 ja j .

L. Suppose f is a 2π-periodic function and |An|+ |Bn| ≤C/n for n≥ 1 and some constant C.

(a) Find a bound for Sn f (θ)−σn f (θ) = ∑
n
k=1

k
n+1 Ak coskθ + k

n+1 Bk sinkθ . Hence show that
‖Sn f‖∞ ≤ ‖ f‖∞ +C.

(b) Apply this to obtain a uniform bound for Sn f for the function f used in our example of
Gibbs’s phenomenon.

M. Prove Weierstrass’s Approximation Theorem for a continuous function f on [0,π] as follows:

(a) Set g(θ) = f (|θ |) for θ ∈ [−π,π]. This is an even, continuous, 2π-periodic function. Use
Fejér’s Theorem to approximate g within ε/2 by a trig polynomial.

(b) Use the fact that the Taylor polynomials for cosnθ converge uniformly on [0,π] to ap-
proximate the trigonometric polynomial by actual polynomials within ε/2.
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14.5 Least Squares Approximations

Approximation in the L2 norm is important because it is readily computable. Also,
the partial sums of the Fourier series are well behaved in this norm, unlike point-
wise and uniform convergence. We will show how the Hilbert space theory from
Chapter 7 applies.

Proposition 7.6.1 shows that {1,
√

2cosnθ ,
√

2sinnθ : n≥ 1} forms an orthonor-
mal set in C[−π,π]. The partial sum Sn f = A0 + ∑

n
k=1 Ak coskθ + Bk sinkθ of the

Fourier series of f is the orthogonal projection of f onto the subspace spanned by 1
and {coskx,sinkx : 1≤ k≤ n}. The Projection Theorem (7.5.11) implies that Sn f is
the best approximation to f in this subspace with respect to the L2 norm. That is, if
t(θ) is a trigonometric polynomial of degree at most n, then by inequality (7.5.12),

‖ f − t‖2
2 = ‖ f −Sn f‖2

2 +‖Sn f − t‖2
2 ≥ ‖ f −Sn f‖2

2. (14.5.1)

Also, Lemma 7.5.7 shows that

‖Sn f‖2
2 = A2

0 +
1
2

n

∑
k=1

A2
k +B2

k ≤ ‖ f‖2
2.

The main result of this section shows that the sequence of approximants (Sn f )
converges to f in the L2 norm, which requires a bit more work. The key step in the
proof is to show that the trigonometric polynomials are dense in PC[−π,π] in the
L2 norm. The proof given here depends on Fejér’s Theorem (14.4.5); alternatively,
one could use the Stone–Weierstrass Theorem, as in Corollary 10.10.7.

14.5.2. LEMMA. Every piecewise continuous 2π-periodic function f is the
limit in the L2(−π,π) norm of a sequence of trigonometric polynomials.

PROOF. Let x0 = −π < x1 < · · · < xN = π be a partition of f into continuous seg-
ments. Fix n≥ 1. Let M = ‖ f‖∞, and let

δ = min
{ 1

32N(Mn)2 ,
xi+1− xi

2
: 0≤ i < N

}
.

Define a continuous function gn on [−π,π] as follows. Let gn(x) = f (x) for x ∈
[xi + δ ,xi+1−δ ], 0 ≤ i < N. Also, set gn(−π) = g(π) = 0. Finally, make gn linear
and continuous on each segment J0 = [−π,−π +δ ], Ji = [xi−δ ,xi +δ ], 1≤ i < N,
and JN = [π−δ ,π]. See Figure 14.5 for an example.

Observe that ‖gn‖∞ ≤ ‖ f‖∞ = M and therefore | f (x)−gn(x)| ≤ 2M. Moreover,
the two functions agree except on the intervals Ji for 0 ≤ i ≤ N. The total length of
these intervals is 2Nδ . Therefore, we can estimate

‖ f −gn‖2
2 ≤

N

∑
i=0

∫
Ji

(2M)2 dx≤ 8NM2
δ ≤ 1

4n2 .
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xx1 =−π x2 x3 x4 x5 = π

y

1

2

−1

f

gn

FIG. 14.5 Piecewise continuous f with continuous approximation gn.

By Fejér’s Theorem (14.4.5) (or, if you prefer, Corollary 13.5.6), the 2π-periodic
continuous function gn is a uniform limit of trig polynomials. So there is a trig
polynomial tn such that ‖gn− tn‖∞ < 1

2n . Then ‖gn− tn‖2 ≤ ‖gn− tn‖∞ < 1
2n as well.

Thus
‖ f − tn‖2 ≤ ‖ f −gn‖2 +‖gn− tn‖2 <

1
2n

+
1

2n
=

1
n
.

Therefore f is an L2 limit of trig polynomials. �

The main import of the following theorem is that the partial sums SN f converge
to f in the L2 norm. Since SN f is a trigonometric polynomial, it is continuous (and in
fact C∞). In particular, our result shows that discontinuous functions can be L2 limits
of continuous functions. Since the uniform limit of continuous functions remains
continuous, L2 convergence is a weaker notion.

14.5.3. LEAST SQUARES THEOREM.
If f : R → R is piecewise continuous and 2π-periodic, then lim

N→∞
‖ f − SN f‖2 = 0.

Moreover, if f ∼ A0 +∑k Ak coskx+Bk sinkx, then

1
2π

∫
π

−π

| f (θ)|2 dθ = ‖ f‖2
2 = A2

0 +
1
2

∞

∑
n=1

A2
n +B2

n. (14.5.4)

Note that this last equality does not follow from our statement of Parseval’s The-
orem (7.7.5) because PC[−π,π] is not a Hilbert space.

PROOF. By Lemma 14.5.2, f is the limit of trigonometric polynomials in the L2

norm. Thus given ε > 0, choose a trig polynomial t with ‖ f − t‖2 < ε . So it follows
from (14.5.1) that for n at least the degree of t,
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‖ f −Sn f‖2 ≤ ‖ f − t‖2 < ε.

The triangle inequality implies that
∣∣‖ f‖2−‖Sn f‖2

∣∣≤ ‖ f −Sn f‖2, and so

‖ f‖2
2 = lim

n→∞
‖Sn f‖2

2 = lim
n→∞

A2
0 +

1
2

n

∑
k=1

A2
k +B2

k = A2
0 +

1
2

∞

∑
n=1

A2
n +B2

n. �

14.5.5. EXAMPLE. In Example 7.6.3, we showed that

|θ | ∼ π

2
− 4

π

∞

∑
k=0

cos(2k +1)θ
(2k +1)2 .

Compute the L2 norm using our formula:

1
2π

∫
π

−π

|θ |2 dθ =
(

π

2

)2
− 1

2

( 4
π

)2 ∞

∑
k=0

(
1

(2k +1)2

)2

=
π2

4
+

8
π2

∞

∑
k=0

1
(2k +1)4 .

The integral is easily found to be π2/3, from which we deduce that

∞

∑
k=0

1
(2k +1)4 =

π2

8

(
π2

3
− π2

4

)
=

π4

96
.

Hence
∞

∑
k=1

1
k4 =

∞

∑
k=0

1
(2k +1)4 +

∞

∑
k=1

1
(2k)4 =

π4

96
+

1
16

∞

∑
k=1

1
k4 .

Therefore,
∞

∑
k=1

1
k4 =

π4

90
.

An immediate consequence of this theorem is that the sines and cosines span
all of PC[−π,π] and hence all of C[−π,π]. Since they are orthogonal by Proposi-
tion 7.6.1, it follows that they form an orthonormal basis.

Although we have worked with piecewise continuous functions here, there is a
natural Hilbert space lurking in the background, L2(−π,π), which is the completion
of C[−π,π] in the L2 norm. This Hilbert space has an elegant connection to the
Hilbert space `2(Z) from Section 7.7.

First, we need a working definition of L2(−π,π). Using the Lebesgue integral,
one can describe L2(−π,π) as (essentially) functions on [−π,π] such that | f |2 has
a finite Lebesgue integral. Constructing the Lebesgue integral is an enormous ef-
fort, well beyond the scope of this book, so instead we describe L2(−π,π) as a
completion of PC[−π,π]. To start with, take Cauchy sequences of functions ( fn) in
PC[−π,π]. We put an equivalence relation on this collection by writing ( fn)≈ (gn)



386 14 Fourier Series and Approximation

if ‖ fn − gn‖2 → 0 as n → ∞. (By Lemma 14.5.2, each sequence is equivalent to a
Cauchy sequence of trig polynomials.) Then L2(−π,π) is the collection of equiva-
lence classes of Cauchy sequences. Notice that a function f ∈ PC[−π,π] can be as-
sociated with the equivalence class of the constant sequence ( f , f , . . .) in L2(−π,π).
We will not need the exact sense in which these equivalence classes are bona fide
functions.

The crucial property is that the inner product is well defined on L2(−π,π) as a
limit. If ( fn) and (gn) are two Cauchy sequences, then we set

〈( fn),(gn)〉 := lim
n→∞

〈 fn,gn〉.

The fact that this makes sense is left as an exercise. In particular, we can compute
the Fourier coefficients and the Fourier series of an element of L2(−π,π).

14.5.6. COROLLARY. The functions {1,
√

2cosnθ ,
√

2sinnθ : n ≥ 1} form
an orthonormal basis for L2(−π,π). The map sending a sequence a = (an) in `2(Z)

to Fa := f (θ) = a0 +
∞

∑
n=1

√
2an cosnθ +

√
2a−n sinnθ is a unitary map. That is, F

maps `2(Z) one-to-one and onto L2(−π,π), and ‖Fa‖2 = ‖a‖2 for all a ∈ `2(Z).

PROOF. We first define F just on the space `0 of all sequences a with only finitely
many nonzero terms. Then Fa is a trigonometric polynomial, and F maps `0 onto
the set of all trig polynomials. Theorem 14.5.3 shows that ‖Fa‖2 = ‖a‖2 for each
a ∈ `2(Z). Thus F is one-to-one because ‖Fa−Fb‖= ‖a−b‖ 6= 0 when a 6= b.

Theorem 7.7.4 shows that `2(Z) is complete and thus is a Hilbert space. Every

vector a is a limit of the sequence Pna =
n
∑

k=−n
akek of vectors in `0. In particular,

this sequence is Cauchy. Therefore, for each ε > 0, there is an integer N such that
‖Pna−Pma‖2 < ε for all n,m≥N. Consequently, the sequence of functions FPna =

a0 +
n
∑

k=1

√
2ak coskθ +

√
2a−k sinkθ is also Cauchy, because

‖FPna−FPma‖2 = ‖Pna−Pma‖2 < ε for all n,m≥ N.

So this sequence converges in the L2 norm to an element f in L2(−π,π) (because
our definition of L2 is the set of all such limits).

This function f has a Fourier series, and, for example,

Ak = 2〈 f ,coskθ〉= lim
n→∞

2〈FPna, 1√
2
Fek〉=

√
2 lim

n→∞
〈Pna,ek〉=

√
2ak.

Hence f ∼ a0 +
∞

∑
k=1

√
2ak coskθ +

√
2a−k sinkθ . Moreover,

‖ f‖2
2 = lim

n→∞
‖FPna‖2 = lim

n→∞
‖Pna‖2 =

∞

∑
−∞

|an|2 = ‖a‖2
2.
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This establishes a map F that maps `2(Z) into L2(−π,π) and preserves the norm.
If (Fan) is Cauchy in L2(−π,π), then since ‖am− an‖ = ‖Fam−Fan‖, it follows
that (an) is Cauchy in `2(Z). If a is its limit, then Fa = lim

n→∞
Fan belongs to the range.

So the image space is complete. The range has been defined as the completion of
the trigonometric polynomials in the L2 norm, and thus is a subspace of L2(−π,π).
Equation (14.5.4) of Theorem 14.5.3 shows that the range of this map contains every
continuous function. Since the range is complete, it also contains every L2 limit of
continuous functions. So the range is exactly all of L2(−π,π). This completes the
proof. �

Exercises for Section 14.5

A. Compute the Fourier series of f (θ) = θ 3 −π2θ for −π ≤ θ ≤ π . Hence evaluate the sums
∞

∑
n=0

(−1)n

(2n+1)3 and
∞

∑
n=1

1
n6 .

B. Evaluate
∞

∑
n=1

1
n8 .

C. Show that {einθ : n ∈ Z} forms an orthonormal basis for C[−π,π].

D. Show that if ( fn) and (gn) are sequences in PC[−π,π] that are Cauchy in the L2(−π,π) norm,
show that 〈( fn),(gn)〉 := lim

n→∞
〈 fn,gn〉 exists. HINT: Cauchy–Schwarz inequality.

E. Use Exercise 7.6.K to find an orthonormal basis for C[0,π] in the given inner product.

F. (a) Compute the Fourier series of f (θ) = eaθ for −π ≤ θ ≤ π and a > 0.
(b) Evaluate ‖ f‖2 in two ways, and use this to show that

1
a2 +2

∞

∑
n=1

1
a2 +n2 =

π

a

(
eaπ + e−aπ

eaπ − e−aπ

)
=

π

a
coth(aπ).

G. Recall the Chebyshev polynomials Tn(x) = cos(narccosx). Make a change of variables in
Exercise D to show that the set {T0,

√
2Tn : n ≥ 1} is an orthonormal basis for C[−1,1] for

the inner product 〈 f ,g〉T =
1
π

∫ 1

−1
f (x)g(x)

dx√
1− x2

.

H. Show that the map F of Corollary 14.5.6 preserves the inner product.

14.6 The Isoperimetric Problem

In this section, we provide an interesting and nontrivial application of least squares
approximation. The isoperimetric problem asks, What is the largest area that can
be surrounded by a continuous closed curve of a given length? The answer is the
circle, but a method for demonstrating this rigorously is not at all obvious.

Indeed, the Greeks were aware of the isoperimetric inequality. However, little
was done in the way of a rigorous proof until the work of Steiner in 1838. Steiner
gave at least five different arguments, but each one had a flaw. He could not establish
the existence of a curve with the greatest area among all continuous curves of fixed
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perimeter. This difficulty was not resolved for another 50 years. In 1901, Hurwitz
published the first strictly analytic proof. It is this proof that is essentially given here.

For convenience, we shall fix the length of the curve C to be 2π . This is the
circumference of the circle of radius 1 and area π . We shall show that the circle
is the optimal choice subject to the mild hypothesis that C is piecewise C1. The
argument to remove this differentiability requirement is left to the exercises.

Points on the curve C may be parametrized by the arc length s as (x(s),y(s)) for
0 ≤ s ≤ 2π . This is a closed curve, and thus x(2π) = x(0) and y(2π) = y(0). Since
the differential of arc length is ds =

(
x′(s)2 + y′(s)2

)1/2 ds, we have the condition

x′(s)2 + y′(s)2 = 1.

The area A(C ) is given by Green’s Theorem (see Exercise 14.6.B) as

A(C ) =
∫ 2π

0
x(s)y′(s)ds = 2π〈x,y′〉.

Since x and y are continuous and piecewise C1, they have Fourier series

x(s)∼ A0+
∞

∑
n=1

An cosns+Bn sinns and y(s)∼C0+
∞

∑
n=1

Cn cosns+Dn sinns;

and by Lemma 14.1.5, we have

x′(s)∼
∞

∑
n=1
−nAn sinns+nBn cosns and y′(s)∼

∞

∑
n=1
−nCn sinns+nDn cosns.

Let us integrate the condition x′(s)2 + y′(s)2 = 1 to get

1 =
1

2π

∫ 2π

0
x′(s)2 + y′(s)2 ds = ‖x′‖2

2 +‖y′‖2
2 =

1
2

∞

∑
n=1

n2(A2
n +B2

n +C2
n +D2

n).

The area formula yields

A(C ) = 2π〈x,y′〉= π

∞

∑
n=1

n(AnDn−BnCn).

Therefore,

π−A(C ) =
π

2

∞

∑
n=1

n2(A2
n +B2

n +C2
n +D2

n)−π

∞

∑
n=1

n(AnDn−BnCn)

=
π

2

∞

∑
n=1

(n2−n)(A2
n +B2

n +C2
n +D2

n) +

+
π

2

∞

∑
n=1

n(A2
n−2AnDn +D2

n +B2
n +2BnCn +C2

n)
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=
π

2

∞

∑
n=1

(n2−n)(A2
n +B2

n +C2
n +D2

n)+
π

2

∞

∑
n=1

n(An−Dn)2 +n(Bn +Cn)2.

The right-hand side of this expression is clearly a sum of squares and thus is
positive. The minimum value 0 is attained only if

D1 = A1, C1 =−B1, and An = Bn = Cn = Dn = 0 for n≥ 2.

Moreover, the arc length condition yields

1 =
1
2
(A2

1 +B2
1 +C2

1 +D2
1) = A2

1 +B2
1.

Therefore there is a real number θ such that A1 = cosθ and B1 = sinθ . Thus the
optimal solutions are

x(s) = A0 + cosθ coss+ sinθ sins = A0 + cos(s−θ),
y(s) = C0− sinθ coss+ cosθ sins = C0 + sin(s−θ).

Clearly, this is the parametrization of the unit circle centred at (A0,C0).
Finally, we should relate this proof to the historical issues discussed at the begin-

ning of this section. Hurwitz’s proof, as we just saw, results in an inequality for all
piecewise smooth curves in which the circle evidently attains the minimum. It does
not assume the existence of an extremal curve, avoiding this problematic assumption
of earlier proofs.

Exercises for Section 14.6

A. (a) Show that if f is an odd 2π-periodic C1 function, then ‖ f‖2 ≤ ‖ f ′‖2.
(b) If f ∈ C1[a,b] with f (a) = f (b) = 0, show that

∫ b
a | f (x)|2 dx ≤

( b−a
π

)2 ∫ b
a | f ′(x)|2 dx.

HINT: Build an odd function g on [−π,π] by identifying [0,π] with [a,b].

B. (a) Let x(t) and y(t) be C1 functions on [0,1] such that x′(t)≥ 0. Prove that the area under the
curve C = {(x(t),y(t)) : 0≤ t ≤ 1} is

∫ 1
0 y(t)x′(t)dt.

(b) Now suppose that C is a closed curve [i.e., (x(0),y(0)) = (x(1),y(1))] that doesn’t inter-
sect itself and that x′(t) changes sign only a finite number of times. Prove that the area
enclosed by C is

∣∣∫ 1
0 y(t)x′(t)dt

∣∣.
C. Let f be a C2 function that is 2π-periodic. Prove that ‖ f ′‖2

2 ≤ ‖ f‖2 ‖ f ′′‖2.
HINT: Use the Fourier series and Cauchy–Schwarz inequality.

D. (a) What is the maximum area which can be surrounded by a curve C of length 1 mile that
begins and ends on a straight fence a mile long. HINT: Reflect the curve in the fence.

(b) Suppose that two rays make an angle α ∈ (0,π). A curve of length 1 connects one ray
to the other. Find the maximum area enclosed. HINT: Apply a transformation in polar
coordinates sending (r,θ) to (r,πθ/α). What is the effect on area and arc length?

E. Use approximation by piecewise continuous functions to extend the solution of the isoperi-
metric problem to arbitrary continuous curves.
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14.7 Best Approximation by Trigonometric Polynomials

We return to the theme of Chapter 10, uniform approximation. Here we are in-
terested in approximating 2π-periodic functions by (finite) linear combinations of
trigonometric functions. In this section, we obtain some reasonable estimates. Later
we will establish the Jackson and Bernstein Theorems, which yield optimal esti-
mates relating the rate of approximation with smoothness. It will turn out that there
are close connections with approximation by polynomials which we also explore.

Recall that TPn denotes the subspace of C[−π,π] consisting of all trigonometric
polynomials of degree at most n.

14.7.1. DEFINITION. The error of approximation to a 2π-periodic function
f : R→ R by trigonometric polynomials of degree n is

Ẽn( f ) = inf{‖ f −q‖∞ : q ∈ TPn}.

For example, for any 2π-periodic function f ∈C[−π,π], both Sn f and σn f are in
TPn. The subspace TPn has dimension 2n+1 because it is spanned by the linearly
independent functions {1,coskx,sinkx : 1≤ k≤ n}. Theorem 7.3.5 shows that there
is a best approximation (in the uniform norm!) in TPn to any function f . That is,
given f in C[−π,π], there is a trig polynomial p in TPn such that

‖ f − p‖∞ = inf{‖ f −q‖∞ : q ∈ TPn}= Ẽn( f ).

In a certain sense, the functions Sn f and σn f are natural approximants to f in
TPn. The Projection Theorem (7.5.11) shows that Sn f is the best L2-norm approx-
imant to f in TPn. However, it has some undesirable wildness when it comes to
the uniform norm. The following theorem gives bounds on how close Sn f is to the
best approximation in TPn. It says that Sn f can be a relatively bad approximation
for large n. Nevertheless, the degree of approximation by Sn f is sufficiently good to
yield reasonable approximations if the Fourier series decays at a sufficient rate. The
reason that Sn works in the next theorem is the fact that Sn p = p for all p in TPn.

14.7.2. THEOREM. If f : R→ R is a continuous 2π-periodic function, then

‖ f −Sn f‖∞ ≤ (3+ logn)Ẽn( f ).

PROOF. Applying Theorems 14.2.3 and 14.2.4 (3), we have

‖Sn f‖∞ ≤
∫

π

−π

| f (x+ t)Dn(t)|dt ≤ ‖ f‖∞

∫
π

−π

∣∣Dn(t)
∣∣dt ≤ (2+ logn)‖ f‖∞.

Observe that if p ∈ TPn, then Sn p = p. In particular, if we let p ∈ TPn be the best
approximation to f , then
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‖ f −Sn f‖∞ ≤ ‖( f − p)−Sn( f − p)‖∞ ≤ ‖ f − p‖∞ +‖Sn( f − p)‖∞

≤ ‖ f − p‖∞ +(2+ logn)‖ f − p‖∞ ≤ (3+ logn)‖ f − p‖∞.

Since ‖ f − p‖∞ = Ẽn( f ) for our choice of p, we obtain the desired estimate. �

Fejér’s Theorem (14.4.5) suggests that σn f is a reasonably good approximant
in the uniform norm. On the other hand, consider f (x) = sinnx. Then Sn f = f is
the best approximation with Ẽn( f ) = 0, while σn f (x) = 1

n+1 sinnx is a rather poor
estimate. In spite of this, good general results can be obtained from the obvious
estimate

Ẽn( f )≤ ‖ f −σn f‖∞.

We can now apply this estimate and Theorem 14.7.2 to show that the Dirichlet–
Jordan Theorem (14.2.6) actually yields uniform convergence when the piecewise
Lipschitz function is continuous.

14.7.3. THEOREM. If f is a 2π-periodic Lipschitz function with Lipschitz con-
stant L, then for n≥ 2,

‖ f −σn f‖∞ ≤
(1+2logn)L

2n
and ‖ f −Sn f‖∞ ≤

2π(1+ logn)2L
n

.

Hence Sn f converges to f uniformly.

PROOF. We need a decent estimate for the Fejér kernel. For our purposes, the fol-
lowing is enough:

Kn(t) =
1

2π(n+1)

(
sin n+1

2 t

sin 1
2 t

)2

≤min
{

n+1
2π

,
π

2(n+1)t2

}
.

Indeed, Kn(t) ≤ Kn(0) = n+1
2π

yields the first upper bound. And the inequality

|sin t/2| ≥ (2/π)|t/2|= |t|/π on [−π,π] is enough to show that

1
2π(n+1)

(
sin n+1

2 t

sin 1
2 t

)2

≤ 1
2π(n+1)

(
1

|t|/π

)2

=
π

2(n+1)t2 .

The first bound is better for small |t|, and the second becomes an improvement at
the point δ = π/(n+1).

This proof follows the proof of Fejér’s Theorem using the additional information
contained in the Lipschitz condition to sharpen the error estimate. Looking back at
that proof, we obtain an estimate by splitting [−π,π] into two pieces. We use the
Lipschitz estimate | f (x+ t)− f (x)| ≤ L|t|, and use δ = π/(n+1):
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|σn f (x)− f (x)| ≤
∫

π

−π

| f (x+ t)− f (x)|Kn(t)dt

≤
∫

δ

−δ

L|t|n+1
2π

dt +
∫ −δ

−π

+
∫

π

δ

L|t| π

2(n+1)t2 dt

=
(n+1)L

π

∫
π/n+1

0
t dt +

πL
(n+1)

∫
π

π/n+1
t−1 dt

=
(n+1)L

π

π2

2(n+1)2 +
πL

(n+1)
log(n+1)

=
Lπ

2(n+1)
(
1+2log(n+1)

)
.

Finally, a little calculus shows that f (x) = (1+2logx)/x is decreasing for x >
√

e.
So for n≥ 2 we obtain

‖σn f − f‖∞ ≤
Lπ

2n
(1+2logn).

Now apply Theorem 14.7.2 to obtain

‖ f −Sn f‖∞ ≤ (3+ logn) Ẽn( f )≤ (3+ logn)‖ f −σn f‖∞

≤ (3+ logn)
Lπ

2n
(1+2logn)≤ Lπ

2n
4(1+ logn)2.

Now lim
n→∞

2πL(1+ logn)2

n
= 0. Therefore, Sn f converges uniformly to f . �

Exercises for Section 14.7

A. Recall the de la Valée Poussin kernel Pn f from Exercise 14.4.D.

(a) Show that ‖Pn( f )‖∞ ≤ 3‖ f‖∞. HINT: Write Pn f in terms of σk f for various k.
(b) Show that ‖ f −Pn( f )‖∞ ≤ 4Ẽn( f ). HINT: Show Pn p = p for p ∈ TPn and imitiate the

proof of Theorem 14.7.2.

B. Use the previous exercise to obtain a lower bound Ẽn
(
|sinθ |

)
> C/n.

HINT: See Exercise 13.5.B. Show:
∣∣P2n

(
|sinθ |

)
(0)
∣∣≥ 4

π ∑
∞
k=n

1
4k2−1 > 1

πn .

C. Suppose that a 2π-periodic function f is of class Lipα for 0 < α < 1 (see Exercise 5.5.K).

(a) Show that there is a constant C such that ‖ f −σn f‖∞ ≤Cn−α .
(b) Hence show that Sn f converges uniformly to f .

HINT: Follow the proof of Theorem 14.7.3 using the new estimate.

D. Let f and g be 2π-periodic functions with Fourier series f ∼ A0 +∑n≥1 An cosnθ +Bn sinnθ

and g∼C0 +∑n≥1 Cn cosnθ +Dn sinnθ . Prove that if f is absolutely integrable and g is Lip-
schitz, then 1

2π

∫
π

−π
f (θ)g(θ)dθ = A0C0 + 1

2 ∑
n≥1

AnCn +BnDn. HINT: Use Theorem 14.7.3.

E. (a) Find the Fourier series of the function g(x) =−x−π on [−π,0) and =−x+π on [0,π].
(b) For n≥ 1, define gn(x) = sin(2nx)Sng(x). Find the Fourier series for gn.

HINT: 2sinAsinB = cos(A−B)− cos(A+B).
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(c) Show that ‖gn‖∞ ≤ π +2. HINT: Use Exercise 14.4.L.
(d) Show that S2ngn(0) > logn. HINT: ∑

n
k=1

1
n is an upper Riemann sum for

∫ n+1
1

1
x dx.

(e) Hence prove that ‖gn−S2ngn‖∞ ≥ logn
π+2 Ẽ2n(gn). So logn is needed in Theorem 14.7.2.

(f) Show that h(x) =
∞

∑
n=1

1
n2 g2·3n3 (x) is a continuous function such that S3n3 h(0) diverges.

NOTE: This is difficult.

14.8 Connections with Polynomial Approximation

To connect approximation by trigonometric polynomials with approximation by
polynomials, we exploit an important link between trig polynomials and the Cheby-
shev polynomials of Section 10.7.

The idea is to relate each function f in C[−1,1] to an even function Φ f in
C[−π,π] in such a way that the set Pn of polynomials of degree n is carried into
TPn. This map is defined by

Φ f (θ) = f (cosθ) for −π ≤ θ ≤ π.

Notice immediately that since cosθ takes values in [−1,1], the right-hand side is
always defined. Also, Φ f is an even function because

Φ f (−θ) = f (cos(−θ)) = f (cosθ) = Φ f (θ).

Crucially, the map Φ is linear. For f ,g in C[−1,1] and α,β in R,

Φ(α f +βg)(θ) = (α f +βg)(cosθ) = α f (cosθ)+βg(cosθ)
= αΦ f (θ)+βΦg(θ) = (αΦ f +βΦg)(θ).

So Φ(α f +βg) = αΦ f +βΦg, which is linearity.
Recall Definition 10.7.1 defining the Chebyshev polynomials on the interval

[−1,1] by Tn(x) = cos(narccosx). Since Tn is a polynomial of degree n, every poly-
nomial can be expressed as a linear combination of the Tn’s. In particular, Pn is
spanned by {T0, . . . ,Tn}. Also recall that there is an inner product on C[−1,1] given
by

〈 f ,g〉T =
1
π

∫ 1

−1
f (x)g(x)

dx√
1− x2

for f ,g ∈C[−1,1].

The Chebyshev polynomials form an orthonormal set by Lemma 10.7.5.
Notice that

ΦTn(θ) = cos(narccos(cosθ)) = cos(nθ).

It follows that Φ maps Pn onto the span of {1,cosθ , . . . ,cosnθ}, which consists of
the even trig polynomials in TPn.

This establishes the first parts of the following theorem. Let E[−π,π] denote the
closed subspace of C[−π,π] consisting of all even continuous functions on [−π,π].
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14.8.1. THEOREM. The map Φ : C[−1,1]→ E[−π,π] satisfies the following:

(1) Φ is linear, one-to-one, and onto.
(2) ΦTn(θ) = cos(nθ) for all n≥ 0.
(3) Φ(Pn) = E[−π,π]∩TPn.
(4) ‖Φ f −Φg‖∞ = ‖ f −g‖∞ for all f ,g ∈C[−1,1].
(5) En( f ) = Ẽn(Φ f ) for all f ∈C[−1,1].
(6) 〈 f ,g〉T = 〈Φ f ,Φg〉 for all f ,g ∈C[−1,1].

PROOF. For (1), linearity has already been established. To see that Φ is one-to-one,
suppose that Φ f = Φg for functions f ,g in C[−1,1]. Then f (cosθ) = g(cosθ) for
all θ in [−π,π]. Since cos maps [−π,π] onto [−1,1], it follows that f (x) = g(x) for
all x in [−1,1]. Thus f = g as required.

To show that Φ is surjective, we construct the inverse map from E[−π,π] to
C[−π,π]. For each even function g in E[−π,π], define a function Ψg in C[−1,1] by

Ψg(x) = g(arccosx).

(Notice that arccos takes all values in [0,π]. So Ψg depends only on g(θ) for θ in
[0,π]. This is fine because g is even.) Compute

ΦΨg(θ) = Ψg(cosθ) = g(arccos(cosθ)) = g(|θ |) = g(θ).

So Φ maps Ψg back onto g, showing that Φ maps onto E[−π,π].
We proved (2) and (3) in the discussion before the theorem. Consider (4). Note

that
‖Φ f‖∞ = sup

θ∈[−π,π]
| f (cosθ)|= sup

x∈[−1,1]
| f (x)|= ‖ f‖∞.

Hence by linearity,

‖Φ f −Φg‖∞ = ‖Φ( f −g)‖∞ = ‖ f −g‖∞.

Applying this, we obtain

En( f ) = inf{‖ f − p‖∞ : p ∈ Pn}
= inf{‖Φ f −Φ p‖∞ : p ∈ Pn}
= inf{‖Φ f −q‖∞ : q ∈ TPn∩E[−π,π]}.

However, since Φ f is even, the trig polynomial in TPn closest to Φ f is also even.
To see this, suppose that r ∈ TPn satisfies ‖Φ f − r‖= Ẽn(Φ f ), and let

q(θ) =
r(θ)+ r(−θ)

2
.

Note that if r(θ) = a0 +∑
n
k=1 an coskθ +bn sinθ , then q(θ) = a0 +∑

n
k=1 an coskθ .

Therefore q belongs to TPn∩E[−π,π] and
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|Φ f (θ)−q(θ)|=
∣∣∣∣Φ f (θ)+Φ f (−θ)

2
− r(θ)+ r(−θ)

2

∣∣∣∣
≤ 1

2

∣∣Φ f (θ)− r(θ)
∣∣+ 1

2

∣∣Φ f (−θ)− r(−θ)
∣∣

≤ 1
2

Ẽn(Φ f )+
1
2

Ẽn(Φ f ) = Ẽn(Φ f ).

Hence ‖Φ f −q‖∞ = Ẽn(Φ f ). Putting this information into the preceding inequality,
we obtain that En( f ) = Ẽn(Φ f ).

Finally, to prove (6), we make the substitution x = cosθ in the integral:

〈 f ,g〉T =
1
π

∫ 1

−1
f (x)g(x)

dx√
1− x2

=
1
π

∫ 0

π

f (cosθ)g(cosθ)
−sinθ dθ

sinθ

=
1

2π

∫
π

−π

f (cosθ)g(cosθ)dθ = 〈Φ f ,Φg〉.
�

In summary, this theorem shows that C[−1,1] with the inner product 〈·, ·〉T and
E[−π,π] with the inner product 〈·, ·〉 are, as inner product spaces, the same.

Approximation questions for Fourier series are well studied, and this allows a
transference to polynomial approximation. The reason we obtain estimates more
readily in the Fourier series case is that the periodicity allows us to obtain nice
integral formulas for our approximations.

Part (6) of this theorem shows that the Chebyshev series for f ∈C[−1,1] corre-

spond to the Fourier series of Φ f as f ∼
∞

∑
k=0

akTk, where

a0 = 〈 f ,1〉T and an = 2〈 f ,Tn〉T for n≥ 1.

Let us define two series corresponding to the Dirichlet and Cesàro series

Cn f =
n

∑
k=0

akTk and Σn f =
n

∑
k=0

(
1− k

n+1
)
akTk.

Now it is just a matter of reinterpreting the Fourier series results for polynomials
using Theorem 14.8.1.

14.8.2. THEOREM. Let f be a continuous function on [−1,1] with Cheby-
shev series ∑

∞
k=0 akTk. Then (Σn f )∞

n=1 converges uniformly to f on [−1,1]. If f is
Lipschitz, then (Cn f )∞

n=1 also converges uniformly to f . In any event,

‖ f −Cn f‖∞ ≤ (3+ logn)En( f ).

PROOF. The map Φ converts the problem of approximating f by polynomials of de-
gree n to the problem of approximating Φ f by trig polynomials of degree n. Part (6)
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of Theorem 14.8.1 shows that ΦCn f = SnΦ f and ΦΣn f = σnΦ f . So the fact that
Σn f converge uniformly to f on [−1,1] is a restatement of Fejér’s Theorem (14.4.5).

If f has a Lipschitz constant L, then

|Φ f (α)−Φ f (β )|= | f (cosα)− f (cosβ )|
≤ L|cosα− cosβ | ≤ L|α−β |.

The last step follows from the Mean Value Theorem (6.2.2), since the derivative
of cosθ is −sinθ , which is bounded by 1. Thus Φ f is Lipschitz with the same
constant. (Warning: this step is not reversible.) By Theorem 14.7.3, the sequence
SnΦ f converges uniformly to Φ f , whence Cn f converges uniformly to f by Theo-
rem 14.8.1 (4).

Theorem 14.7.2 and Theorem 14.8.1 (4) provide the estimate

‖ f −Cn f‖∞ = ‖Φ f −Sn f‖∞ ≤ (3+ logn)Ẽn(Φ f ) = (3+ logn)En( f ).
�

14.8.3. EXAMPLE. Let us try to approximate f (x) = |x| on [−1,1]. We convert
this to the function

g(θ) = Φ f (θ) = |cosθ | for −π ≤ θ ≤ π.

This is an even function and thus has a cosine series. Also, g(π − θ) = g(θ). The
functions cos2nθ have this symmetry, but

cos
(
(2n+1)(π−θ)

)
=−cos(2n+1)θ .

So A2n+1 = 0 for n≥ 0. Compute

A0 =
1

2π

∫
π

−π

|cosθ |dθ =
2
π

and for n≥ 1,

A2n =
1
π

∫
π

−π

|cosθ |cos2nθ dθ =
4
π

∫
π/2

0
cosθ cos2nθ dθ

=
2
π

∫
π/2

0
cos(2n−1)θ + cos(2n+1)θ dθ

=
2
π

sin(2n−1)θ
2n−1

+
2
π

sin(2n+1)θ
2n+1

∣∣∣∣π/2

0

=
2
π

(
(−1)n−1

2n−1
+

(−1)n

2n+1

)
=

(−1)n−14
π(4n2−1)

.

These coefficients are absolutely summable, since they behave like the series
1/n2. Thus Sng converges uniformly to g by the Weierstrass M-test (see Exer-
cise 13.5.E). Hence by Theorem 14.8.1, the sequence of polynomials
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C2n f (x) =
2
π
− 4

π

n

∑
k=1

(−1)k

4k2−1
T2k(x)

converges to |x| uniformly on [−1,1].
We can make a crude estimate of the error by summing the remaining terms:

∥∥ |x|−C2n f (x)
∥∥≤ 4

π

∞

∑
k=n+1

1
4k2−1

‖Tn‖∞

=
2
π

∞

∑
k=n+1

1
2k−1

− 1
2k +1

=
2

π(2n+1)
<

1
πn

.

This may not look very good, since (πn)−1 tends to 0 so slowly. However, in
1913, Bernstein showed that En(|x|) > (10n)−1 for all n. So the Chebyshev series
actually gives an approximation of the correct order of magnitude.

Exercises for Section 14.8

A. Let f ∈C[−1,1] and g(θ) = f (cosθ). Show that ω(g;δ ) = ω(g|[0,π];δ )≤ ω( f ;δ ).

B. Find a sequence of polynomials converging uniformly to f (x) =

{
−x2 for −1≤ x≤ 0,

x2 for 0≤ x≤ 1.

C. Find f (x) ∈C[−1,1] that is not Lipschitz, but Φ f is Lipschitz in C[−π,π].

D. Show that there is a constant C such that En(|x|) > C/n. HINT: See Exercise 14.7.B. Show
that Ẽn

(
|cosθ |

)
> (4πn)−1 by a change of variables. Now use Theorem 14.8.1.

14.9 Jackson’s Theorem and Bernstein’s Theorem

The goal of this section is to obtain Jackson’s Theorem, which provides a good
estimate of the error of approximation in terms of the smoothness of the function as
measured by the modulus of continuity. First, we will establish a dramatic converse
(for trig polynomials) due to Bernstein in 1912 that the growth of the error function
provides a good measure of the smoothness of the function. Several times in this
section, we will use the complex exponential function to simplify calculations.

Recall that for α ∈ (0,1], we defined the class Lipα as the functions f in C[a,b]
for which there is a constant C with

| f (x)− f (y)| ≤C|x− y|α for all x,y ∈ [a,b].

In particular, Lip1 is the class of Lipschitz functions. Observe that f ∈ Lipα if and
only if ω( f ;δ )≤Cδ α , where ω( f ;δ ) is the modulus of continuity.

We will use this class to illustrate just how tight these two theorems are. The
following corollary will be deduced from our two main theorems.
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14.9.1. COROLLARY. Let f be a 2π-periodic function and let 0 < α < 1.
Then f is in Lipα if and only if Ẽn( f )≤Cn−α for n≥ 1 and some constant C.

Bernstein’s Theorem will be proved first because it is more straightforward. We
begin with an easy lemma. This natural proof uses complex numbers.

14.9.2. LEMMA. Suppose that f ,g ∈ TPn and f (θ) = g(θ) for 2n+1 distinct
points in (−π,π]. Then f = g.

PROOF. Let θ1, . . . ,θ2n+1 be the common points. Using complex exponentials, we
may express ( f −g)(θ) as

( f −g)(θ) =
n

∑
k=−n

akeikθ = e−inθ
2n

∑
j=0

a j−nei jθ .

Now let p(z) = ∑
2n
j=0 a j−nz j. Observe that ( f −g)(θ) = e−inθ p(eiθ ). Thus the poly-

nomial p of degree 2n has the roots zi = eiθk for 1 ≤ k ≤ 2n + 1. These points are
distinct because |θ j−θk|< 2π if j 6= k. Therefore, p = 0 and so f = g. �

The key to Bernstein’s Theorem is an elegant inequality. The trig polynomial
p(θ) = sinnθ shows that the inequality is sharp (meaning that the constant cannot
be improved).

14.9.3. BERNSTEIN’S INEQUALITY.
Let p be a trigonometric polynomial of degree n. Then ‖p′‖∞ ≤ n‖p‖∞.

PROOF. Suppose to the contrary that p ∈ TPn but ‖p′‖∞ > n‖p‖∞. Choose a scalar
λ such that ‖λ p‖∞ < 1 yet n < ‖λ p′‖∞, and then rename λ p as p. Choose θ0 such
that ‖p′‖∞ = p′(θ0). Choose the angle γ ∈ [−π

n , π

n ] such that sinn(θ0− γ) = p(θ0)
and the derivative ncosn(θ0− γ) > 0.

Define a trigonometric polynomial in TPn by

r(θ) = sinn(θ − γ)− p(θ).

Set αk = γ + π

n (k + 1
2 ) for −n ≤ k ≤ n. Observe that r(αk) = (−1)k− p(αk). Since

|p(αk)| < 1, the sign of r(αk) is (−1)k. By the Intermediate Value Theorem, there
are 2n points βk with αk < βk < αk+1 such that r(βk) = 0 for −n ≤ k < n. The
interval (αs,αs+1) containing θ0 is special. By choice of γ , sinn(θ−γ) is increasing
from −1 to 1 on this interval. So r(αs) < 0 < r(αs+1). In addition, r(θ0) = 0 and

r′(θ0) = ncosn(θ0− γ)− p′(θ0) < 0.

Therefore there are small positive numbers ε1 and ε2 such that r(θ0− ε1) > 0 and
r(θ0 +ε2) > 0. Look at Figure 14.6. Therefore, we may apply the Intermediate Value
Theorem three times in this interval. Consequently, we can find two additional zeros,
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θαs αs+1

y

1

−1

y = sin(n(θ − γ))

θ0

y = p(θ)

FIG. 14.6 The graphs of sinn(θ − γ) and p(θ) on [αs,αs+1].

so that r has at least 2n + 2 zeros in (α−n,αn), which is an interval of length 2π .
Therefore, by Lemma 14.9.2, we reach the absurd conclusion that r is identically 0.
We conclude that our assumption was incorrect, and in fact ‖p′‖∞ ≤ n‖p‖∞. �

We are now in a position to state and prove the desired result. The situation for
α = 1 is more complicated, and we refer the reader to [15]. The meaning of an error
of the form An−α for α > 1 will be developed in the exercises.

14.9.4. BERNSTEIN’S THEOREM.
Let f be a 2π-periodic function such that Ẽn( f ) ≤ An−α for n ≥ 1, where A is a
constant and 0 < α < 1. Then f is in Lipα .

PROOF. Choose pn ∈ TPn such that ‖ f − pn‖ ≤ An−α for n ≥ 1. Define q0 = p1
and qn = p2n − p2n−1 for n≥ 1. Note that

∑
n≥0

qn(x) = lim
n→∞

p2n(x) = f (x)

uniformly on R. Compute for n≥ 1,

‖qn‖ ≤ ‖p2n − f‖+‖ f − p2n−1‖ ≤ A2−nα +A2−(n−1)α ≤ 3A2−nα .

By the Mean Value Theorem and Bernstein’s inequality, we can estimate

|qn(x)−qn(y)| ≤ ‖q′n‖|x− y| ≤ 2n‖qn‖|x− y| ≤ 3A2n(1−α)|x− y|.

On the other hand, a simple estimate is just

|qn(x)−qn(y)| ≤ |qn(x)|+ |qn(y)| ≤ 2‖qn‖ ≤ 6A2−nα .

Splitting the sum into two parts, we obtain
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| f (x)− f (y)| ≤ ∑
n≥0

|qn(x)−qn(y)|

≤
m−1

∑
n=0

3A2n(1−α)|x− y|+ ∑
n≥m

6A2−nα

≤ 3A|x− y|2
m(1−α)−1
21−α −1

+6A
2−mα

1−2−α
.

Finally, choose m such that 2−m ≤ |x− y|< 21−m. Then

| f (x)− f (y)| ≤ 3A21−m2m(1−α)(21−α −1)−1 +6A2−mα(1−2−α)−1

≤ 6A2−mα
(
(21−α −1)−1 +(1−2−α)−1)≤ B|x− y|α ,

where B = 6A
(
(21−α −1)−1 +(1−2−α)−1

)
. �

On the other hand, Jackson’s Theorem shows that smooth functions have better
approximations.

14.9.5. JACKSON’S THEOREM.
Let f belong to C[−1,1]. Then

En( f )≤ 6ω( f ; 1
n ).

Similarly, if g is a continuous 2π-periodic function, Ẽn(g)≤ 6ω(g; 1
n ).

Notice that we obtain several interesting consequences immediately. This theo-
rem shows that Proposition 10.4.4 was the correct order of magnitude, and that this
result is best possible except possibly for improving the constants.

ANOTHER PROOF OF THE WEIERSTRASS APPROXIMATION THEOREM.
Not only does Jackson’s Theorem prove that every continuous function is the limit
of polynomials, it tells you how fast this happens. It suffices to prove the theorem
for the interval [−1,1] (see Exercise 10.2.A). In Section 10.4, we used the uniform
continuity of f to show that lim

n→∞
ω( f ; 1

n ) = 0. Hence

0≤ lim
n→∞

En( f )≤ lim
n→∞

6ω( f ; 1
n ) = 0.

This completes the proof. �

Let us apply Jackson’s Theorem to the classes of functions that we have been
discussing.

14.9.6. COROLLARY. Let S be the class of functions in C[0,1] with Lipschitz
constant 1. Then En(S ) ≤ 3/n. More generally, if S [a,b] is the class of functions
in C[a,b] with Lipschitz constant 1, then En(S [a,b])≤ 3(b−a)/n.
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PROOF. First consider the interval [−1,1]. For any f in S [−1,1], we have the
inequality ω( f ; 1

n )≤ 1/n. Thus by Jackson’s Theorem, En( f )≤ 6/n.
Now the map

γ(x) =
a+b+(b−a)x

2
for −1≤ x≤ 1

maps [−1,1] onto [a,b]. So for any f in C[a,b], the function Γ f = f (γ(x)) belongs
to C[−1,1]. Moreover, if f ∈S [a,b], then Γ f has Lipschitz constant (b−a)/2 (see
the exercises). By the first paragraph, choose a polynomial p of degree n such that

‖Γ f − p‖∞ ≤ 6
b−a

2
= 3(b−a).

Then
q(x) = Γ

−1(q) = q(γ−1(x)) = p
(2x−a−b

b−a

)
is the polynomial of degree n such that p = Γ q. Thus

‖ f −q‖[a,b] = sup
x∈[a,b]

| f (x)−q(x)|= sup
t∈[−1,1]

| f (γ(t))−q(γ(t))|

= ‖Γ f − p‖∞ ≤ 3(b−a).
�

We complete the proof of Corollary 14.9.1 with the following:

14.9.7. COROLLARY. Suppose that f is a 2π-periodic function of class Lipα

for any 0 < α < 1. Then Ẽn( f )≤Cn−α for n≥ 1 and some constant C.

PROOF. It is immediate from | f (x)− f (y)| ≤C|x− y|α that ω( f ; 1
n )≤Cn−α . Thus

Jackson’s Theorem yields Ẽn( f )≤ 6Cn−α . �

The proof of Jackson’s Theorem is difficult, and it requires a better method of
approximation that is suited to the specific function. The key idea is convolution: to
integrate the function f against an appropriate sequence of polynomials to obtain
the desired approximations. These ideas work somewhat better for periodic func-
tions, so we will use the results of the last section and consider approximation by
trigonometric polynomials instead. In effect, we are building a ‘special purpose’
kernel with the specific properties we need.

Let ψ(θ) = 1+ c1 cosθ + · · ·+ cn cosnθ . It will be important to choose the con-
stants ci so that ψ is positive. We will then try to make a good choice for these
constants. For each 2π-periodic function f , define a function

Ψ f (θ) =
1

2π

∫
π

−π

f (θ − t)ψ(t)dt. (14.9.8)

We capture the main properties in the following lemma.
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14.9.9. LEMMA. Suppose that ψ is a trig polynomial of degree n that is posi-
tive on [−π,π]. Define Ψ as in equation (14.9.8). Then

(1) Ψ1 = 1.
(2) Ψ is linear: Ψ(α f +βg) = αΨ f +βΨg for all f ,g ∈C[−1,1] and α,β ∈ R.
(3) Ψ is monotone: f ≥ g implies that Ψ f ≥Ψg.
(4) Ψ f ∈ TPn for all f ∈C[−1,1].

PROOF. Part (1) uses the fact that cosnθ has mean 0 on [−π,π]:

Ψ1(θ) =
1

2π

∫
π

−π

ψ(t)dt =
1

2π

∫
π

−π

1dt +
n

∑
k =1

ck

∫
π

−π

cosnt dt = 1.

For (2), linearity follows easily from the linearity of the integral.
For (3), if h ≥ 0, then since ψ(t)≥ 0, it follows that Ψh(θ)≥ 0 as well. Thus if

f ≥ g, then
Ψ f −Ψg = Ψ( f −g)≥ 0.

For (4), we make a change of variables by substituting u = θ − t and using the
2π-periodicity to obtain

Ψ f (θ) =
1

2π

∫
π

−π

f (θ − t)ψ(t)dt

=
1

2π

∫
θ+π

θ−π

f (u)ψ(θ −u)du =
1

2π

∫
π

−π

f (u)ψ(θ −u)du

=
1

2π

∫
π

−π

f (u)du+
n

∑
k=1

ck

∫
π

−π

f (u)cosk(θ −u)du

=
1

2π

∫
π

−π

f (u)du+
n

∑
k=1

ck

∫
π

−π

f (u)
(

coskθ cosku+ sinkθ sinku
)

du

= A0 +
n

∑
k=1

2ckAk coskθ +2ckBk sinkθ ,

where Ak and Bk are the Fourier coefficients of f . This shows that Ψ f is a trig
polynomial of degree at most n. �

The positivity of the kernel means that the error estimates can be obtained from
the proof of Fejér’s Theorem (14.4.5). However, a clever choice of the weights ci
will result in a better estimate.

14.9.10. LEMMA. If f is a continuous function on [a,b], then for any t > 0,

ω( f ; t)≤
(

1+
t
δ

)
ω( f ;δ ).

PROOF. Suppose that (n− 1)δ < t ≤ nδ . Then if |x− y| ≤ t, we may find points
y = x0 < x1 < · · ·< xn = x such that |xk− xk−1| ≤ δ for 1≤ k ≤ n. Hence
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| f (x)− f (y)| ≤
n

∑
k=1

| f (xk)− f (xk−1)| ≤ nω( f ;δ )≤
(

1+
t
δ

)
ω( f ;δ ).

Taking the supremum over all pairs x,y with |x− y| ≤ t yields

ω( f ; t)≤
(

1+
t
δ

)
ω( f ;δ ).

�

14.9.11. LEMMA. Suppose that f ∈ C[−π,π] is a 2π-periodic function. Let
ψ = ∑

n
k=0 ck coskθ be a positive trig polynomial of degree n. Then

‖Ψ f − f‖∞ ≤ ω( f ; 1
n )
(

1+
πn
2

√
2− c1

)
.

PROOF. Apply the previous lemma with δ = 1/n to obtain

| f (θ − t)− f (θ)| ≤ ω( f ; |t|)≤ (1+n|t|)ω( f ; 1
n ).

Now using the integral formula for Ψ f ,

∣∣Ψ f (θ)− f (θ)
∣∣= ∣∣∣∣ 1

2π

∫
π

−π

f (θ − t)ψ(t)dt− f (θ)
1

2π

∫
π

−π

ψ(t)dt
∣∣∣∣

≤ 1
2π

∫
π

−π

∣∣ f (θ − t)− f (θ)
∣∣ψ(t)dt

≤ 1
2π

∫
π

−π

(1+n|t|)ω( f ; 1
n )ψ(t)dt

= ω( f ; 1
n )
(

1+
n

2π

∫
π

−π

|t|ψ(t)dt
)

.

To estimate this last term, use the Cauchy–Schwarz inequality for integrals (7.4.5):

1
2π

∫
π

−π

|t|ψ(t)dt =
1

2π

∫
π

−π

(
|t|ψ(t)1/2)

ψ(t)1/2 dt

≤
(

1
2π

∫
π

−π

t2
ψ(t)dt

)1/2( 1
2π

∫
π

−π

ψ(t)dt
)1/2

.

The second integral is just 1.
Recall the easy estimate sinθ ≥ 2θ/π for 0≤ θ ≤ π/2. This yields

1− cos t = 2sin2 t
2
≥ 2

4
π2

(
t
2

)2

=
2

π2 t2 for −π ≤ t ≤ π.

Substitute this back into our integral:
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1
2π

∫
π

−π

t2
ψ(t)dt ≤ 1

2π

∫
π

−π

π2

2
(1− cos t)ψ(t)dt

=
π2

2

( 1
2π

∫
π

−π

ψ(t)dt− 1
2π

∫
π

−π

ψ(t)cos t dt
)

=
π2

2

(
1− c1

2

)
.

Therefore, we obtain∣∣Ψ f (θ)− f (θ)
∣∣≤ (1+

nπ

2

√
2− c1

)
ω( f ; 1

n ).
�

PROOF OF JACKSON’S THEOREM. This lemma suggests that we try to mini-
mize 2− c1 over all positive kernel functions of degree n. The most straightforward
method is to write down a kernel that gets excellent estimates. Consider the complex
trig polynomial

p(θ) =
n

∑
k=0

akeikθ =
n

∑
k=0

sin (k+1)π
n+2 eikθ .

Our kernel will be ψ(θ) = c|p(θ)|2. The constant c is chosen to make the constant
coefficient equal to 1. Positivity of ψ is automatic, since it is the square of the
modulus of p. It remains merely to do a calculation to determine the coefficients.

First, we compute

|p(θ)|2 =
n

∑
j=0

a jei jθ
n

∑
k=0

ake−ikθ =
n

∑
j=0

n

∑
k=0

a jakei( j−k)θ

=
n

∑
j=0

a2
j +

n

∑
s=1

n−s

∑
k=0

akak+s
(
eisθ + e−isθ

)
= b0 +

n

∑
s=1

2bs cossθ ,

where bs =
n−s
∑

k=0
akak+s for 0 ≤ s ≤ n. We choose c = 1/b0 =

( n
∑
j=0

a2
j
)−1. It is clear

that ψ is a positive cosine polynomial of degree n with constant coefficient equal to
1. So ψ satisfies the hypotheses of Lemmas 14.9.9 and 14.9.11.

So now we compute the coefficient b1. We use some clever manipulations and
the identity sinA + sinB = 2sin A+B

2 cos A−B
2 . Notice that the periodicity of the co-

efficients is used in the second line.

2b1 = 2
n−1

∑
k=0

akak+1 =
n−1

∑
k=0

2sin (k+1)π
n+2 sin (k+2)π

n+2 =
n

∑
k=1

2sin kπ

n+2 sin (k+1)π
n+2

=
n−1

∑
k=0

2sin kπ

n+2 sin (k+1)π
n+2 =

n−1

∑
k=0

sin (k+1)π
n+2

(
sin (k+2)π

n+2 + sin kπ

n+2

)
= 2

n−1

∑
k=0

sin2 (k+1)π
n+2 cos π

n+2 = 2b0 cos π

n+2 .

Hence
c1 =

2b1

b0
= 2cos

π

n+2
.
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So

1+
nπ

2

√
2− c1 = 1+

nπ

2

√
2−2cos

π

n+2
= 1+

nπ

2
2sin

π

2(n+2)

≤ 1+nπ
π

2(n+2)
< 1+

π2

2
< 6.

The proof is now completed by appealing to Lemma 14.9.11. �

Exercises for Section 14.9

A. Suppose that f in C[a,b] has Lipschitz constant L. Let γ(x) = Ax+B. Show that f (γ(x)) has
Lipschitz constant AL.

B. Suppose f is a 2π-periodic function such that Ẽn( f )≤Cn−p−α , where p ∈N and 0 < α < 1.
Prove that f is Cp and that f (p) is in the class Lipα as follows.

(a) Write f as a sum of the polynomials qn as in the proof of Bernstein’s Theorem. Apply
Bernstein’s inequality p times to the qn’s. Show that the resulting series of derivatives still
converges, and deduce that f is Cp.

(b) Use this series to show that Ẽn( f (p))≤C′n−α . Then finish the argument.

C. (a) Suppose that f is C1 on [−1,1] and ‖ f ′‖∞ = M. Show that En( f )≤ 6M/n.
(b) Choose a polynomial p of degree n− 1 such that ‖ f ′ − p‖∞ = En−1( f ′). Let q(x) =∫ x

0 p(t)dt. Show that En( f ) = En( f −q)≤ 6
n En−1( f ′).

D. (a) Use induction on the previous exercise to show that if f has k continuous derivatives on
[−1,1], then En( f )≤ 6k

n(n−1)···(n+1−k) En−k( f (k)) for n > k.

(b) Hence show that there is a constant Ck such that En( f )≤ Ck
nk ω

(
f (k); 1

n−k

)
for n > k. Find

this constant explicitly for k = 2.

E. Do a change of variables in the previous exercise to show that if f has k continuous derivatives

on [a,b], then En( f )≤ Ck(b−a)k

nk ω

(
f (k); b−a

2(n−k)

)
for n > k.

F. Show that if f is a 2π-periodic function and Ẽn( f )≤C/n, then ω( f ;δ )≤ Bδ | logδ |.
HINT: Study the proof of Bernstein’s Theorem using α = 1.

G. Prove the Dini–Lipschitz Theorem: If f is a continuous function on [−1,1] such that
lim
n→∞

ω( f ; 1
n ) logn = 0, then the Chebyshev series Cn f converges uniformly to f .

HINT: Combine Jackson’s Theorem with Theorem 14.8.2.

H. Let 0 < α < 1.

(a) Show that f (x) = |x|α belongs to Lipα .
(b) Modify the proof of Proposition 10.4.4 to obtain a lower bound for En(Lipα).

HINT: Piece together translates of |x|α .



Chapter 15
Wavelets

15.1 Introduction

In this chapter we develop an important variation on Fourier series, replacing the
sine and cosine functions with new families of functions, called wavelets. The strat-
egy is to construct wavelets so that they have some of the good properties of trig
functions but avoid the failings of Fourier series that we have seen in previous chap-
ters. With such functions, we can develop new versions of Fourier series methods
that will work well for problems where traditional Fourier series work poorly.

What are the good properties of trig functions? First and foremost, we have an
orthogonal basis in L2, namely the set of functions sin(nx) and cos(nx) as n runs
over N0. This leads to the idea of breaking up a wave into its harmonic constituents,
as the sine and cosine functions appear in the solution of the wave equation. We
want to retain some version of this orthogonality.

Fix a positive integer n and consider the span of {sin(nx),cos(nx)}, call it An. If
f (x) is in the subspace An then so is the translated function f (x−a) for any a ∈ R;
and for a positive integer k, the dilated function f (kt) is in Akn (see Exercise 15.1.A).
That is, translation leaves each subspace An invariant and dilation by k carries An to
Akn for each n. Moreover, these orthogonal subspaces together span all of L2[−π,π].
There is a similar decomposition for wavelets, called a multiresolution, and it is
central to the study of wavelets.

What are the problems with Fourier series that we would like to fix? Fourier
coefficients, and hence the Fourier series approximation, depend on all values of the
function. For example, if you change a function f a small amount on the interval
[0,0.01], it is possible that every Fourier coefficient changes. This will then have an
effect on the partial sums Sn f (θ) for all values of θ . Although these changes may
be small, there are many subtleties in analyzing Fourier series approximations, as
we have seen.

Further, for a badly behaved function, such as a nondifferentiable or discontinu-
ous one, the coefficients decrease slowly. Exercises 13.5.G and 13.3.C show that the
Fourier coefficients of a function go rapidly to 0 only when the functions has several

406

© Springer Science + Business Media, LLC 2010

K.R. Davidson and A.P. Donsig, Real Analysis and Applications: Theory in Practice,
 Undergraduate Texts in Mathematics, DOI 10.1007/978-0-387-98098-0_15,



15.1 Introduction 407

continuous derivatives. Thus, we may need many terms to get a close approxima-
tion, even at a point relatively far away from the discontinuity, as in Example 14.2.7.

The partial sums Sn f (θ) do not always converge to f (θ) when f is merely con-
tinuous. Thanks to Gibbs’s phenomenon, Sn f (θ) will always exhibit bad behaviour
near discontinuities, no matter how large n is. While we can get better approxima-
tions by using σn f (θ) instead of Sn f (θ), this will not resolve such problems as
slowly decreasing Fourier coefficients.

This suggests looking for a series expansion with better local properties, meaning
that coefficients reflect the local behaviour of the function and a small change on
one interval affects only a few of the series coefficients and leaves unchanged the
partial sums elsewhere in the domain. It may seem unlikely that there are useful
wavelet bases with this local approximation property that still have nice behaviour
under translation and dilation. However, they do exist, and they were developed
in the 1980s. The discovery has provoked a vast literature of both theoretical and
practical importance. No one family of wavelets is ideal for all problems, but we can
develop different wavelets to solve specific problems. Developing such wavelets is
an important practical problem.

In this chapter, we will illustrate some of the general features of wavelets. The
basic example is the Haar wavelet, a rather simple case that is not the best for ap-
plications but illuminates the general theory. We construct one of the most used
wavelets, the Daubechies wavelet, although we don’t prove that it is continuous.
This requires tools we don’t have, most notably, the Fourier transform. We establish
the existence of another continuous wavelet, the Franklin wavelet, but this requires
considerable work. Our focus is the use of real analysis in the foundational theory.
We leave the development of efficient computational strategies to more specialized
treatments, such as those in the bibliography.

Most of the literature deals with bases for functions on the whole real line rather
than for periodic functions, so we will work in this context. This means that we will
be looking for special orthonormal bases for L2(R), the Hilbert space of all square
integrable functions on R with the norm

‖ f‖2
2 =

∫ +∞

−∞

| f (x)|2 dx.

We let L2(R) denote the completion of Cc(R), the continuous functions of compact
support on R, in the L2 norm.

15.1.1. DEFINITION. A wavelet is a function ψ ∈ L2(R) such that the set{
ψk j(x) = 2k/2

ψ(2kx− j) : j,k ∈ Z
}

forms an orthonormal basis for L2(R). Sometimes ψ is called the mother wavelet.

This is more precisely called a dyadic wavelet to stress that dilations are taken to
be powers of 2. This is a common choice but is not the most general one. Notice that
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the wavelet basis has two parameters, whereas the Fourier basis for L2(T) has only
one, given by dilation alone. From the complex point of view, sines and cosines are
written in terms of the exponential function ψ(θ) = eiθ , and the functions ψ(kθ) =
eikθ for k ∈ Z form an orthonormal basis for L2(−π,π). A singly generated family
of this form cannot have the local behaviour we are seeking.

Exercises for Section 15.1

A. (a) Given a function f with Fourier series f (θ) ∼ A0 + ∑
∞
n=1 An cosnθ + Bn sinnθ , consider

the function g(θ) = f (kθ). If g(θ) ∼ A0 + ∑
∞
i=1 Ci cos iθ + Di sin iθ , find the formula for

Ci and Di in terms of the An, the Bn, and k.
(b) Similarly, if h(θ) = f (θ − x)∼ A0 +∑

∞
i=1 Ei cos iθ +Fi sin iθ , find the formula for Ei and

Fi in terms of the An, the Bn, and x.

B. Show that if ψ is a function in L2(R) such that {ψ0 j : j ∈ Z} is an orthonormal set, then
{ψk j : j ∈ Z} is an orthonormal set for each k ∈ Z.

C. A map U from a Hilbert space H to itself is unitary if ‖Ux‖ = ‖x‖ for all vectors x ∈H
and UH = H . Define linear maps on L2(R) by T f (x) = f (x− 1) and D f (x) =

√
2 f (2x).

Show that these maps are unitary.

D. Let ψ be a wavelet, and let T and D be the unitary maps defined in Exercise C. What is the
relationship between the subspaces spanned by {T nDψ :n∈Z} and {DT nψ :n∈Z}?

E. Let ψ be a function in L2(R) such that {ψ0 j : j ∈ Z} is an orthonormal set. Let χ be the
characteristic function of the set {x ∈ R : x− [x] < 1

2}, where [x] is the greatest integer n≤ x.
Define ϕ(x) = χ(x)ψ(−x− 1

2 )− (1−χ(x))ψ( 1
2 − x).

(a) Show that ϕ is orthogonal to ψ0 j for all j ∈ Z.
(b) Hence deduce that there is no function ψ in L2(R) such that the set of integer translates

{ψ0 j : j ∈ Z} is an orthonormal basis for L2(R).
(c) Show that {ψ0 j, ϕ0 j : j ∈ Z} is an orthonormal set.

F. For t ∈R, define Tt f (x) = f (x−t) for f ∈ L2(R). Show that if lim
n→∞

tn = t, then lim
n→∞

Ttn f = Tt f

for every f ∈ L2(R). HINT: If f is continuous with compact support, use the fact that it is
uniformly continuous. Next, approximate an arbitrary f .

15.2 The Haar Wavelet

To get started, we describe the Haar system for L2(0,1). This will then lead to a
wavelet basis for L2(R). For a < b, let χ[a,b) denote the characteristic function of
[a,b). Set ϕ = χ[0,1) and ψ = χ[0,0.5)−χ[0.5,1). Then define

ψk j(x) = 2k/2
ψ(2kx− j) for all k, j ∈ Z.

We use only those functions that are supported on [0,1), namely 0≤ j < 2k for each
k ≥ 0. The others will be used later. The Haar system is the family{

ϕ,ψk j : k ≥ 0 and 0≤ j < 2k}.
See Figure 15.1 for examples of elements of the Haar system.
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ψ2,12 ψ2,14

FIG. 15.1 Some elements of the Haar system.

15.2.1. LEMMA. The Haar system is orthonormal.

PROOF. It is straightforward to check that each of these functions has norm 1.
Now ψk j and ψk j′ for j 6= j′ have disjoint supports and thus are orthogonal. More
generally, if k < k′, then ϕ and ψk j are constant on the support of ψk′ j′ . Since∫ 1

0 ψk j(x)dx = 0 for all j and k, it now follows that these functions are pairwise
orthogonal. �

We may consider the inner product expansion with respect to this orthonormal
set. It is natural to sum all terms of the same order at the same time to obtain a series
approximant. Therefore, we define

Hn f (x) = 〈 f ,ϕ〉ϕ(x)+
n−1

∑
k=0

2k−1

∑
j=0

〈 f ,ψk j〉ψk j(x).

The Haar coefficients are the inner products 〈 f ,ψk j〉 used in this expansion.
While we have some work yet to see that this orthogonal system spans the whole

space, we can see that it has some nice properties. The local character is seen by the
fact that these functions have smaller and smaller supports. If f and g agree except
on the interval [3/8,1/2), then the Haar coefficients are the same for about ‘7/8 of
the terms’ in the sense that 〈 f ,ψk j〉= 〈g,ψk j〉 if k ≥ 3 and j/2k 6∈ [3/8,1/2).

This is the kind of local property we are seeking. The functions ψk j also have the
translation and dilation properties that we want. However, we will have to eliminate
ϕ somehow. We shall see that ϕ is not needed for a basis of L2(R) when we add in
dilations of ψ by negative powers of 2. On the other hand, ϕ reappears in a central
role in the next section as the scaling function.

We need a more explicit description of Hn f . By a dyadic interval of length 2−n,
we mean one of the form [ j2−n,( j +1)2−n) for some integer j.
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15.2.2. LEMMA. Let f ∈ L2(0,1). Then Hn f is the unique function that is con-
stant on each dyadic interval of length 2−n in [0,1] and satisfies

Hn f (x) = 2n
∫ ( j+1)2−n

j2−n
Hn f (t)dt = 2n

∫ ( j+1)2−n

j2−n
f (t)dt

for x ∈ [ j2−n,( j +1)2−n), 0≤ j < 2n. Moreover, ‖Hn f‖2 ≤ ‖ f‖2.

PROOF. It is easy to see that {ϕ,ψ00} span the functions that are constant on [0,1/2)
and on [1/2,1). By induction, it follows easily that

Mn := span{ϕ,ψk j : 0≤ k ≤ n−1 and 0≤ j < 2k}

is the subspace of all functions that are constant on each of the dyadic intervals
[ j2−n,( j+1)2−n) for 0≤ j < 2n. Notice that Mn is also spanned by the characteristic
functions χn, j = χ[ j2−n,( j+1)2−n) for 0≤ j < 2n.

Now Hn f is contained in this span, and therefore is constant on these dyadic
intervals. Thus Hn f is the unique function of this form that satisfies 〈Hn f ,ϕ〉 =
〈 f ,ϕ〉 and 〈Hn f ,ψk j〉= 〈 f ,ψk j〉 for 0≤ k≤ n−1 and 0≤ j < 2k. But this basis for
Mn may be replaced by the basis of characteristic functions. Since ‖χn, j‖2

2 = 2−n,
Hn f is the unique function in Mn such that

Hn f (x) = 2n〈Hn f ,χn, j〉= 2n〈 f ,χn, j〉

for all x ∈ [ j2−n,( j +1)2−n) and 0≤ j < 2n, which is what we wanted.
The map Hn is the orthogonal projection of L2(0,1) onto Mn. The inequality

‖Hn f‖2 ≤‖ f‖2 follows from the Projection Theorem (7.5.11). An elementary direct
argument is outlined in Exercise 15.2.C. �

We can now prove that the Haar system is actually a basis. Moreover, we show
that it does an excellent job of uniform approximation for continuous functions as
well, even though the basis functions are not themselves continuous. In this respect,
we obtain superior convergence to the convergence of Fourier series.

15.2.3. THEOREM. Let f ∈ L2(0,1). Then Hn f converges to f in the L2 norm.
Consequently, the Haar system is an orthonormal basis for L2(0,1). Moreover, if f
is continuous on [0,1], then Hn f converges uniformly to f .

PROOF. We prove the last statement first. By Theorem 5.5.9, f is uniformly con-
tinuous on [0,1]. Recall from Definition 10.4.2 that the modulus of continuity is
ω( f ;δ ) = sup{| f (x)− f (y)| : |x− y| ≤ δ}. The remarks there also show that the
uniform continuity of f implies that lim

n→∞
ω( f ;2−n) = 0.

For x ∈ [ j2−n,( j +1)2−n), compute
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|Hn f (x)− f (x)|=
∣∣∣∣2n
∫ ( j+1)2−n

j2−n
f (t)dt−2n

∫ ( j+1)2−n

j2−n
f (x)dt

∣∣∣∣
≤ 2n

∫ ( j+1)2−n

j2−n
| f (t)− f (x)|dt

≤ 2n
∫ ( j+1)2−n

j2−n
ω( f ;2−n)dt = ω( f ;2−n).

Hence ‖Hn f − f‖∞ ≤ω( f ;2−n) tends to 0. Therefore, Hn f converges to f uniformly
on [0,1].

Now

‖Hn f − f‖2 ≤
(∫ 1

0
‖Hn f − f‖∞ dt

)1/2

= ‖Hn f − f‖∞.

So we obtain convergence in the L2(0,1) norm as well.
Next suppose that f is an arbitrary L2 function, and let ε > 0 be given. Since

f is the L2 limit of a sequence of continuous functions, we may find a continuous
function g with ‖ f −g‖2 < ε . Now choose n so large that ‖Hng−g‖2 < ε . Then

‖Hn f − f‖2 ≤ ‖Hn f −Hng‖+‖Hng−g‖2 +‖g− f‖2

≤ ‖Hn( f −g)‖2 + ε + ε ≤ ‖ f −g‖2 +2ε < 3ε.

So Hn f converges to f in L2.
Since the orthogonal expansion of f in the Haar system sums to f in the L2 norm,

we deduce that this orthonormal set spans all of L2(0,1) and thus is a basis. �

15.2.4. DEFINITION. The Haar wavelet is the function ψ = χ[0,0.5)−χ[0.5,1).
The Haar wavelet basis is the family {ψk j : k, j ∈ Z}.

Lemma 15.2.1 can be easily modified to show that the Haar wavelet basis is
orthonormal. It remains to verify that it spans L2(R).

15.2.5. THEOREM. The Haar wavelet basis spans all of L2(R).

PROOF. It is enough to show that any continuous function of bounded support is
spanned by the Haar wavelet basis. Each such function is the finite sum of (piece-
wise) continuous functions supported on an interval [m,m + 1). But our basis is
invariant under integer translations. So it is enough to show that a function on [0,1)
is spanned by the Haar wavelet basis. But Theorem 15.2.3 shows that the functions
ψk j supported on [0,1) together with ϕ span L2(0,1). Consequently, it is enough to
approximate ϕ alone.

Consider the functions ψ−k,0 = 2−k/2χ[0,2k−1)−χ[2k−1,2k) for k≥ 1. An easy com-
putation shows that
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hN :=
N

∑
k=1

2−k/2
ψ−k,0 = (1−2−N)χ[0,1)−2−N

χ[1,2N).

Thus ‖ϕ − hN‖2 = ‖2−N χ[0,2N)‖2 = 2−N/2. Hence ϕ is in the span of the wavelet
basis. Therefore, the Haar wavelet basis spans all of L2(R). �

Exercises for Section 15.2

A. Let f (x) =
2n−1
∑

k=0
sn, jχ[ j2−n,( j+1)2−n) and let sn = (sn,0, . . . ,sn,2n−1).

(a) Define ak =(ak,0, . . . ,ak,2k−1) and sk =(sk,0, . . . ,sk,2k−1) by ak, j =(sk+1,2 j−sk+1,2 j+1)/
√

2
and sk, j = (sk+1,2 j + sk+1,2 j+1)/

√
2 for 0≤ k < n and 0≤ j < 2k.

Show that f = s0,0ϕ +∑
n−1
k=1 ∑

2k−1
j=0 ak, jψk, j .

(b) Explain how to reverse this process and obtain sn from the wavelet expansion of f .

B. Let f be a continuous function with compact support [0,1]. Fix n≥ 1, and define s j = f ( j/2n)
for 0≤ j < 2n. Show that

∥∥Hn f −∑
2n−1
k=0 s jχ[ j2−n,( j+1)2−n)

∥∥
∞
≤ ω( f ;2−n).

C. Prove that ‖Hn f‖2 ≤ ‖ f‖2. HINT: Show that
∣∣∫ a+2−k

a f (x)dx
∣∣2 ≤ 2−k ∫ a+2−k

a | f (x)|2 dx.

D. Show that {ψk j : k > −N, −2k+N ≤ j < 2k+N} together with ϕ−N,0 = 2−N/2ϕ(2−Nx) and
ϕ−N,−1 = 2−N/2ϕ(2−Nx+1) form an orthonormal basis for L2(−2N ,2N).

E. Suppose that f is a continuous function with compact support contained in [−2N ,2N ] for
some N ∈ N. Define Pn f (x) = ∑

n
k=−n ∑

∞
j=−∞〈 f ,ψk j〉ψk j(x).

(a) Show that Pn f is the sum of only finitely many nonzero terms.
(b) If

∫ 2N

0 f (x)dx = 0 =
∫ 0
−2N f (x)dx, then the only nonzero terms are for k≥−N. Verify this.

Show that Pn f converges to f uniformly. HINT: Modify Theorem 15.2.3.
(c) Show that Pn f converges uniformly to f without the integral conditions. HINT: Prove

uniform convergence for ϕ−N,0 and ϕ−N,−1.

F. Show that for f ∈ L2(R) that ∑
∞
k=−∞ ∑

∞
j=0〈 f ,ψk j〉ψk j(x) = χ[0,∞) f .

15.3 Multiresolution Analysis

Motivated by the Haar wavelet, we develop a general framework that applies to
a wide range of wavelet systems. We will use this framework to construct other
wavelet systems.

As before, ϕ = χ[0,1) and we define the translations and dilations

ϕk j(x) = 2k/2
ϕ(2kx− j) for all k, j ∈ Z.

This is not an orthonormal system. But for each k, the family {ϕk j : j ∈ Z} consists
of multiples of the characteristic functions of the dyadic intervals of length 2−k. In
particular, these families are orthonormal.
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Define Vk = span{ϕk j : j ∈ Z}. This is the space of L2 functions that are constant
on each dyadic interval of length 2−k. Consequently Vk ⊂ Vk+1 for k ∈ Z. That is,
the Vk form a nested sequence of subspaces:

· · · ⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂V3 ⊂ ·· · .

It is also immediate that f (x) belongs to Vk if and only if f (2x) belongs to Vk+1. We
state and prove the important (but basically easy) properties of this decomposition.

15.3.1. LEMMA. Let ϕ = χ[0,1) and define Vk as above. Then we have

(1) orthogonality: {ϕ(x− j) : j ∈ Z} is an orthonormal basis for V0.
(2) nesting: Vk ⊂Vk+1 for all k ∈ Z.
(3) scaling: f (x) ∈Vk if and only if f (2x) ∈Vk+1.
(4) density:

⋃
k∈ZVk = L2(R).

(5) separation:
⋂

k∈ZVk = {0}.

PROOF. We have already established (1), (2), and (3).
As in the proof of Theorem 15.2.3, we know that every continuous function with

compact support [−N,N] is the uniform limit of functions that also have support
[−N,N] and are constant on dyadic intervals of length 2−k (i.e., functions in Vk).
These functions therefore converge in L2 as well. Consequently, the closed union of
the Vk’s contains all continuous functions of compact support, and thus all of L2(R).

Notice that ψk j is orthogonal to ϕk′ j′ provided that k ≥ k′ because ϕk′ j′ will be
constant on the support of ψk j, and ψk j integrates to 0. So any function f belonging
to the intersection

⋂
k∈ZVk must be orthogonal to every ψk j. By Theorem 15.2.5, it

follows that f is orthogonal to every function in L2(R), including itself. Therefore,
‖ f‖2 = 〈 f , f 〉= 0, whence f = 0. �

This leads us to formalize these properties in greater generality.

15.3.2. DEFINITION. A multiresolution of L2(R) with scaling function ϕ

is the sequence of subspaces

Vj = span
{

ϕk j(x) = 2k/2
ϕ(2kx− j) : j ∈ Z

}
provided that the sequence satisfies the five properties—orthogonality, nesting, scal-
ing, density, and separation—described in the preceding lemma.

The function ϕ is sometimes called a father wavelet.

Notice that by a change of variables t = 2kx, we obtain

〈ϕki,ϕk j〉=
∫

∞

−∞

2k
ϕ(2kx− i)ϕ(2kx− j)dx =

∫
∞

−∞

ϕ(t− i)ϕ(t− j)dx = δi j.

So {ϕk j : j ∈ Z} forms an orthonormal basis of Vk for each k ∈ Z.



414 15 Wavelets

Once we have a nested sequence Vk with these properties, we can decompose
L2(R) into a direct sum of subspaces. Set Wk = { f ∈ Vk+1 : f ⊥ Vk}. This is the
orthogonal complement of Vk in Vk+1. We write Vk+1 = Vk ⊕Wk, where the ⊕
indicates that this is a direct sum, that is, a sum of orthogonal subspaces. So each
vector f ∈Vk+1 can be written uniquely as f = g+h with g ∈Vk and h ∈Wk. Since
〈 f ,g〉= 0, we have the Pythagorean identity

‖ f‖2
2 = 〈g+h,g+h〉= 〈g,g〉+ 〈g,h〉+ 〈h,g〉+ 〈h,h〉= ‖g‖2

2 +‖h‖2
2.

Since Vk has an orthonormal basis {ϕk j : j ∈ Z}, Corollary 7.7.6 of Parseval’s
Theorem provides an orthogonal projection Pk of L2(R) onto Vk given by

Pk f =
∞

∑
j=−∞

〈 f ,ϕk j〉ϕk j

and we have the important identity

‖ f‖2
2 = ‖Pk f‖2

2 +‖ f −Pk f‖2
2.

15.3.3. LEMMA. Qk = Pk+1−Pk is the orthogonal projection onto Wk.

PROOF. To verify this, we will show that Qk is an idempotent with range Wk and
kernel W⊥

k . Note that PkPk+1 = Pk+1Pk = Pk because Vk is contained in Vk+1. Hence

Q2
k = P2

k+1−PkPk+1−Pk+1Pk +P2
k = Pk+1−Pk = Qk.

So Qk is a projection.
We claim that W⊥

k =V⊥
k+1 +Vk. Indeed, P⊥k+1 f is orthogonal to Vk+1 and so is also

orthogonal to Wk. So f is orthogonal to Wk if and only if Pk+1 f is orthogonal to Wk,
which is the same as saying that Pk+1 f ∈Vk. This latter statement is equivalent to

Pk+1 f = PkPk+1 f = Pk f or (Pk+1−Pk) f = 0.

So W⊥
k = kerQk.

If f ∈Wk, then Pk+1 f = f , since f ∈ Vk+1. Also, Pk f = 0, since f ⊥ Vk. Hence
Qk f = f . Conversely, if f = Qkg, then

Pk+1 f = P2
k+1g−Pk+1Pkg = (Pk+1−Pk)g = f .

So f belongs to Vk+1. And

Pk f = PkPk+1g−P2
k g = (Pk−Pk)g = 0.

Thus f is orthogonal to Vk, and so f is in Wk. Therefore, the range of Qk is exactly
Wk. Consequently, Qk is the orthogonal projection onto Wk. �

We may repeat the decomposition Vk+1 = Vk⊕Wk finitely often to obtain
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Vn = V0⊕W0⊕·· ·⊕Wn−1 and V0 = V−n⊕W−n⊕·· ·⊕W−1.

Repetition of this procedure suggests that there is a decomposition of L2(R) as an
infinite direct sum⊕

k∈Z
Wk = · · ·⊕W−2⊕W−1⊕W0⊕W1⊕W2⊕·· · .

What we mean by this is that every function f in L2(R) should decompose uniquely
as an infinite sum

f =
∞

∑
k=−∞

fk, where fk ∈Wk and ‖ f‖2
2 = ∑

k∈Z
‖ fk‖2

2.

We shall prove that this is indeed the case.

15.3.4. LEMMA. Suppose that Vk ⊂ Vk+1 for k ∈ Z is the nested sequence of
subspaces from a multiresolution of L2(R). Then

lim
k→∞

‖ f −Pk f‖2 = 0, and lim
k→−∞

‖Pk f‖2 = 0.

PROOF. The limit lim
k→∞

‖ f −Pk f‖2 is a consequence of density. For any ε > 0, there

are an integer n and a function g ∈ Vn such that ‖ f − g‖2 < ε . Then for k ≥ n,
Parseval’s Theorem (7.7.5) shows that

‖ f −Pk f‖2 = ‖( f −g)−Pk( f −g)‖2 ≤ ‖ f −g‖2 < ε.

The second limit lim
k→−∞

‖Pk f‖2 = 0 is a consequence of separation. We will show

that it actually follows from the first part. Let V⊥
k denote the orthogonal complement

of Vk, and note that I−Pk is the orthogonal projection onto it. Notice that these sub-
spaces are also nested in the reverse order V⊥

k+1 ⊂V⊥
k . We claim that N =

⋃
k∈ZV⊥

k
is all of L2(R). Indeed, if N were a proper subspace of L2(R), then there would be a
nonzero function g⊥ N. Thus, in particular, g⊥V⊥

k , so that g belongs to V⊥⊥
k = Vk

for every k ∈ Z. Consequently, g belongs to
⋂

k∈ZVk = {0}. So N = L2(R). Since
‖Pk f‖2 = ‖ f − (I−Pk) f‖2, the desired limit follows from the first part. �

We now are ready to derive the infinite decomposition.

15.3.5. THEOREM. Suppose that Vk ⊂Vk+1 for k∈Z is the nested sequence of
subspaces from a multiresolution of L2(R). Then L2(R) decomposes as the infinite
direct sum

⊕
k∈ZWk.

PROOF. The finite decompositions are valid. So, in particular,

Vn = V−n⊕W−n⊕·· ·⊕Wn−1.
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Thus if f belongs to Vn and is orthogonal to V−n, then f decomposes uniquely as
f = ∑

n−1
k=−n fk for fk ∈Wk, namely fk = Qk f . Moreover, Parseval’s Theorem shows

that ‖ f‖2
2 = ∑

n−1
k=−n ‖ fk‖2

2.
If f is an arbitrary function in L2(R) and ε > 0, then the lemma provides a

positive integer n such that ‖(I−Pn) f‖2
2 + ‖P−n f‖2

2 < ε2. Thus, gn := Pn f −P−n f
belongs to Vn and is orthogonal to V−n. Consequently, we may write gn = ∑

n−1
k=−n fk

for fk ∈Wk, where fk = Qkgn = Qk f . By Parseval’s Theorem,

‖ f −gn‖2
2 = ‖(I−Pn) f +P−n f‖2

2 = ‖(I−Pn) f‖2
2 +‖P−n f‖2

2 < ε
2.

Since ε is arbitrary, it follows that gn converges to f . That is,

f = lim
n→∞

n−1

∑
k=−n

fk =
∞

∑
k=−∞

fk

and

‖ f‖2
2 = lim

n→∞
‖gn‖2

2 = lim
n→∞

n−1

∑
k=−n

‖ fk‖2
2 =

∞

∑
k=−∞

‖ fk‖2
2.

To establish uniqueness, suppose that f = ∑k fk = ∑k hk are two decompositions
with fk and hk in Wk. Then 0 = ∑k fk − hk. The norm formula from the previous
paragraph shows that 0 = ∑k ‖ fk−hk‖2

2. Therefore, hk = fk for all k ∈ Z. �

Exercises for Section 15.3
A. Let V0 be the span of integer translates of the Haar scaling function ϕ . Suppose f ∈ V0 has

bounded support and { f (x− j) : j ∈Z} is orthonormal. Prove that f (x) =±ϕ(x−n) for some
integer n. HINT: Compute 〈 f (x), f (x− j)〉 when the supports overlap on a single interval.

B. Suppose that ϕ ∈ L2(R) is such that the subspaces Vk satisfy orthogonality, nesting, and
scaling. Let M =

⋃
k∈Z Vk. Show that if f ∈M, then f (x− t) ∈M for every t ∈ R.

HINT: First prove this for t = j2−k. Then apply Exercise 15.1.F.

C. Suppose ϕ is continuous with compact support [a,a+M], and {ϕ0 j : j ∈ Z} are orthonormal.

(a) Suppose that f ∈ Vk, and express f (x) = ∑ j c j2k/2ϕ(2kx− j). Use the Cauchy–Schwarz
inequality to show that | f (x)| ≤ 2k/2M‖ϕ‖∞‖ f‖2.

(b) Show that
⋂

k∈Z
Vk = {0}. HINT: Let f ∈

⋂
k∈Z Vk. Use part (a) to estimate

∫ N
−N | f (x)|2 dx.

15.4 Recovering the Wavelet

Let us look at the decomposition obtained in the previous section in the case of the
Haar system. Notice that ϕ = χ[0,1) satisfies the identity

ϕ = χ[0,0.5) + χ[0.5,1) = 1√
2
ϕ10 + 1√

2
ϕ11.

On the other hand, we can write ϕ10 and ϕ11 in terms of ϕ and ψ . Recalling that
ψ = χ[0,0.5)−χ[0.5,1), we have ϕ10 = 1√

2
ϕ + 1√

2
ψ and ϕ11 = 1√

2
ϕ− 1√

2
ψ . In general,
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ϕk j = 1√
2
ϕk+1,2 j + 1√

2
ϕk+1,2 j+1

and

ϕk+1,2 j = 1√
2
ϕk j + 1√

2
ψk j and ϕk+1,2 j+1 = 1√

2
ϕk j− 1√

2
ψk j.

The subspace Vk consists of those L2(R) functions that are constant on the dyadic
intervals of length 2−k. Now ψk j belongs to Vk+1, it is supported on one interval of
length 2−k, and integrates to 0. Thus 〈ψk j,ϕk j′ 〉 = 0 for all j, j′ ∈ Z. In particular,
ψk j lies in Wk. So W ′

k = span{ψk j : j ∈ Z} is a subspace of Wk.
On the other hand, the identities show that every basis vector ϕk+1, j belongs to

Vk +W ′
k , and thus Vk+1 = Vk ⊕W ′

k = Vk ⊕Wk. This forces the identity W ′
k = Wk. So

we have shown that for the Haar system, we have Wk = span{ψk j : j ∈ Z}.
There is a systematic way to construct a wavelet from a multiresolution. That is

the goal of this section. Let {Vk} be a multiresolution with scaling function ϕ . The
construction begins with the fact that ϕ ∈ V0 ⊂ V1. Since ϕ1 j form an orthonormal
basis for V1, we may expand ϕ as

ϕ(x) =
∞

∑
j=−∞

a jϕ(2x− j) =
∞

∑
j=−∞

a j√
2

ϕ1 j(x), (15.4.1)

where a j = 2〈ϕ(x),ϕ(2x− j)〉. By Parseval’s Theorem, ‖ϕ‖2
2 = 1

2

∞

∑
j=−∞

|a j|2. Thus

(a j) is a sequence in `2. Equation (15.4.1) is known as the scaling relation for ϕ .

15.4.2. THEOREM. Let ϕ be the scaling function generating a multiresolution
{Vk} of L2(R) with scaling relation ϕ(x) = ∑

∞
j=−∞ a jϕ(2x− j). Define

ψ(x) =
∞

∑
j=−∞

(−1) ja1− j ϕ(2x− j).

Then ψ is a wavelet that generates the wavelet basis {ψk j : k, j ∈ Z} such that
Wk = span{ψk j : j ∈ Z} for each k ∈ Z.

PROOF. Since this proof basically consists of several long computations, we pro-
vide a brief overview of the plan. The orthonormality of {ϕ(x− j) : j ∈ Z} will
yield conditions on the coefficients a j. Then we show that {ψ(x− k) : k ∈ Z} is
an orthonormal set that is orthogonal to the ϕ(x− j)’s. Finally, we show that V1 is
spanned by V0 and the ψ(x− k)’s.

In this proof, all summations are from −∞ to +∞, but for notational simplicity,
only the index will be indicated. We define δ0n to be 1 if n = 0 and 0 otherwise. To
begin, we have

δ0n =
〈
ϕ(x),ϕ(x−n)

〉
=
〈

∑
i

aiϕ(2x− i),∑
j

a jϕ(2x−2n− j)
〉
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= ∑
i

∑
j

aia j
〈
ϕ(2x− i),ϕ(2x−2n− j)

〉
=

1
2 ∑

j
a j+2na j.

The orthonormality of {ψ(x− j) : j ∈ Z} follows because the coefficients of ψ

are obtained from ϕ by reversing, shifting by one place, and alternating sign. A bit
of thought will show that each of these steps preserves the property of orthogonality
of translations. Here we provide the direct computation:〈

ψ(x),ψ(x−n)
〉

=
〈

∑
i
(−1)ia1−iϕ(2x−i),∑

j
(−1) ja1− jϕ(2x−2n− j)

〉
= ∑

i
∑

j
(−1)i+ ja1−ia1− j

〈
ϕ(2x− i),ϕ(2x−2n− j)

〉
=

1
2 ∑

j
(−1)2 j+2na1− j−2na1− j =

1
2 ∑

i
aiai+2n = δ0n.

So {ψ(x− j) : j ∈ Z} is orthonormal.
The fact that the ψ’s and ϕ’s are orthogonal is more subtle. Calculate〈

ψ(x−m),ϕ(x−n)
〉

=
〈
∑

i
(−1)ia1−iϕ(2x−2m−i),∑

j
a jϕ(2x−2n− j)

〉
= ∑

i
∑

j
(−1)ia1−ia j

〈
ϕ(2x−2m−i),ϕ(2x−2n− j)

〉
,

but the inner product is 0 unless 2m+ i = 2n+ j,

=
1
2 ∑

j
(−1) j+2n−2ma1− j−2n+2ma j =

1
2 ∑

j
(−1) jap− ja j,

where p = 2m + 1− 2n is a fixed odd integer. Thus by substituting i = p− j, we
may rearrange this sum:

1
2 ∑

j
(−1) jap− ja j =

1
2 ∑

i
(−1)p−iaiap−i =−

(1
2 ∑

i
(−1)iaiap−i

)
.

Thus the sum must be 0. Hence the family {ψ(x− k) : k ∈ Z} is orthogonal to
the family {ϕ(x− j) : j ∈ Z}. Notice that the shift by 1 of the coefficients in the
definition of ψ was to make p odd in this calculation.

Now we wish to express ϕ1p(x) =
√

2ϕ(2x− p) as a linear combination of these
two families. To see what the coefficients should be, we compute〈

ϕ1p(x),ϕ(x−n)
〉

=
〈√

2ϕ(2x− p),∑
j

a jϕ(2x−2n− j)
〉

=
1√
2

ap−2n,

since the inner product is 0 except when 2n+ j = p; and similarly
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ϕ1p(x),ψ(x−n)

〉
=
〈√

2ϕ(2x− p),∑
j
(−1) ja1− jϕ(2x−2n− j)

〉
=

(−1)p
√

2
a1−p+2n.

Now it is a matter of adding up the series to recover ϕ1p(x). Compute

∑
n

ap−2nϕ(x−n) = ∑
n

∑
i

ap−2naiϕ(2x−2n−i)

= ∑
k

(
∑
n

ap−2nak−2n

)
ϕ(2x− k)

= ∑
k

(
∑
n

ap+2nak+2n

)
ϕ(2x− k)

and

∑
n

(−1)pa1−p+2nψ(x−n) = ∑
n

∑
i
(−1)pa1−p+2n(−1)ia1−iϕ(2x−2n−i)

= ∑
k

(
(−1)p+k

∑
n

a1+2n−pa1+2n−k

)
ϕ(2x− k).

When p+ k is odd,

(−1)p+k
∑
n

a1+2n−pa1+2n−k =−∑
m

a2m+ka2m+p,

while if p+ k is even,

(−1)p+k
∑
n

a1+2n−pa1+2n−k = ∑
m

a1+2m+ka1+2m+p.

When these sums over translates of ϕ(2x) and ψ(2x) are added together, the
coefficients of ϕ(2x− k) are canceled when p + k is odd, while for p + k even the
two sums conveniently merge to yield the sums from the orthogonality relation for
the ϕ(x− k). Hence the sum obtained is

∑
n

1√
2
ap−2nϕ(x−n)+∑

n

(−1)p
√

2
a1−p+2nψ(x−n)

= ∑
k≡p mod 2

(1
2 ∑

n
ap+nak+n

)√
2ϕ(2x− k) =

√
2ϕ(2x− p) = ϕ1p(x).

Set W = span{ψ(x− j) : j ∈Z}. Let us recap what we have established. We have
shown that {ψ(x− j) : j ∈ Z} is an orthonormal basis for W , that W is orthogonal
to V0, and that ϕ(2x− i) belongs to V0 +W for all i ∈ Z. Since each ψ(x− j) is
expressed in terms of the ϕ(2x− i), it is clear that W is a subspace of V1. On the
other hand, since each ϕ(2x− i) belongs to V0 +W , it follows that V1 = V0 ⊕W .
Hence we deduce that W is the orthogonal complement of V0 in V1; that is, W = W0.
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It now follows from dilation that

span{ψk j : j ∈ Z}= {2k/2 f (2kx) : f ∈W0}= Wk.

Hence {ψk j : j ∈ Z} is an orthonormal basis for Wk for each k ∈ Z. Since L2(R) =⊕+∞

k=−∞
Wk, it follows that together the collection {ψk j : k, j ∈ Z} is an orthonormal

basis for L2(R). Therefore, ψ is a wavelet. �

Exercises for Section 15.4

A. If ϕ is a scaling function with compact support, show that the scaling relation is a finite sum.

B. Let {ek : k∈Z} be an orthonormal set in a Hilbert space H . Show that the vectors x = ∑n anen
and y = ∑n(−1)nap−nen are orthogonal if p is odd.

C. Given a scaling relation ϕ(x) = ∑ j a jϕ(2x− j), define the filter to be the complex function
mϕ (θ) = ∑ j a jei jθ . Prove that |mϕ (θ)|2 + |mϕ (θ +π)|2 = 1.
HINT: Compute the Fourier series of this sum, and compare with the proof of Theorem 15.4.2.

D. Suppose that ϕ is a scaling function that is bounded, has compact support, and satisfies∫
∞

−∞
ϕ(x)dx 6= 0. Let ϕ(x) = ∑ j a jϕ(2x− j) be the scaling relation.

(a) Show that ∑ j a j = 2. HINT: Integrate over R.
(b) Show that ∑ j(−1) ja j = 0. HINT: Use the previous exercise for θ = 0.

15.5 Daubechies Wavelets

The multiresolution analysis developed in the last two sections can be used to de-
sign a continuous wavelet. We start by explaining the properties we want. The only
example we have so far of a wavelet system and multiresolution analysis is the Haar
wavelet system. The Haar wavelet ψ satisfies∫

ψ(x)dx = 0

and the multiresolution analysis uses subspaces of functions that are constant on
dyadic intervals of length 2k, k ∈ Z. As a result, Haar wavelets do a good job of
approximating functions that are locally constant.

It is possible to do a better job of approximating continuous functions if we use
a wavelet that also satisfies ∫

xψ(x)dx = 0.

If you computed moments of inertia in calculus, you won’t be surprised to learn that
this is called the first moment of ψ .

Our goal in this section is to construct a continuous wavelet with this property.
To be honest, our construction is not quite complete. At one crucial point, we will
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assume the uniform convergence of a sequence of functions to a continuous func-
tion. The full construction of this wavelet requires considerable work, although in
the next section we provide a proof that the sequence converges in L2. Later in this
chapter, we give a full proof of the existence of another continuous wavelet, known
as the Franklin wavelet.

This is part of a general family of wavelets constructed by Ingrid Daubechies in
1988. Hence these wavelets are called Daubechies wavelets.

15.5.1. THEOREM. There is a continuous function ϕ of compact support in
L2(R) that generates a multiresolution of L2(R) such that the associated wavelet ψ

is continuous, has compact support, and satisfies
∫

ψ(x)dx =
∫

xψ(x)dx = 0.

PROOF. As in the last section, all of our summations are from −∞ to +∞; so only
the index is given. We will look for a function ϕ with norm 1 and integral 1, that is,

‖ϕ‖2
2 =

∫ +∞

−∞

|ϕ(x)|2 dx = 1 and
∫ +∞

−∞

ϕ(x)dx = 1.

Beyond these normalizing assumptions, we use the crucial idea of the previous sec-
tion by assuming that ϕ satisfies a scaling relation ϕ(x) = ∑ j a j ϕ(2x− j). Since we
wish ϕ to have compact support, this must be a finite sum.

Compute what follows from our assumptions:

1 = 〈ϕ,ϕ〉=
〈

∑
j

a j ϕ(2x− j),∑
k

akϕ(2x− k)
〉

=
1
2 ∑

j
|a j|2,

where we use the fact that {ϕ(2x− j) : j ∈ Z} is an orthogonal set of vectors in
L2(R) with norm 1/

√
2. Similarly,

1 =
∫ +∞

−∞

ϕ(x)dx =
∫ +∞

−∞
∑
k

akϕ(2x− k)dx = ∑
k

ak

∫ +∞

−∞

ϕ(2x− k)dx =
1
2 ∑

k
ak.

From Theorem 15.4.2, if we can find a suitable sequence (ak), then there is a
wavelet ψ , also of norm 1, which is given by

ψ(x) = ∑
j
(−1) ja1− j ϕ(2x− j). (15.5.2)

Consider the consequences of the integral conditions on ψ , namely
∫

ψ(x)dx = 0
and

∫
xψ(x)dx = 0, to obtain two more relations that the sequence (an) must satisfy:

0 =
∫

ψ(x)dx = ∑
j
(−1) ja1− j

∫
ϕ(2x− j)dx =

1
2 ∑

j
(−1) ja1− j.

Replace 1− j with j and use (−1)1− j =−(−1) j to obtain ∑ j(−1) ja j = 0.
Similarly,
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0 =
∫

xψ(x)dx = ∑
j
(−1) ja1− j

∫
xϕ(2x− j)dx = ∑

j
(−1) ja1− j

1
4

∫
(t + j)ϕ(t)dt

=
(1

4 ∑
j
(−1) ja1−j

)∫
tϕ(t)dt +

(1
4 ∑

j
(−1) j ja1−j

)∫
ϕ(t)dt

=
1
4 ∑

j
(−1) j ja1− j =

1
4 ∑

k
(−1)1−k(1− k)ak

=
1
4 ∑

k
(−1)kkak−

1
4 ∑

k
(−1)kak =

1
4 ∑

k
(−1)kkak.

Summarizing, we have the following equations:

∑
j
|a j|2 = ∑

j
a j = 2 and ∑

j
(−1) ja j = ∑

j
(−1) j ja j = 0.

As you can verify directly, one solution to these equations is given by

a0 =
1+

√
3

4
, a1 =

3+
√

3
4

, a2 =
3−

√
3

4
, a3 =

1−
√

3
4

with a j = 0 for all other j ∈ Z.
Substituting these values back into the scaling relation, we want the scaling func-

tion to satisfy

ϕ(x) =
1+
√

3
4

ϕ(2x)+
3+
√

3
4

ϕ(2x−1)+
3−
√

3
4

ϕ(2x−2)+
1−
√

3
4

ϕ(2x−3)

= a0ϕ(2x)+a1ϕ(2x−1)+a2ϕ(2x−2)+a3ϕ(2x−3).

It is not immediately clear why there should be a continuous function satisfying this
equation.

We can construct such a function as the limit of a sequence of functions (ϕn),
defined by ϕ0 = χ[0,1) and for n≥ 0,

ϕn+1(x) = a0ϕn(2x)+a1ϕn(2x−1)+a2ϕn(2x−2)+a3ϕn(2x−3).

From the first few ϕn, graphed in Figure 15.2, it is plausible that the sequence (ϕn)
converges to a continuous function. However, proving this requires careful argu-
ments using the Fourier transform, and so is beyond the scope of this book. We
content ourselves with stating the following theorem.

15.5.3. THEOREM. The sequence of functions (ϕn) converges uniformly to a
continuous function ϕ .

We will prove convergence in L2(R) in the next section. The other properties of
the Daubechies wavelet can now be deduced. Note that except for the continuity of
ϕ and ψ , all of the other properties follow from convergence in L2(R).
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FIG. 15.2 The graphs of ϕ0 through ϕ5.

15.5.4. COROLLARY. Daubechies’ scaling function ϕ and wavelet ψ satisfy:

(1) ϕ(x) = a0ϕ(2x)+a1ϕ(2x−1)+a2ϕ(2x−2)+a3ϕ(2x−3).
(2) ϕ is supported on [0,3].
(3) ‖ϕ‖2 = 1 and

∫
ϕ(x)dx = 1.

(4) ψ(x) =−a0ϕ(2x−1)+a1ϕ(2x)−a2ϕ(2x+1)+a3ϕ(2x+2)
is continuous with support in [−1,2].

(5)
∫

ψ(x)dx =
∫

xψ(x)dx = 0.
(6) {ϕ(x− j),ψ(x− j) : j ∈ Z} is orthonormal.

PROOF. The proof will be left as an exercise using the following outline.
From the definition of ϕn+1 in terms of ϕn and the convergence to ϕ , it follows

immediately that ϕ satisfies the scaling relation. The Haar function ϕ0 = χ[0,1) sat-
isfies (2) and (3) and (6a): {ϕ0(x− j) : j ∈ Z} is orthonormal. We also introduce the
functions
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ψn+1(x) =−a0ϕn(2x−1)+a1ϕn(2x)−a2ϕn(2x+1)+a3ϕn(2x+2)

for n≥ 0. We show by induction that ϕn and ψn satisfy (2)–(6) for all n≥ 1 with the
exception of continuity for ψn, and thus they hold in the limit. The continuity of ψ

follows from the continuity of ϕ . �

At this point, a reasonable objection is that we do not have anything resembling
a formula for the scaling function ϕ , much less the wavelet ψ that goes along with
it. The remedy is to observe that the scaling relation provides a way to evaluate ϕ at
points k/2n for k,n ∈ Z, n≥ 0.

Since ϕ is continuous and has support contained in [0,3], ϕ(i) = 0 for all integers
i other than 1 and 2. Thus,

ϕ(2) = a0ϕ(4)+a1ϕ(3)+a2ϕ(2)+a3ϕ(1) = a2ϕ(2)+a3ϕ(1).

Similarly, ϕ(1) = a0ϕ(2)+a1ϕ(1). Solving these equations yields

ϕ(1) = (1+
√

3)/2 and ϕ(2) = (1−
√

3)/2.

From the values at the integers, we can now evaluate ϕ at all numbers of the form
k/2 using the scaling relation. For example,

ϕ
( 1

2

)
= a0ϕ(1)+a1ϕ(0)+a2ϕ(−1)+a3ϕ(−2) = (2+

√
3)/4.

Likewise, as the reader should verify, ϕ(3/2) = 0 and ϕ(5/2) = (2−
√

3)/4. Con-
tinuing in this way, we can then obtain the values of ϕ at points of the form k/4 (for
k odd), then at k/8 (for k odd), and so on. Since ϕ is continuous, the values at the
points k/2n for some sufficiently large n will provide a reasonable graph of ϕ , such
as that given in Figure 15.3.

Similarly, using the relation (15.5.2), we can find the values of ψ at points k/2n

and graph ψ; see Figure 15.4.

Exercises for Section 15.5

A. Prove Corollary 15.5.4 following the outline given there.

B. Evaluate the Daubechies wavelet ψ at the points k/4 for k ∈ Z.

C. Which Daubechies wavelet coefficients are nonzero for the function given by f (x) = x on
[0,2] and 0 elsewhere?

D. (a) Let Q[
√

3] = {x+
√

3y : x,y ∈Q}. If a+
√

3b = x+
√

3y in Q[
√

3], show a = x and b = y.
(b) Find a formula for multiplication and division in Q[

√
3].

(c) Explain the significance of this fact for the efficiency of the algorithm evaluating ϕ and ψ

given at the end of this section.

E. Let ϕ be the Daubechies scaling function. Let Dn = {a/2n : a ∈ Z} and D = ∪n≥1Dn. Let
Dn[

√
3] = {a+

√
3b : a,b ∈ Dn} and likewise define D[

√
3].

(a) Show that for d ∈ D, ϕ(d) ∈ D[
√

3].
(b) If a+

√
3b is defined as a−

√
3b, show that for d ∈ D, ϕ(3−d) = ϕ(d).

HINT: Prove it for Dn using induction on n.
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FIG. 15.3 The Daubechies scaling function.

(c) Show that for d ∈ D, 1 = ∑k∈Z ϕ(d− k). HINT: See the previous hint.
(d) Show that ∑

3
k=0 kϕ(k) = ∑

2
j=0 2 ja2 j = 3−

√
3

2 .

(e) Show that for d ∈ D, d = ∑k∈Z

(
3−
√

3
2 + k

)
ϕ(d− k). HINT: Using part (c), reduce to

proving d− 3−
√

3
2 = ∑k∈Z kϕ(d−k) Use induction, part (d), and considerable calculation.

(f) Use continuity to deduce that 1 = ∑k∈Z ϕ(x− k) and x = ∑k∈Z
( 3−

√
3

2 + x
)
ϕ(x− k).

F. Suppose that ϕ is any scaling function of compact support arising from a multiresolution
analysis and that its scaling relation is ϕ(x) = ∑ j a jϕ(2x− j).

(a) Show that ∑n ϕ(2−kn) = 2k
∑n ϕ(n) for all k ≥ 1.

(b) Show that
∫

ϕ(x)dx = ∑n ϕ(n). HINT: Use Riemann sums and part (a).
(c) Show that ∑n ϕ(x−n) is constant.

G. Consider the sequence of functions ϕk0(x) = 2k/2ϕ(2kx) for k≥ 0, where ϕ is the Daubechies
scaling function. Compare this family to the Fejér kernel (Lemma 14.4.1). Precisely, which
properties of Fejér kernel (Theorem 14.4.3) carry over directly to the functions ϕk0? If a
property does not carry over directly, is there an analogous property that holds?

H. The construction used in this section can be extended to wavelets of higher order (i.e., with
more moments vanishing).

(a) Use equation (15.5.2) and
∫

x2ψ(x)dx =
∫

x3ψ(x)dx = 0 to derive two additional condi-
tions on the sequence (ak).

(b) Show that the values a0 = 0.470467, a1 = 1.141117, a2 = 0.650365, a3 = −0.190934,
a4 =−0.120832, and a5 = 0.049817 give an approximate solution to these conditions.

(c) Using the appropriate scaling relation, plot these higher-order wavelets and scaling func-
tions. Despite the graph, this scaling function is actually differentiable.
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FIG. 15.4 The Daubechies wavelet.

15.6 Existence of the Daubechies Wavelet

The purpose of this section is to establish the following:

15.6.1. THEOREM. The sequence of functions (ϕn) converges in the L2(R)
norm to a function ϕ .

We need two computational lemmas that enable us to estimate ‖ϕn+1 − ϕn‖2.
First, we compute 〈ϕn+1(x),ϕn(x− k)〉.

15.6.2. LEMMA. Define cn(k) = 〈ϕn+1,ϕn(x− k)〉 for k ∈ Z and n ≥ 0. Then
cn(k) = 0 if |k|> 2, and the sequence of 5-tuples

cn =
(
cn(−2),cn(−1),cn(0),cn(1),cn(2)

)
for n≥ 0

satisfies c0 =
(

0,0, 2+
√

3
4 , 2−

√
3

4 ,0
)

and cn+1 = T cn, where
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T =
1
16


0 −1 0 0 0

16 9 0 −1 0
0 9 16 9 0
0 −1 0 9 16
0 0 0 −1 0

 .

PROOF. Since ϕ0 = χ[0,1) and

ϕ1 =
3

∑
i=0

aiϕ0(2x− i) = a0χ[0,0.5) +a1χ[0.5,1) +a2χ[1,1.5) +a3χ[1.5,2),

we easily compute c0(0) =
a0 +a1

2
=

2+
√

3
4

and c0(1) =
a2 +a3

2
=

2−
√

3
4

and

c0(k) = 0 in all other cases. Proceed by induction on n:

cn+1(k) = 〈ϕn+1,ϕn(x− k)〉=
〈 3

∑
i=0

aiϕn(2x− i),
3

∑
j=0

a jϕn−1(2x−2k− j)
〉

=
3

∑
i=0

3

∑
j=0

aia j
〈
ϕn(2x− i),ϕn−1(2x−2k− j)

〉
.

Notice that making the substitution y = 2x− i in the inner product results in a factor
of 1/2 from the change of variable of integration:

=
1
2

3

∑
i=0

3

∑
j=0

aia j
〈
ϕn(y),ϕn−1(y+ i−2k− j)

〉
.

Now set l = j− i to obtain

=
1
2

3

∑
i=0

3

∑
l=−3

aiai+l
〈
ϕn(y),ϕn−1(y−2k− l)

〉
=

3

∑
l=−3

(1
2

3

∑
i=0

aiai+l

)
cn−1(2k + l).

Observe immediately that if |k| ≥ 3 and |l| ≤ 3, then |2k + l| ≥ 3. Therefore,
cn+1(k) for |k| ≥ 3 depend linearly on cn(k) for |k| ≥ 3. However, c0(k) = 0 for
|k| ≥ 3, so cn(k) = 0 for all n ≥ 0 and |k| ≥ 3. So we need only be concerned with
the 5-tuple cn =

(
cn(−2),cn(−1),cn(0),cn(1),cn(2)

)
.

A routine calculation yields
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1
2

3

∑
i=0

aiai+l =


1 when l = 0,

9/16 when l =±1,

−1/16 when l =±3,

0 otherwise.

Plugging this into our identity and writing the five relations as a matrix, we obtain
cn+1 = T cn. �

Next we compute the Jordan form of T . Note immediately that T e0 = e0 is an
obvious eigenvector.

15.6.3. LEMMA. The matrix T factors as T = V JV−1, where

V =


0 −1 2 −1 4
0 8 −4 4 0
1 0 0 −6 −8
0 −8 4 4 0
0 1 −2 −1 4

 and J =


1 0 0 0 0
0 1/2 0 0 0
0 0 1/8 0 0
0 0 0 1/4 1
0 0 0 0 1/4

 .

PROOF. We leave it to the reader to show that V J = TV and to check that V is
invertible (see the formula for V−1 given in the proof of Theorem 15.6.4). �

15.6.4. THEOREM. ∑
n≥0

‖ϕn+1−ϕn‖2 < ∞ and thus lim
n→∞

ϕn exists in L2(R).

PROOF. The first step is to compute cn(0). Notice that cn = T nc0 = V JnV−1c0. We
find that

Jn =


1 0 0 0 0
0 2−n 0 0 0
0 0 8−n 0 0
0 0 0 4−n 41−nn
0 0 0 0 4−n

 and V−1 =


1 1 1 1 1
1
6

1
12 0 − 1

12 −
1
6

1
3

1
24 0 − 1

24 −
1
3

0 1
8 0 1

8 0
1
8

1
32 0 1

32
1
8

 .

Thus a straightforward multiplication yields

〈ϕn+1,ϕn〉= cn(0) = 1−4−n−2(2−
√

3)(3n+4).

Set εn = 4−n−2(2−
√

3)(3n+4). Notice that

‖ϕn+1−ϕn‖2 = 〈ϕn+1−ϕn,ϕn+1−ϕn〉
= ‖ϕn+1‖2

2−2〈ϕn+1,ϕn〉+‖ϕn‖2
2 = 2−2(1− εn) = 2εn.

Consequently,
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∑
n≥0

‖ϕn+1−ϕn‖2 = ∑
n≥0

√
2(2−

√
3)(3n+4)

2n+2 < ∑
n≥0

n+2
2n+2 =

3
2
.

By Exercise 4.2.B, this implies that (ϕn) is a Cauchy sequence. Thus the limit func-
tion ϕ is defined in L2(R). �

Exercises for Section 15.6

A. Verify that V J = TV and that the formula for V−1 is correct.

B. Do the calculation to compute cn(0) as indicated in Theorem 15.6.4.

C. Show that ϕn is supported on [0,3] for n≥ 0.

D. Verify that ∑n≥0
n+2
2n+2 converges. Do not compute its exact value.

E. Observe that the columns of T all sum to 1. Interpret this as saying that a related matrix has
a certain eigenvector.

F. Find lim
n→∞

T n. HINT: Use the Jordan form.

15.7 Approximations Using Wavelets

In this section, we approximate functions using the Daubechies wavelet system. Our
goal is to show how properties of the wavelet basis result in better (or worse) approx-
imations. Given that the point of wavelets is to use different kinds of wavelets for
different problems, it is worthwhile to see how to use properties of the wavelet and
scaling function. We have already devoted Chapter 14 to approximation by Fourier
series and Chapter 10 to approximation by polynomials, so we can compare approx-
imation by wavelets to these alternatives.

Recall from the discussion of Haar wavelets that we may construct approx-
imants to functions by first computing the projection Pk f of f onto Vk. Let ϕ

and {ψk j} denote the Daubechies wavelet. Let us define the projections Dn onto
Vn = span{ϕn, j : j ∈ Z} by

Dn f (x) = ∑
j∈Z
〈 f ,ϕn, j〉ϕn, j.

For n≥ 1, we also realize this as

Dn f (x) = D0 f (x)+
n−1

∑
k=0

∑
j∈Z
〈 f ,ψk j〉ψk j(x).

If f has compact support, then only finitely many of these coefficients are nonzero at
each level. For example, if the support is [0,1], then there are at most three nonzero
terms in the computation of D0 and at most 2n−1 + 2 additional terms to compute
Dn f knowing Dn−1 f .
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For any wavelet arising from a multiresolution analysis, the approximants Pk f
converge to f in L2(R). So, in particular, this is true for the Daubechies wavelets. In
this case, we can also establish uniform convergence when f is uniformly continu-
ous. We need a variation on the first part of the proof of Theorem 15.2.3.

15.7.1. LEMMA. Consider the Daubechies wavelets. Fix k ∈ N, j ∈ Z, and
x ∈ [ j/2k,( j +3)/2k]. For any continuous function f on R,∣∣ f (x)−2k/2〈 f ,ϕk j〉

∣∣≤√
3ω( f ,3 ·2−k).

PROOF. Using the substitution z = 2kt− j and
∫

ϕ(t)dt = 1, we have

∣∣ f (x)−2k/2〈 f ,ϕk0〉
∣∣= ∣∣∣ f (x)−2k

∫
f (t)ϕ(2kt− j)dx

∣∣∣= ∣∣∣ f (x)−∫ 3

0
f
( z+ j

2k

)
ϕ(z)dz

∣∣∣
=
∣∣∣∫ 3

0

[
f (x)− f

( z+ j
2k

)]
ϕ(z)dz

∣∣∣≤ ω( f ;3 ·2−k)
∫ 3

0
|ϕ(z)|dz,

since for z ∈ [0,3], we have |x− (z + j)/2k| ≤ 3/2k. Finally, the Cauchy–Schwarz
inequality shows that∫ 3

0
|ϕ(z)|dz≤

(∫ 3

0
|ϕ(z)|2 dz

)1/2(∫ 3

0
1dz
)1/2

=
√

3.
�

15.7.2. THEOREM. If f ∈ L2(R) is uniformly continuous on R, then the ap-
proximants Dk f by Daubechies wavelets converge uniformly to f .

PROOF. From Exercise 15.5.F, we have ∑ j∈Z ϕ(2kx− j) = 1. Multiplying this by
f (x), we have

| f (x)−Dk f (x)|=
∣∣∣∑

j∈Z
f (x)ϕ(2kx− j)− ∑

j∈Z
〈 f ,ϕk j〉ϕk j(x)

∣∣∣
≤ ∑

j∈Z

∣∣ f (x)−2k/2〈 f ,ϕk j〉
∣∣ ∣∣ϕ(2kx− j)

∣∣
≤
√

3ω( f ,3 ·2−k) ∑
j∈Z
|ϕ(2kx− j)| ≤ 3

√
3‖ϕ‖∞ω( f ,3 ·2−k),

because for any x, there are at most three j such that ϕ(2kx− j) 6= 0. By the uniform
continuity of f , lim

k→∞
ω( f ,3 ·2−k) = 0. Thus lim

k→∞
‖ f −Dk f (x)‖∞ = 0. �

15.7.3. REMARK. This proof does something even better because of the local
nature of the Daubechies wavelets. If f is not continuous everywhere, but is con-
tinuous on a neighbourhood [a−δ ,a+δ ], the same argument shows that the series
converges uniformly on [a−ε,a+ε] for ε < δ . We will use this in Example 15.7.4.
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Theorem 15.2.3 likewise shows that when f is continuous, the Haar wavelet ap-
proximants Hn f converge to f uniformly. In fact, ‖Hn f − f‖∞ ≤ ω( f ;2−n). So if
f has Lipschitz constant L, the error is at most 2−nL. Since the number of coeffi-
cients in Hn f doubles when n increases by 1, this is not surprising. We now have a
comparable rate of convergence for Daubechies wavelets.

In approximating a function, a reasonable measure of the size of the approximant
is the number of coefficients used. For f ∈ L2(0,1), we have

Hn f (x) = 〈 f ,ϕ〉ϕ(x)+
n−1

∑
k=0

2k−1

∑
j=0

〈 f ,ψk j〉ψk j(x)

and so Hn f uses 2n coefficients. If there is a bound on the number of coefficients that
we can use, due to storage limitations, for example, one choice is to use the largest
value of n such that Hn f does not have too many coefficients. It is frequently better
to use a larger value of n and then replace small coefficients with zero. This has the
advantage that if f has large irregularities at small resolution, these will appear in
the approximation.

15.7.4. EXAMPLE. Consider the function given by

f (x) =

{
x if x ∈ (−π,π),
0 if |x| ≥ π.

In Section 14.3, we analyzed how the partial sums Sn f of the Fourier series approx-
imate f near the discontinuity at π . The Fourier series for f on (−π,π) is

f (x)∼ 2
∞

∑
k=1

(−1)k+1

k
sinkx,

which converges very slowly. Even at a point well away from the discontinuity,
convergence is slow. For example, if x = π/2, then we get

f (π/2) = 2
∞

∑
k=0

(−1)k

2k +1
.

To get 2
n
∑

k=0
(−1)k/(2k + 1) within 10−6 of the exact sum of the series, we need

n ≥ 500,000. (To be fair, we can do better with Fejér kernels, but the behaviour is
not optimal even then.)

The Haar wavelet approximations Hn f are the step functions taking the average
value of f over each interval of length 2−n. It is not difficult to see that except for
two intervals about the discontinuities ±π , the convergence is uniform. The maxi-
mum error is 2−n−1. Since the number of coefficients needed is roughly 2n+1π , we
see that this convergence is not much more efficient than the Fourier series glob-
ally. However, to compute f (π/2), note that only n terms in the expansion Hn f are
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nonzero at π/2. Thus to compute this value within 10−6, we only need 19 terms,
since 2−20 < 10−6.

Even better, the vanishing moments of the Daubechies wavelets ensure that so
long as the support of ψk j does not contain ±π , the coefficient 〈 f ,ψk j〉 will be zero.
Since ψ has support in [0,3], each ψk j has support in an interval of length 3/2k,
namely [ j/2k,( j +3)/2k]. So for each k, there are only six nonzero coefficients for
ψk j to contribute to the whole series.

Returning to the point π/2, notice that for the support of ψk j to contain both
π/2 and π , we must have 3 · 2−k > π/2 or k ≤ 0. Thus D0 f (π/2) = Dn f (π/2)
for all n ∈ N. Indeed by Remark 15.7.3, this series converges uniformly to f on
any interval around π/2 that is bounded away from ±π . In particular, we have
f (π/2) = lim

n→∞
Dn f (π/2) = D0 f (π/2). So only three nonzero coefficients are in-

volved in recovering this value exactly.

We can use the vanishing of the moments to obtain a better bound when the
function f is C2. Thus as for Fourier series, the Daubechies wavelet coefficients will
die off quickly if the function is smooth. Moreover, because of the local nature of
these wavelets, if f is smooth on some small interval, the same analysis shows that
the wavelet series converges rapidly on that interval.

15.7.5. THEOREM. If f is twice differentiable on [( j− 2)/2k,( j + 2)/2k],
where j,k ∈ Z, and f ′′ bounded by B on this interval, then∣∣〈 f ,ψk j〉

∣∣≤ 4B
25k/2 .

PROOF. Substituting t = 2kx− j, we obtain

〈 f ,ψk j〉=
∫ +∞

−∞

f (x)2k/2
ψ(2kx− j)dx = 2−k/2

∫ +∞

−∞

f
( t + j

2k

)
ψ(t)dt.

This integral may be limited to [−1,2], the support of ψ .
On [( j− 2)/2k,( j + 2)/2k], we have a Taylor series expansion for f centred at

the point b = j/2k, namely

f (x) = f (b)+ f ′(b)(x−b)+
f ′′(c)

2
(x−b)2

for some point c between x and b. The vanishing moment conditions on ψ imply
that

∫
(mx+d)ψ(x)dx = 0. Since x−b = (t + j)/2k− j/2k = t/2k, we end up with

〈 f ,ψk j〉= 2−k/2 1
2

f ′′(c)
∫ 2

−1

( t
2k

)2
ψ(t)dt.

Since t2 ≤ 4, we obtain
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∣∣≤ 2B

25k/2

∫ 2

−1
|ψ(t)|dt.

Finally, the Cauchy–Schwarz inequality shows that∫ 2

−1
|ψ(t)|dt ≤

(∫ 2

−1
|ψ(t)|2 dt

)1/2(∫ 2

−1
1dt
)1/2

=
√

3 < 2.
�

Exercises for Section 15.7

A. Show that
∥∥b0ϕ +∑

n−1
k=0 ∑

2k−1
j=0 ak jψk j

∥∥
∞
≤ |b0|+∑

n−1
k=0 3 ·2k/2 max

{
|ak j| : j ∈ Z

}
.

HINT: For each x and k, how many ψk j(x) 6= 0?

B. Recall the Cantor function f on [0,1] from Example 5.7.8. Find the zero coefficients 〈 f ,ψk j〉
for k = 1,2,3,4. What can you conclude about the functions Dn f ?

C. (a) For the function f in Example 15.7.4, find the least k ∈ N such that f (3) = Dk f (3).
(b) In general, find a function K(δ ) such that for k ≥ K(δ ), f (π−δ ) = Dk f (π−δ ).

D. For the wavelets of Exercise 15.5.H, state and prove a version of Theorem 15.7.5.

E. We can represent Pn f in two ways: b0ϕ +∑
n−1
k=0 ∑ j∈Z ak jψk j or ∑ j∈Z c jϕn j.

(a) For the Haar wavelets, what is the significance of the coefficients b0 and ak j?
(b) For the Haar wavelets, describe how to obtain one set of coefficients from the other.

HINT: Exercise 15.2.A.
(c) For the Daubechies wavelets, describe how to obtain one set of coefficients from the other.

15.8 The Franklin Wavelet

It is not easy to just write down a wavelet or a scaling function. However, it is
much easier to find a multiresolution with a scaling function that does not generate
an orthonormal basis but does something a bit weaker. The goal is to construct a
continuous piecewise linear wavelet by starting with such a system. The technique
that we describe here can be adapted and refined to obtain wavelets with greater
smoothness and/or with compact support. In this section, we restrict our attention to
a single example known as the Franklin wavelet.

In these last sections, we need to take a more sophisticated view of linear maps
between Hilbert spaces.

Consider the subspaces Vk of L2(R) consisting of continuous functions in L2(R)
that are linear on each interval [( j− 1)2−k, j2−k]. These subspaces satisfy most of
the requirements of a multiresolution. It is immediately evident that Vk is contained
in Vk+1 for all k ∈Z. Also by definition, f (x) belongs to Vk exactly when it is contin-
uous and linear on each dyadic interval of length 2−k, which holds precisely when
f (2x) is continuous and linear on each dyadic interval of length 2−k−1, which means
that f (2x) belongs to Vk+1. So the Vk satisfy scaling.

The union of the Vk’s is dense in all of L2(R). To see this, note that any continuous
function g with bounded support, say contained in [−2N ,2N ], may be uniformly
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approximated to any desired accuracy by a piecewise linear continuous function f
that is linear on dyadic intervals of length 2−k, provided that k is sufficiently large.
Given ε > 0, choose k and f ∈ Vk so that f is also supported on [−2N ,2N ] and
‖g− f‖∞ < 2−(N+1)/2ε . It is easy to see that

‖g− f‖2
2 =

∫ 2N

−2N
|g(x)− f (x)|2 dx≤

∫ 2N

−2N

(
2−(N+1)/2

ε
)2 dx = ε

2.

Because Cc(R) is dense in L2(R), it follows that we have the density property⋃
k∈ZVk = L2(R).
Finally, we will demonstrate the separation property

⋂
k∈ZVk = {0}. Suppose that

f belongs to this intersection. Let f (i) = ai for i =−1,0,1. Since f ∈V−k for each
k > 0, it is linear on [0,2k] and on [−2k,0]. So f (x) = a0 +(a1−a0)x on [0,2k] and
f (x) = a0− (a−1−a0)x on [−2k,0]. Thus

‖ f‖2
2 ≥

∫ 2k

0
| f (x)|2 dx = 1

3 (a1−a0)2x3 +a0(a1−a0)x2 +a2
0x
∣∣∣2n

0

= 1
3 (a1−a0)223n +a0(a1−a0)22n +a2

02n

= 2n
(

1
3

(
(a1−a0)2n + 3

2 a0
)2 + 1

4 a2
0

)
.

As n tends to infinity, the right-hand side must remain bounded by ‖ f‖2
2. This forces

a0 = a1 = 0. Likewise, integration from −2k to 0 shows that a−1 = 0. Consequently
f = 0 on [−2k,2k] for every k ≥ 0. So f = 0 and the intersection is trivial.

We have constructed a multiresolution except for the important scaling function.
There is a function h, known as the hat function, which has all but one of the
properties of a scaling function. It is supported on [−1,1], has h(0) = 1 and h(−1) =
h(1) = 0, and is linear in between. Figure 15.5 gives its simple graph.

x0 1−1

y
1

FIG. 15.5 The graph of the hat function h.

Notice that f (x) = ∑
n
j=−n a jh(x− j) is the piecewise linear function in V0 sup-

ported on [−n− 1,n + 1] that satisfies f ( j) = a j for −n ≤ j ≤ n and f ( j) = 0 for
| j| > n. So V0 is spanned by translates of the hat function. Likewise, Vk is spanned
by
{

2k/2h(2kx− j) : j ∈ Z
}

. The problem with h is that these translates are not or-
thogonal to each other. But it does have a weaker property that serves as a substitute.
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15.8.1. DEFINITION. A subset {xn : n ∈ Z} of a Hilbert space H is a Riesz
basis if span{xn : n ∈ Z}= H and there are constants A > 0 and B < ∞ such that

A
(
∑
n
|an|2

)1/2
≤
∥∥∥∑

n
anxn

∥∥∥≤ B
(
∑
n
|an|2

)1/2

for all sequences (an) with only finitely many nonzero terms.

15.8.2. THEOREM. The translates {h(x− j) : j ∈ Z} of the hat function form
a Riesz basis for V0.

PROOF. Consider the inner product of two compactly supported functions in V0,
say f (x) = ∑

n
j=−n a jh(x− j) and g(x) = ∑

n
j=−n b jh(x− j). For convenience, set

a j = b j = 0 for | j|> n:

〈 f ,g〉=
∫ +∞

−∞

f (x)g(x)dx =
n

∑
j=−n−1

∫ j+1

j
f (x)g(x)dx

=
n

∑
j=−n−1

∫ 1

0

(
a j +(a j+1−a j)x

)(
b j +(b j+1−b j)x

)
dx

=
n

∑
j=−n−1

a jb j+ 1
2 a j(b j+1−b j)+ 1

2 (a j+1−a j)b j+ 1
3 (a j+1−a j)(b j+1−b j)

=
1
6

n

∑
j=−n−1

2a jb j +a jb j+1 +a jb j+1 +2a j+1b j+1.

It is convenient to rearrange this sum further by moving the term 2a j+1b j+1 to the
next index to obtain

〈 f ,g〉=
1
6

n

∑
j=−n−1

4a jb j +a jb j+1 +a jb j+1.

To make sense of this, we introduce two linear transformations.
Recall that `2(Z) is the Hilbert space of all square summable doubly indexed

sequences a = (an)+∞
−∞, where we have

〈a,b〉=
〈
(an),(bn)

〉
=

+∞

∑
n=−∞

anbn and ‖a‖2 = 〈a,a〉1/2 =
( +∞

∑
n=−∞

a2
n

)1/2
.

Let ek for k ∈ Z denote the standard basis for `2(Z). Define the bilateral shift on
`2(Z) by Uek = ek+1 or (Ua)n = an−1. It is easy to see that ‖Ua‖2 = ‖a‖2 for all
vectors a ∈ `2(Z). Also, it is clear that U maps `2(Z) one-to-one and onto itself.
Thus, U is a unitary map.

Recall from linear algebra that the adjoint (or transpose when working over the
real numbers) of a linear transformation T is the linear map T ∗ such that
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〈T ∗x,y〉= 〈x,Ty〉 for all vectors x,y ∈H .

For the unitary operator U , we have that U∗ = U−1 is the backward bilateral shift
U∗ek = ek−1 or (U∗a)n = an+1.

Second, we define a linear map H from `2(Z) onto V0 by

Ha =
+∞

∑
n=−∞

anh(x−n).

Looking back at our formula for the inner product in V0, we see that

〈Ha,Hb〉=
1
6

n

∑
j=−n−1

4a jb j+a jb j+1+a jb j+1 =
1
6
〈
(4I+U+U∗)a,b

〉
. (15.8.3)

By the Cauchy–Schwarz inequality (7.4.4), since ‖Ua‖2 = ‖a‖2 = ‖U∗a‖2,∣∣〈Ua,a〉
∣∣= ∣∣〈U∗a,a〉

∣∣≤ ‖a‖2
2.

Hence we obtain

‖ f‖2
2 = 〈Ha,Ha〉=

1
6
〈
(4I +U +U∗)a,a

〉
≤ 1

6
(
4‖a‖2

2 + |〈Ua,a〉|+ |〈U∗a,a〉|
)
≤ ‖a‖2

2.

Similarly, we obtain a lower bound

‖ f‖2
2 = 〈Ha,Ha〉=

1
6
〈
(4I +U +U∗)a,a

〉
≥ 1

6
(
4‖a‖2

2−|〈Ua,a〉|− |〈U∗a,a〉|
)
≥ 1

3
‖a‖2

2.

So while the translates of h are not an orthonormal set, we find that they do form
a Riesz basis for V0. �

Our problem now is to replace the hat function h by a scaling function ϕ . This
function ϕ must have the property that the translates ϕ(x− j) form an orthonormal
set spanning V0. We make use of another property relating the maps U and H. If
f (x) = Ha = ∑n anh(x−n), then

HUa = ∑
n

an−1h(x−n) = ∑
n

anh(x−n−1)

= f (x−1) = (T f )(x) = T Ha,

where T g(x) = g(x−1) is the translation operator. So HU = T H, namely H carries
a translation by U in `2(Z) to translation by 1 in V0. This suggests that if we can
find a vector c such that the translates Unc form an orthonormal basis with respect
to the inner product
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[a,b] =
1
6
〈
(4I +U +U∗)a,b

〉
,

then ϕ = Hc will be the desired scaling function. Indeed, equation (15.8.3) becomes
〈Ha,Hb〉= [a,b].

We make use of the correspondence between `2(Z) and L2(−π,π) provided by
complex Fourier series. We identify the basis ek with eikθ , which is an orthonormal
basis for L2(−π,π). This identifies the sequence a in `2(Z) with the function in

L2(−π,π) given by f (θ) =
+∞

∑
n=−∞

aneinθ . Now compute

U f (θ) = U ∑
n

aneinθ = ∑
n

anei(n+1)θ = eiθ f (θ).

Thus U is the operator that multiplies f (θ) by eiθ . We will write Mg to denote the
operator on L2(−π,π) that multiplies by g. Such operators are called multiplication
operators. For example, U = Meiθ . Hence

1
6 (4I +U +U∗) = 1

6 (4I +Meiθ +M∗
eiθ ) = M 1

6 (4+eiθ +e−iθ ) = M 1
3 (2+cosθ).

15.8.4. THEOREM. There is an `2 sequence (c j) such that the function ϕ(x) =
∑ j c jh(x− j) is a scaling function for V0.

PROOF. Define the operator X = Mg, where g(θ) =
√

3(2+ cosθ)−1/2. Notice that
X = X∗, XU = UX and X2 = 3M−1

2+cosθ
= 6(4I +U +U∗)−1. Now define c = Xe0

and ϕ = Hc. Compute〈
ϕ(x− j),ϕ(x− k)

〉
= 〈T jHc,T kHc〉= 〈HU jc,HUkc〉

= [U jc,Ukc] =
1
6
〈
(4I +U +U∗)U jc,Ukc

〉
= 〈X−2U jXe0,UkXe0〉= 〈X−2XU je0,XUke0〉
= 〈XX−2XU je0,Uke0〉= 〈U je0,Uke0〉= δ jk.

This shows that the translates of ϕ form an orthonormal set in the subspace V0.
Since e0 is identified with the constant function 1,

ϕ(x) = HX1 = Hg.

To compute Hg, we need to find the (complex) Fourier series g∼ ∑n cneinθ . Now g

is an even function and thus c−n = cn; and so g∼ c0 +
∞

∑
n=1

2cn cosnθ . Moreover,

cn = c−n =
√

3
2π

∫
π

−π

cosnθ√
2+ cosθ

dθ for n≥ 0.

Hence
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ϕ(x) =
+∞

∑
n=−∞

cnh(x−n). (15.8.5)

This is the continuous piecewise linear function with nodes at the integers taking
the values ϕ(n) = cn.

A similar argument shows that the translates of ϕ span all of V0. Indeed, note that

Hei jθ g = HU jg = T jHg = ϕ(x− j).

Now h = He0 = HXg−1. Express g−1(x) =
√

(2+ cosθ)/3, which is continuous,
as a complex Fourier series g−1 ∼ ∑ j b jei jθ . Then

h = HXg−1 = H ∑
j

b jei jθ g = ∑
j

b jϕ(x− j). (15.8.6)

This expresses h as an `2 combination of the orthonormal basis of translates of ϕ ,
and thus h lies in their span. Evidently, this span also contains all translates of h, and
so they span all of V0. Therefore, ϕ is the desired scaling function. �

Using two formulas from the previous proof, we can write the scaling relation
for ϕ , in terms of the sequences (bn) and (cn). Verify that the hat function satisfies
the simple scaling relation

h(x) = 1
2 h(2x−1)+h(2x)+ 1

2 h(2x+1).

Equation (15.8.6) gives
h(2x) = ∑

j
b jϕ(2x− j)

and similar formulas hold for h(2x− 1) and h(2x + 1). Putting these formulas into
the scaling relations gives h(x) as an infinite series involving ϕ(2x− k) as k ranges
over the integers. Substituting this series for h in equation (15.8.5), we obtain

ϕ(x) = ∑
l∈Z

(
∑
j∈Z

c j
[
b2 j−l + 1

2 b2 j−l+1 + 1
2 b2 j−l−1

])
ϕ(2x− l).

This formula does not appear tractable, but the sequences (cn) and (bn) decay quite
rapidly, so it is possible to obtain reasonable numerical results by taking sums over
relatively small ranges of j, say −10 to 10.

We can then apply Theorem 15.4.2 to obtain a formula for the Franklin wavelet
itself. This is plotted in Figure 15.6, along with the scaling relation. Notice that the
wavelet is continuous and piecewise linear with nodes at the half-integers, as we
would expect, since Theorem 15.4.2 implies that the wavelet is in V1. Incidentally,
the numerical values of the first few an in the scaling relation for ϕ are

a0 = 1.15633, a1 = a−1 = 0.56186, a2 = a−2 =−0.09772,

a3 = a−3 =−0.07346 and a4 = a−4 =−0.02400.
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FIG. 15.6 The Franklin scaling function and wavelet.

Exercises for Section 15.8

These exercises are all directed toward the analysis of a different wavelet, the Strömberg
wavelet, which has the same multiresolution subspaces Vk as the Franklin wavelet. See [32]
for more details. Let PL(X) denote the space of L2(R) functions that are continuous and
piecewise linear with nodes on a discrete subset X of R. As usual, h is the hat function.

A. Show that PL(− 1
2 N0∪N) is spanned by {h(2x+ k +1), h(x− k) : k ≥ 0}.

B. Show that PL(− 1
2 N0 ∪{ 1

2}∪N) is spanned by PL(− 1
2 N0 ∪N) and h(2x). Hence show that

there is a norm-1 function ψ in PL(− 1
2 N0∪{ 1

2}∪N) that is orthogonal to PL(− 1
2 N0∪N).

C. Show that ψ is orthogonal to 2−k/2ψ(2−kx− j) for all k < 0 and j ∈ Z and to ψ(x + j) for
j > 0. Hence deduce that {ψk j : k, j ∈ Z} is orthonormal.
HINT: Some are in PL(− 1

2 N0∪N). Do a change of variables for the rest.

D. Let Vk = PL(2−kZ) and let Wk be the orthogonal complement of Vk in Vk+1. Show that
span{ψk j : j ∈Z}= Wk. Deduce that ψ is a wavelet. HINT: Show that the orthogonal com-
plement of PL(Z∪{k/2 : k≤−2n−1}) in PL(Z∪{k/2 : k≤ 2n+1}) is span{ψ0 j : | j| ≤ n}.

E. ψ is determined by its values at the nodes, ψ( k
2 ) = ak for k ≤ 0, ψ( 1

2 ) = b, and ψ(k) = ck
for k ≥ 1. Show that the orthogonality relations coming from the fact that ψ is orthogonal to
the basis of PL(− 1

2 N0 ∪N) yield equations ak−1 + ak + ak+1 = 0 for k ≤ −1, and for k ≥ 2,
ck−1 + ck + ck+1 = 0. Plus a−2 + 6a−1 + 10a0 + 6b + c1 = 0 and a0 + 6b + 13c1 + 4c2 = 0.
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Verify that the solution is the one-parameter family ak = C(2
√

3− 2)(
√

3− 2)|k| for k ≤ 0,
b =−C(

√
3+ 1

2 ), and ck = C(
√

3−2)k−1 for k ≥ 1.

F. Show that the Franklin scaling function is even, and deduce that the wavelet is symmetric
about the line x = 1

2 . Show that the Strömberg wavelet does not have this symmetry, and thus
they are different wavelets with the same resolution.

15.9 Riesz Multiresolution Analysis

In this section, we will formalize the structure used in the previous section. We then
apply this to construct another family of wavelets, called Battle–Lemarié wavelets.
Since they will be based on cubic splines, instead of the hat function, they will be
smoother than the Franklin wavelet. The following important characterization of
Riesz bases is our starting point.

15.9.1. THEOREM. A set of vectors {xn : n ∈ Z} in a Hilbert space H is a
Riesz basis if and only if there is a continuous linear map T from `2(Z) onto H
such that T en = xn for n ∈ Z and there are constants 0 < A < B < ∞ such that
A‖a‖2 ≤ ‖T a‖ ≤ B‖a‖2 for all a ∈ `2(Z).

PROOF. Let `0 denote the vector space of all sequences (an) with only finitely many
nonzero terms. For any set {xn : n ∈ Z}, we may define a linear map from `0 into
H by T a = ∑n anxn, which makes sense because the sum is finite.

Suppose that {xn : n ∈Z} is a Riesz basis. The Riesz condition can be restated as

A‖a‖2 ≤ ‖T a‖ ≤ B‖a‖2 for all a ∈ `0.

In particular, the map T satisfies the Lipschitz condition

‖T a−T b‖= ‖T (a−b)‖ ≤ B‖a−b‖2

and thus T is uniformly continuous.
Suppose that a ∈ `2(Z). Then we may choose a sequence an in `0 that converges

to a in the `2 norm. Consequently, (an) is a Cauchy sequence in `2(Z). Therefore,
since ‖T an−T am‖ ≤ B‖an− am‖2, it follows that (T an) is a Cauchy sequence in
H . Since H is complete, we may define T a = limn T an. See the exercises for
the argument explaining why this definition does not depend on the choice of the
sequence. So the definition of T has been extended to all of `2(Z). Moreover, we
obtain that

‖T a‖= lim
n→∞

‖T an‖ ≤ B lim
n→∞

‖an‖2 = B‖a‖2.

So T is (uniformly) continuous on all of `2(Z).
We similarly obtain

‖T a‖= lim
n→∞

‖T an‖ ≥ A lim
n→∞

‖an‖2 = A‖a‖2.
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Clearly T maps `0 onto the set of all finite linear combinations of {xn : n ∈ Z}. So
the range of T is dense in H by hypothesis.

Let y ∈H . Choose vectors yn ∈ span{xn : n ∈ Z} that converge to y. Then (yn)
is a Cauchy sequence. Since yn belongs to the range of T , there are vectors an ∈ `0
with T an = yn. Therefore,

‖an−am‖2 ≤ A−1‖T (an−am)‖= A−1‖yn−ym‖.

Consequently, (an) is Cauchy. Since `2(Z) is complete by Theorem 7.7.4, we obtain
a vector a = limn an. The continuity of T now ensures that

T a = lim
n→∞

T an = lim
n→∞

yn = y.

So T maps `2(Z) onto H .
Conversely, if the operator T exists, then the Riesz norm condition holds (by

restricting T to `0). Because T is continuous and `0 is dense in `2(Z), it follows that
span{xn : n ∈ Z}= T `0 is dense in T `2(Z) = H ; i.e., span{xn : n ∈ Z}= H . �

15.9.2. COROLLARY. If {xn : n ∈ Z} is a Riesz basis for a Hilbert space H ,
then every vector y∈H may be expressed in a unique way as y = ∑n anxn for some
a = (an) in `2(Z).

PROOF. The existence of a ∈ `2(Z) such that T a = y follows from Theorem 15.9.1.
Suppose that T b = y as well. Then T (a−b) = 0. But 0 = ‖T (a−b)‖ ≥ A‖a−b‖2.
Hence b = a. So T is one-to-one and a is uniquely determined. �

15.9.3. REMARK. Note that the norm estimates show that the linear map T has
a continuous inverse. Indeed, Corollary 15.9.2 shows that T−1y = a is well defined.
It is easy to show that the inverse of a linear map is linear. Now Theorem 15.9.1
shows that A‖a‖2 ≤ ‖T a‖. Substituting y = T a, we obtain ‖T−1y‖2 ≤ A−1‖y‖ for
all y ∈H . This shows that T−1 is Lipschitz and hence uniformly continuous.

In fact, a linear map is continuous if and only if it is bounded, meaning that
‖T‖ = sup{‖T x‖ : ‖x‖ = 1} is finite. (See Exercise 15.9.D.) A basic theorem of
functional analysis known as Banach’s Isomorphism Theorem states that a con-
tinuous linear map between complete normed spaces that is one-to-one and onto is
invertible. Consequently, the existence of the constants A and B required in Theo-
rem 15.9.1 are automatic if we can verify that T is a bijection.

Now we specialize these ideas to a subspace V0 of L2(R) spanned by the trans-
lates of a single function h. To obtain a nice condition, we need to know some easy
facts about multiplication operators. Let g∈C[−π,π]. Recall that the linear map Mg
on L2(−π,π) is given by Mg f (θ) = g(θ) f (θ).
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15.9.4. PROPOSITION. Suppose that the complex Fourier series of g is given
by g ∼ ∑k tkeikθ . Then the matrix

[
ai j
]

of Mg with respect to the orthonormal basis
{eikθ : k ∈ Z} for L2(−π,π) is given by a jk = t j−k.

PROOF. This is an easy computation. Indeed,

a jk = 〈Mgeikθ ,ei jθ 〉=
1

2π

∫
π

−π

g(θ)eikθ ei jθ dθ

=
1

2π

∫
π

−π

g(θ)ei( j−k)θ dθ = t j−k.
�

We also need these norm estimates for Mg.

15.9.5. THEOREM. If g ∈ C[−π,π], then Mg is a continuous linear map on
L2(−π,π) such that ‖Mg f‖2 ≤ ‖g‖∞‖ f‖2. Moreover, ‖g‖∞ is the smallest constant
B such that ‖Mg f‖2 ≤ B‖ f‖2 for all f .

Similarly, if A = inf{|g(θ)| : θ ∈ [−π,π]}, then A is the largest constant such
that ‖Mg f‖2 ≥ A‖ f‖2 for all f ∈ L2(−π,π).

PROOF. A straightforward calculation shows that

‖Mg f‖2
2 =

1
2π

∫
π

−π

|g(θ)|2| f (θ)|2 dθ ≤ 1
2π

∫
π

−π

‖g‖2
∞| f (θ)|2 dθ

= ‖g‖2
∞

1
2π

∫
π

−π

| f (θ)|2 dθ = ‖g‖2
∞‖ f‖2

2.

In particular, Mg is Lipschitz and hence continuous. Similarly,

‖Mg f‖2
2 =

1
2π

∫
π

−π

|g(θ)|2| f (θ)|2 dθ ≥ 1
2π

∫
π

−π

A2| f (θ)|2 dθ = A2‖ f‖2
2.

On the other hand, suppose that B < C < ‖g‖∞. Then there is a nonempty open
interval (a,b) on which |g(θ)|> C. Let f be a continuous function on [−π,π] such
that ‖ f‖2 = 1 and the support of f is contained in [a,b]. Then

‖Mg f‖2
2 =

1
2π

∫
π

−π

|g(θ)|2| f (θ)|2 dθ =
1

2π

∫ b

a
|g(θ)|2| f (θ)|2 dθ

≥ 1
2π

∫ b

a
C2| f (θ)|2 dθ = C2 1

2π

∫
π

−π

| f (θ)|2 dθ > B2‖ f‖2
2.

Therefore, ‖Mg‖> B. So ‖g‖∞ is the optimal choice.
Likewise, if D >C > A, there is a continuous function f with ‖ f‖2 = 1 supported

on an interval (c,d) on which |g(θ)| < C. The same calculation above shows that
‖Mg f‖ ≤C‖ f‖2 < D‖ f‖2. Therefore, A is the optimal lower bound. �
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We are now ready to obtain a practical characterization of when the translates
of h form a Riesz basis. For the following results, we will make the simplifying
assumption that the coefficients arising are the Fourier coefficients of a continuous
function. The Riesz basis property requires that they be in `2(Z), which shows that
the function is always in L2(−π,π). Theorem 15.9.5 is actually valid in this gener-
ality. However, it is often continuous in applications.

15.9.6. THEOREM. Let h ∈ L2(R) and V0 = span{h(x− j) : j ∈ Z}. Define
t j = 〈h(x),h(x− j)〉 for j ∈ Z. Assume that there is a continuous function g with
Fourier series t0 +∑

∞
j=1 2t j cos jθ . Then {h(x− j) : j ∈ Z} is a Riesz basis for V0 if

and only if there are constants 0 < A≤ B such that A2 ≤ g(θ)≤ B2 on [−π,π].

PROOF. Let T a = ∑n anh(x− n) for all a ∈ `0. It follows from Theorem 15.9.1
that {h(x− j) : j ∈ Z} is a Riesz basis for V0 if and only if there are constants
0 < A2 ≤ B2 < ∞ such that

A2‖a‖2
2 ≤ ‖T a‖2 =

∥∥∥∑
n

anh(x−n)
∥∥∥2

2
≤ B2‖a‖2

2.

Now
‖T a‖2 = 〈T a,T a〉= 〈T ∗T a,a〉.

The linear map T ∗T has matrix
[
ti j
]

with respect to the orthonormal basis en, where

ti j = 〈T ∗T e j,ei〉= 〈T e j,T ei〉= 〈h(x− j),h(x− i)〉= 〈h(x),h(x− i+ j)〉= ti− j.

So the matrix of T ∗T is constant on diagonals. Note that by symmetry, t−k = tk.
All orthonormal bases are created equal, so we can identify en with einθ in

L2(−π,π), so that `0 corresponds to all finite complex Fourier series. With this
identification, we see from Proposition 15.9.4 that T ∗T = Mg, where

g(θ) = ∑
k

tkeikθ = t0I +
∞

∑
k=1

2tk coskθ .

We used t−k = tk to obtain a real function g, which returns us to the real domain
from this brief foray into complex vector spaces.

Next we observe that g(θ)≥ 0. Indeed, we have

1
2π

∫
π

−π

g(θ)| f (θ)|2 dθ = 〈T ∗T f , f 〉= ‖T f‖2
2 ≥ 0.

Suppose that g were not positive. Then by the continuity of g, we may choose an
interval (a,b) on which g(θ) <−ε < 0. Then as in the proof of Theorem 15.9.5, we
deduce that for any continuous function f supported on [a,b] we have

1
2π

∫
π

−π

g(θ)| f (θ)|2 dθ ≤−ε‖ f‖2
2 < 0,
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which contradicts the previous inequality. So g is positive.
This allows us to define the multiplication operator M√

g. Since
√

g≥ 0, we find
that M∗√

g = M√
g, and

T ∗T = Mg = M2√
g = M∗√

gM√
g.

(Be warned that this does not show that T is equal to M√
g. They do not even map

into the same Hilbert space.) Consequently,

‖T f‖2
2 = 〈T ∗T f , f 〉= 〈Mg f , f 〉= 〈M√

g f ,M√
g f 〉= ‖M√

g f‖2
2.

Finally, an application of Theorem 15.9.5 shows that

A2‖ f‖2
2 ≤ ‖M√

g f‖2
2 ≤ ‖√g‖2

∞‖ f‖2
2 = ‖g‖∞‖ f‖2

2

for all f ∈ L2(−π,π) if and only if

A2 ≤ inf
θ∈[−π,π]

|√g(θ)|2 = inf
θ∈[−π,π]

|g(θ)|.

Thus A2 > 0 is possible only if g is bounded away from 0. �

We are now ready to modify a Riesz basis of translations of h to obtain an or-
thonormal basis of translates. This is the key to finding wavelets by the machinery
we have already developed.

15.9.7. THEOREM. Let h ∈ L2(R) be a function such that the set of translates
{h(x− j) : j ∈ Z} is a Riesz basis for its span V0. Assume that t0 +∑

∞
j=1 2t j cos jθ is

the Fourier series of a continuous function, where tk = 〈h(x),h(x− k)〉. Then there
is a function ϕ ∈ L2(R) such that {ϕ(x− j) : j ∈ Z} is an orthonormal basis for V0.

PROOF. By Theorem 15.9.1, there is a continuous, invertible linear map T from
`2(Z) onto V0 given by T a = ∑n anh(x− n). By Theorem 15.9.6, the (continuous)
function g with Fourier series t0 +∑

∞
j=1 2t j cos jθ satisfies T ∗T = Mg and there are

constants 0 < A2 ≤ B2 < ∞ such that

A2 ≤ g(θ)≤ B2 for all −π ≤ θ ≤ π.

In particular, g−1/2 is bounded above by 1/A.
Now compute the Fourier series of g−1/2, say

g−1/2 ∼∑
n

cne−inθ = c0I +
∞

∑
k=1

2ck coskθ ,

where
ck = c−k =

1
2π

∫
π

−π

cosnθ√
g(θ)

dθ .
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We claim that the orthogonal generator is obtained by the formula

ϕ(x) = T g−1/2 =
∞

∑
n=−∞

cnh(x−n).

Indeed, 〈
ϕ(x− j),ϕ(x− k)

〉
=
〈
Te−i jθ g−1/2(θ),Te−ikθ g−1/2(θ)

〉
=
〈
T ∗Te−i jθ g−1/2(θ),e−ikθ g−1/2(θ)

〉
=
〈
MgM−1/2

g e−i jθ ,M−1/2
g e−ikθ

〉
=
〈
M−1/2

g MgM−1/2
g e−i jθ ,e−ikθ

〉
=
〈
e−i jθ ,e−ikθ

〉
= δi j.

So {ϕ(x− k) : k ∈ Z} is orthonormal.
It is clear that each ϕ(x− k) belongs to V0, since they are in the span of the

h(x− j)’s. Conversely, observe that ϕ(x− k) = T M−1/2
g eikθ . Thus

span{ϕ(x− k) : k ∈ Z}= T M−1/2
g L2(T) = T L2(T) = V0

because Mg is invertible and so M−1/2
g L2(T) = L2(T), and T maps L2(T) onto V0

by Corollary 15.9.2. So {ϕ(x− k) : k ∈ Z} is an orthonormal basis for V0. �

The second notion that arose in our construction of a continuous wavelet was a
weaker notion of a multiresolution using Riesz bases.

15.9.8. DEFINITION. A Riesz multiresolution of L2(R) with scaling func-
tion h is the sequence of subspaces Vj = span

{
h(2kx− j) : j ∈ Z

}
provided that the

sequence satisfies the following properties:

(1) Riesz basis: {h(x− j) : j ∈ Z} is a Riesz basis for V0.
(2) nesting: Vk ⊂Vk+1 for all k ∈ Z.
(3) scaling: f (x) ∈Vk if and only if f (2x) ∈Vk+1.
(4) density:

⋃
k∈ZVk = L2(R).

(5) separation:
⋂

k∈ZVk = {0}.

The main result is now a matter of collecting together the previous theorems.

15.9.9. THEOREM. Suppose that h is the scaling function for a Riesz multires-
olution Vj = span

{
h(2kx− j) : j ∈ Z

}
. Assume that there is a continuous function

with Fourier series ‖h‖2
2 +∑

∞
j=1 2〈h(x),h(n−k)〉cos jθ . Then there exists a scaling

function ϕ generating the same nested sequence of subspaces. Consequently, there
is a wavelet basis for L2(R) compatible with this decomposition.



446 15 Wavelets

PROOF. Theorem 15.9.7 provides an orthogonal scaling function for this resolu-
tion. Then Theorem 15.4.2 provides an algorithm for constructing the corresponding
wavelet. �

15.9.10. EXAMPLE. We finish this section by describing some smoother ex-
amples of wavelets, known as Battle–Lemarié wavelets or B-spline wavelets. Let
N0 = χ[0,1). For each n≥ 0, define

Nn(x) = Nn−1 ∗N0(x) =
∫ x

x−1
Nn−1(t)dt.

For example, N1(x) = h(x−1) is a translate of the hat function,

N2(x) =


1
2 x2 for 0≤ x≤ 1,
3
4 − (x− 3

2 )2 for 1≤ x≤ 2,
1
2 (3− x)2 for 2≤ x≤ 3,

and

N3(x) =


1
6 x3 for 0≤ x≤ 1,
1
6 x3− 2

3 (x−1)3 for 1≤ x≤ 2,
1
6 (4− x)3− 2

3 (3− x)3 for 2≤ x≤ 3,
1
6 (4− x)3 for 3≤ x≤ 4.

Figure 15.7 gives the graphs of N2 and N3. Notice that N3(x) is a cubic spline. That
is, N3 is C2, has compact support, and on each interval [k,k +1] it is represented by
a cubic polynomial. See the exercises for hints on establishing similar properties for
general n.

x0 1 2 3

y
1 y = N2(x)

x0 1 2 3 4

y
1 y = N3(x)

FIG. 15.7 The graphs of N2 and N3.
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Let S(n)
k denote the subspace of L2(R) consisting of splines of order n with nodes

at the points 2−kZ. These are the L2 functions that have n−1 continuous derivatives
such that the restriction to each dyadic interval [2−k j,2−k( j +1)] is a polynomial of
degree n. Clearly for each fixed n, the sequence

· · · ⊂ S(n)
−2 ⊂ S(n)

−1 ⊂ S(n)
0 ⊂ S(n)

1 ⊂ S(n)
2 ⊂ ·· ·

is nested and satisfies the scaling property.
In fact, for each n, this forms a Riesz multiresolution of L2(R) with scaling func-

tion Nn(x). We will establish this for n = 3.
Theorem 10.9.1 showed that every continuous function f on the closed interval

[−2N ,2N ] is the uniform limit of a sequence of cubic splines hk with nodes at 2−kZ.
These cubic splines may be chosen to have support in [−2N ,2N ] as well. Thus

lim
k→∞

‖ f −hk‖2
2 = lim

k→∞

∫ 2n

−2n
| f (x)−hk(x)|2 dx≤ 2N+1 lim

k→∞
‖ f −hk‖2

∞ = 0.

So f is the limit in L2 of a sequence of cubic splines. It follows that
⋃

k S(3)
k is dense

in L2(R).
The separation property is established in much the same way as the piecewise

linear case. Suppose that f is a function in
⋂

k S(3)
k . For k ≤ 0, functions in S(3)

k are
cubic polynomials on [0,2|k|] and on [−2|k|,0]. Hence the restrictions of f to [0,∞)
and to (−∞,0] agree with cubic polynomials. A nonzero cubic polynomial p has∫

∞

0
|p(x)|2 dx = +∞ =

∫ 0

−∞

|p(x)|2 dx.

So the only L2(R) function that is cubic on both half-lines is the zero function. Thus
f = 0 is the only point in the intersection.

Finally, we will show that translates of N3(x) form a Riesz basis for L2(R). By
Theorem 15.9.6, we must compute t j = 〈N3(x),N3(x− j)〉. By symmetry, t−k = tk
and the fact that N3 is supported on [0,4] means that tk = 0 for |k| ≥ 4. Therefore, it
suffices to compute t0, t1, t2, and t3. We spare the reader the tedious calculation and
use Maple to obtain

t0 = 151
315 , t1 = t−1 = 397

1680 , t2 = t−2 = 1
42 , t3 = t−3 = 1

5040 .

Thus we are led to consider the function

g(θ) = 1208
2520 + 1191

2520 cosθ + 60
2520 cos2θ + 1

2520 cos3θ .

An easy calculation shows that this takes its minimum when cosθ = −1 and the
minimum value is 76

2520 > 0. Since this function is positive, Theorem 15.9.9 shows
that there is a wavelet basis consisting of cubic splines.
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Exercises for Section 15.9

A. Let ϕ = χ[0,2). Show that {ϕ(x− j) : j ∈ Z} is not a Riesz basis for its span.

B. Show that if {h(x− j) : j ∈ Z} is a Riesz basis for V0, then {2k/2h(2kx− j) : j ∈ Z} forms a
Riesz basis for Vk for each k ∈ Z.

C. Show that if T is an invertible linear map, then T−1 is linear.

D. Let T be a linear map from one Hilbert space H to itself. Prove that T is continuous if and
only if it is bounded. HINT: If not bounded, find xn with ‖xn‖→ 0 while ‖T xn‖→ ∞.

E. Recall that `0 is the nonclosed subspace of `2(Z) of elements with only finitely many nonzero
entries. Show that if T is a linear map from `0 into a Hilbert space H with ‖T a‖ ≤ B‖a‖2,
then T extends uniquely to a continuous function on `2(Z) into H .
HINT: Fix a ∈ `2(Z) and ε > 0. Show that if b,c ∈ `0 and both lie in the ε/(2B) ball about a,
then ‖T b−T c‖ < ε . Hence deduce that if (bi) and (c j) are two sequences in `0 converging
to a, then limi T bi = lim j T c j . Consequently, show that setting T a to be this limit determines
a continuous function on `2(Z) extending T .

F. Suppose that {xn : n ∈ Z} is a Riesz basis for H .
(a) Show that there is a unique vector yn orthogonal to the subspace Mn = span{x j : j 6= n}

such that 〈xn,yn〉= 1.
(b) Show that if z ∈H , then z = ∑n〈z,yn〉xn.
(c) Show that {yn : n ∈ Z} is a Riesz basis for H .

HINT: If (an) ∈ `2, there is another sequence (bn) such that ∑n anyn = ∑n bnxn. Apply the
Cauchy–Schwarz inequality to both

〈
∑ j a jx j,∑k akyk

〉
and

〈
∑ j b jx j,∑k akyk

〉
.

G. Show that {N2(x− k) : k ∈ Z} is a Riesz basis for its span.

H. Prove by induction on n≥ 1 that
(a) Nn is C(n−1).
(b) Nn|[ j, j+1] is a polynomial of degree n for each j ∈ Z.
(c) {x ∈ R : Nn(x) > 0}= (0,n+1).
(d) ∑k Nn(x− k) = 1 for all x ∈ R.



Chapter 16
Convexity and Optimization

Optimization is a central theme of applied mathematics that involves minimizing
or maximizing various quantities. This is an important application of the derivative
tests in calculus. In addition to the first and second derivative tests of one-variable
calculus, there is the powerful technique of Lagrange multipliers in several vari-
ables. This chapter is concerned with analogues of these tests that are applicable
to functions that are not differentiable. Of course, some different hypothesis must
replace differentiability, and this is the notion of convexity. It turns out that many
applications in economics, business, and related areas involve convex functions. As
in other chapters of this book, we concentrate on the theoretical underpinnings of
the subject. The important aspect of constructing algorithms to carry out our pro-
gram is not addressed. However, the reader will be well placed to read that material.
Results from both linear algebra and calculus appear regularly.

The study of convex sets and convex functions is a comparatively recent devel-
opment. Although convexity appears implicitly much earlier (going back to work
of Archimedes, in fact), the first papers on convex sets appeared at the end of the
nineteenth century. The main theorems of this chapter, characterizations of solutions
of optimization problems, first appeared around the middle of the twentieth century.
Starting in the 1970s, there has been considerable work on extending these methods
to nonconvex functions.

16.1 Convex Sets

Although convex subsets can be defined for any normed vector space, we concen-
trate on Rn with the Euclidean norm. For this space, we have an inner product and
the Heine–Borel Theorem (4.4.6) characterizing compact sets in Rn as useful tools.

16.1.1. DEFINITION. A subset A of Rn is called a convex set if

λa+(1−λ )b ∈ A for all a,b ∈ A and λ ∈ [0,1].
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Let [a,b] = {λa+(1−λ )b : λ ∈ [0,1]} denote the line segment joining points a
and b in Rn. Define (a,b), [a,b), and (a,b] in the analogous way. You should note
that λ ∈ (0,1] corresponds to [a,b). Notice that A is convex if and only if [a,b]⊂ A
whenever a,b ∈ A. See Figure 16.1

FIG. 16.1 A convex and a nonconvex set.

16.1.2. DEFINITION. A subset A of Rn is an affine set if

λa+(1−λ )b ∈ A for all a,b ∈ A and λ ∈ R.

A subset C of Rn is a cone if it is a convex set that contains all of its positive scalar
multiples, that is,

λa ∈C for all a ∈C and λ > 0.

Clearly, affine sets and cones are convex but not conversely.

There is some special terminology for this chapter: We reserve linear function
for functions satisfying f (λa+µb) = λ f (a)+µ f (b), for all a,b in the domain and
all scalars λ and µ . We use affine function for a function g given by g(x) = f (x)+c,
where f is a linear function and c is a constant. The reader should show that a
function f : Rn → Rm is linear or affine if and only if the graph of f is either a
subspace or an affine set, respectively (Exericse 16.1.I).

Convex sets are ubiquitous and we give a few examples, mostly without proof.
Proving the following assertions is a useful warm-up exercise.

16.1.3. EXAMPLES.
(1) A subspace of Rn is both affine and a cone.

(2) Any ball Br(a) = {x ∈Rn : ‖x−a‖ ≤ r} in Rn is convex. Indeed, if x,y ∈ Br(a)
and λ ∈ [0,1], then

‖λx+(1−λ )y−a‖= ‖λ (x−a)+(1−λ )(y−a)‖
≤ λ‖x−a‖+(1−λ )‖y−a‖
≤ λ r +(1−λ )r = r.

So λx+(1−λ )y ∈ Br(a). Clearly, the ball is neither affine nor a cone.
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(3) The half-space {(x,y) : ax+by≥ 0} is a closed convex cone in R2.

(4) In Rn, the positive orthant Rn
+ = {(x1, . . . ,xn) : xi > 0} is a cone.

(5) If A⊂ R, then A is convex if and only if A is an interval, possibly unbounded.

(6) If A⊂ Rm is convex and T : Rm → Rn is linear, then T (A) is convex.

(7) If A⊂Rn is convex, then any translate of A (i.e., a set of the form A+x, x∈Rn)
is convex.

We now collect a number of basic properties of convex and affine sets. The proof
of the first lemma is left as an exercise.

16.1.4. LEMMA. If {Ai : i ∈ I} is a collection of convex subsets of Rn, then⋂
i∈I Ai is convex. Similarly, the intersection of a collection of affine sets is affine

and the intersection of a collection of cones is a cone.

16.1.5. LEMMA. If A ⊂ Rn is a nonempty affine set, then it is the translate of
a unique subspace of Rn.

PROOF. Fix a0 ∈ A, and let L = {a−a0 : a ∈ A}. If v = a−a0 ∈ L and t ∈ R, then
tv+a0 = ta+(1− t)a0 ∈ A. Hence tv lies in A−a0 = L. Suppose that w = b−a0 is
another element of L. Then since A is convex, (a+b)/2 belongs to A. Now

(v+w)+a0 = a+b−a0 = 2
( a+b

2

)
+(1−2)a0 ∈ A.

So v+w belongs to L. This shows that L is a subspace.
To see that L is unique, suppose that A = M + y, where M is also a subspace

of Rn. Then L = A− a0 = M +(y− a0). Since 0 is in L, M contains a0− y and so
M +(y−a0) = M. Therefore, L = M. �

16.1.6. DEFINITION. Suppose that S is a subset of Rn. The convex hull of
S, denoted by conv(S), is the intersection of all convex subsets of Rn containing S.
The closed convex hull of S, denoted by conv(S), is the intersection of all closed
convex subsets of Rn containing S. The affine hull of S, denoted by aff(S), is the
intersection of all affine subsets of Rn containing S. Let L(S) denote the unique
subspace (as in Lemma 16.1.5) that is a translate of aff(S). The dimension of S,
denoted by dim(S), is the dimension of L(S). Finally, if S is a subset of Rn, we use
cone(S) for the intersection of all cones containing S.

By Lemma 16.1.4, conv(S) and conv(S) are convex. Hence conv(S) is the small-
est convex set containing S. Therefore, conv(conv(S)) = conv(S). The intersection
of closed sets is closed, so conv(S) is the smallest closed convex set containing
S. Moreover, conv(conv(S)) = conv(conv(S)) = conv(S). Likewise, aff(aff(S)) =
aff(S) is the smallest affine set containing S and cone(cone(S)) = cone(S) is the
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smallest cone containing S. Affine sets are closed because (finite-dimensional) sub-
spaces are closed.

Here is a useful description of the convex hull of an arbitrary set S.

16.1.7. THEOREM. Suppose that S is a subset of Rn. Then a belongs to
conv(S) if and only if there are points s1, . . . ,sr in S and scalars λ1, . . . ,λr in [0,1]

with
r
∑

i=1
λi = 1 such that

r
∑

i=1
λisi = a.

PROOF. We claim that

C =
{ r

∑
i=1

λisi : r ≥ 1, si ∈ S, λi ∈ [0,1],
r

∑
i=1

λi = 1
}

is a convex set. Consider two points of C, say a = ∑
n
i=1 µisi and b = ∑

m
j=1 ν jt j,

where the si and t j are in S, µi and ν j are in [0,1], and ∑
n
i=1 µi = 1 = ∑

m
j=1 ν j. Then

λa+(1−λ )b can be written as

n

∑
i=1

λ µisi +
m

∑
j=1

(1−λ )ν jt j.

This is a linear combination of elements of S with positive coefficients satisfying

n

∑
i=1

λ µi +
m

∑
j=1

(1−λ )ν j = λ +(1−λ ) = 1.

Thus λa+(1−λ )b also belongs to C.
Since C is convex and contains S, it follows that conv(S) is contained in C. If we

show that C is contained in conv(S), then it will follow that they are equal.
Suppose that a = ∑

r
i=1 λisi, where the λi and si satisfy the conditions on C. Set

Λk = ∑
k
i=1 λi for 1 ≤ k ≤ r. Let k0 be the smallest k for which λk > 0. Inductively

define points ak0 , . . . ,ar in S by ak0 = sk0 and

ak =
Λk−1

Λk
ak−1 +

λk

Λk
sk for k0 < k ≤ r.

Since each sk belongs to S, it follows by induction that these convex combinations

all lie in conv(S). However, we also show by induction that ak =
k
∑

i=1

λi

Λk
si for k≥ k0.

This is evident for k = k0. Suppose that it is true for k−1. Then

ak =
Λk−1

Λk

k−1

∑
i=1

λi

Λk−1
si +

λk

Λk
sk =

k

∑
i=1

λi

Λk
si.

In particular, since Λr = 1, we have that ar =
r
∑

i=1
λisi = a lies in conv(S). �
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Since we are working in finite dimensions, this result may be sharpened so that
each point in the convex hull is a combination of at most n+1 points.

16.1.8. CARATHÉODORY’S THEOREM.
Suppose that S is a subset of Rn. Then each a ∈ conv(S) may be expressed as a
convex combination of n+1 elements of S.

PROOF. By the previous proposition, a may be written as a convex combination

a =
r

∑
i=1

λisi where λi ≥ 0,
r

∑
i=1

λi = 1, and si ∈ S, for 1≤ i≤ r.

If r ≥ n+2, we will construct another representation of a using fewer vectors. Thus
we eventually reduce this to a sum of at most n+1 elements. We may suppose that
λi > 0 for each i, for otherwise we reduce the list by dropping si0 if λi0 = 0.

Consider vi = si − sr for 1 ≤ i < r. These are r− 1 ≥ n + 1 such vectors in an
n-dimensional space, and thus they are linearly dependent. Find constants µi not all
0 such that

0 =
r−1

∑
i=1

µi(si− sr) =
r

∑
i=1

µisi,

where µr =−∑
r−1
i=1 µi. Let J = {i : µi < 0}, which is nonempty because ∑

r
i=1 µi = 0.

Set δ = min{λi/|µi| : i ∈ J}, and pick i0 such that λi0 =−δ µi0 . Then

a =
r

∑
i=1

λisi +
r

∑
i=1

δ µisi =
r

∑
i=1

(λi +δ µi)si.

By construction, the constants νi = λi +δ µi are at least zero and ∑
r
i=1 νi = 1. Plus,

νi0 = 0. So deleting si0 from the list represents a as a convex combination of fewer
elements. �

16.1.9. COROLLARY. If A⊂ Rn is compact, then conv(A) is compact.

PROOF. Define a subset X = An+1 × ∆n+1 of R(n+1)2
consisting of all points

x = (a1,a2, . . . ,an+1,λ1, . . . ,λn+1), where ai ∈ A, λi ∈ [0,1], and ∑
n+1
i=1 λi = 1. It

is easy to check that X is closed and bounded and therefore is compact. Consider
the function f (x) = ∑

n+1
i=1 λiai. This is a continuous function from X into conv(A).

By Carathéodory’s Theorem, f maps X onto conv(A). By Theorem 5.4.3, f (X) is
compact. Therefore, conv(A) is compact. �

16.1.10. DEFINITION. A hyperplane is an affine set of codimension 1. Thus
a hyperplane in Rn has dimension n−1.

Hyperplanes are rather special affine sets, and they serve to split the whole space
into two pieces. This is a consequence of the following result.
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16.1.11. PROPOSITION. A subset H of Rn is a hyperplane if and only if
there are a nonzero vector h ∈ Rn and a scalar α ∈ R such that

H = {x ∈ Rn : 〈x,h〉= α}.

PROOF. If H is a hyperplane and x0 ∈ H, then L(H) = H − x0 is a subspace of
dimension n− 1. Choose a nonzero vector h orthogonal to L(H). This is used to
define a linear map from Rn into R by f (x) = 〈x,h〉. Since the set of all vectors
orthogonal to h forms a subspace of dimension n−1 containing L(H), it follows that
L(H) = {h}⊥ = ker f .

Set α = f (x0). Then f (x) = α if and only if f (x− x0) = f (x)−α = 0, which
occurs if and only if x− x0 ∈ L(H) or equivalently, when x ∈ L(H)+ x0 = H.

Conversely, the linear map f (x) = 〈x,h〉 from Rn into R maps onto R, since
h 6= 0. Thus L(H) := ker f = {h}⊥ is a subspace of Rn of dimension n−1. Let x0 be
any vector with f (x0) = α . Then following the argument of the previous paragraph,
the set H = {x ∈ Rn : 〈x,h〉= α}= L(H)+ x0 is a hyperplane. �

Note that the function f (or vector h) is not unique, but it is determined up to a
scalar multiple because the subspace H⊥ is one-dimensional. When working with
a hyperplane, we will usually assume that a choice of this function has been made.
This allows us to describe two half-spaces associated to H, which we denote by
H+ = {x ∈Rn : f (x)≥ α} and H− = {x ∈Rn : f (x)≤ α}. These two subsets don’t
depend on the choice of f except that a sign change can interchange H+ with H−.

Exercises for Section 16.1

A. If A is a convex subset of Rn, show that A is convex.

B. (a) Prove Lemma 16.1.4: The intersection of convex sets is convex.
(b) State and prove the analogous result for cones and affine sets.

C. Suppose that A is a closed subset of Rn and whenever a,b ∈ A, the point (a + b)/2 is in A.
Show that A is convex. HINT: Show that λa+(1−λ )b ∈ A if λ = i/2k for 1≤ i < 2k.

D. If A is a convex subset of Rn such that aff(A) 6= Rn, show that int(A) is empty.

E. Let S be a subset of Rn. Show that aff(S) =
{

∑
r
i=1 λisi : si ∈ S, λi ∈ R, ∑

n
i=1 λi = 1

}
and

L(S) =
{

∑
r
i=1 λisi : si ∈ S, λi ∈ R, ∑

n
i=1 λi = 0

}
.

F. Suppose that A is a convex subset of Rn and that T is a linear transformation from Rn into
Rm. Prove that TA is convex and aff(TA) = T aff(A).

G. If A⊂ Rm and B⊂ Rn, show that conv(A×B) = conv(A)× conv(B) in Rm+n.

H. (a) If S is a bounded subset of Rn, prove that conv(S) is bounded.
(b) Give an example of a closed subset S of R2 such that conv(S) is not closed.

I. Recall that the graph of f : Rn →Rm is G( f ) = {(x,y) ∈Rn×Rm : f (x) = y}. Show that f is
a linear function if and only if G( f ) is a linear subspace of Rm+n and f is an affine function
if and only if G( f ) is an affine set.

J. A function f on R is convex if f
(
λx + (1− λ )y

)
≤ λ f (x) + (1− λ ) f (y) for all x,y ∈ R

and 0 ≤ λ ≤ 1. If f is any function on R, define epi( f ) = {(x,y) ∈ R2 : y ≥ f (x)} to be the
epigraph of f . Show that f is a convex function if and only if epi( f ) is a convex set.
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K. Let A and B be convex subsets of Rn. Prove that conv(A∪B) equals the union of all line
segments [a,b] such that a ∈ A and b ∈ B.

L. The asymptotic cone. Let A⊂ Rn be closed and convex, and x ∈ A.

(a) Show that s(A− x)⊂ t(A− x) if 0 < s < t.
(b) Show that A∞(x) =

⋂
t>0 t(A− x) := {d : x+ td ∈ A for all t > 0} is a cone.

(c) Show that A∞(x) does not depend on the point x. HINT: Consider (1− 1
k )y+ 1

k (x+ ktd).
(d) Prove that A is compact if and only if A∞ = {0}. HINT: If ‖ak‖→∞, find a cluster point

d of ak/‖ak‖. Argue as in (c).

M. A set S ⊂ Rn is a star-shaped set with respect to v ∈ S if [s,v]⊂ S for all s ∈ S.

(a) Show that S is convex if and only if it is star shaped with respect to every v ∈ S.
(b) Find a set that is star shaped with respect to exactly one of its points.

N. (a) Given a sequence of convex sets B1 ⊂ B2 ⊂ B3 ⊂ ·· · in Rn, show that
⋃

i≥1 Bi is convex.
(b) For any sequence of convex sets B1,B2,B3, . . . in Rn, show that

⋃
j≥1(

⋂
i≥ j Bi) is convex.

O. A set S ⊂ Rn is called affinely dependent if there is an s ∈ S such that s ∈ aff(S\{s}). Show
that S is affinely dependent if and only if there are distinct elements s1, . . . ,sr of S and scalars
µ1, . . . ,µr , not all zero, such that ∑

r
i=1 µisi = 0 and ∑

r
i=1 µi = 0. HINT: Solve for some si.

P. A subset S⊂Rn is affinely independent if it is not affinely dependent. Show that an affinely
independent set in Rn can have at most n + 1 points. HINT: If {s0, . . . ,sn} ⊂ S, show that
{si− s0 : 1≤ i≤ n} is linearly independent.

Q. Radon’s Theorem. Suppose that s1, . . . ,sr are distinct points in Rn, with r > n+1. Show that
there are disjoint sets I and J with I∪ J = {1, . . . ,r} such that the convex sets conv{si : i ∈ I}
and conv{s j : j ∈ J} have nonempty intersection. HINT: Use the previous two exercises to
obtain 0 as a nontrivial linear combination of these elements. Then consider those elements
with positive coefficients in this formula.

R. Helly’s Theorem. Let Ck be convex subsets of Rn for 1 ≤ k ≤ m. Suppose that any n +
1 of these sets have nonempty intersection. Prove that the whole collection has nonempty
intersection. HINT: Use induction on m ≥ n + 1 sets. If true for m− 1, choose x j in the
intersection of C1, . . . ,Cj−1,Cj+1, . . . ,Cm. Apply Radon’s Theorem.

16.2 Relative Interior

In working with a convex subset A of Rn, the natural space containing it is often
aff(A), not Rn, which may be far too large. The affine hull is a better place to work
for many purposes. Indeed, if A is a convex subset of Rn with dimA = k < n, then
thinking of A simply as a subset of aff(A), which may be identified with Rk, al-
lows us to talk more meaningfully about topological notions such as interior and
boundary. One sign that the usual interior is not useful is Exercise 16.1.D, which
shows that A has empty interior whenever dim(A) < n. This section is devoted to
developing the properties of the interior relative to aff(A).

16.2.1. DEFINITION. If A is a convex subset of Rn, then the relative interior
of A, denoted by ri(A), is the interior of A relative to aff(A). That is, a ∈ ri(A) if and
only if there is an ε > 0 such that Bε(a)∩ aff(A)⊂ A.

Define the relative boundary of A, denoted by rbd(A), to be A\ ri(A).
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16.2.2. EXAMPLE. If dimA = k < n, then ri(A) is the interior of A when
A is considered as a subset of aff(A), which is identified with Rk. For exam-
ple, consider the closed convex disk A = {(x,y,z) ∈ R3 : x2 + y2 ≤ 1,z = 0}.
Then aff(A) = {(x,y,z) ∈ R3 : z = 0} is a plane. The relative interior of A is
ri(A) = {(x,y,z) ∈ R3 : x2 + y2 < 1,z = 0}, the interior of the disk in this plane,
while the interior as a subset of R3 is empty. The relative boundary is the circle
{(x,y,z) ∈ R3 : x2 + y2 = 1,z = 0}.

Notice that A ⊂ B does not imply that ri(A) ⊂ ri(B) because an increase in
dimension can occur. For example, let B = {(x,y,z) : x2 + y2 ≤ 1,z ≤ 0}. Then
ri(B) = int(B) = {(x,y,z) : x2 + y2 < 1,z < 0}. So A ⊂ B but ri(A) and ri(B) are
disjoint.

The following result shows that the phenomenon above occurs precisely because
of the dimension shift. Despite its trivial proof, it will be quite useful.

16.2.3. LEMMA. Suppose that A and B are convex subsets of Rn with A ⊂ B.
If aff(A) = aff(B), then ri(A)⊂ ri(B).

PROOF. If a ∈ ri(A), then there is an ε > 0 with Bε(a) ∩ aff(A) ⊂ A. Because
aff(B) = aff(A), we have Bε(a)∩ aff(B)⊂ A⊂ B, so a ∈ ri(B). �

A polytope is the convex hull of a finite set. Now we obtain an analogue of
Theorem 16.1.7 describing the relative interior of a polytope.

16.2.4. LEMMA. Let S = {s1, . . . ,sr} be a finite subset of Rn. Then

ri
(

conv(S)
)

=
{ r

∑
i=1

λisi : λi ∈ (0,1),
r

∑
i=1

λi = 1
}

.

PROOF. By Theorem 16.1.7, conv(S) =
{

∑i λisi : λi ∈ [0,1], ∑i λi = 1
}
. The sub-

space L(S) is given by Exercise 16.1.E as L(S) =
{

∑i λisi : ∑i λi = 0
}

.
Let e1, . . . ,ek be an orthonormal basis for L(S). Express each e j as a combination

e j = ∑i λi jsi, where ∑i λi j = 0, and define Λ = maxi
(

∑ j λ 2
i j
)1/2. Suppose that x is a

vector in L(S). Then

x =
k

∑
j=1

x je j =
r

∑
i=1

( k

∑
j=1

λi jx j

)
si.

By the Schwarz inequality (4.1.1),∣∣∣ k

∑
j=1

λi jx j

∣∣∣≤ ( k

∑
j=1

λ
2
i j

)1/2( k

∑
j=1

x2
j

)1/2
≤Λ‖x‖.

Thus if ‖x‖ < ε/Λ , then x may be expressed as x = ∑i µisi, where ∑i µi = 0 and
|µi|< ε for 1≤ i≤ r.
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Let a = ∑i λisi, where λi ∈ (0,1) and ∑i λi = 1. Then there is an ε > 0 such that
ε ≤ λi ≤ 1− ε for 1≤ i≤ r. Note that

Bε/Λ (a)∩ aff(S) = a+
(
Bε/Λ (0)∩L(S)

)
.

If x ∈ L(S) and ‖x‖< ε/Λ , we use the representation above to see that

a+ x =
r

∑
i=1

(λi + µi)si.

Now ∑i λi + µi = 1 and λi + µi ∈ [ε,1− ε]+ (−ε,ε) = (0,1). So a + x belongs to
conv(S). This shows that a belongs to ri(conv(S)).

Conversely, suppose that a∈ ri(S). Write a = ∑i λisi, where λi ∈ [0,1] and ∑i λi =
1. We wish to show that it has a possibly different representation with coefficients in
(0,1). Let ε > 0 be given such that Bε(a)∩aff(S)⊂ conv(S). If each λi ∈ (0,1), there
is nothing to prove. Suppose that J = { j : λ j = 0} is nonempty, and let k be chosen
such that λk > 0. Pick a δ > 0 so small that |J|δ < λk and x = δ ∑ j∈J(s j−sk) satisfies
‖x‖< ε . Then a± x belong to conv(S). Write a− x = ∑i µisi, where µi ∈ [0,1] and
∑i µi = 1. Also,

a+ x = ∑
j 6∈J

λisi + ∑
j∈J

δ (s j− sk)

= ∑
j∈J

δ s j +(λk−|J|δ )sk + ∑
i∈(J∪{k})c

λisi =:
r

∑
i=1

νisi.

It is evident from our construction that each νi > 0; and since ∑i νi = 1, all are less

than 1. Now a = ∑i
µi +νi

2
si is expressed with all coefficients in (0,1). �

16.2.5. COROLLARY. If A is a nonempty convex subset of Rn, then ri(A) is
also nonempty. Moreover, aff(ri(A)) = aff(A).

PROOF. Let k = dimconv(A). Then there is a subset S of k + 1 points such that
aff(S) = aff(A). Indeed, fix any element a0 ∈ A. Since L(A) is spanned by {a−a0 :
a ∈ A} and has dimension k, we may choose k vectors a1, . . . ,ak in A such that
ai− a0 are linearly independent. Clearly, they span L(A). So S = {a0, . . . ,ak} will
suffice.

Hence, by Lemma 16.2.3, ri(convA) contains ri(convS). Let a = 1
k+1 ∑

k
i=0 ai.

By Lemma 16.2.4, ri(convS) is nonempty and, in particular, contains the points
bi = (a + 2ai)/3 and ci = (2a + ai)/3 for 0 ≤ i ≤ k. So aff(ri(convS)) contains
2bi− ci = ai for 0≤ i≤ k, whence it equals aff(A) as claimed. �

The next theorem will be surprisingly useful. In particular, this theorem applies
if b is in the relative boundary, rbd(A).
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16.2.6. ACCESSIBILITY LEMMA.
Suppose that A is a convex subset of Rn. If a ∈ ri(A) and b ∈ A, then [a,b) is con-
tained in ri(A).

PROOF. We need to show that λa +(1−λ )b ∈ ri(A) for λ ∈ (0,1). Choose ε > 0
such that Bε(a)∩ aff(A) ⊂ A. Since b ∈ A, pick c ∈ A such that x = b− c ∈ L(A)
satisfies ‖x‖< ελ/(2−2λ ). Suppose that z ∈ L(A) with ‖z‖< ε/2. Then

λa+(1−λ )b+λ z = λa+(1−λ )(c+ x)+λ z

= λ (a+ z+(1−λ )x/λ )+(1−λ )c.

Since ‖z+(1−λ )x/λ‖ ≤ ‖z‖+(1−λ )‖x‖/λ < ε/2+ ε/2 = ε , this is a vector in
Bε(0)∩L(A). Hence d = a+ z+(1−λ )x/λ belongs to A. So λa+(1−λ )b+λ z =
λd +(1−λ )c also lies in A. Therefore a+(1−λ )b belongs to ri(A). �

Applying the preceding result when b ∈ ri(A) shows that ri(A) is convex. Since
int(A) is either the empty set or equal to ri(A), we have the following:

16.2.7. COROLLARY. If A is a convex subset of Rn, so are ri(A) and int(A).

16.2.8. THEOREM. If A is a convex subset of Rn, then the three sets ri(A), A,
and A all have the same affine hulls, closures, and relative interiors.

PROOF. By Corollary 16.2.5, aff(ri(A)) = aff(A). Since the affine hull is closed,
A⊂ aff(A) and hence aff(A) = aff(A).

Now ri(A) ⊂ A ⊂ A, and so ri(A) ⊂ A = A, where the equality follows from
Proposition 4.3.5. Suppose that b ∈ A. By Corollary 16.2.5, ri(A) contains a point
a. Hence by the Accessibility Lemma (16.2.6), λa +(1−λ )b belongs to ri(A) for
0 < λ ≤ 1. Letting λ tend to 0 shows that b ∈ ri(A). Thus ri(A) = A.

For relative interiors, first observe that since the three sets have the same affine
hull, Lemma 16.2.3 shows that ri(ri(A))⊂ ri(A)⊂ ri(A). Now ri(ri(A)) = ri(A). For
if a ∈ ri(A) and x ∈ Bε(a)∩ aff(A) ⊂ A, then using r = ε −‖x− a‖ > 0, it follows
that Br(x)∩aff(A)⊂ Bε(a)∩aff(A)⊂ A. Hence Bε(a)∩aff(A) is contained in ri(A)
and so a ∈ ri(ri(A)).

Suppose that a ∈ ri(A). Then there is an ε > 0 such that Bε(a)∩ aff(A) ⊂ A.
Pick any b ∈ ri(A), and set x = (a−b)/‖a−b‖. Then c± = a± εx belong to A. But
c− = (1− ε)a + εb ∈ ri(A) by the Accessibility Lemma. Hence a = (c+ + c−)/2
belongs to ri(A), again by the Accessibility Lemma. Therefore, ri(A) = ri(A). �

The next two results will allow us to conveniently compute various combinations
of convex sets such as sums and differences. The first is quite straightforward and is
left as an exercise.

16.2.9. PROPOSITION. If A⊂ Rn and B⊂ Rm are convex sets, then A×B is
convex, ri(A×B) = ri(A)× ri(B), and aff(A×B) = aff(A)× aff(B).
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16.2.10. THEOREM. If A is a convex subset of Rm and T is a linear map from
Rm to Rn, then T ri(A) = ri(TA).

PROOF. By Exercise 16.1.F, TA is convex. Using Theorem 16.2.8 for the first equal-
ity and the continuity of T (see Corollary 5.1.7) for the second containment, we have

TA⊂ T A = T ri(A)⊂ T ri(A)⊂ TA.

Taking closures, we obtain T ri(A) = TA. Using Theorem 16.2.8 again,

ri(TA) = ri(TA) = ri(T ri(A)) = ri(T ri(A))⊂ T ri(A).

For the reverse containment, let a ∈ ri(A). We will show that Ta lies in ri(TA).
By Corollary 16.2.5, ri(TA) is nonempty. So we may pick a point b ∈ A with T b in
ri(TA). Since a ∈ ri(A), there is an ε > 0 such that c = a + ε(a− b) belongs to A.
However, a = 1

1+ε
c+ ε

1+ε
b, so a∈ [b,c). By linearity, Ta lies in [T b,T c). Therefore,

by the Accessibility Lemma (16.2.6), Ta belongs to ri(TA). �

16.2.11. COROLLARY. Suppose that A and B are convex subsets of Rn. Then
ri(A+B) = ri(A)+ ri(B) and ri(A−B) = ri(A)− ri(B).

PROOF. For the two cases, define maps T from Rn×Rn to Rn by T (a,b) = a±b.
Then T (A×B) = A±B. By the two previous results,

ri(A±B) = T ri(A×B) = T (ri(A)× ri(B)) = ri(A)± ri(B).
�

Exercises for Section 16.2
A. Write out a careful proof of Proposition 16.2.9.

B. Explain why the notion of relative closure of a convex set isn’t needed.

C. Let C be a convex subset of Rn and let U be an open set that intersects C. Show that U ∩ ri(C)
is nonempty.

D. Suppose that a convex subset A of Rn intersects every (affine) line in a closed interval. Show
that A is closed. HINT: Connect b ∈ A to a in ri(A).

E. Let A be a convex subset of Rn that is dense in aff(A). Prove that A = aff(A).

F. Let A be a convex subset of Rn. Show that if B is a compact subset of ri(A), then conv(B) is
a compact convex subset of ri(A). HINT: Corollary 16.1.9

G. (a) If A and B are closed convex sets and A is compact, show that A+B is a closed and convex.
(b) If B is also compact, show that A+B is compact.
(c) Give an example of two closed convex sets with nonclosed sum. HINT: Look for two

closed convex subsets of R2 that lie strictly above the x-axis but 0 is a limit point of A+B.

H. Suppose that C and D are convex subsets of Rn and that C ⊂ D. Show that if ri(D)∩C is
nonempty, then ri(C)⊂ ri(D). HINT: If d ∈ ri(D)∩C and c ∈ ri(C), extend [d,c] beyond c.

I. Suppose that A and B are convex subsets of Rn with ri(A)∩ ri(B) 6= ∅.

(a) Show that A∩B = A∩B. HINT: Connect b ∈ A∩B to a ∈ ri(A)∩ ri(B).
(b) Show that ri(A∩B) = ri(A)∩ ri(B).
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16.3 Separation Theorems

The goal of this section is to show that we can separate two disjoint convex sets from
one another by a hyperplane. Consider a convex set A ⊂ R2 and a point b /∈ A. Ge-
ometrically, one can see that there is a line that separates b from A. The appropriate
generalization, replacing the line with a hyperplane, is true in Rn. A general form of
this theorem, called the Hahn–Banach theorem, holds for any normed vector space.
We prove this result for Rn, where we can use the Heine–Borel Theorem (4.4.6).

We begin by showing that a convex set in Rn always has a unique closest point
to a given point outside. The existence of such a point comes from Exercise 5.4.J,
and does not require convexity. In convexity theory, the map to this closest point is
called a projection, which differs from the meaning of the term in linear algebra.

16.3.1. CONVEX PROJECTION THEOREM.
Let A be a nonempty closed convex subset of Rn. For each point x ∈ Rn, there is a
unique point PA(x) in A that is closest to x. The point PA(x) is characterized by〈

x−PA(x),a−PA(x)
〉
≤ 0 for all a ∈ A.

Moreover, ‖PA(x)−PA(y)‖ ≤ ‖x− y‖ for all x,y ∈ Rn.

Geometrically, the equation says that the line segment [x,PA(x)] makes an obtuse
angle with [a,PA(x)] for every point a ∈ A. The last estimate shows that PA has
Lipschitz constant 1 and, in particular, is continuous.

PROOF. Pick any vector a0 in A, and let R = ‖x−a0‖. Then

0≤ inf{‖x−a‖ : a ∈ A} ≤ R.

The closest point to x in A must belong to A∩BR(x). This is the intersection of two
closed convex sets, and so is closed and convex. Moreover, A∩BR(x) is bounded and
thus compact by the Heine–Borel Theorem (4.4.6). Consider the continuous func-
tion on A∩BR(x) given by f (a) = ‖x−a‖. By the Extreme Value Theorem (5.4.4),
there is a point a1 ∈ A at which f takes its minimum—a closest point.

To see that a1 is unique, we need to use convexity. Suppose that there is another
vector a2 ∈ A with ‖x−a2‖= ‖x−a1‖. We will show that b = 1

2 (a1 +a2) is closer,
contradicting the choice of a1 as a closest point. See Figure 16.2. One way to ac-
complish this is to apply the parallelogram law (see Exercise 16.3.A). Instead, we
give an elementary argument using Euclidean geometry.

Consider the triangle with vertices x, a1, and a2. Since ‖x− a1‖ = ‖x− a2‖,
this triangle is isosceles. Since ‖b− a1‖ = ‖b− a2‖, the point b is the foot of the
perpendicular dropped from x to [a1,a2] and therefore ‖x− b‖ < ‖x− ai‖. Indeed,
∠xbai is a right angle, and the Pythagorean Theorem shows that

‖x−ai‖2 = ‖x−b‖2 +
1
4
‖a1−a2‖2.



16.3 Separation Theorems 461

x

a1

a2
b

FIG. 16.2 The points x, a1, a2, and b.

It now makes sense to define the function PA by setting it to be this unique closest
point to x. Let a 6= PA(x) be any other point in A. Then for 0 < λ ≤ 1,

‖x−PA(x)‖2 < ‖x− (λa+(1−λ )PA(x))‖2 = ‖(x−PA(x))−λ (a−PA(x))‖2

= ‖x−PA(x)‖2−2λ 〈x−PA(x),a−PA(x)〉+λ
2‖a−PA(x)‖2,

so that 〈x− PA(x),a− PA(x)〉 ≤ λ

2 ‖a− PA(x)‖2. Let λ decrease to 0 to obtain
〈x−PA(x),a−PA(x)〉 ≤ 0.

This argument is reversible. If a1 is any point such that 〈x− a1,a− a1〉 ≤ 0 for
all a ∈ A, then

‖x−a‖2 = ‖x−a1‖2−2〈x−a1,a−a1〉+‖a−a1‖2

≥ ‖x−a1‖2 +‖a−a1‖2.

Hence a1 = PA(x) is the unique closest point.
Let x and y be points in Rn. Apply the inequality once for each of x and y:〈

x−PA(x),PA(y)−PA(x)
〉
≤ 0

and 〈
PA(y)− y,PA(y)−PA(x)

〉
=
〈
y−PA(y),PA(x)−PA(y)

〉
≤ 0.

Adding yields 〈(x− y)+(PA(y)−PA(x)),PA(y)−PA(x)〉 ≤ 0. Hence

‖PA(y)−PA(x)‖2 ≤
〈
y− x,PA(y)−PA(x)

〉
≤ ‖y− x‖‖PA(y)−PA(x)‖

by the Schwarz inequality (4.1.1). Therefore, ‖PA(y)−PA(x)‖ ≤ ‖x− y‖. �

16.3.2. EXAMPLE. Let A be the triangle in R2 with vertices (0,0), (1,0), and
(0,1) as in Figure 16.3. Then

PA((x,y)) =


(x,y) if (x,y) ∈ A,
(x,0) if 0≤ x≤ 1 and y≤ 0,
(0,y) if 0≤ y≤ 1 and x≤ 0,
(0,0) if x≤ 0 and y≤ 0,
(1,0) if x≥ 1 and y≤ 0,
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PA((x,y)) =


(1,0) if 0≤ y≤ x−1,
(0,1) if y≥ 1 and x≤ 0,
(0,1) if 0≤ x≤ y−1,

(s,1− s) if x+ y≥ 1 and |y− x| ≤ 1, where s = y+1−x
2 .

A

FIG. 16.3 The triangle A and action of PA.

We can now prove the promised separation theorem, which will be fundamental
to all of our later work. We provide only two consequences in this section. There
are many more.

16.3.3. SEPARATION THEOREM.
Suppose that A is a closed convex set in Rn and b /∈A. Then there are a vector h∈Rn

and scalar α ∈ R such that 〈a,h〉 ≤ α for all a ∈ A but 〈b,h〉 > α . In particular, h
determines a hyperplane H such that A is contained in H− and b is contained in the
interior of H+.

PROOF. Let a1 = PA(b). Since b /∈ A, h = b− a1 is a nonzero vector. Define α =
〈a1,h〉, and let H = {x : 〈x,h〉= α}. By Theorem 16.3.1, if a ∈ A, then 〈b−a1,a−
a1〉 ≤ 0. Rewriting this, we obtain 〈a,h〉 ≤ 〈a1,h〉= α . Therefore, A is contained in
H− = {x ∈ Rn : 〈x,h〉 ≤ α}. On the other hand, 〈b−a1,b−a1〉= ‖h‖2 > 0, which
implies that 〈b,h〉> 〈a1,h〉= α . �

16.3.4. COROLLARY. Let A be a closed convex subset of Rn. Then b belongs
to A if and only if 〈b,x〉 ≤ sup{〈a,x〉 : a ∈ A} for all x ∈ Rn.

PROOF. If b ∈ A, then the inequality is immediate. For the other direction, suppose
that b /∈ A. Take x to be the vector h given by the Separation Theorem,
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〈b,h〉> α ≥ 〈a,h〉 for all a ∈ A.

Thus sup{〈a,x〉 : a ∈ A} ≤ α < 〈b,h〉. Therefore, the inequality of the corollary is
valid precisely for b ∈ A. �

This corollary has a beautiful geometric meaning. The proof is left as Exer-
cise 16.3.E.

16.3.5. COROLLARY. A closed convex set in Rn is the intersection of all the
closed half-spaces that contain it.

16.3.6. DEFINITION. Let A be a closed convex subset of Rn and b ∈ rbd(A).
A supporting hyperplane to A at b is a hyperplane H such that b ∈ H and A is
contained in one of the closed half-spaces determined by H.

If aff(A) is a proper subspace of Rn, then it is contained in a hyperplane that
supports A. We regard this as a pathological situation and call H a nontrivial sup-
porting hyperplane if it does not contain aff(A).

16.3.7. SUPPORT THEOREM.
Let A be a convex subset of Rn and b∈ rbd(A). Then there is a nontrivial supporting
hyperplane to A at b.

PROOF. We may suppose that A is closed by replacing A with A. Let a0 be any
point in ri(A). By the Accessibility Lemma (16.2.6), the interval [a0,b) is contained
in ri(A). By the same token, the point bk := b+ 1

k (b−a0) is not in A for k≥ 1, since
otherwise b would lie in ri(A). Let hk = (bk−PAbk)/‖bk−PAbk‖. The proof of the
Separation Theorem (16.3.3) shows that

〈a,hk〉 ≤ αk := 〈PAbk,hk〉< 〈bk,hk〉 for all a ∈ A.

By the Heine–Borel Theorem (4.4.6), the unit sphere of Rn is compact. Thus the
sequence {hk : k ≥ 1} has a convergent subsequence

(
hki

)∞

i=1 with limit h = lim
i→∞

hki .

Then since PA is continuous,

lim
i→∞

αki = lim
i→∞

〈PAbki ,hki〉= 〈PAb,h〉= 〈b,h〉=: α.

If a ∈ A, then
〈a,h〉= lim

i→∞
〈a,hki〉 ≤ lim

i→∞
αki = α.

So A is contained in the half-space H− = {x : 〈x,h〉 ≤ α}.
The vectors hk all lie in the subspace L(A), and thus so does h. Consequently,

b + h belongs to aff(A). Since 〈b + h,h〉 = α + 1 > α , it follows that H does not
contain aff(A). So H is a nontrivial supporting hyperplane. �
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Exercises for Section 16.3

A. Use the parallelogram law (Exercise 7.4.B) to give a different proof of the uniqueness portion
of Theorem 16.3.1.

B. Let A = Br(a). Find an explicit formula for PA(x).

C. If A = Br(a) and b ∈ rbd(A), show that the unique supporting hyperplane to A at b is
H = {x : 〈x−a,b−a〉= r2}.

D. Let A be a subspace. Show that PA(x) is the (linear) orthogonal projection onto A.

E. Show that a closed convex set in Rn is the intersection of all closed half-spaces that contain it.

F. Let A⊂Rn be a nonempty open convex set. Show that a∈A if and only if for each hyperplane
H of Rn containing a, the two open half-spaces intH+ and intH− both intersect A.

G. (a) Suppose A ⊂ Rn is convex and H = {x ∈ Rn : 〈x,h〉 ≤ α} is a nontrivial supporting hy-
perplane of A. If a ∈ A and 〈a,h〉= α , show that a ∈ rbd(A).

(b) Show that an open convex set in Rn is the intersection of all the open half-spaces that
contain it.

H. Suppose S ⊂ Rn and x ∈ conv(S)∩ rbdconv(S). Prove there are n points s1, . . . ,sn in S such
that x ∈ conv{s1, . . . ,sn}. HINT: Use a supporting hyperplane and Carathéodory’s Theo-
rem.

I. Farkas Lemma. Let A⊂ Rn and let C = cone(A) be the closed convex cone generated by A.
Prove that exactly one of the following statements is valid: (1) x ∈C or (2) there is an s ∈ Rn

such that 〈x,s〉> 0≥ 〈a,s〉 for all a ∈ A.

J. Let A = {a1, . . . ,ak} be a finite subset of Rn. Prove that the following are equivalent:
(1) 0 ∈ conv(A)
(2) There is no y ∈ Rn such that 〈a,y〉< 0 for all a ∈ A.
(3) f (x) = log

(
∑

n
i=1 e〈ai,x〉

)
is bounded below on Rn.

HINT: (1) ⇔ (2) separation. Not (2)⇒ not (3), use f (ty). (2)⇒ (3), easy.

K. Suppose that A, B, and C are closed convex sets in Rn with A+C = B+C.
(a) Is it true that A = B?
(b) What if all three sets are compact?

L. (a) Given an arbitrary set S ⊂ Rn, prove that a vector b belongs to conv(S) if and only if
〈b,x〉 ≤ sup{〈s,x〉 : s ∈ S} for all x ∈ Rn.

(b) Show that the intersection of all closed half-spaces containing S equals convS.

M. A hyperplane H properly separates A and B if A⊂ H−, B⊂ H+, and A∪B is not contained
in H. Prove that convex sets A and B can be properly separated if and only if ri(A)∩ri(B) = ∅.
HINT: Let C = A−B. Show that 0 /∈ ri(C), and separate 0 from C.

16.4 Extreme Points

16.4.1. DEFINITION. Let A be a nonempty convex set. A point a ∈ A is an
extreme point of A if whenever a1,a2 ∈ A and a = (a1 + a2)/2, then a1 = a2. The
set of all extreme points of A is denoted by extA.

A face of A is a convex subset F of A such that whenever a1,a2 ∈ A and the open
interval (a1,a2) intersects F , then [a1,a2] is contained in F .

Observe that a one-point face is an extreme point. Conversely, an extreme point
is a one-point face. For if (a1,a2) contains a, then a is the average of two points
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of [a1,a2] with one of them being an endpoint. Thus both those points equal a, and
hence [a1,a2] = {a}.

Every convex set has two trivial faces: the whole set and the empty set. This
could be all of them, but often there is a rich collection.

16.4.2. EXAMPLES.
(1) Consider a cube in R3. The whole set and ∅ are faces for trivial reasons. The
extreme points are the eight vertices. Note that there are many other boundary points
that are not extreme. The one-dimensional faces are the twelve edges, and the two-
dimensional faces are the six sides (which are commonly called faces).

(2) On the other hand, consider the open unit ball U in R3. Except for the two trivial
cases, there are no extreme points or faces at all. For if F is a proper convex subset,
let a∈ F and b∈U \F . Then since a is an interior point of U , the line segment [b,a]
may be extended to some point c ∈U . Hence (b,c)∩F contains a but [b,c] is not
wholly contained in F .

(3) The closed unit ball B has many extreme points. A modification of the previ-
ous argument shows that no interior point is extreme. But every boundary point is
extreme. This follows from the proof of Lemma 16.4.3. There are no other faces of
the ball except for the two trivial cases.

16.4.3. LEMMA. Every compact convex set A has an extreme point.

PROOF. The norm function f (x) = ‖x‖ is continuous on A, and thus by the Extreme
Value Theorem (5.4.4) f achieves its maximum value at some point a0 ∈ A, say
‖a0‖ = R ≥ ‖a‖ for all a ∈ A. Suppose that a1,a2 ∈ A and a0 = (a1 + a2)/2. Then
by the Schwarz inequality (4.1.1),

R2 = ‖a0‖2 =
〈a1 +a2

2
,a0

〉
= 1

2 〈a1,a0〉+ 1
2 〈a2,a0〉

≤ 1
2‖a1‖‖a0‖+ 1

2‖a2‖‖a0‖ ≤ 1
2 (R2 +R2) = R2.

Equality at the extremes forces 〈ai,a0〉 = ‖ai‖‖a0‖ in the Schwarz inequality for
i = 1,2 and ‖a1‖= ‖a2‖= R. Hence a0 = a1 = a2; and thus a0 is extreme. �

We collect a couple of very easy lemmas that produce faces.

16.4.4. LEMMA. If F is a face of a convex set A, and G is a face of F, then G
is a face of A.

PROOF. Suppose that a1,a2 ∈ A such that (a1,a2) intersects G. Then a fortiori,
(a1,a2) intersects F . Since F is a face of A, it follows that [a1,a2] is contained in F .
Therefore, a1,a2 ∈ F , and since G is a face of F , it follows that [a1,a2] is contained
in G. So G is a face of A. �
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16.4.5. LEMMA. If A is a convex set in Rn and H is a supporting hyperplane,
then H ∩A is a face of A.

PROOF. Let H = {x : 〈x,h〉 = α} be a hyperplane such that A is contained in
H− = {x : 〈x,h〉 ≤ α}. Let F = H∩A. Suppose that a1,a2 ∈ A such that (a1,a2)∩F
contains a point a = λa1 +(1−λ )a2 for λ ∈ (0,1). Then

α = 〈a,h〉= λ 〈a1,h〉+(1−λ )〈a2,h〉 ≤ λα +(1−λ )α = α.

Thus equality holds, so 〈a1,h〉= 〈a2,h〉= α . Therefore a1,a2 belong to F . �

We have set the groundwork for a fundamental result that demonstrates the pri-
macy of extreme points.

16.4.6. MINKOWSKI’S THEOREM.
Let C be a nonempty compact convex subset of Rn. Then C = conv(extC).

PROOF. We will prove this by induction on dimC. If dimC = 0, then C is a single
point, and it is evidently extreme. Suppose that we have established the result for
compact convex sets of dimension at most k−1, and that dimC = k.

Let a be any point in rbd(C). By the Support Theorem (16.3.7), there is a non-
trivial supporting hyperplane H to C at a. By Lemma 16.4.5, F = H ∩C is a face
of C. Also, F is compact because C is compact and H is closed, and it is nonempty
since a ∈ F .

Note that aff(F) is contained in aff(C)∩H. This is properly contained in aff(C)
because C is not contained in H. Therefore, dimF < dimC = k. By the induction
hypothesis, F is the convex hull of its extreme points. However, by Lemma 16.4.4,
extF is contained in extC. So conv(extC) contains every boundary point of C.

Finally, let a ∈ ri(C), and fix another point b ∈ C. Let L be the line passing
through a and b. In particular, L is contained in aff(C). Then L∩C is a closed
bounded convex subset of L and thus is a closed interval that contains a in its rel-
ative interior. Let a1,a2 be the two endpoints. These points lie in rbd(C) because
any ball about ai meets L in points outside of C. By the previous paragraph, both
a1,a2 lie in conv(extC). But a belongs to conv{a1,a2} and hence is also contained
in conv(extC). �

Exercises for Section 16.4

A. Let A⊂ Rn be convex. Show that no point in ri(A) is an extreme point.

B. Let A⊂ Rn be convex. Show that a ∈ A is an extreme point if and only if A\{a} is convex.

C. Show that if B ⊂ A are two convex sets, then any extreme point of A that is contained in B is
an extreme point of B.

D. Find a nonempty proper closed convex subset of R2 with no extreme points.
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E. A face of a convex set A of the form A∩H, where H is a hyperplane, is called an exposed
face. Let A = {(x,y) : x2 + y2 ≤ 1} ∪ {(x,y) : 0 ≤ x ≤ 1, |y| ≤ 1}. Show that (0,1) is an
extreme point that is not exposed.

F. Let A⊂ Rn be compact and convex, and let f be an affine map of Rn into R.
(a) Show that {a ∈ A : f (a) = supx∈A f (x)} is an exposed face of A.
(b) Let B be a subset of Rn such that A = conv(B). Prove that B contains extA.
(c) Show that an affine function on A always takes its maximum (and minimum) value at an

extreme point.

G. Let A = [0,1]n = {(x1, . . . ,xn) ∈ Rn : 0≤ xi ≤ 1,1≤ i≤ n}.
(a) Describe extA.
(b) Explicitly show that each element of A is in the convex hull of n+1 extreme points.

HINT: If x1 ≤ x2 ≤ ·· · ≤ xn, consider y j = ∑
n
i= j ei for 1≤ j ≤ n+1.

H. A polyhedral set is the intersection of a finite number of closed half-spaces. Let A be a closed
bounded polyhedral set determined by the intersection of closed half-spaces H−

i for 1≤ i≤ p.

(a) Show that if a ∈ A is not in any hyperplane Hi, then a belongs to ri(A).
(b) Show that every extreme point of A is the intersection of some collection of the hyper-

planes Hi. HINT: Use part (a) and induction on dimA.
(c) Hence deduce that every closed bounded polyhedral set is a polytope.

I. Let A = conv{a1, . . . ,ar} be a polytope.
(a) Show that extA is contained in {a1, . . . ,ar}.
(b) Show that every face of A is the convex hull of a subset of {a1, . . . ,ar}.
(c) If F is a face of A, find a hyperplane H ⊃ F that does not contain all of A.

HINT: Apply the Support Theorem to a point in ri(F).
(d) Prove that the intersection of half-spaces determined by (c) is a polyhedral set P containing

A such that each face of A is contained in rbd(P).
(e) Show that P = A. HINT: If p ∈ P\A and a ∈ ri(A), consider [a, p)∩ rbd(A).
(f) Hence show that every polytope is a closed bounded polyhedral set.

16.5 Convex Functions in One Dimension

Convex functions occur frequently in many applications. Generally, we are inter-
ested in minimizing these functions over a convex set determined by a number of
constraints, a problem that we will discuss in later sections. The notion of convexity
allows us to work with functions that need not be differentiable. The analysis of
convex functions can be thought of as an extension of calculus to an important class
of nondifferentiable functions.

While a few generalities are introduced here for functions on domains in Rn,
most of this section is devoted to convex functions on the line. In the next section,
we extend these notions to higher dimensions.

16.5.1. DEFINITION. Suppose that A is a convex subset of Rn. A real-valued
function f defined on A is a convex function if

f
(
λx+(1−λ )y

)
≤ λ f (x)+(1−λ ) f (y) for all x,y ∈ A, 0≤ λ ≤ 1.

A function f is called a concave function if − f is convex.
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16.5.2. EXAMPLES.
(1) All linear functions are both convex and concave.

(2) If ||| · ||| is any norm on Rn, the function f (x) = |||x||| is convex. Indeed, the
triangle inequality and homogeneity yield

|||λx+(1−λ )y||| ≤ λ |||x|||+(1−λ )|||y||| for x,y ∈ Rn and 0≤ λ ≤ 1,

which is precisely the convexity condition.

(3) f (x) = ex is convex. This is evident from an inspection of its graph. We will see
that any C2 function g with g′′ ≥ 0 is convex. Here f ′′(x) = ex > 0.

This next result, an easy application of the Mean Value Theorem, provides many
examples of convex functions on the line. It also shows that our definition is consis-
tent with the notion introduced in calculus.

16.5.3. LEMMA. Suppose that f is differentiable on (a,b) and f ′ is monotone
increasing. Then f is convex. In particular, this holds if f is C2 and f ′′ ≥ 0.

PROOF. Suppose that a < x < y < b and 0 < λ < 1. Let z = λx +(1−λ )y. Then
there are points c ∈ (a,z) and d ∈ (z,y) such that

f (z)− f (x)
z− x

= f ′(c)≤ f ′(d) =
f (y)− f (z)

y− z
.

Substituting z− x = (1−λ )(y− x) and y− z = λ (y− x) yields

f (z)− f (x)
1−λ

≤ f (y)− f (z)
λ

.

Just multiply this out to obtain the statement of convexity.
If f is C2 and f ′′ ≥ 0, then f ′ is an increasing function. �

A straightforward induction on r gives the following result from the definition of
convexity. The proof is left as an exercise.

16.5.4. JENSEN’S INEQUALITY.
Suppose that A ⊂ Rn is convex and f is a convex function on A. If a1, . . . ,ar are
points in A and λ1, . . . ,λr are nonnegative scalars such that ∑

r
i=1 λi = 1, then

f (λ1a1 + · · ·+λrar)≤ λ1 f (a1)+ · · ·+λr f (ar).

16.5.5. EXAMPLE. In spite of the fact that Jensen’s inequality is almost trivial,
when it is applied we can obtain results that are not obvious. Consider the exponen-
tial function f (x) = ex. Let t1, . . . , tn be positive real numbers and let ai = log ti. Then
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for positive values λi with
n
∑

i=1
λi = 1,

eλ1a1+···+λnan ≤ λ1ea1 + · · ·+λnean .

In other words,
tλ1
1 tλ2

2 · · · tλn
n ≤ λ1t1 +λ2t2 + · · ·+λntn.

This is the generalized arithmetic mean–geometric mean inequality. If we set
λi = 1

n for 1≤ i≤ n, we obtain

n
√

t1t2 · · · tn ≤
t1 + t2 + · · ·+ tn

n
.

We begin by characterizing a convex function in terms of its graph, or rather its
epigraph. This also serves to justify the terminology.

16.5.6. DEFINITION. Let f be a real-valued function on a convex subset A of
Rn. The epigraph of f is defined to be epi( f ) = {(a,y) ∈ A×R : y≥ f (a)}.

16.5.7. LEMMA. Let f be a real-valued function on a convex subset A of Rn.
Then f is a convex function if and only if epi( f ) is a convex set.

PROOF. Suppose p = (x, t) and q = (y,u) belong to epi( f ) and λ ∈ [0,1]. Since A
is convex, z := λx +(1−λ )y ∈ A. Consider λ p+(1−λ )q = (z,λ t +(1−λ )u). If
f is convex, then

f (z)≤ λ f (x)+(1−λ ) f (y)≤ λ t +(1−λ )u

and thus epi( f ) is convex. Conversely, if epi( f ) is convex, then using t = f (x) and
u = f (y), we see that epi( f ) contains the point (z,λ f (x)+(1−λ ) f (y)), and hence
f (z)≤ λ f (x)+(1−λ ) f (y). That is, f is convex. �

Now we specialize to functions on the line. We begin with a lemma about secants.
In the next section, this will be applied to functions of more variables.

16.5.8. SECANT LEMMA.
Let f be a convex function on [a,b], and consider three points a ≤ x < y < z ≤ b.
Then

f (y)− f (x)
y− x

≤ f (z)− f (x)
z− x

≤ f (z)− f (y)
z− y

.

PROOF. See Figure 16.4. Set λ =
z− y
z− x

, which lies in (0,1). So y = λx+(1−λ )z.

By convexity, f (y)≤ λ f (x)+(1−λ ) f (z). Therefore,

f (y)− f (x)≤ (1−λ )
(

f (z)− f (x)
)
.
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x y z

FIG. 16.4 Secants of a convex function.

Divide by y− x = (1−λ )(z− x) to obtain

f (y)− f (x)
y− x

≤
(

1−λ

1−λ

)
f (z)− f (x)

z− x
.

The second inequality is similar. �

The main result about convex functions of one real variable is that convex func-
tions are almost differentiable in a certain strong sense. The absolute value function
on R shows that a convex function need not be differentiable, even at interior points
of its domain. However, it does have left and right derivatives everywhere.

Recall that a function f has a right derivative at a if lim
h→0+

f (a+h)− f (a)
h

exists.

It is denoted by D+ f (a). Similarly, we define the left derivative to be the limit

D− f (a) := lim
h→0+

f (a)− f (a−h)
h

when it exists.

16.5.9. THEOREM. Let f be a convex function defined on (a,b). Then f has
left and right derivatives at every point, and if a < x < y < b, then

D− f (x)≤ D+ f (x)≤ D− f (y)≤ D+ f (y).

Therefore, f is continuous.

PROOF. Let 0 < h < k be small enough that x±k belong to the interval (a,b). Apply
the Secant Lemma using x−k < x−h < x < x+h < x+k,

f (x)− f (x−k)
k

≤ f (x)− f (x−h)
h

≤ f (x+h)− f (x)
h

≤ f (x+k)− f (x)
k

.

Thus the quotient function dx(t) =
f (x+t)− f (x)

t
is an increasing function of t on

an interval [−k,k]. In particular, {dx(s) : s < 0} is bounded above by dx(t) for any
t > 0. Thus by the Least Upper Bound Principle (2.3.3),
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D− f (x) = lim
s→0+

f (x)− f (x−s)
s

= sup
s→0+

f (x)− f (x−s)
s

exists. Similarly,

D+ f (x) = lim
t→0+

f (x+t)− f (x)
t

= inf
t→0+

f (x+t)− f (x)
t

exists. Moreover, D− f (x)≤ D+ f (x), since dx(−s)≤ dx(t) for all −s < 0 < t.
Another application of the lemma using x < x+t < y−s < y shows that

dx(t) =
f (x+t)− f (x)

t
≤ f (y)− f (y−s)

s
= dy(−s)

if s, t are sufficiently small and positive. Thus D+ f (x)≤ D− f (y).
In particular, since left and right derivatives exist, we have

lim
t→0+

f (x+ t) = lim
t→0+

f (x)+ t
f (x+t)− f (x)

t
= f (x)+0D+ f (x) = f (x).

Similarly, lim
s→0+

f (x− s) = f (x). Therefore f is continuous. �

16.5.10. COROLLARY. Let f be a convex function defined on (a,b). Then f
is differentiable except on a countable set of points.

PROOF. The right derivative D+ f (x) is defined at every point of (a,b) and is a
monotone increasing function. By Theorem 5.7.5, D+ f is continuous except for a
countable set of jump discontinuities. At every point x where D+ f is continuous,
we will show that D− f (x) = D+ f (x). From the continuity of D+ f , given any ε > 0,
there is an r > 0 such that |D+ f (x±r)−D+ f (x)|< ε . Now if 0 < h < r,

D+ f (x− r)≤ D− f (x−h)≤ D− f (x)
≤ D+ f (x)≤ D− f (x+h)≤ D+ f (x+ r).

Thus |D− f (x+h)−D+ f (x)|< ε for all |h|< r. Since ε > 0 is arbitrary, we see that
D− f (x) = D+ f (x) and lim

h→0
D− f (x + h) = D+ f (x). So D− f is continuous at x and

agrees with D+ f (x). Thus, f is differentiable at each point of continuity of D+ f . �

16.5.11. DEFINITION. Let f be a convex function on (a,b). For each x in
(a,b), the subdifferential of f at x is the set ∂ f (x) = [D− f (x),D+ f (x)].

See Figure 16.5. The geometric interpretation is the following pretty result. When
the convex function f is differentiable at c, this result says that epi( f ) lies above the
tangent line to f through (c, f (c)), while any other line through this point crosses
above the graph.



472 16 Convexity and Optimization

D− f (x)
D+ f (x)

∂ f (a)

f

FIG. 16.5 The subdifferential and a tangent line at a nonsmooth point.

16.5.12. PROPOSITION. Let f be a convex function on (a,b) and fix a point
c ∈ (a,b). The line y = f (c) + m(x− c) is a supporting hyperplane of epi( f ) at
(c, f (c)) if and only if m ∈ ∂ f (c).

PROOF. Suppose that a < x < c < z < b and m ∈ ∂ f (c). From the previous proof,

f (c)− f (x)
c− x

≤ D− f (c)≤ m≤ D+ f (c)≤ f (z)− f (c)
z− c

.

Hence f (x)≥ f (c)+m(x− c) and f (z)≥ f (c)+m(z− c). So epi( f ) lies above the
line, and thus y = f (c)+m(x− c) is a support line at (c, f (c)).

Conversely, suppose that m > D+ f (c). Since D+ f (c) = infz>c
f (z)− f (c)

z−c , there is
some point z > x such that f (z)− f (c) < m(z−c). Thus f (z) < f (c)+m(z−c) and
the line intersects the interior of epi( f ), which is a contradiction. A similar argument
deals with m < D− f (c). �

16.5.13. EXAMPLE. There can be problems at the endpoints when f is de-
fined on a closed interval, even if f is continuous there. For example, consider the
function f (x) =−(1−x2)1/2 on [−1,1]. Then on (−1,1), f ′(x) = x(1−x2)−1/2 and
f ′′(x) = (1− x2)−3/2. Since f is C2 and f ′′ > 0 on (−1,1), this function is convex.
It is differentiable at every interior point. However, at the two endpoints, the graph
has a vertical tangent. It is for this reason that we did not define the subdifferential
at endpoints.

Exercises for Section 16.5

A. Show that if f and − f are convex, then f is affine.

B. Show that the function f on [0,1] given by f (x) = 0 for x < 1 and f (1) = 1 is a discontinuous
convex function. Why does this not contradict Theorem 16.5.9?

C. Prove Jensen’s inequality (16.5.4).
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D. Let f be a convex function on R and let g be any continuous function on [0,1]. Show that
f
(∫ 1

0 g(x)dx
)
≤
∫ 1

0 f (g(x))dx. HINT: Approximate the integrals by the Riemann sums.

E. (a) Apply the arithmetic mean–geometric mean inequality to t1 = · · ·= tn = 1+ 1
n and tn+1 = 1

and a second application with t1 = · · ·= tn+1 = n
n+1 and tn+2 = 1.

(b) Hence prove that
(
1+ 1

n

)n ≤
(
1+ 1

n+1

)n+1 ≤
(
1+ 1

n+1

)n+2 ≤
(
1+ 1

n

)n+1
.

(c) Hence show that lim
n→∞

(
1+ 1

n

)n exists.

F. Suppose that A ⊂ Rn is a convex set. Show that if f1, . . . , fk are convex functions on A, then
the function f (x) = max{ fi(x) : 1≤ i≤ k} is convex.

G. Suppose that { fi : i ∈ I} is a collection of convex functions such that for each x ∈ R, g(x) =
sup{ fi(x) : i ∈ I} is finite. Show that g is convex.

H. Suppose that f is a convex function on R that is bounded above. Show that f is constant.

I. (a) If f is a C2 function on (a,b) such that f ′′(x) > 0 for all x ∈ (a,b), prove that f is strictly
convex: f (λx+(1−λ )y) < λ f (x)+(1−λ ) f (y) for x 6= y and 0 < λ < 1.

(b) Find an example of a strictly convex C2 function on R such that f ′′(0) = 0.

J. Let f be a convex on (a,b). If f attains its minimum at c ∈ (a,b), show that 0 ∈ ∂ f (c).

K. Convex Mean Value Theorem. Consider a continuous convex function f on [a,b]. Show

that there is c ∈ (a,b) such that
f (b)− f (a)

b−a
∈ ∂ f (c). HINT: Adapt the proof of the Mean

Value Theorem. Apply Exercise J to h(x) = f (x)− f (a)− [( f (b)− f (a))/(b−a)](x−a).

L. (a) If f is a convex function on (a,b)⊃ [c,d], prove that f is Lipschitz on [c,d].
HINT: Theorem 16.5.9.

(b) Show by example that a continuous convex function on [a,b] need not be Lipschitz.

M. Suppose that a function f on (a,b) and satisfies f
( x+y

2

)
≤ 1

2

(
f (x)+ f (y)

)
for all x,y ∈ (a,b).

(a) Show by induction that f
( x1+···+x2k

2k

)
≤ 2−k

(
f (x1)+ · · ·+ f (x2k )

)
for xi ∈ (a,b).

(b) Prove that if f is continuous, then f is convex. HINT: Take each xi to be either x or y.

N. Prove that f (x) = log
( sinhax

sinhbx

)
is convex if 0 < b≤ a as follows:

(a) Show that f ′′(x) > 0 for x 6= 0. HINT: Show bsinhax−asinhbx is increasing on [0,∞).
(b) Find the second-order Taylor polynomial of f about 0 from your knowledge of sinhx and

log(1+ x). Deduce that f is twice differentiable at 0.

O. Suppose that A⊂ Rn is a convex set.

(a) If f is convex on A and g is convex and increasing on R, show that g◦ f is convex on A.
(b) Give an example of convex functions f ,g on R such that g◦ f is not convex.

16.6 Convex Functions in Higher Dimensions

In this section, we will show that convex functions are continuous on the relative
interior of their domain. Then we will investigate certain sets that are defined in
terms of convex functions.

This first lemma would be trivial if f were known to be continuous.

16.6.1. LEMMA. Let f be a convex function defined on a convex set A⊂Rn. If
C is a compact convex subset of ri(A), then f is bounded on C.
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PROOF. Since we are only working in A, there is no loss of generality in assuming
that aff(A) = Rn and so ri(A) = int(A).

Fix a point a ∈ int(A), and choose ε > 0 such that Bε(a)⊂ A. We first show that
there is an r > 0 such that f is bounded on Br(a). Let e1, . . . ,en be an orthonormal
basis for Rn, and define S = {a±εei : 1≤ i≤ n}. Then let M = max{ f (s) : s∈ S}. By
Theorem 16.1.7, every b in conv(S) has the form b = ∑

n
i=1 λi(a−εei)+ µi(a+εei),

where λi,µi ≥ 0 and ∑
n
i=1 λi + µi = 1. By Jensen’s inequality, f (b)≤M.

Since b−a ∈ conv{±εei : 1≤ i≤ n}, 2a−b = a− (b−a) lies in conv(S). Since
f (2a−b)≤M,

f (a)≤ f (b)+ f (2a−b)
2

≤ f (b)+M
2

.

Thus f (b)≥ 2 f (a)−M. Therefore, f is bounded on S and

sup
b∈S

| f (b)| ≤max
{
|M|, |2 f (a)−M|

}
.

Now conv(S) contains the ball Br(a), where r = ε/
√

n.
To complete the argument, we proceed via proof by contradiction. Suppose that

there is a sequence ak in C such that | f (ak)| tends to ∞. Since C is compact, this
sequence has a convergent subsequence, say a = lim

i→∞
aki . Choose r > 0 and M such

that | f | is bounded by M on Br(a). There is an integer N such that ‖aki −a‖< r for
all i≥ N. Hence | f (aki)| ≤M for i≥ N, contrary to our hypothesis. Thus f must be
bounded on C. �

16.6.2. THEOREM. Let f be a convex function defined on a convex set A⊂Rn.
If C is a compact convex subset of ri(A), then f is Lipschitz on C. In particular, f is
continuous on ri(A).

PROOF. The set X = aff(A)\ ri(A) is closed. Define a function on A by

d(a) = dist(a,X) = inf{‖a− x‖ : x ∈ X}.

Clearly, d is a continuous function, and d(a) = 0 only if a ∈ X . Now C is a com-
pact subset of ri(A), and thus d(a) > 0 for all a ∈C. By the Extreme Value Theo-
rem (5.4.4), the minimum value of d on C is attained. So r = 1

2 inf{d(a) : a∈C}> 0.
Let Cr = {a ∈ aff(A) : dist(a,C)≤ r}. By construction, this is a closed bounded

set that is contained in ri(A). Thus it is compact by the Heine–Borel Theorem (4.4.6).
The reader should verify that Cr is convex.

By the preceding lemma, | f | is bounded on Cr by some number M. Now fix
points x,y ∈C. Let ‖y− x‖= R and e = (y− x)/R. Then the interval [x− re,y+ re]
is contained in Cr. The function g(t) = f (x+ te) is a convex function on [−r,R+ r].
Thus the Secant Lemma (16.5.8) applies:

g(0)−g(−r)
r

≤ g(R)−g(0)
R

≤ g(R+ r)−g(R)
r

.
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Rewriting and using the bound M yields

−2M
r

≤ f (y)− f (x)
‖y− x‖

≤ 2M
r

,

whence | f (y)− f (x)| ≤ L‖y− x‖ for L = 2M/r.
This shows that f is Lipschitz and therefore continuous on each compact subset

of ri(A). In particular, for each a ∈ ri(A), there is a ball Br(a)∩ aff(A) contained in
ri(A), and thus f is continuous on this ball about a. �

A basic question in many applications of analysis is how to minimize a function,
often subject to various constraints. It is frequently the case in problems from busi-
ness, economics, and related fields that the functions and the constraints are convex.
These functions may be differentiable, in which case the usual multivariable cal-
culus plays a role. However, even in this case, convexity theory provides a useful
perspective. When the functions are not all differentiable, this more sophisticated
machinery is necessary.

16.6.3. DEFINITION. Consider a convex function f on a convex set A ⊂ Rn.
A point a0 ∈ A is a global minimizer for f on A if

f (a0)≤ f (a) for all a ∈ A.

We call a0 ∈ A a local minimizer for f on A if there is an r > 0 such that

f (a0)≤ f (a) for all a ∈ Br(a0)∩A.

Clearly, a global minimizer is always a local minimizer. The converse is not true
for arbitrary functions. For convex functions they are the same, as we prove in the
next theorem. Henceforth, we drop the modifier and refer only to minimizers.

16.6.4. THEOREM. Suppose that A⊂ Rn is a convex set, and consider a con-
vex function f on A. If a0 ∈ A is a local minimizer for f on A, then it is a global
minimizer for f on A. The set of all global minimizers of f on A is a convex set.

PROOF. Suppose that a0 minimizes f on the set Br(a0)∩A. Let a ∈ A. Since A is
convex, the line [a0,a] is contained in A. Therefore, there is some λ ∈ (0,1) such
that λa0 +(1−λ )a ∈ Br(a0)∩A. By the convexity of f , we have

f (a0)≤ f (λa0 +(1−λ )a)≤ λ f (a0)+(1−λ ) f (a).

Solving this yields f (a0)≤ f (a). Hence a0 is a global minimizer.
The last statement follows from Exercise 16.6.A. �

A sublevel set of a convex function f on A has the form {a ∈ A : f (a) ≤ α}
for some α ∈ R. For convenience, we may assume α = 0 by the simple device of
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replacing f by f −α . The constraints on the minimization problems that we will
consider have this form.

16.6.5. LEMMA. Let f be a convex function on Rn. Suppose that there is
a point a0 ∈ Rn with f (a0) < 0. Then int({x : f (x) ≤ 0}) = {x : f (x) < 0} and
{x : f (x) < 0}= {x : f (x)≤ 0}.

PROOF. By Theorem 16.6.2, f is continuous. Thus A := {x : f (x) ≤ 0} is closed
and {x : f (x) < 0} is an open subset and so is contained in intA.

Let a ∈ int(A). Then the line segment [a0,a] extends beyond a in A to some
point, say b = (1+ ε)a− εa0. Thus a = λa0 +(1−λ )b for λ = ε/(1+ ε). Since f
is convex,

f (a)≤ λ f (a0)+(1−λ ) f (b) < 0.

Finally, Theorem 16.2.8 shows that intA = A. �

Exercises for Section 16.6

A. Suppose that A ⊂ Rn is convex and f is a convex function on A. Show that the sublevel set
{a ∈ A : f (a)≤ α} is convex for each α ∈ R.

B. Suppose that A ⊂ Rn is convex. If f : A → R is strictly convex (see Exercise 16.5.I), show
that its set of minimizers is either empty or a singleton.

C. If a convex function f on a convex set A ⊂ Rn attains its maximum value at a ∈ ri(A), show
that f is constant.

D. Show that Cr = {a ∈ aff(A) : dist(a,C)≤ r} used in the proof of Theorem 16.6.2 is convex.

E. A real-valued function f defined on a cone C is called a positively homogeneous function
if f (λx) = λ f (x) for all λ > 0 and x ∈C. Show that a positively homogeneous function f is
convex if and only if f (x+ y)≤ f (x)+ f (y) for all x,y ∈C.

F. A function f on Rn is a sublinear function if f (λx+ µy)≤ λ f (x)+ µ f (y) for all x,y ∈ Rn

and λ ,µ ∈ [0,∞).
(a) Prove that sublinear functions are positively homogeneous and convex.
(b) Prove that f is sublinear if and only if epi( f ) is a cone.

G. Let f be a sublinear function on Rn.
(a) Prove that f (x)+ f (−x)≥ 0.
(b) Show that if f (x)+ f (−x) = 0, then f is linear on the line Rx spanned by x.
(c) If f (x j)+ f (−x j) = 0 for 1≤ j ≤ k, prove that f is linear on span{x1, . . . ,xk}.

HINT: Consider f (±(x1 + x2)). Use induction.

H. Let f be a bounded convex function on a convex subset A×B of Rm ×Rn. Define g(x) =
inf{ f (x,y) : y ∈ B}. Show that g is convex on A. HINT: for x1,x2 ∈ A, pick yi such that
g(xi) = f (xi,yi). Consider the interval from (x1,y1) to (x2,y2).

I. Suppose a function f (x,y) on R2 is a convex function of x for each fixed y and is a continuous
function of y for each fixed x. Prove that f is continuous. HINT: Fix (a,b); find r,s > 0 such
that f (x,y) is close to f (a,b) on

{
(x,b) : x ∈ [a− r,a+ r]

}
∪
{
(a± r,y) : y ∈ [b− s,b+ s]

}
.

J. Let f1, . . . , fr be convex functions on a convex set A ⊂ Rn. Suppose that there is no point
a ∈ A satisfying fi(a) < 0 for 1 ≤ i ≤ k. Prove that there exist λi ≥ 0 such that ∑i λi = 1 and
∑i λi fi ≥ 0 on A. HINT: Separate 0 from {y∈Rr : for some a∈A, yi > fi(a) for 1≤ i≤ r}.
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K. Suppose that f and g are convex functions on Rn. The infimal convolution of f and g is the
function h(x) := f �g(x) = inf{ f (y)+g(z) : y+ z = x}. The value −∞ is allowed.

(a) Suppose that there is an affine function k(x) = 〈m,x〉+ b for some vector m ∈ Rn and
b ∈R such that f (x)≥ k(x) and g(x)≥ k(x) for all x ∈Rn. Prove that h(x) >−∞ for all x.

(b) Assuming h(x) >−∞ for all x, show that h is convex.

L. Let h = f � g denote the infimal convolution of two convex functions f and g on Rn. Prove
that ri(epi(h)) = ri(epi( f )+ epi(g)) = ri(epi( f ))+ ri(epi(g)).

M. Prove that if f is C2 on a convex set A⊂Rn, then f is convex if and only if the Hessian matrix
∇2 f (x) =

[
∂

∂xi
∂

∂x j
f (x)

]
is positive semidefinite. HINT: Let x,y ∈ A and set g(t) = f (xt),

where xt = (1− t)x+ ty. Show that g′(t) = 〈∇ f (xt),y−x〉 and g′′(t) =
〈(

∇2 f (xt)
)
(y−x),y−

x
〉
, where ∇ f (a) is the gradient

(
∂

∂x1
f (a), . . . , ∂

∂xn
f (a)

)
.

N. Prove that f (x) =− n
√

x1x2 · · ·xn is convex on Rn
+. HINT: Use the previous exercise.

O. Fix a convex set A ⊂ Rn. Suppose that fn are convex functions on A that converge pointwise
to a function f .
(a) Prove that f is convex.
(b) If S ⊂ ri(A) is compact, show that fn converges to f uniformly on S. HINT: Show that

supk fk is bounded above on each ball; use the Lipschitz condition from Theorem 16.6.2.

P. A function f defined on a convex subset A of Rn is called a quasiconvex function if the
sublevel set {a ∈ A : f (a)≤ α} is a convex set for each α ∈ R.
(a) Show that f is quasiconvex iff f (λa+(1−λ )b)≤max{ f (a), f (b)} for all a,b ∈ A.
(b) By part (a), a convex function is always quasiconvex. Give an example of a function f on

R that is quasiconvex but not convex.
(c) Let f be differentiable on R. Show that f is quasiconvex iff f (y)≥ f (x)+ f ′(x)(y−x) for

all x,y ∈ R.

16.7 Subdifferentials and Directional Derivatives

We now turn to the notions of derivatives and subdifferentials. For a convex function
of one variable, we had two different notions that were useful, the left and right
derivatives and the subdifferential set of supporting hyperplanes to epi( f ). Both
have natural generalizations to higher dimensions.

16.7.1. DEFINITION. Suppose that A is a convex subset of Rn, a ∈ A, and f
is a convex function on A. A subgradient of f at a is a vector s ∈ Rn such that

f (x)≥ f (a)+ 〈x−a,s〉 for all x ∈ A.

The set of all subgradients of f at a is the subdifferential and is denoted by ∂ f (a).

These terms are motivated by the corresponding terms for differentiable func-
tions f : Rn → R, so we recall them. The gradient of f at a, denoted by ∇ f (a),
is the n-tuple of partial derivatives:

(
∂

∂x1
f (a), . . . , ∂

∂xn
f (a)

)
. The differential of

f at a is the hyperplane in Rn+1 given by those points (x, t) ∈ Rn ×R such that
t = f (a)+ 〈x−a,∇ f (a)〉.



478 16 Convexity and Optimization

If f is a convex function on A and a ∈ A, then a vector s determines a hyperplane
of Rn×R by

H = {(x, t) ∈ Rn×R : t = f (a)+ 〈x−a,s〉}
= {(x, t) ∈ Rn×R :

〈
(x, t),(−s,1)

〉
= f (a)−〈a,s〉}.

The condition that s be a subgradient is precisely that the graph of f is contained
in the half-space H+ = {(x, t) ∈ Rn ×R : t ≥ f (a) + 〈x− a,s〉}. Clearly, this is
equivalent to saying that epi( f ) be contained in H+. Since H contains the point
(a, f (a)), we conclude that the subgradients of f at a correspond to the supporting
hyperplanes of epi( f ) at (a, f (a)). It is important that the vector (−s,1) determining
H have a 1 in the (n+1)st coordinate. This ensures that the hyperplane is nonvertical,
meaning that it is not of the form H ′ ×R for some hyperplane H ′ of Rn. In the case
n = 1, this rules out vertical tangents.

An immediate and important fact is that the subdifferential characterizes mini-
mizers for convex functions. This is the analogue of the calculus fact that minima
are critical points. But with the hypothesis of convexity, it becomes a sufficient con-
dition as well.

16.7.2. PROPOSITION. Suppose that f is a convex function on a convex set
A. Then a ∈ A is a minimizer for f if and only if 0 ∈ ∂ f (a).

PROOF. By definition, 0 ∈ ∂ f (a) if and only if f (x)≥ f (a)+ 〈x−a,0〉= f (a) for
all x ∈ A. �

16.7.3. THEOREM. Suppose that A is a convex subset of Rn, a ∈ A, and f is a
convex function on A. Then ∂ f (a) is convex and closed. Moreover, if a ∈ ri(A), then
∂ f (a) is nonempty. If a ∈ int(A), then ∂ f (a) is compact.

PROOF. Suppose that s1,s2 ∈ ∂ f (a) and λ ∈ [0,1]. Then

f (x)≥ f (a)+ 〈x−a,si〉 for i = 1,2.

Hence

f (x)≥ λ
(

f (a)+ 〈x−a,s1〉
)
+(1−λ )

(
f (a)+ 〈x−a,s2〉

)
= f (a)+ 〈x−a,λ s1 +(1−λ )s2〉.

Thus λ s1 +(1−λ )s2 is a subdifferential of f at a, and so ∂ f (a) is convex.
Since the inner product is continuous, it is easy to check that ∂ f (a) is closed. For

if (si) is a sequence of vectors in ∂ f (a) converging to s ∈ Rn, then

f (x)≥ lim
i→∞

f (a)+ 〈x−a,si〉= f (a)+ 〈x−a,s〉.
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Now suppose that a ∈ ri(A). The point (a, f (a)) lies on the relative boundary of
epi( f ), since if y < f (a), the line segment [(a, f (a)),(a,y)] meets epi( f ) in a single
point. By the Support Theorem (16.3.7), there is a nontrivial supporting hyperplane
H for epi( f ) at (a, f (a)), say

H = {(x, t) ∈ Rn×R :
〈
(x, t),(h,r)

〉
= α},

where (h,r) is nonzero and 〈a,h〉+ r f (a) = α .
We require a nonvertical hyperplane. Suppose that r = 0; so 〈a,h〉= α . Since H

is nontrivial, epi( f ) contains a point (b, t) such that

α <
〈
(b, t),(h,0)

〉
= 〈b,h〉.

Because a is in the relative interior, there is an ε > 0 such that c = a + ε(a− b)
belongs to A. But then

α ≤
〈
(c, f (c)),(h,0)

〉
= 〈a,h〉+ ε〈a−b,h〉= α + ε(α−〈b,h〉).

Thus 〈b,h〉 ≤ α < 〈b,h〉, which is absurd. Hence r 6= 0.
Let s =−h/r. Then H is nonvertical and consists of those vectors (x, t) such that

rt−〈x,rs〉= α = r f (a)−〈a,rs〉, or equivalently, t = 〈x−a,s〉+ f (a). Since epi( f )
is contained in H+, f (x)≥ t = f (a)+ 〈x−a,s〉 for all x ∈ A. Therefore, s ∈ ∂ f (a),
and so the subdifferential is nonempty.

Finally, suppose that a ∈ int(A) and choose r > 0 such that Br(a) ⊂ int(A). By
Theorem 16.6.2, f is Lipschitz on the compact set Br(A), say with Lipschitz constant
L. If s ∈ ∂ f (a) with s 6= 0, then b = a+ rs/‖s‖ ∈ Br(A). Moreover,

f (b)≥ f (a)+ 〈b−a,s〉= f (a)+ r‖s‖.

Hence

‖s‖ ≤ f (b)− f (a)
r

≤ L‖b−a‖
r

= L.

So ∂ f (a) is closed and bounded and thus is compact. �

16.7.4. EXAMPLE. Let g be a convex function on R and set G(x,y) = g(x)−y.
Consider ∂G(a,b). This consists of all vectors (s, t) such that

G(x,y)≥ G(a,b)+
〈
(x−a,y−b),(s, t)

〉
for all (x,y) ∈ R2.

Rewrite this as g(x) ≥ g(a)+ (x− a)s +(y− b)(t + 1) for all x,y ∈ R. If t 6= −1,
then fixing x and letting y vary, the right-hand side will take all real values and
hence will violate the inequality for certain values of y. Thus t = −1. The desired
inequality then becomes g(x)≥ g(a)+(x−a)s for all x ∈R, which is the condition
that s ∈ ∂g(a). Hence ∂G(a,b) = {(s,−1) : s ∈ ∂g(a)}.
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Subdifferentials are closely related to directional derivatives. For simplicity, we
assume that the function is defined on Rn instead of just a convex subset.

16.7.5. DEFINITION. Suppose that f is a convex function on Rn. For a and
d ∈ Rn, we define the directional derivative of f at a in the direction d to be

f ′(a;d) = inf
h→0+

f (a+hd)− f (a)
h

.

It is routine to verify that this function is positively homogeneous in the second
variable, meaning that f ′(a; td) = t f ′(a;d) for all t > 0.

16.7.6. PROPOSITION. Suppose that f is a convex function on Rn and fix

a point a in Rn. Then f ′(a;d) = lim
h→0+

f (a+hd)− f (a)
h

exists for all d ∈ Rn, and

f ′(a; ·) is a convex function in the second variable.

PROOF. Fix d in Rn. Then g(t) = f (a + td) is a convex function on R. Hence by
Theorem 16.5.9, D+g(0) exists. However,

D+g(0) = lim
h→0+

g(h)−g(a)
h

= inf
h→0+

g(h)−g(a)
h

= lim
h→0+

f (a+hd)− f (a)
h

= inf
h→0+

f (a+hd)− f (a)
h

= f ′(a;d).

Fix directions d,e∈Rn and λ ∈ [0,1]. Let c = λd +(1−λ )e. A short calculation
using the convexity of f gives

f (a+hc)− f (a)
h

=
f
(
λ (a+hd)+(1−λ )(a+he)

)
− f (a)

h

≤ λ
f (a+hd)− f (a)

h
+(1−λ )

f (a+he)− f (a)
h

.

Taking the limit as h decreases to 0, we obtain

f ′(a;c)≤ λ f ′(a;d)+(1−λ ) f ′(a;e).

So f ′(a; ·) is a convex function. �

We are now able to obtain a characterization of the subgradient in terms of the
directional derivatives, generalizing Proposition 16.5.12.

16.7.7. THEOREM. Suppose that f is a convex function on Rn, and a,s ∈ Rn.
Then s ∈ ∂ f (a) if and only if 〈d,s〉 ≤ f ′(a;d) for all d ∈ Rn.
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PROOF. Suppose that s ∈ ∂ f (a). Then for any direction d ∈Rn and h > 0, we have
f (a+hd)≥ f (a)+ 〈hd,s〉. Rearranging, we have

f ′(a;d) = lim
h→0+

f (a+hd)− f (a)
h

≥ 〈d,s〉.

Conversely, suppose that s ∈ Rn satisfies

〈d,s〉 ≤ f ′(x;d) = inf
h→0+

f (a+hd)− f (a)
h

for all d ∈ Rn. Then rearranging yields f (a) + 〈hd,s〉 ≤ f (a + hd). Therefore, s
belongs to ∂ f (a). �

Conversely, we may express the directional derivatives in terms of the subdiffer-
ential. This requires a separation theorem. If C is a nonempty compact convex set,
the support function of C is defined as

σC(x) = sup{〈x,c〉 : c ∈C}.

Note that σC is a convex function on Rn that is positively homogeneous.
It is a consequence of the Separation Theorem (16.3.3) that different compact

convex sets have different support functions. For if D is another convex set that
contains a point d /∈C, then there is a vector x such that

σC(x) = sup{〈x,c〉 : c ∈C} ≤ α < 〈x,d〉 ≤ σD(x).

The next lemma shows how to recover the convex set from a support function.

16.7.8. SUPPORT FUNCTION LEMMA.
Suppose that g is a convex, positively homogeneous function on Rn. Let

C(g) = {c ∈ Rn : 〈x,c〉 ≤ g(x) for all x ∈ Rn}.

Then C(g) is compact and convex, and σC(g) = g. Thus if A is a compact convex set,
then C(σA) = A.

PROOF. Let M = sup{g(x) : ‖x‖= 1}, which is finite, since g is continuous and the
unit sphere is compact. If c ∈C(g), then

‖c‖= 〈c/‖c‖,c〉 ≤ g(c/‖c‖)≤M.

So C(g) is bounded. Since the inner product is continuous, {c : 〈x,c〉 ≤ g(x)} is
closed for each x ∈ Rn. The intersection of closed sets is closed, and hence C is
closed. Thus, C(g) is compact by the Heine–Borel Theorem. To see that C(g) is
convex, take c,d ∈C(g) and x ∈ Rn. Then λc+(1−λ )d belongs to C(g) because

〈x,λc+(1−λ )d〉 ≤ λg(x)+(1−λ )g(x) = g(x).
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The inequality σC(g) ≤ g is immediate from the definition.
Fix a vector a in Rn. By Theorem 16.7.3, there is a vector s in ∂g(a). Thus

g(x)≥ g(a)+ 〈x−a,s〉 for x ∈ Rn. Rewriting this yields

g(x)−〈x,s〉 ≥ g(a)−〈a,s〉=: α.

Take x = ha for h > 0 and use the homogeneity of g to compute

α ≤ g(ha)−〈ha,s〉= h(g(a)−〈a,s〉) = hα.

Hence α = 0, g(a) = 〈a,s〉 and s belongs to C(g). So σC(g)(a) ≥ 〈a,s〉 = g(a).
Therefore, σC(g) = g.

If A is compact and convex, setting g = σA yields σA = σC(σA). By the remarks
preceding the proof, this implies that C(σA) = A. �

16.7.9. COROLLARY. Suppose that f is a convex function on Rn. Fix a ∈Rn.
Then f ′(a; ·) is the support function of ∂ f (a), namely

f ′(a;d) = sup{〈d,s〉 : s ∈ ∂ f (a)} for d ∈ Rn.

PROOF. Theorem 16.7.7 shows that ∂ f (a) = C(g), where g(x) = f ′(a;x). Thus by
the Support Function Lemma,

f ′(a;d) = σ∂ f (a)(d) = sup{〈d,s〉 : s ∈ ∂ f (a)}.
�

16.7.10. EXAMPLE. Consider f (x) = ‖x‖, the Euclidean norm, on Rn. First
look at a = 0. A vector s is in ∂ f (0) if and only if 〈x,s〉 ≤ ‖x‖ for all x ∈ Rn. Thus
∂ f (0) = B1(0). Indeed, if ‖s‖ ≤ 1, then the Schwarz inequality shows that

〈x,s〉 ≤ ‖x‖‖s‖ ≤ ‖x‖.

If ‖s‖> 1, take x = s and notice that 〈x,s〉= ‖x‖2 > ‖x‖.
Now we compute the directional derivatives at 0,

f ′(0;d) = lim
h→0+

‖hd‖
h

= ‖d‖= f (d).

In this case, since f ′(0; ·) = f , Theorem 16.7.7 is redundant and provides no new
information. Let us verify Corollary 16.7.9 directly:

sup
{
〈d,s〉 : s ∈ B1(0)

}
= ‖d‖= f ′(0;d)

because 〈d,s〉 ≤ ‖d‖‖s‖= ‖d‖, while the choice s = d/‖d‖ attains this bound.
Now look at a 6= 0. We first compute the directional derivatives:
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f ′(a;d) = lim
h→0+

‖a+hd‖−‖a‖
h

= lim
h→0+

‖a+hd‖2−‖a‖2

h
(
‖a+hd‖+‖a‖

)
= lim

h→0+

2h〈d,a〉+h2‖d‖2

h
(
‖a+hd‖+‖a‖

) =
2〈d,a〉
2‖a‖

=
〈

d,
a
‖a‖

〉
.

This time Theorem 16.7.7 is very useful. It says that s∈ ∂ f (a) if and only if 〈d,s〉 ≤〈
d, a

‖a‖
〉

for all d ∈ Rn. Equivalently,
〈
d,s− a

‖a‖
〉
≤ 0 for all d in Rn. But the left-

hand side takes all real values unless s = a/‖a‖. Thus ∂ f (a) = {a/‖a‖}.
Observe that f ′(a;d) is a linear function of d when a 6= 0. Thus f has continuous

partial derivatives at a and ∇ f (a) = a/‖a‖. So ∂ f (a) = {∇ f (a)}.

Let’s look more generally at the situation that occurs when a convex function f
is differentiable at a. Unlike the case of arbitrary functions, the existence of partial
derivatives together with convexity implies differentiability.

16.7.11. THEOREM. Suppose that f is a convex function on an open convex
set A⊂ Rn. Then the following are equivalent for a ∈ A:

(1)
∂ f
∂xi

(a) are defined for 1≤ i≤ n.

(2) f is differentiable at a.
(3) ∂ f (a) is a singleton.

In this case, ∂ f (a) = {∇ f (a)}.

PROOF. Suppose that (1) holds and consider the convex function

g(x) = f (a+ x)− f (a)−〈x,∇ f (a)〉.

To show that f is differentiable, it suffices to show that f (a)+ 〈x,∇ f (a)〉 approxi-
mates f (x) to first order near a, or equivalently, that g(x)/‖x‖ tends to 0 as ‖x‖ tends
to 0. We use e1, . . . ,en for the standard basis of Rn.

The fact that the n partial derivatives exist means that for 1≤ i≤ n,

0 = lim
h→0

f (a+hei)− f (a)−h ∂ f
∂xi

(a)

h

= lim
h→0

f (a+hei)− f (a)−〈hei,∇ f (a)〉
h

= lim
h→0

g(hei)
h

.

Fix an ε > 0 and choose r so small that |g(hei)|< ε|h|/n for |h| ≤ r and 1≤ i≤ n.
Take x = (x1, . . . ,xn) with ‖x‖ ≤ r/n. Then

g(x) = g

(
1
n

n

∑
i=1

nxiei

)
≤ 1

n

n

∑
i=1

g(nxiei)≤
1
n

n

∑
i=1

ε|xi| ≤ ε‖x‖.

Now
0 = g(0) = g

( x+(−x)
2

)
≤ 1

2 g(x)+ 1
2 g(−x).
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Thus g(x) ≥ −g(−x) ≥ −ε‖x‖. Therefore, |g(x)| ≤ ε‖x‖ on Br(0). Since ε > 0 is
arbitrary, this proves that f is differentiable at a.

Assuming (2) that f is differentiable at a, the function f (a)+ 〈x,∇ f (a)〉 approx-

imates f (x) to first order near a with error g(x) satisfying lim
‖x‖→0

g(x)
‖x‖

= 0. Compute

f ′(a;d) = lim
h→0+

f (a+hd)− f (a)
h

= lim
h→0+

〈hd,∇ f (a)〉+g(hei)
h

= 〈d,∇ f (a)〉+ lim
h→0

g(hei)
h

= 〈d,∇ f (a)〉.

Theorem 16.7.7 now says that s ∈ ∂ f (a) if and only if 〈d,s〉 ≤
〈
d,∇ f (a)

〉
for all

d ∈Rn. Equivalently,
〈
d,s−∇ f (a)

〉
≤ 0 for all d ∈Rn. But the left-hand side takes

all real values except when s = ∇ f (a). Therefore, ∂ f (a) = {∇ f (a)}.
Finally, suppose that (3) holds and ∂ f (a) = {s}. Then by Corollary 16.7.9,

f ′(a;d) = 〈d,s〉. In particular, f ′(a;−ei) =− f ′(a;ei) and thus

〈ei,s〉= lim
h→0+

f (a+hei)− f (a)
h

= lim
h→0−

f (a+hei)− f (a)
h

=
∂ f
∂xi

(a).

Hence the partial derivatives of f are defined at a, which proves (1). �

16.7.12. EXAMPLE. Let Q be a positive definite n×n matrix, and let q ∈ Rn

and c ∈ R. Minimize the quadratic function f (x) = 〈x,Qx〉+ 〈x,q〉+ c.
We compute the differential

f ′(x;d) = lim
h→0+

f (x+hd)− f (x)
h

= lim
h→0+

〈x+hd,Q(x+hd)〉+ 〈x+hd,q〉−〈x,Qx〉−〈x,q〉
h

= lim
h→0+

1
h

(
〈hd,Qx〉+ 〈x,Qhd〉+ 〈hd,Qhd〉+ 〈hd,q〉

)
= lim

h→0+
〈d,Qx〉+ 〈Qx,d〉+h〈d,Qd〉+ 〈d,q〉= 〈d,q+2Qx〉.

Thus ∇ f (x) = q + 2Qx. We can solve ∇ f (x) = 0 to obtain the unique minimizer
x =− 1

2 Q−1q with minimum value f (− 1
2 Q−1q) =− 1

4 〈q,Q−1q〉+ c.
This problem can also be solved using linear algebra. The spectral theorem for

Hermitian matrices states that there is an orthonormal basis v1, . . . ,vn of eigenvec-
tors that diagonalizes Q. Thus there are positive eigenvalues d1, . . . ,dn such that
Qvi = divi. Write q in this basis as q = q1v1 + · · ·+ qnvn. We also write a generic
vector x as x = x1v1 + · · ·+ xnvn. Then

f (x) = c+
n

∑
i=1

dix2
i +qixi = c′+

n

∑
i=1

di(xi−ai)2,
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where ai =−qi/(2di) and c′ = c−
n
∑

i=1
dia2

i .

Now observe by inspection that the minimum is achieved when xi = ai. To com-
plete the circle, note that

x =
n

∑
i=1

aivi =−1
2

n

∑
i=1

qi

di
vi =−1

2
Q−1q

and the minimum value is

f (x) = c′ = c−
n

∑
i=1

di

( qi

2di

)2
= c−

n

∑
i=1

q2
i

4di
= c− 1

4
〈q,Q−1q〉.

We finish this section with two of the calculus rules for subgradients. The proofs
are very similar, so we prove the first and leave the second as an exercise.

16.7.13. THEOREM. Suppose that f1, . . . , fk are convex functions on Rn and
set f (x) = max{ f1(x), . . . , fk(x)}. For a ∈ Rn, set J(a) = { j : f j(a) = f (a)}. Then
∂ f (a) = conv{∂ f j(a) : j ∈ J(a)}.

PROOF. By Theorem 16.6.2, each f j is continuous. Thus there is an ε > 0 such
that f j(x) < f (x) for all ‖x− a‖ < ε and all j /∈ J(a). So for x ∈ Bε(a), f (x) =
max{ f j(x) : j ∈ J(a)}. Fix d ∈ Rn and note that f (a+hd) depends only on f j(a+
hd) for j ∈ J(a) when |h|< ε/d. Thus using Corollary 16.7.9,

f ′(a;d) = lim
h→0+

f (a+hd)− f (a)
h

= lim
h→0+

max
j∈J(a)

f j(a+hd)− f j(a)
h

= max
j∈J(a)

f ′j(a;d) = max
j∈J(a)

sup{〈d,s j〉 : s j ∈ ∂ f j(a)}

= sup
{
〈d,s〉 : s ∈ ∪ j∈J(a)∂ f j(a)

}
= sup

{
〈d,s〉 : s ∈ conv{∂ f j(a) : j ∈ J(a)}

}
.

This shows that f ′(a; ·) is the support function of the compact convex set
conv{∂ f j(a) : j ∈ J(a)}. By Corollary 16.7.9, f ′(a; ·) is the support function of
∂ f (a). So by the Support Function Lemma (16.7.8), these two sets are equal. �

16.7.14. THEOREM. Suppose that f1 and f2 are convex functions on Rn and
λ1 and λ2 are positive real numbers. Then for a ∈ Rn,

∂ (λ1 f1 +λ2 f2)(a) = λ1∂ f1(a)+λ2∂ f2(a).
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Exercises for Section 16.7
A. Show that f ′(a;d) is sublinear in d: f ′(a;λd + µe) ≤ λ f ′(a;d)+ µ f ′(a;e) for all d,e ∈ Rn

and λ ,µ ∈ [0,∞).

B. Suppose that f is a convex function on a convex subset A ⊂ Rn. If a,b ∈ A, and s ∈ ∂ f (a),
t ∈ ∂ f (b), show that 〈s− t,a−b〉 ≥ 0.

C. Give an example of a convex set A ⊂ Rn, a convex function f on A, and a point a ∈ A such
that ∂ f (a) is empty.

D. Compute the subdifferential for the norm ‖x‖∞ = max{|x1|, . . . , |xn|}.

E. Let g be a convex function on R, and define a function on R2 by G(x,y) = g(x)− y.

(a) Compute the directional derivatives of the function G at a point (a,b).
(b) Use Theorem 16.7.7 to evaluate ∂G(a,b). Check your answer against Example 16.7.4.

F. Prove Theorem 16.7.14; compute ∂ f (a) when f = λ1 f1 +λ2 f2 as follows:

(a) Show that f ′(a;d) = λ1 f ′1(a;d)+λ2 f ′2(a;d).
(b) Apply Corollary 16.7.9 to both sides.
(c) Show that ∂ ( f )(a) = λ1∂ f1(a)+λ2∂ f2(a).

G. Given convex functions f on Rn and g on Rm, define h on Rn×Rm by h(x,y) = f (x)+g(y).
Show that ∂h(x,y) = ∂ f (x)×∂g(y). HINT: h = F+G, where F(x,y)= f (x) and G(x,y)=g(y).

H. Suppose S is any nonempty subset of Rn. We may still define the support function of S by
σS = sup{〈s,x〉 : s ∈ S}, but it may sometimes take the value +∞.

(a) If A = conv(S), show that σS = σA. Hence show that σS is convex.
(b) Show that σS is finite-valued everywhere if and only if S is bounded.

I. Consider a convex function f on a convex set A⊂ Rn and distinct points a,b ∈ ri(A).

(a) Define g on [0,1] by g(λ ) = f (λa + (1− λ )b). If xλ = λa + (1− λ )b, then show that
∂g(λ ) =

{
〈m,b−a〉 : m ∈ ∂ f (xλ )

}
.

(b) Use the Convex Mean Value Theorem (Exercise 16.5.K) and part (a) to show that there
are λ ∈ (0,1) and s ∈ ∂ f (xλ ) such that f (b)− f (a) = 〈s,b−a〉.

J. Define a local subgradient of a convex function f on a convex set A ⊂ Rn to be a vector s
such that f (x)≥ f (a)+ 〈x−a,s〉 for all x ∈ A∩Br(a) for some r > 0. Show that if s is a local
subgradient, then it is a subgradient in the usual sense.

K. (a) If fk are convex functions on a convex subset A⊂Rn for k ≥ 1 converging pointwise to f
and sk ∈ ∂ fk(x0) converge to s, prove that s ∈ ∂ f (x0).

(b) Show that in general, it is not true that every s ∈ ∂ f is obtained as such a limit by consid-
ering fk(x) =

√
x2 +1/k on R.

L. Let h = f �g be the infimal convolution (Exercise 16.6.K) of convex functions f and g on Rn.

(a) Suppose that x0 = x1 + x2 and h(x0) = f (x1)+ g(x2). Prove ∂h(x0) = ∂ f (x1)∩ ∂g(x2).
HINT: s ∈ ∂h(x0)⇔ f (y)+g(z)≥ f (x1)+g(x2)+ s(y+ z− x0). Take y = x1 or z = x2.

(b) If (a) holds and g is differentiable, prove that h is differentiable at x0.

M. Moreau–Yosida. Let f be a convex function on an open convex subset A of Rn. For k ≥ 1,
define fk(x) = f � (k‖ · ‖2)(x) = infy f (y)+ k‖x− y‖2.

(a) Show that fk ≤ fk+1 ≤ f .
(b) Show that x0 is a minimizer for f if and only if it is a minimizer for every fk.

HINT: If f (x0) = f (x1)+ ε , find r > 0 such that f (x)≥ f (x1)+ ε/2 on Br(x0).
(c) Prove that fk converges to f . HINT: If L is a Lipschitz constant on some ball about x0,

estimate fk inside and outside BL/
√

k(x0) separately.
(d) Prove that fk is differentiable for all k ≥ 1. HINT: Use the previous exercise.
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16.8 Tangent and Normal Cones

In this section, we study two special cones associated to a convex subset of Rn. We
develop only a small portion of their theory, since our purpose is to set the stage for
our minimization results, and our results are all related to that specific goal.

16.8.1. DEFINITION. Consider a convex set A ⊂ Rn and a ∈ A. Define the
cone CA(a) = R+(A− a) generated by A− a. The tangent cone to A at a is the
closed cone TA(a) = CA(a) = R+(A−a). The normal cone to A at a is defined to
be NA(a) = {s ∈ Rn : 〈s,x−a〉 ≤ 0 for all x ∈ A}.

It is routine to verify that TA(a) and NA(a) are closed cones. The cone CA(a) is
used only as a tool for working with TA(a). Notice that 〈s,x− a〉 ≤ 0 implies that
〈s,λ (x−a)〉 ≤ 0 for all λ > 0. Thus s ∈ NA(a) satisfies 〈s,d〉 ≤ 0 for all d ∈CA(a).
Since the inner product is continuous, the inequality also holds for d ∈ TA(a).

a+NA(a)

a+TA(a)

A a
b+NB(b)

b+TB(b)

B b

FIG. 16.6 Two examples of tangent and normal cones.

16.8.2. EXAMPLE. As a motivating example, let

A = {(x,y) : x≥ 0, y > 0, x2 + y2 < 1}∪{(0,0)} ⊂ R2.

Then CA((0,0)) = {(x,y) : x≥ 0, y > 0}∪{(0,0)}. The tangent cone is TA((0,0)) =
{(x,y) : x,y≥ 0}. At the boundary points (0,y) for y ∈ (0,1),

CA((0,y)) = TA((0,y)) = {(x,y) : x≥ 0}.

Finally, at points (x,y) ∈ intA, CA((x,y)) = TA((x,y)) = R2.
The normal cone gets smaller as the tangent cone increases in size. Here we

have NA((0,0)) = {(a,b) : a,b≤ 0}, NA((0,y)) = {(a,0) : a≤ 0} for y ∈ (0,1), and
NA((x,y)) = {0} for (x,y) ∈ intA.

You may find it useful to draw pictures like Figure 16.6 for various points in A.

Let us formalize the procedure that produced the normal cone.
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16.8.3. DEFINITION. Given a nonempty subset A of Rn, the polar cone of A,
denoted by A◦, is A◦ = {s ∈ Rn : 〈a,s〉 ≤ 0 for all a ∈ A}.

It is easy to verify that A◦ is a closed cone. It is evident from the previous defini-
tion that NA(a) = TA(a)◦.

We need the following consequence of the Separation Theorem.

16.8.4. BIPOLAR THEOREM.
If C is a closed cone in Rn, then C◦◦ = C.

PROOF. From the definition, C◦◦ = {d : 〈d,s〉 ≤ 0 for all s ∈ C◦}. This clearly in-
cludes C. Conversely, suppose that x /∈C. Applying the Separation Theorem (16.3.3),
there are a vector s and scalar α such that 〈c,s〉 ≤ α for all c ∈ C and 〈x,s〉 > α .
Since C = R+C, the set of values {〈c,s〉 : c ∈C} is a cone in R. Since C is bounded
above by α , it follows that C = R− or {0}. Hence 〈c,s〉 ≤ 0≤ α < 〈x,s〉 for c ∈C.
Consequently, s belongs to C◦. Therefore, x is not in C◦◦. So C◦◦ = C. �

Since NA(a) = TA(a)◦, we obtain the following:

16.8.5. COROLLARY. Let A be a convex subset of Rn and a ∈ A. Then the
normal and tangent cones at a are polar to each other, namely NA(a) = TA(a)◦ and
TA(a) = NA(a)◦.

16.8.6. EXAMPLE. Let s1, . . . ,sm be vectors in Rn. Consider the convex poly-
hedron given as A = {x ∈ Rn : 〈x,s j〉 ≤ r j, 1 ≤ j ≤ m}. What are the tangent and
normal cones at a ∈ A?

Fix a ∈ A. Set J(a) = { j : 〈a,s j〉= r j}. Note that J(a) is empty if a ∈ ri(A). Now

CA(a) =
{

d = t(x−a) : 〈x,s j〉 ≤ r j and some t ≥ 0
}

=
{

d :
〈 d

t +a,s j
〉
≤ r j and some t ≥ 0

}
=
{

d : 〈d,s j〉 ≤ t(r j−〈a,s j〉) and some t ≥ 0
}
.

If r j −〈a,s〉 > 0, this is no constraint; so CA(a) =
{

d : 〈d,s j〉 ≤ 0, j ∈ J(a)
}

. This
is closed, and thus TA(a) = CA(a).

Note that {d : 〈d,s〉 ≤ 0}◦ = R+s. Indeed, (R+s)◦ = {d : 〈d,s〉≤ 0}. So the result
follows from the Bipolar Theorem. Now Exercise 16.8.J tells us that

NA(x) =
( ⋂

j∈J(a)

{d : 〈d,s〉 ≤ 0}
)◦

= ∑
j∈J(a)

R+s j = cone{s j : j ∈ J(a)}.

Indeed, cone{s j : j ∈ J(a)}◦ =
{

d : 〈d,s j〉 ≤ 0, j ∈ J(a)
}

= TA(a). Therefore, by
Corollary 16.8.5 and the Bipolar Theorem,

NA(x) = TA(a)◦ = cone{s j : j ∈ J(a)}◦◦ = cone{s j : j ∈ J(a)}.



16.8 Tangent and Normal Cones 489

We need to compute the tangent and normal cones for a convex set A given as the
sublevel set of a convex function.

16.8.7. LEMMA. Let A be a compact convex subset of Rn that does not contain
the origin 0. Then the cone R+A is closed.

PROOF. Suppose that ak ∈ A and λk ≥ 0 and that c = lim
k→∞

λkak is a point in R+A.

From the compactness of A, we deduce that there is a subsequence (ki) such that
a0 = lim

i→∞
aki exists in A. Because ‖a0‖ 6= 0,

λ0 :=
‖c‖
‖a0‖

= lim
i→∞

‖λkiaki‖
‖aki‖

= lim
i→∞

λki .

Therefore, c = lim
i→∞

λkiaki = λ0a0 belongs to R+A. �

16.8.8. THEOREM. Let g be a convex function on Rn, and let A be the convex
sublevel set {x : g(x) ≤ 0}. Assume that there is a point x with g(x) < 0. If a ∈ Rn

satisfies g(a) = 0, then

TA(a) = {d ∈ Rn : g′(a;d)≤ 0} and NA(a) = R+∂g(a).

PROOF. Let C = {d ∈ Rn : g′(a;d) ≤ 0}, which is a closed cone. Suppose that d
belongs to A−a. Then [a,a+d] is contained in A and thus g(a+hd)−g(a)≤ 0 for
0 < h≤ 1. So g′(a;d)≤ 0 and hence d ∈C. Since C is a closed cone, it follows that
C contains R+(A−a) = TA(a).

Choose x ∈ A with g(x) < 0, and set d = x−a. Then

g′(a;d) = inf
h>0

g(a+hd)−g(a)
h

≤ g(a+d)−g(a)
1

< 0.

Hence by Lemma 16.6.5, intC = {d : g′(a;d) < 0} is nonempty, and C = intC.
Let d ∈ intC. Since g′(a;d) < 0, there is some h > 0 such that g(a + hd) < 0.

Consequently, a+hd belongs to A and d ∈ R+(A−a)⊂ TA(a). So intC is a subset
of TA(a). Thus C = intC is contained in TA(a), and the two cones agree.

By Corollary 16.7.9,

g′(a;d) = sup{〈d,s〉 : s ∈ ∂g(a)}.

Thus d ∈ TA(a) if and only if 〈d,s〉 ≤ 0 for all s ∈ ∂g(a), which by definition is
the polar cone of ∂g(a). Hence by the Bipolar Theorem (16.8.4), NA(a), the polar
cone of TA(a), is the closed cone generated by ∂g(a). Now 0 /∈ ∂g(a) because a
is not a minimizer of g (Proposition 16.7.2). Thus, by Lemma 16.8.7, NA(a) is just
R+∂g(a). �
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Exercises for Section 16.8

A. Show that TA(a) and NA(a) are closed convex cones.

B. For a point v ∈ Rn, show that v ∈ NA(a) if and only if PA(a+ v) = a.

C. If C is a closed cone, show that TC(0) = C and NC(0) = C◦.

D. Suppose that A ⊂ Rn is convex and f is a convex function on A. Prove that x0 ∈ A is a
minimizer for f in A if and only if f ′(x0,d)≥ 0 for all d ∈ TA(x0).

E. Let f (x,y) = (x− y2)(x− 2y2). Show that (0,0) is not a minimizer of f on R2 even though
f ′((0,0),d)≥ 0 for all d ∈ R2. Why does this not contradict the previous exercise?

F. If C1 ⊂C2, show that C2
◦ ⊂C1

◦.

G. If A is a subspace of Rn, show that A◦ is the orthogonal complement of A.

H. Suppose that a1, . . . ,ar are vectors in Rn. Compute conv({a1, . . . ,ar})◦.
I. If A is a convex subset of Rn, show that A◦ = {0} if and only if 0 ∈ int(A).

HINT: Use the Separation Theorem and Support Theorem.

J. Suppose that C1 and C2 are closed cones in Rn.

(a) Show that (C1 +C2)
◦ = C1

◦ ∩C2
◦.

(b) Show that (C1∩C2)
◦ = C1

◦+C2
◦. HINT: Use the Bipolar Theorem and part (a).

K. Given a convex function f on Rn, define g on Rn+1 by g(x,r) = f (x)− r. Show that

(a) TA
(
(x, f (x))

)
= {(d, p) : f ′(x;d)≤ p}, HINT: Use Theorem 16.8.8.

(b) intTA
(
(x, f (x))

)
= {(d, p) : f ′(x;d) < p}, and

(c) NA
(
(x, f (x))

)
= R+[∂ f (x)×{−1}].

(d) For n = 1, explain the last equation geometrically.

L. For a convex subset A⊂ Rn, show that the following are equivalent for x ∈ A:
(1) x ∈ ri(A).
(2) TA(x) is a subspace.
(3) NA(x) is a subspace.
(4) y ∈ NA(x) implies that −y ∈ NA(x).

M. (a) Suppose C⊂Rn is a closed convex cone and x /∈C. Show that y∈C is the closest vector to
x if and only if x− y ∈C◦ and 〈y,x− y〉= 0. HINT: Theorem 16.3.1. Expand ‖x− y‖2.

(b) Hence deduce that x = PC(x)+PC◦x.

N. Give an example of two closed cones in R3 whose sum is not closed.
HINT: Let Ci = cone{(x,y,1) : (x,y) ∈ Ai}, where A1 and A2 come from Exercise 16.2.G (c).

O. A polyhedral cone in Rn is a set ARm
+ = {Ax : x ∈ Rm

+} for some matrix A mapping Rm into
Rn. Show that (ARm

+)◦ = {y ∈ Rn : At y≤ 0}, where z≤ 0 means zi ≤ 0 for 1≤ i≤ m.

P. Suppose A ⊂ Rn and B ⊂ Rm are convex sets. If (a,b) ∈ A×B, then show that TA×B(a,b) =
TA(a)×TB(b) and NA×B(a,b) = NA(a)×NB(b).

Q. Suppose that A1 and A2 are convex sets and a ∈ A1∩A2.

(a) Show that TA1∩A2 (a)⊂ TA1 (a)∩TA2 (a).
(b) Give an example where this inclusion is proper. HINT: Find a convex set A in R2 such

that the positive y-axis Y+ is contained in TA(0) but A∩Y+ = {(0,0)}.
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16.9 Constrained Minimization

The goal of this section is to characterize the minimizers of a convex function sub-
ject to constraints that limit the domain to a convex set. Generally, this set is not
explicitly described but is given as the intersection of level sets. That is, we are
interested in minimizers only in some specified convex set. The first theorem char-
acterizes such minimizers abstractly, using the normal cone of the constraint set and
the subdifferentials of the function. If the constraint is given as the intersection of
sublevel sets of convex functions, these conditions may be described explicitly in
terms of subgradients analogous to the Lagrange multiplier conditions of multivari-
able calculus. Finally, we present another characterization in terms of saddle points.

We will consider only convex functions that are defined on all of Rn, rather than a
convex subset. This is not as restrictive as it might seem. Exercise 16.9.H will guide
you through a proof that any convex function satisfying a Lipschitz condition on a
convex set A extends to a convex function on all of Rn. There are convex functions
that cannot be extended. For example, f (x) = −

√
x− x2 on [0,1] is convex, but

cannot be extended to all of R because the derivative blows up at 0 and 1.
We begin with the problem of minimizing a convex function f defined on Rn

over a convex subset A. A point x in A is called a feasible point.

16.9.1. THEOREM. Suppose that A ⊂ Rn is convex and that f is a convex
function on Rn. Then the following are equivalent for a ∈ A:

(1) a is a minimizer for f |A.
(2) f ′(a;d)≥ 0 for all d ∈ TA(a).
(3) 0 ∈ ∂ f (a)+NA(a).

PROOF. First assume (3) that 0 ∈ ∂ f (a) + NA(a); so there is a vector s ∈ ∂ f (a)
such that −s ∈ NA(a). Recall that NA(a) = {v : 〈x− a,v〉 ≤ 0 for all x ∈ A}. Hence
〈x−a,s〉 ≥ 0 for x ∈ A. Now use the fact that s ∈ ∂ f (a) to obtain

f (x)≥ f (a)+ 〈x−a,s〉 ≥ f (a).

Therefore, a is a minimizer for f on A. So (3) implies (1).
Assume (1) that a is a minimizer for f on A. Let x ∈ A and set d = x− a. Then

[a,x] = {a + hd : 0 ≤ h ≤ 1} is contained in A. So f (a + hd) ≥ f (a) for h ∈ [0,1]
and thus

f ′(a;d) = lim
h→0+

f (a+hd)− f (a)
h

≥ 0.

Because f ′(a; ·) is positively homogeneous and is nonnegative on A− a, it follows
that f ′(a;d) ≥ 0 for d in the cone R+(A− a). But f ′(a; ·) is defined on all of Rn,
and hence is continuous by Theorem 16.6.2. Therefore, f ′(a; ·) ≥ 0 on the closure
TA(a) = R+(A−a). This establishes (2).

By Theorem 16.7.3, since a is in the interior of Rn, the subdifferential ∂ f (a) is
a nonempty compact convex set. Thus the sum ∂ f (a)+NA(a) is closed and convex
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by Exercise 16.2.G. Suppose that (3) fails: 0 /∈ ∂ f (a)+NA(a). Then we may apply
the Separation Theorem (16.3.3) to produce a vector d and scalar α such that

sup{〈s+n,d〉 : s ∈ ∂ f (a), n ∈ NA(a)} ≤ α < 〈0,d〉= 0.

It must be the case that 〈n,d〉 ≤ 0 for n ∈ NA(a), for if 〈n,d〉> 0, then

〈s+λn,d〉= 〈s,d〉+λ 〈n,d〉> 0

for very large λ . Therefore, d belongs to NA(a)◦ = TA(a) by Corollary 16.8.5. Now
take n = 0 and apply Corollary 16.7.9 to compute

f ′(a;d) = sup{〈s,d〉 : s ∈ ∂ f (a)} ≤ α < 0.

Thus (2) fails. Contrapositively, (2) implies (3). �

Theorem 16.9.1 is a fundamental and very useful result. In particular, condi-
tion (3) does not depend on where a is in the set A. For example, if a is an interior
point of A, then NA(a) = {0} and this theorem reduces to Proposition 16.7.2. Given
that all we know about the constraint set is that it is convex, this theorem is the best
we can do. However, when the constraints are described in other terms, such as the
sublevel sets of convex functions, then we can find more detailed characterizations
of the optimal solutions.

16.9.2. DEFINITION. By a convex program, we mean the ingredients of
a minimization problem involving convex functions. Precisely, we have a convex
function f on Rn to be minimized. The set over which f is to be minimized is
not given explicitly but instead is determined by constraint conditions of the form
gi(x)≤ 0, where g1, . . . ,gr are convex functions. The associated problem is

Minimize f (x)
subject to constraints g1(x)≤ 0, . . . , gr(x)≤ 0.

We call a∈Rn a feasible vector for the convex program if a satisfies the constraints,
that is, gi(a) ≤ 0 for i = 1, . . . ,r. A solution a ∈ Rn of this problem is called an
optimal solution for the convex program, and f (a) is the optimal value.

The function f is minimized over the convex set A =
⋂

1≤i≤r{x : gi(x)≤ 0}. The
r functional constraints may be combined into a single condition, namely g(x)≤ 0,
where g(x) = max{gi(x) : 1≤ i≤ r}. The function g is also convex. This is a useful
device for technical reasons, but in practice the conditions gi ≤ 0 may be superior
(e.g., they may be differentiable). So it is better to express optimality conditions in
terms of the gi themselves.

In order to solve this problem, we need to impose some sort of regularity condi-
tion on the constraints that allows us to use our results about sublevel sets.
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16.9.3. DEFINITION. A convex program satisfies Slater’s condition if there
is point x ∈ Rn such that gi(x) < 0 for i = 1, . . . ,r. Such a point is called a strictly
feasible point or a Slater point.

16.9.4. KARUSH–KUHN–TUCKER THEOREM.
Consider a convex program that satisfies Slater’s condition. Then a ∈ Rn is an op-
timal solution if and only if there is a vector w = (w1, . . . ,wr) ∈ Rr with w j ≥ 0 for
1≤ j ≤ r such that

0 ∈ ∂ f (a)+w1∂g1(a)+ · · ·+wr∂gr(a),
g j(a)≤ 0, w jg j(a) = 0 for 1≤ j ≤ r.

(KKT)

The relations (KKT) are called the Karush–Kuhn–Tucker conditions. If a is
an optimal solution, the set of vectors w ∈ Rr

+ that satisfy (KKT) are called the
(Lagrange) multipliers.

A slight variant on these conditions for differentiable functions was given in a
1951 paper by Kuhn and Tucker and was labeled with their names. Years later, it
came to light that they also appeared in Karush’s unpublished Master’s thesis of
1939, and so Karush’s name was added.

This definition of multipliers appears to depend on which optimal point a is used.
However, the set of multipliers is in fact independent of a; see Exercise 16.9.E.

PROOF. We introduce the function g(x) = max{gi(x) : 1≤ i≤ r}. Then the feasible
set becomes

A = {x ∈ Rn : gi(x)≤ 0, 1≤ i≤ r}= {x ∈ Rn : g(x)≤ 0}.

Slater’s condition guarantees that the set {x : g(x) < 0} is nonempty. Hence by
Lemma 16.6.5, this is the interior of A.

Assume that a∈ A is an optimal solution. In particular, a is feasible, so g j(a)≤ 0
for all j. By Theorem 16.9.1, 0 ∈ ∂ f (a)+ NA(a). When a is an interior point, we
have NA(a) = {0} and so 0 ∈ ∂ f (a). Set w j = 0 for 1 ≤ j ≤ r, and the conditions
(KKT) are satisfied. Otherwise we may suppose that g(a) = 0.

The hypotheses of Theorem 16.8.8 are satisfied, and therefore NA(a) = R+∂g(a).
When the subdifferential of g is computed using Theorem 16.7.13, it is found to be
∂g(a) = conv{∂g j(a) : j ∈ J(a)}, where J(a) = { j : g j(a) = 0}. We claim that

NA(a) =
{

∑
j∈J(a)

w js j : w j ≥ 0, s j ∈ ∂g j(a)
}

.

Indeed, every element of ∂g(a) has this form, and multiplication by a positive
scalar preserves it. Conversely, if w = ∑ j∈J(a) w j 6= 0, then ∑ j∈J(a)

w j
w s j belongs to

conv{∂g j(a) : j ∈ J(a)}, and so ∑ j∈J(a) w js j belongs to R+∂g(a).
Thus the condition 0∈ ∂ f (a)+NA(a) may be restated as s∈ ∂ f (a), s j ∈ ∂g j(a),

w j ≥ 0 for j ∈ J(a), and s + ∑ j∈J(a) w js j = 0. By definition, g j(a) = g(a) = 0 for
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j ∈ J(a), whence we have w jg j(a) = 0. For all other j, we set w j = 0, and (KKT)
is satisfied.

Conversely, suppose that (KKT) holds. Since g j(a)≤ 0, a is a feasible point. The
conditions w jg j(a) = 0 mean that w j = 0 for j /∈ J(a). If a is strictly feasible, J(a)
is the empty set. In this event, (KKT) reduces to 0 ∈ ∂ f (a) = ∂ f (a)+ NA(a). On
the other hand, when g(a) = 0, we saw that in this instance the (KKT) condition is
equivalent to 0 ∈ ∂ f (a)+NA(a). In both cases, Theorem 16.9.1 implies that a is an
optimal solution. �

Notice that if f and each gi are differentiable, then the first part of (KKT) be-
comes

0 = ∇ f (a)+w1∇g1(a)+ · · ·+wr∇gr(a),

which is more commonly written as a system of linear equations

0 =
∂ f
∂xi

(a)+w1
∂g1

∂xi
(a)+ · · ·+wr

∂gr

∂xi
(a) for 1≤ i≤ n.

This is a Lagrange multiplier problem. We adopt the same terminology here.
These conditions can be used to solve concrete optimization problems in much

the same way as in multivariable calculus. Their greatest value for applications is
in understanding minimization problems, which can lead to the development of ef-
ficient numerical algorithms.

16.9.5. DEFINITION. Given a convex program, define the Lagrangian of this
system to be the function L on Rn×Rr given by

L(x,y) = f (x)+ y1g1(x)+ · · ·+ yrgr(x).

Next, we recall the definition of a saddle point from multivariable calculus. There
are several equivalent conditions for saddle points given in the exercises.

16.9.6. DEFINITION. Suppose that X and Y are sets and L is a real-valued
function on X ×Y . A point (x0,y0) ∈ X ×Y is a saddle point for L if

L(x0,y)≤ L(x0,y0)≤ L(x,y0) for all x ∈ X , y ∈ Y.

We shall be interested in saddle points of the Lagrangian over the set Rn×Rr
+.

We restrict the y variables to the positive orthant Rr
+ because the (KKT) conditions

require nonnegative multipliers.

16.9.7. THEOREM. Consider a convex program that admits an optimal solu-
tion and satisfies Slater’s condition. Then a is an optimal solution and w a multiplier
for the program if and only if (a,w) is a saddle point for its Lagrangian function
L(x,y) = f (x)+ y1g1(x)+ · · ·+ yrgr(x) on Rn×Rr

+. The value L(a,w) at any sad-
dle point equals the optimal value of the program.
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PROOF. First suppose that L(a,y)≤ L(a,w) for all y ∈ Rn
+. Observe that

r

∑
j=1

(y j−w j)g j(a) = L(a,y)−L(a,w)≤ 0.

Since each y j may be taken to be arbitrarily large, this forces g j(a)≤ 0 for each j. So
a is a feasible point. Also, taking y j = 0 and yi = wi for i 6= j yields −w jg j(a)≤ 0.
Since this quantity is positive, we deduce that w jg j(a) = 0. So

L(a,w) = f (a)+∑w jg j(a) = f (a).

Now turn to the condition L(a,w) ≤ L(x,w) for all x ∈ Rn. This means that
h(x) = L(x,w) = f (x)+ ∑ j w jg j(x) has a global minimum at a. Proposition 16.7.2
shows that 0 ∈ ∂h(a). We may compute ∂h(a) using Theorem 16.7.14. Therefore
0 ∈ ∂ f (a)+∑

r
j=1 w j∂g j(a). This establishes the (KKT) conditions, and thus a is a

minimizer for the convex program and w is a multiplier.
Conversely, suppose that a and w satisfy (KKT). Then g j(a) ≤ 0 because a is

feasible, and w jg j(a) = 0 for 1 ≤ j ≤ r. Therefore, w j = 0 except for j ∈ J(a).
Thus L(a,y)− L(a,w) = ∑ j/∈J(a) y jg j(a) ≤ 0. The other part of (KKT) states that
the function h(x) has 0 ∈ ∂h(a). Thus by Proposition 16.7.2, a is a minimizer for h.
That is, L(a,w)≤ L(x,w) for all x ∈ Rn. So L has a saddle point at (a,w). �

If we have a multiplier w for the convex program, then to solve the convex pro-
gram it is enough to solve the unconstrained minimization problem

inf{L(x,w) : x ∈ Rn}.

This shows one important property of multipliers: They turn constrained optimiza-
tion problems into unconstrained ones. In order to use multipliers in this way, we
need a method for finding multipliers without first solving the convex program. This
problem is addressed in the next section.

16.9.8. EXAMPLE. Consider the following example. Let g be a convex func-
tion on R and fix two points p = (xp,yp) and q = (xq,yq) in R2. Minimize the
sum of the distances to p and q over A = epi(g) = {(x,y) : G(x,y) ≤ 0}, where
G(x,y) = g(x)− y, as indicated in Figure 16.7.

Then the function of v = (x,y) ∈ R2 to be minimized is

f (v) = ‖v−p‖+‖v−q‖=
√

(x−xp)2 +(y−yp)2 +
√

(x−xq)2 +(y−yq)2.

Using Example 16.7.10, we may compute that

∂ f (v) =


B1(0)+ p−q

‖p−q‖ if v = p,

B1(0)− p−q
‖p−q‖ if v = q,

v−p
‖v−p‖ + v−q

‖v−q‖ if x 6= p,q.
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p
q

v

epi(g)

FIG. 16.7 Minimizing the sum of two distances.

Note that 0 ∈ ∂ f (v) if v = p or q or the two vectors v− p and v−q point in opposite
directions, namely v ∈ [p,q]. This is obvious geometrically.

To make the problem more interesting, let us assume that A does not intersect the
line segment [p,q]. The (KKT) conditions at the point v = (x,y) become

g(x)≤ y, w≥ 0, w(g(x)− y) = 0,

0 ∈ ∂ f (v)+w∂G(v).

The first line reduces to saying that v = (x,g(x)) lies in the boundary of A and
w ≥ 0. Alternatively, we could observe that NA(v) = {0} when v ∈ intA, and thus
0 /∈ ∂ f (v)+NA(v), whence the minimum occurs on the boundary.

At a point x, we know that ∂g(x) = [D−g(x),D+g(x)]. Thus by Example 16.7.4
for v = (x,g(x)),

∂G(v) =
{
(s,−1) : s ∈ [D−g(x),D+g(x)]

}
.

So by Theorem 16.8.8, NA(v) =
{
(st,−t) : s ∈ [D−g(x),D+g(x)], t ≥ 0

}
. Thus the

second statement of (KKT) says that the sum of the two unit vectors in the directions
p−v and q−v is an element of NA(v). Now geometrically this means that p−v and
q− v make the same angle on opposite sides of some normal vector.

In particular, if g is differentiable at v, then NA(v) = R+(g′(x),−1) is the outward
normal to the tangent line at v. So the geometric condition is just that the angles to
the tangent (from opposite sides) made by [p,v] and [q,v] are equal. In physics,
this is the following well-known law: The angle of incidence equals the angle of
reflection. For light reflecting off a surface, this is explained by Fermat’s principle
that a beam of light will follow the fastest path (which is, in this case, the shortest
path) between two points.

However, this criterion works just as well when g is not differentiable. For exam-
ple, take g(x) = |x| and points p = (−1,−1) and q = (2,0). Then

∂g(x) =


−1 if x < 0,

[−1,1] if x = 0,

+1 if x > 0.
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We will verify the (KKT) condition at the point 0 = (0,0). First observe that
∂G(0) = [−1,1]×{−1}. So

NA(0) = R+
(
∂g(0)×{−1}

)
= {(s, t) : t ≤ 0}

consists of the lower half-plane. Now

∂ f (0) = (1,1)/
√

2+(−2,0)/2 =
(

1√
2
−1, 1√

2

)
lies in the upper half-plane. In particular,(

1√
2
−1, 1√

2

)
+ 1√

2

(
1−

√
2,−1) = (0,0).

So w = 1/
√

2 and v = (0,0) satisfy (KKT), and thus (0,0) is the minimizer.

Exercises for Section 16.9

A. Minimize x2 + y2−4x−6y subject to x≥ 0, y≥ 0, and x2 + y2 ≤ 4.

B. Minimize ax+by subject to x≥ 1 and
√

xy≥ K. Here a, b, and K are positive constants.

C. Minimize
1
x

+
4
y

+
9
z

subject to x+ y+ z = 1 and x,y,z > 0. HINT: Lagrange multipliers.

D. Suppose (x1,y1) and (x2,y2) are saddle points of a real-valued function p on X ×Y .
(a) Show that (x1,y2) and (x2,y1) are also saddle points.
(b) Show that p takes the same value at all four points.
(c) Prove that the set of saddle points of p has the form A×B for A⊂ X and B⊂ Y .

E. (a) Use the previous exercise to show that the set of multipliers for a convex program does
not depend on the choice of optimal point.

(b) Show that the set of multipliers is a closed convex subset of Rr
+.

(c) Show that the set of saddle points for the Lagrangian is a closed convex rectangle A×M,
where A is the set of optimal solutions and M is the set of multipliers.

F. Given a real-valued function p on X ×Y , define functions α on X and β on Y by α(x) =
sup{p(x,y) : y ∈ Y} and β (y) = inf{p(x,y) : x ∈ X}. Show that for (x0,y0) ∈ X ×Y the fol-
lowing are equivalent:
(1) (x0,y0) is a saddle point for p.
(2) p(x0,y)≤ p(x,y0) for all x ∈ X and all y ∈ Y .
(3) α(x0) = p(x0,y0) = β (y0).
(4) α(x0)≤ β (y0).

G. Let g be a convex function on R and let p = (xp,yp) ∈ R2. Find a criterion for the closest
point to p in A = epi(g).
(a) What is the function f to be minimized? Find ∂ f (v).
(b) What is the constraint function G? Compute ∂G(v).
(c) Write down the (KKT) conditions.
(d) Simplify these conditions and interpret them geometrically.

H. Suppose that A is an open convex subset of Rn and f is a convex function on A that is Lipschitz
with constant L. Construct a convex function g on Rn extending f as follows:
(a) Show if a ∈ A and v ∈ ∂ f (a), then ‖v‖ ≤ L. HINT: Check the proof of Theorem 16.7.3.
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(b) For x ∈ Rn and a,b ∈ A and s ∈ ∂ f (a), show that f (b)+L‖x−b‖ ≥ f (a)+ 〈s,x−a〉.
(c) Define g on Rn by g(x) = inf{ f (a)+L‖x−a‖ : a ∈ A}. Show that g(x) >−∞ for x ∈ Rn

and that g(a) = f (a) for a ∈ A.
(d) Show that g is convex.

I. Let f and g1, . . . ,gm be C1 convex functions on Rn, and set A = {x : g j(x) ≤ 0, 1 ≤ j ≤ m}.
The problem is to minimize f over A. Let J(x) = { j : g j(x) = 0}. Prove that a feasible point
x0 is a local minimum if and only if λ0∇ f (x0) + ∑ j∈J(x0) λ j∇g j(x0) = 0 for constants λi
not all 0. HINT: Let g(x) = max{ f (x)− f (x0), g j(x) : j ∈ J(x0)}. Compute ∂g(x0) using
Theorem 16.7.13. Then use Exercise 16.3.J to deduce g′(x0;d) ≥ 0 for all d if and only if
0 ∈ cone{∇ f (x0),∇g j(x0) : j ∈ J(x0)}.

J. Duffin’s duality gap. Let b≥ 0, and consider the convex program

Minimize f (x,y) = e−y subject to g(x,y) =
√

x2 + y2− x≤ b in R2.

(a) Find the feasible region. For which b is Slater’s condition satisfied?
(b) Solve the problem. When is the minimum attained?
(c) Show that the solution is not continuous in b.

K. An alternative approach to solving minimization problems is to eliminate the constraint set
gi(x)≤ 0 and instead modify f by adding a term h(gi(x)), where h is an increasing function
with h(y) = 0 for y ≤ 0. The quantity h(gi(x)) is a called a penalty, and this approach is
the penalty method. Assume that f and each gi are continuous functions on Rn but not
necessarily convex. Let hk(y) = k(max{y,0})2. For each integer k≥ 1, we have the following
minimization problem: Minimize Fk(x) = f (x)+∑

r
i=1 hk(gi(x)) for x ∈Rn. Suppose that this

minimization problem has a solution ak and the original has a solution a.
(a) Show that Fk(ak)≤ Fk+1(ak+1)≤ f (a).
(b) Show that limk→∞ ∑

r
i=1 hk(gi(ak)) = 0.

(c) If a0 is the limit of a subsequence of (ak), show that it is a minimizer.
(d) If f (x)→ ∞ as ‖x‖→ ∞, deduce that the minimization problem has a solution.

16.10 The Minimax Theorem

In addition to the Lagrangian of the previous section, saddle points play a central
role in various other optimization problems. For example, they arise in game theory
and mathematical economics. Our purpose in this section is to examine the mathe-
matics that leads to the existence of a saddle point under quite general hypotheses.
Examination of a typical saddle point in R3 shows that the cross sections in the xz-
plane are convex functions, while the cross sections in the yz-plane are concave. See
Figure 16.8. It is this trade-off that gives the saddle its characteristic shape. Hence
we make the following definition:

16.10.1. DEFINITION. A function p(x,y) defined on X×Y is called convex–
concave if p(·,y) is a convex function of x for each fixed y ∈ Y and p(x, ·) is a
concave function of y for each fixed x ∈ X .

The term minimax comes from comparing two interesting quantities:

p∗ = sup
y∈Y

inf
x∈X

p(x,y) and p∗ = inf
x∈X

sup
y∈Y

p(x,y),
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FIG. 16.8 A typical saddle point.

which are the maximin and minimax, respectively. These quantities make sense for
any function p. Moreover, for x1 ∈ X and y1 ∈ Y ,

inf
x∈X

p(x,y1)≤ p(x1,y1)≤ sup
y∈Y

p(x1,y).

Take the supremum of the left-hand side over y1 ∈ Y to get p∗ ≤ supy∈Y p(x1,y),
since the right-hand side does not depend on y1. Then take the infimum over all
x1 ∈ X to obtain p∗ ≤ p∗.

Suppose that there is a saddle point (x̄, ȳ), that is, p(x̄,y) ≤ p(x̄, ȳ) ≤ p(x, ȳ) for
all x ∈ X and y ∈ Y . Then

p∗ ≥ inf
x∈X

p(x, ȳ)≥ p(x̄, ȳ)≥ sup
y∈Y

p(x̄,y)≥ p∗.

Thus the existence of a saddle point shows that p∗ = p∗.
We will use the following variant of Exercise 16.6.J.

16.10.2. LEMMA. Let f1, . . . , fr be convex functions on a convex subset X of
Rn. For c ∈ R, the following are equivalent:

(1) There is no point x ∈ X satisfying f j(x) < c for 1≤ j ≤ r.
(2) There exist λ j ≥ 0 such that ∑ j λ j = 1 and ∑ j λ j f j ≥ c on X.

PROOF. If (1) is false and f j(x0) < c for 1 ≤ j ≤ k, then ∑ j λ j f j(x0) < c for all
choices of λ j ≥ 0 with ∑ j λ j = 1. Hence (2) is also false.

Conversely, assume that (1) is true. Define

Y = {y ∈ Rr : y j > f j(x) for 1≤ j ≤ r and some x ∈ X}.

This set is open and convex (Exercise 16.10.B). By (1), z = (c,c . . . ,c) ∈ Rr is not
in Y . Depending on whether z belongs to Y or not, we apply either the Support
Theorem (16.3.7) or the Separation Theorem (16.3.3) to obtain a hyperplane that
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separates z from Y . That is, there are a nonzero vector h = (h1, . . . ,hr) in Rr and
α ∈ R such that 〈y,h〉< α ≤ 〈z,h〉 for all y ∈ Y .

We claim that each coefficient h j ≤ 0. Indeed, for any x ∈ X , Y contains(
f1(x), . . . , fr(x)

)
+ te j for any t ≥ 0, where e j is a standard basis vector for Rr.

Thus ∑
r
j=1 h j f j(x)+ th j ≤ α , which implies that h j ≤ 0.

Define λ j = h j/H, where H =
r
∑
j=1

h j < 0. Then λ j ≥ 0 and ∑ j λ j = 1. Restating

the separation for
(

f1(x), . . . , fr(x)
)
∈ Y , we obtain

r

∑
j=1

λ j f j(x)≥
α

H
≥ 〈z,h〉

H
=

r

∑
j=1

cλ j = c.

So (2) holds. �

Now we establish our saddle-point result. First we assume compactness. We will
remove it later, at the price of adding a mild additional requirement.

16.10.3. MINIMAX THEOREM (COMPACT CASE).
Let X be a compact convex subset of Rn and let Y be a compact convex subset of
Rm. If p is a convex–concave function on X ×Y , then p has a nonempty compact
convex set of saddle points.

PROOF. For each y ∈Y , define a convex function on X by py(x) = p(x,y). For each
c > p∗, define Ay,c = {x ∈ X : py(x)≤ c}. Then this is a nonempty compact convex
subset of X .

For any finite set of points y1, . . . ,yr in Y , we claim that Ay1,c ∩ ·· · ∩ Ayr ,c is
nonempty. If not, then there is no point x so that py j(x) < c for 1 ≤ j ≤ r. So by
Lemma 16.10.2, there would be scalars λi ≥ 0 with ∑i λi = 1 so that ∑i λi pyi ≥ c on
X . Set ỹ = ∑

r
i=1 λiyi. Since p is concave in y,

c≤
r

∑
i=1

λi p(x,yi)≤ p(x, ỹ) for all x ∈ X .

Consequently, c≤minx∈X p(x, ȳ)≤ p∗, which is a contradiction.
Let {yi : i ≥ 1} be a dense subset of Y , and set cn = p∗ + 1/n. Then the set

An =
⋂n

i=1 Ayi,cn is nonempty closed and convex. It is clear that An contains An+1, and
thus this is a decreasing sequence of compact sets in Rn. By Cantor’s Intersection
Theorem (4.4.7), the set A =

⋂
n≥1 An is a nonempty compact set. (It is also convex,

as the reader can easily verify.)
Let x̄ ∈ A. Then x̄ ∈ Ayi,cn for all n ≥ 1. Thus p(x̄,yi) ≤ cn for all i ≥ 1 and

n≥ 1. So p(x̄,yi)≤ p∗. But the set {yi : i≥ 1} is dense in Y and p is continuous, so
p(x̄,y)≤ p∗ for all y ∈ Y . Therefore,

p∗ = inf
x∈X

max
y∈Y

p(x,y)≤max
y∈Y

p(x̄,y)≤ p∗.
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Since p∗ ≤ p∗ is always true, we obtain equality. Choose a point ȳ ∈ Y such that
p(x̄, ȳ) = p∗. Then p(x̄,y)≤ p(x̄, ȳ)≤ p(x, ȳ) for all x ∈ X and y ∈ Y . That is, (x̄, ȳ)
is a saddle point for p.

By Exercise 16.9.D, the set of saddle points is a rectangle A×B. Moreover, the
same argument required in Exercise 16.9.E shows that this rectangle is closed and
convex. �

Slippery things can happen at infinity if precautions are not taken. However, the
requirements of the next theorem are often satisfied.

16.10.4. MINIMAX THEOREM.
Suppose that X is a closed convex subset of Rn and Y is a closed convex subset of
Rm. Assume that p is convex–concave on X ×Y , and in addition assume that

(1) if X is unbounded, there is y0 ∈ Y such that p(x,y0) → +∞ as ‖x‖ → ∞ for
x ∈ X.

(2) if Y is unbounded, there is x0 ∈ X such that p(x0,y) → −∞ as ‖y‖ → ∞ for
y ∈ Y .

Then p has a nonempty compact convex set of saddle points.

PROOF. We deal only with the case in which both X and Y are unbounded. The
reader can find a modification that works when only one is unbounded.

By the hypotheses, max
y∈Y

p(x0,y) = α < ∞ and min
x∈X

p(x,y0) = β > −∞. Clearly,

β ≤ p(x0,y0)≤ α . Set

X0 = {x ∈ X : p(x,y0)≤ α +1} and Y0 = {y ∈ Y : p(x0,y)≥ β +1}.

Conditions (1) and (2) guarantee that X0 and Y0 are bounded, and thus they are
compact and convex. Let A×B be the set of saddle points for the restriction of p to
X0×Y0 provided by the compact case.

In particular, let (x̄, ȳ) be one saddle point, and let c = p(x̄, ȳ) be the critical value.
Then

β ≤ p(x̄,y0)≤ p(x̄, ȳ) = c≤ p(x0, ȳ)≤ α.

Let x ∈ X \X0, so that p(x,y0) > α + 1. Now p(·,y0) is continuous, and hence
there is a point x1 in [x, x̄] with p(x1,y0) = α + 1. So x1 ∈ X0 and x1 6= x̄. Thus
x1 = λx+(1−λ )x̄ for some 0 < λ < 1. Since p(·, ȳ) is convex,

c≤ p(x1, ȳ)≤ λ p(x, ȳ)+(1−λ )p(x̄, ȳ) = λ p(x̄, ȳ)+(1−λ )c.

Hence p(x̄, ȳ) = c ≤ p(x, ȳ). Similarly, for every y ∈ Y \Y0, we may show that
p(x̄,y)≤ c = p(x̄, ȳ). Therefore, (x̄, ȳ) is a saddle point in X ×Y . �

Now let us see how this applies to the problem of constrained optimization. Con-
sider the following convex programming problem: Minimize a convex function f (x)
over the closed convex set X = {x : g j(x) ≤ 0, 1 ≤ j ≤ r}. Suppose that it satisfies
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Slater’s condition. The Lagrangian L(x,y) = f (x)+y1g1(x)+ · · ·+yrgr(x) is a con-
vex function of x for each fixed y∈Rr

+, and is a linear function of y for each x ∈Rn.
So, in particular, L is convex–concave on Rn×Rr

+.
Now we also suppose that this problem has an optimal solution. Then we can

apply Theorem 16.9.7 and the Karush–Kuhn–Tucker Theorem (16.9.4) to guarantee
a saddle point (a,w) for L; and L(a,w) is the solution of the convex program. By the
arguments of this section, it follows that the existence of a saddle point means that
the optimal value is also obtained as the maximin:

f (a) = min
x∈X

f (x) = L∗ = max
y∈Rr

+
inf

x∈Rn
L(x,y).

Define h(y) = infx∈Rn f (x)+y1g1(x)+ · · ·+yrgr(x) for y ∈Rr
+. While its definition

requires an infimum, h gives a new optimization problem, which can be easier to
solve. This new problem is called the dual program:

Maximize h(y) over y ∈ Rr
+.

16.10.5. PROPOSITION. Consider a convex program that admits an opti-
mal solution and satisfies Slater’s condition. The solutions of the dual program are
exactly the multipliers of the original program, and the optimal value of the dual
program is the same.

PROOF. Suppose a is an optimal solution of the original program and w a multiplier.
Then L(a,y)≤ L(a,w)≤ L(x,w) for all x ∈ Rn and y ∈ Rr

+, since (a,w) is a saddle
point for the Lagrangian L. In particular,

h(w) = inf{L(x,w) : x ∈ Rn}= L(a,w).

Moreover, for any y ∈ Rr
+ with y 6= w, h(y) ≤ L(a,y) ≤ L(a,w) = h(w). So w is a

solution of the dual problem, and the value is L(a,w) = L∗, which equals the value
of the original problem.

Conversely, suppose that w′ is a solution of the dual program. Let (a,w) be a
saddle point. Then

L∗ = L(a,w)≥ L(a,w′)≥ h(w′) = L∗.

Thus h(w′) = L(a,w′) = L∗. Therefore, L(a,w′) = h(w′) ≤ L(x,w′) for all x ∈ Rn.
Also, since (a,w) is a saddle point, L(a,y) ≤ L(a,w) = L(a,w′) for all y ∈ Rr

+.
Consequently, w′ is a multiplier. �

An important fact for computational purposes is that since these two problems
have the same answer, we can obtain estimates for the solution by sampling. Sup-
pose that we have points x0 ∈ X and y0 ∈ Rm

+ such that h(y0)− f (x0) < ε . Then
since we know that the solution lies in [ f (x0),h(y0)], we have a good estimate for
the solution even if we cannot compute it exactly.
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16.10.6. EXAMPLE. Consider a quadratic programming problem. Let Q be
a positive definite n× n matrix, and let q ∈ Rn. Also let A be an m× n matrix and
a ∈ Rm. Minimize the quadratic function f (x) = 〈x,Qx〉+ 〈x,q〉 over the region
Ax≤ a.

We can assert before doing any calculation that this minimum will be attained.
This follows from the global version, Example 16.7.12, where it was shown that f
may be written as a sum of squares. Thus f tends to infinity as ‖x‖ goes to infinity.
Therefore, the constraint set could be replaced with a compact set. Then the Extreme
Value Theorem asserts that the minimum is attained.

The constraint condition is really m linear conditions 〈x,Ate j〉 − a j ≤ 0 for
1 ≤ j ≤ m, where a = (a1, . . . ,am) with respect to the standard basis e1, . . . ,em.
If rankA = m, then m ≤ n and A maps Rn onto Rm. Thus there are strictly feasible
points and so Slater’s condition is satisfied. In general this needs to be checked.

The Lagrangian is defined on Rn×Rm
+ by

L(x,y) = f (x)+
m

∑
j=1

(
〈x,Ate j〉−a j

)
y j = 〈x,Qx〉+ 〈x,q+Aty〉−〈a,y〉.

To find a solution to the dual problem, we first must compute h(y) = inf
x∈Rn

L(x,y).

This was solved in Example 16.7.12, so

h(y) =− 1
4

〈
q+Aty,Q−1(q+Aty)

〉
−〈a,y〉

=− 1
4 〈y,AQ−1Aty〉−〈y,a+ 1

2 AQ−1q〉− 1
4 〈q,Q−1q〉.

The dual problem is to maximize h(y) over the set Rm
+. This is now a quadratic

programming problem with a simpler set of constraints, possibly at the expense of
extra variables if m > n. The matrix AQ−1At is positive semidefinite but may not be
invertible. This is not a serious problem.

Now look at a specific case:

Minimize f (x1,x2) = 2x2
1−2x1x2 +2x2

2−6x1

subject to x1 ≥ 0, x2 ≥ 0, and x1 + x2 ≤ 2.

This is a quadratic programming problem with Q =
[ 2 −1
−1 2

]
, q = (−6,0),

A =
[−1 0

0 −1
1 1

]
, and a = (0,0,2). Note that Slater’s condition is satisfied, for example,

at the point (1/2,1/2).

We can compute Q−1 = 1
3

[
2 1
1 2

]
and 1

4 AQ−1At = 1
12

[ 2 1 −3
1 2 −3
−3 −3 6

]
, and in addition,

a+ 1
2 AQ−1q = (2,1,−1) and 1

4 〈q,Q−1q〉= 6. Thus

h(y1,y2,y3) = 1
12 (2y2

1 +2y2
2 +6y2

3 +2y1y2−6y1y3−6y2y3)−2y1− y2 + y3−6.

This problem can be solved most easily using the (KKT) conditions. It will be
left to Exercise 16.10.G to show that x = (3/2,1/2) and y = (0,0,1) satisfy (KKT).
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Notice that f (3/2,1/2) =−11/2 = h(0,0,1). Since the minimum of f and the max-
imum of h are equal, this is the minimax value. Hence the value of the program must
be −11/2, the minimizer is (3/2,1/2), and the multiplier is (0,0,1).

Exercises for Section 16.10

A. Compute p∗ and p∗ for p(x,y) = sin(x+ y) on R2.

B. Show that the set Y defined in the proof of Lemma 16.10.2 is convex and open.

C. Show that the set A constructed in the proof of the Minimax Theorem (compact case) is
compact and convex.

D. Modify the proof of the Minimax Theorem to deal with the case in which X is unbounded
and Y is compact.

E. Let p(x,y) = e−x− e−y.

(a) Show that p is convex–concave.
(b) Show that p∗ = p∗

(c) Show that there are no saddle points.
(d) Why does this not contradict the Minimax Theorem?

F. Suppose that p(x,y) is convex–concave on X ×X for a compact subset X of Rn and satisfies
p(y,x) =−p(x,y). Prove that p∗ = p∗ = 0.

G. (a) Solve the (KKT) equations for the numerical example in Example 16.10.6.
(b) Write down the Lagrangian and verify the saddle point.

H. Consider the following linear programming problem: Minimize 〈x,q〉 subject to Ax ≤ a,
where q ∈ Rn, A is an m×n matrix, and a ∈ Rm.

(a) Express this problem as a convex program and compute the Lagrangian.
(b) Find the dual program.
(c) Show that if the original program satisfies Slater’s condition and has a solution v, then the

dual program has a solution w and 〈v,q〉= 〈w,a〉.
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absolute value function, 12
absolutely convergenet series, 45
absolutely integrable functions, 135
Accessibility Lemma, 458
affine function, 450
affine hull, 451
affine set, 450
affinely dependent, 455
affinely independent, 455
aleph nought (ℵ0), 32
algebra, 236
algebraic number, 34
alternating sequence, 40
Alternating Series Test, 40
antisymmetric, 7
Archimedean property, 12
arithmetic mean–geometric mean inequality,

473
generalized, 469

arithmetic–geometric mean, 55
Arzelà–Ascoli Theorem, 172
Ascoli, 172
asymptotic cone, 455
asymptotic to a curve, 74, 99
attractive fixed point, 241
attractive periodic point, 257
Axiom of Choice, 140

B-spline wavelets, 446
Baire Category Theorem, 184, 270
ball, 57, 177
Banach Contraction Principle, 246
Banach space, 118
Banach’s Isomorphism Theorem, 441
Banach–Steinhaus Theorem, 186

basis, 5
Battle–Lemarié wavelets, 446
Bernoulli, D., 352
Bernstein, 397
Bernstein polynomials, 201
Bernstein’s inequality, 398
Bernstein’s Theorem, 399
Bessel function, 154
Bessel’s DE, 320, 334
Bessel’s inequality, 136
bifurcation, 266
big tent map, 277
bilateral shift, 435
binomial coefficient

fractional, 166
binomial series, 165
Bipolar Theorem, 488
Birkhoff Transitivity Theorem, 270
Bolzano–Weierstrass Theorem, 23
Borel, 62
Borel–Lebesgue Theorem, 119, 180, 238, 316
boundary, 455
bounded, 13, 61, 441
bounded above, 13
bounded below, 13

C1 dynamical system, 243
Cantor, 34
Cantor function, 92
Cantor set, 63, 262, 275, 277, 278, 292

generalized, 272
Cantor’s Intersection Theorem, 63, 183
Cantor’s Theorem, 34
Carathéodory’s Theorem, 453, 464
cardinality, 32
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Carleson, 364
Cauchy, 37
Cauchy Criterion for series, 37
Cauchy sequence, 27, 53, 118, 177
Cauchy–Schwarz inequality, 125
ceiling function, 73
Cesàro means, 376
chain rule, 96
change of variable formula, 111
chaos, 274

period doubling route to, 266
chaotic dynamical system, 274
characteristic function, 75
Chebyshev polynomial, 218, 387, 393
Chebyshev series, 222, 395
closed, 56, 118, 177
closed convex hull, 451
closed span, 138
closure, 57, 177
cluster point, See also limit point, 60, 64, 262
cluster set, 262
codimension one, 209
common refinement, 103
compact, 61, 119, 180

renamed sequentially compact, 180
Comparison Test, 39
complete metric space, 177
complete normed vector space, 118
complete subset, 28, 53
completeness

of `2, 137
of C([a,b],V ), 149
of C(K,Rm), 148
of Cb(X ,Rm), 178
of K(X), 287
of R, 28
of Rn, 54

complex Fourier coefficients, 358
complex Fourier series, 358
complex numbers, 356
composition, 78
concave function, 101, 467, 467
conditionally convergent series, 45
cone, 450
conjugate, 356
connected, 89
Continuation Theorem, 313
continued fraction, 29
continuous, 178
continuous at a point, 68, 78
continuous at infinity, 334
continuous dependence on parameters, 322
continuous on a set, 68, 78
contraction, 244

converge, 177
convergence tests for series

Alternating Series Test, 40
Comparison Test, 39
Hardy’s Tauberian Theorem, 382
Integral Test, 43
Limit Comparison Test, 43
Ratio Test, 43
Root Test, 40

converges, 15, 35, 52, 118
converges pointwise, 142
converges uniformly, 143
convex, 102
convex function, 101, 454, 467
convex hull, 451
Convex Mean Value Theorem, 473
convex program, 492
Convex Projection Theorem, 460
convex set, 449
convex–concave function, 498
coordinate functions, 71
cosine law, 52
countable set, 32
countably infinite, 32
cubic spline, 225, 447

d’Alembert, 328, 352
Darboux’s Theorem, 102
Daubechies wavelets, 421
de la Vallée Poussin, 382
decreasing function, 90
dense, 20, 60
derivative

vector-valued function, 298
diagonalization, 34, 172
diagonally dominant, 228
differentiable

vector-valued function, 298
differentiable at a point, 94
differentiable on an interval, 94
differential, 477
differential equation of nth order, 301
differentiation

term-by-term, 163
dimension, 6, 451
Dini’s Test, 372
Dini’s Theorem, 146, 161
Dini–Lipschitz Theorem, 405
direct sum (⊕), 414
directional derivative, 480
Dirichlet kernel, 359, 365
Dirichlet–Jordan Theorem, 369, 391
discontinuous, 68
discrete dynamical system, 240
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discrete metric, 176
diverge, 35
Divergence Theorem, 329
dot product, 49
doubling map, 260
du Bois Reymond, 364
dual program, 502
Duffin’s duality gap, 498
dyadic interval, 409
dyadic wavelet, 407

ei (standard basis), 51
empty interior, 59
epigraph, 454, 469
ε/3-argument, 148
equicontinuous at a point, 169
equicontinuous on a set, 169
equioscillation condition, 212
equivalence class, 7
equivalence relation, 7
equivalent metrics, 179
error function, 205
error of approximation, 390
Euclidean norm, 48
Euler, 344, 352, 372
Euler’s constant, 22
evaluation sequence, 103
even function, 98
eventually periodic point, 257
exposed face, 467
extreme point, 464
Extreme Value Theorem, 81

face, 464
exposed, 467

Farkas Lemma, 464
father wavelet, 413
feasible point, 491
feasible vector, 492
Fejér, 364, 376
Fejér kernel, 359, 376
Fejér’s Theorem, 238, 379
Fermat’s principle, 496
Fermat’s Theorem, 99
Fibonacci sequence, 167
field, 9, 357
filter, 420
finite intersection property, 180
finite subcover, 180
finite-dimensional vector space, 6
first category, 183
first moment, 420
for all sufficiently large, 19
forcing term, 317

forward orbit, 240
Fourier, 328
Fourier coefficients, 134
Fourier series, 134, 334

for L2 functions, 386
fractal dimension, 292
fractals, 285
fractional binomial coefficient, 166
Franklin wavelet, 433
function

concave, 467
convex, 454

Fundamental Theorem of Calculus, 4, 109, 299
fundamental vibration, 350

Gδ set, 186
generalized Cantor set, 272
geodesic, 175
geometric convergence, 253
geometric sequence, 39
geometric series, sum of, 39
Gibbs’s phenomenon, 373, 407
global minimizer, 475
Global Picard Theorem, 305
gradient, 477, 477
Gram–Schmidt Process, 129, 132
greatest lower bound, 13
Green’s Theorem, 388

Haar coefficients, 409
Haar system, 408
Haar wavelet, 411
Hadamard’s Theorem, 162
half-spaces, 454
Hardy’s Tauberian Theorem, 382
harmonic extension, 337
harmonic function, 337
harmonic series, 35
harmonics, 347, 350
Harnack’s inequality, 341
hat function, 434
Hausdorff metric, 176
Heaviside function, 72
Heine–Borel Theorem, 62, 168
Helly’s Theorem, 455
Hessian matrix, 477
Hilbert space, 137
Hilbert–Schmidt norm, 127
homeomorphic, 277
homeomorphism, 277
homogeneous linear DE, 317
Hurwitz, 388
hyperplane, 453

supporting, 463
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ideal, 239
imaginary part, 357
improper integral, 112, 152
increasing function, 90
infimal convolution, 477
infimum, 13
infinite decimal expansion, 10
infinite series, 35
inflection points, 101
inhomogeneous linear DE, 317
initial conditions, 301
initial value condition, 293
initial value problem, 300
inner product, 49, 124
inner product space, 124
integral

Riemann, 104
translation invariance of, 109

Integral Convergence Theorem, 150
integral equation, 294
Integral Test, 43
integrating factor, 307
integration

term-by-term, 163
integration by parts, 111
interior, 59, 455
Intermediate Value Theorem, 88
isolated point, 64
isometric, 52
isomorphic, 8
isoperimetric problem, 387
iterated function system, 285
itinerary, 281

Jackson, 397
Jackson’s Theorem, 400
Jensen’s inequality, 468
Jordan, 369
jump discontinuity, 73

Karush–Kuhn–Tucker conditions, 493
Karush–Kuhn–Tucker Theorem, 493
kernel, 6
Kuhn, 493

Lagrange, 328, 352
Lagrangian, 494
Laplace, 328
Laplacian, 329
Least Squares Theorem, 384
least upper bound, 13
Least Upper Bound Principle, 14
Lebesgue, 180, 360, 364
Lebesgue integral, 137

left-differentiable, 98
Legendre, 328
Leibniz, 40
Leibniz’s rule, 151, 152
length of a regular curve, 300
limit, 15
Limit Comparison Test, 43
limit inferior, 23
limit of a function, 67
limit point, 56
limit superior, 23
linear combination, 5
linear differential equation, 316
linear function, ambiguous meaning of, 94
linear programming, 504
linear splines, 224
linear transformation, 6
linearly dependent, 5
linearly independent, 5, 455
Lipschitz at a point, 184
Lipschitz condition of order α (Lip α), 88,

364, 392, 397
Lipschitz constant, 70
Lipschitz function, 70, 244
Lipschitz in the y variable, 304
local minimizer, 475
Local Picard Theorem, 310
local solution, 310
local subgradient, 486
locally Lipschitz in the y-variable, 313
logistic functions, 263, 271
lower bound, 13
lower sum, 103
Lusin, 364

maple leaf, 292
matrix representation, 6
maximal continuation, 314
maximin, 499
Maximum Principle, 345
maximum, of a set, 13
mean value property, 347
Mean Value Theorem, 99, 298

Convex, 473
for integrals, 112
second-order, 231, 235

measure zero, 65
mesh, 103
method of undetermined coefficients, 319
metric, 175

equivalent, 179
topologically equivalent, 179

metric space, 175
minimal dynamical system, 262



Index 511

minimax, 499
Minimax Theorem, 501

compact case, 500
minimizers, 475
minimum, of a set, 13
Minkowski’s Theorem, 466
modified Newton’s method, 256
modulo 2π , 259
modulus, 356
modulus of continuity, 205, 410
Monotone Convergence Theorem, 20
monotone decreasing function, 90
monotone function, 90
monotone increasing function, 90
monotone increasing sequence, 20
Moreau–Yosida, 486
mother wavelet, 407
M-test, 156
multiplication operator, 441
multiplication operators, 437
multipliers, 493
multiresolution, 413
multiresolution analysis, 406

Riesz, 445

Nested Intervals Lemma, 22
Newton, 252
Newton’s method, 253
nodes, 224
nontrivial supporting hyperplane, 463
nonvertical hyperplane, 478
norm, 48, 113
normal cone, 487
normal derivative, 329
normed vector space, 113
not connected, 89
nowhere dense, 64, 183
nowhere differentiable functions, 158, 184
nowhere monotonic function, 186

odd function, 74, 98
one-sided derivative, 98
one-sided limits, 73
open, 57, 118, 177
open ball, 118
open cover, 180
open in S, 77
optimal solution, 492
optimal value, 492
order of a differential equation, 294
ordinary differential equation, 293
orthogonal, 128
orthogonal complement, 141, 414
orthogonal projection, 130

orthonormal, 51, 128
orthonormal basis, 51, 138

p-adic metric, 176
parallelogram law, 51
Parseval’s Theorem, 138
partial differential equation, 293
particular solution, 318
partition of an interval, 103
path, 89
Peano’s Theorem, 325
penalty method, 498
perfect set, 64, 66, 262, 272
period, 257
period doubling, 264
periodic function, 82, 87
periodic point, 257
Perturbation Theorem, 320
phase portrait, 258
Picard, 305, 310
piecewise Ck, 361
piecewise continuous, 73
piecewise linear function, 224, 433, 439
piecewise Lipschitz, 368
Pigeonhole Principle, 12, 260
points, 48
pointwise convergence, 142
Poisson kernel, 338, 366
Poisson’s Theorem, 341, 369, 379
polar cone, 488
polar coordinates, 74
polar form, 358
polyhedral cone, 490
polyhedral set, 467
polytope, 456
positive kernel, 379
positively homogeneous function, 476, 480
power series, 155, 162, 192
predator–prey equation, 309
Principal Axis Theorem, 125
projection, 130, 460

ambiguous meaning of, 460
Projection Theorem, 131
propagation of singularities, 355
properly separates, 464
Pythagorean formula, 51

Q, 9
quadratic convergence, 253
quadratic programming, 503
quasiconvex function, 477

R, 11
radius of convergence, 162
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Radon’s Theorem, 455
range, 6
rank, 6
Ratio Test, 43
rational function, 78
rational numbers, 9
reparametrization, 300
real numbers, 9
real part, 357
rearrangement, 45
Rearrangement Theorem, 46
recursion, 24, 25, 34, 82, 181
refinement of a partition, 103
regular curve, 300
relation, 7
relative boundary, 455
relative interior, 455
relatively open, 77
Remes’s algorithm, 217
removable singularity, 72
repelling fixed point, 241
repelling periodic point, 257
residual set, 183
reverse triangle inequality, 12
Riemann, 360
Riemann integrable, 104
Riemann integral, 103, 104
Riemann sum, 103
Riemann’s Condition, 104
Riemann–Lebesgue Lemma, 360
Riesz basis, 435, 440
Riesz multiresolution, 445
right-differentiable, 98
Rolle’s Theorem, 100, 100
Root Test, 40

saddle point, 494
sawtooth function, 71
scalar multiplication, 5
scaling function, 413, 445
scaling relation, 417
Schwarz, 125
Schwarz inequality, 49
Secant Lemma, 469
second countable metric space, 183
second-order Mean Value Theorem, 231, 235
self-similarity, 286
sensitive dependence on initial conditions, 273
separable, 138, 183
separates points, 236
separation of variables, 311, 332
Separation Theorem, 462
sequential characterization of continuity, 78
sequential compactness, 180

sequentially compact, 180
series of functions, 154
Sharkovskii’s Theorem, 267
Sierpiński triangle, 66, 286, 292
sign function, 24
similitude, 286
sink, 241
Slater point, 493
Slater’s condition, 493
smoothest interpolation property, 230
source, 241, 246
space-filling curve, 82
span, 5
Spectral Theorem for Symmetric Matrices, 125
spline

cubic, 225
linear, 224
of order n, 447
wooden, 230

square roots, computing, 254
Squeeze Theorem, 17
stable, 246
star-shaped set, 455
steady-state heat problem, 329
Steiner, 387
Stone–Weierstrass Theorem, 236
strictly convex norm, 127, 127, 210
strictly decreasing function, 90
strictly feasible point, 493
strictly increasing function, 90
strictly monotone increasing sequence, 20
Strömberg wavelet, 439
subcover, 180
subdifferential, 471, 477
subgradient, 477
sublevel set, 475
sublinear function, 476
subsequence, 23
subspace, 5
substitution rule, 111
sufficiently large, 19
summable, 35
superposition, 350
support function, 481, 486
Support Function Lemma, 481
Support Theorem, 463
supporting hyperplane, 463
supremum, 13

tangent cone, 487
tangent line, 94
Tauberian Theorem, 382
Taylor polynomial, 190
Taylor series, 192
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telescoping sum, 37
tent map, 261, 277
term-by-term differentiation, 163, 335, 351
term-by-term integration, 163
terminal velocity, 297
ternary expansion, 64, 92
topological characterization of continuity, 78
topological conjugacy, 265, 280
topologically conjugate, 280
topologically equivalent metrics, 179
topologically transitive, 270
totally bounded, 171, 180
transcendental number, 34
transitive point, 258, 270
triangle inequality, 12, 49, 50
triangle inequality, reverse, 12
trigonometric polynomial, 133
tripling map, 261
trivial projection, 130
Tucker, 493
twin dragon set, 290
2-adic metric, 176, 177, 179

uncountable set, 32
uniform approximation, 198
uniform convergence, 144
uniform norm, 114, 189
uniformly Cauchy, 156
uniformly continuous, 83
uniformly equicontinuous, 169
unimodal, 283

unit ball, 114
unitary, 408, 435
upper bound, 13
upper sum, 103

vanishes (set of functions at a point), 236
variation of parameters, 320
vector addition, 5
vector lattice, 236
vector space, 5
von Koch curve, 286, 292

wave equation, 349
wavelet, 407

Battle–Lemarié or B-spline, 446
Daubechies, 421
Franklin, 433
Haar, 411
Strömberg, 439

Weierstrass, 236
Weierstrass M-test, 156
Weierstrass Approximation Theorem, 200,

380, 382, 400
well defined, 5, 7
Wilbraham, 373
Wronskian, 320

Yosida, 486

zero vector (0), 48


	Real Analysis andApplications
	Preface
	Contents

	Chapter 1
	Review
	1.1 Calculus
	1.1.1. MEAN VALUE THEOREM.
	1.1.2. FUNDAMENTAL THEOREM OF CALCULUS, PART 1.
	1.1.3. FUNDAMENTAL THEOREM OF CALCULUS, PART 2.

	1.2 Linear Algebra
	1.2.1. DEFINITION.
	1.2.2. DEFINITION.
	1.2.3. DEFINITION.
	1.2.4. DEFINITION.
	1.2.5. THEOREM.
	1.2.6. DEFINITION.
	1.2.7. THEOREM.
	1.2.8. COROLLARY.

	1.3 Appendix: Equivalence Relations
	1.3.1. DEFINITION.
	1.3.2. EXAMPLES.
	1.3.3. EXAMPLES.



	Chapter 2
	The Real Numbers
	2.1 An Overview of the Real Numbers
	2.2 The Real Numbers and Their Arithmetic
	2.3 The Least Upper Bound Principle
	2.3.1. DEFINITION.
	2.3.2. EXAMPLES.
	2.3.3. LEAST UPPER BOUND PRINCIPLE.

	2.4 Limits
	2.4.1. DEFINITION OF THE LIMIT OF A SEQUENCE.
	2.4.2. EXAMPLE.
	2.4.3. EXAMPLE.
	2.4.5. EXAMPLE.
	2.4.6. THE SQUEEZE THEOREM.
	2.4.7. EXAMPLE.

	2.5 Basic Properties of Limits
	2.5.1. PROPOSITION.
	2.5.2. THEOREM.

	2.6 Monotone Sequences
	2.6.1. MONOTONE CONVERGENCE THEOREM.
	2.6.2. EXAMPLE.
	2.6.3. NESTED INTERVALS LEMMA.

	2.7 Subsequences
	2.7.1. DEFINITION.
	2.7.2. BOLZANO–WEIERSTRASS THEOREM.
	2.7.3. EXAMPLE.
	2.7.4. EXAMPLE.
	2.7.6. EXAMPLE.

	2.8 Cauchy Sequences
	2.8.1. PROPOSITION.
	2.8.2. DEFINITION.
	2.8.3. PROPOSITION.
	2.8.4. DEFINITION.
	2.8.5. COMPLETENESS THEOREM.
	2.8.6. REMARK.
	2.8.7. EXAMPLE.
	2.8.8. EXAMPLE.

	2.9 Countable Sets
	2.9.1. DEFINITION.
	2.9.2. EXAMPLES.
	2.9.3. DEFINITION.
	2.9.4. LEMMA.
	2.9.5. PROPOSITION.
	2.9.6. COROLLARY.
	2.9.7. COROLLARY.
	2.9.8. THEOREM.



	Chapter 3
	Series
	3.1 Convergent Series
	3.1.1. DEFINITION.
	3.1.2. EXAMPLE.
	3.1.3. EXAMPLE.
	3.1.4. THEOREM.
	3.1.5. CAUCHY CRITERION FOR SERIES.

	3.2 Convergence Tests for Series
	3.2.1. PROPOSITION.
	3.2.2. GEOMETRIC SERIES.
	3.2.3. THE COMPARISON TEST.
	3.2.4. THE ROOT TEST.
	3.2.5. DEFINITION.
	3.2.6. LEIBNIZ ALTERNATING SERIES TEST.
	3.2.7. EXAMPLE.

	3.3 Absolute and Conditional Convergence
	3.3.1. EXAMPLE.
	3.3.2. DEFINITION.
	3.3.3. PROPOSITION.
	3.3.4. DEFINITION.
	3.3.5. THEOREM.
	3.3.6. EXAMPLE.
	3.3.7. REARRANGEMENT THEOREM.



	Chapter 4
	Topology of Rn
	4.1 n-Dimensional Space
	4.1.1. SCHWARZ INEQUALITY.
	4.1.2. TRIANGLE INEQUALITY.
	4.1.3. LEMMA.

	4.2 Convergence and Completeness in Rn
	4.2.1. DEFINITION.
	4.2.2. LEMMA.
	4.2.3. LEMMA.
	4.2.4. DEFINITION.
	4.2.5. COMPLETENESS THEOREM FOR Rn.
	4.2.6. EXAMPLE.

	4.3 Closed and Open Subsets of Rn
	4.3.1. DEFINITION.
	4.3.2. EXAMPLES.
	4.3.3. PROPOSITION.
	4.3.4. DEFINITION.
	4.3.5. PROPOSITION.
	4.3.6. DEFINITION.
	4.3.7. EXAMPLES.
	4.3.8. THEOREM.
	4.3.9. PROPOSITION.
	4.3.10. EXAMPLE.

	4.4 Compact Sets and the Heine–Borel Theorem
	4.4.1. DEFINITION.
	4.4.2. EXAMPLES.
	4.4.3. LEMMA.
	4.4.4. LEMMA.
	4.4.5. LEMMA.
	4.4.6. THE HEINE–BOREL THEOREM.
	4.4.7. CANTOR’S INTERSECTION THEOREM.
	4.4.8. THE CANTOR SET.



	Chapter 5
	Functions
	5.1 Limits and Continuity
	5.1.1. DEFINITION OF THE LIMIT OF A FUNCTION.
	5.1.2. DEFINITION.
	5.1.3. EXAMPLE.
	5.1.4. EXAMPLE.
	5.1.5. DEFINITION.
	5.1.6. PROPOSITION.
	5.1.7. COROLLARY.

	5.2 Discontinuous Functions
	5.2.1. EXAMPLE.
	5.2.2. EXAMPLE.
	5.2.3. DEFINITION.
	5.2.4. DEFINITION.
	5.2.5. EXAMPLE.
	5.2.6. EXAMPLE.
	5.2.7. EXAMPLE.
	5.2.8. EXAMPLE.
	5.2.9. EXAMPLE.

	5.3 Properties of Continuous Functions
	5.3.1. THEOREM.
	5.3.2. THEOREM.
	5.3.3. THEOREM.
	5.3.4. EXAMPLE.
	5.3.5. THEOREM.
	5.3.6. EXAMPLE.

	5.4 Compactness and Extreme Values
	5.4.1. EXAMPLE.
	5.4.2. EXAMPLE.
	5.4.3. THEOREM.
	5.4.4. EXTREME VALUE THEOREM.

	5.5 Uniform Continuity
	5.5.1. DEFINITION.
	5.5.2. EXAMPLE.
	5.5.3. EXAMPLE.
	5.5.4. PROPOSITION.
	5.5.5. COROLLARY.
	5.5.6. COROLLARY.
	5.5.7. EXAMPLE.
	5.5.8. EXAMPLE.
	5.5.9. THEOREM.

	5.6 The Intermediate Value Theorem
	5.6.1. INTERMEDIATE VALUE THEOREM.
	5.6.2. COROLLARY.
	5.6.3. COROLLARY.
	5.6.4. DEFINITION.

	5.7 Monotone Functions
	5.7.1. DEFINITION.
	5.7.2. PROPOSITION.
	5.7.3. COROLLARY.
	5.7.4. COROLLARY.
	5.7.5. THEOREM.
	5.7.6. THEOREM.
	5.7.7. EXAMPLE.
	5.7.8. EXAMPLE.



	Chapter 6
	Differentiation and Integration
	6.1 Differentiable Functions
	6.1.1. DEFINITION.
	6.1.2. PROPOSITION.
	6.1.3. LEMMA.
	6.1.4. COROLLARY.
	6.1.5. EXAMPLES.
	6.1.6. THE CHAIN RULE.
	6.1.7. THEOREM.
	6.1.9. EXAMPLE.

	6.2 The Mean Value Theorem
	6.2.1. FERMAT’S THEOREM.
	6.2.2. MEAN VALUE THEOREM.
	6.2.3. EXAMPLE.
	6.2.4. COROLLARY.
	6.2.5. EXAMPLE.

	6.3 Riemann Integration
	6.3.1. DEFINITION.
	6.3.2. LEMMA.
	6.3.3. DEFINITION.
	6.3.4. RIEMANN’S CONDITION.
	6.3.5. EXAMPLE.
	6.3.6. THEOREM.
	6.3.7. THEOREM.
	6.3.8. THEOREM.
	6.3.9. EXAMPLE.
	6.3.10. EXAMPLE.

	6.4 The Fundamental Theorem of Calculus
	6.4.1. LEMMA.
	6.4.2. FUNDAMENTAL THEOREM OF CALCULUS, PART 1.
	6.4.3. FUNDAMENTAL THEOREM OF CALCULUS, PART 2.
	6.4.4. REMARK.
	6.4.8. EXAMPLE.
	6.4.9. EXAMPLE.



	Chapter 7
	Norms and Inner Products
	7.1 Normed Vector Spaces
	7.1.1. DEFINITION.
	7.1.2. EXAMPLE.
	7.1.3. EXAMPLE.
	7.1.4. EXAMPLE.
	7.1.5. EXAMPLE.

	7.2 Topology in Normed Spaces
	7.2.1. DEFINITION.
	7.2.2. DEFINITION.
	7.2.3. DEFINITION.
	7.2.4. PROPOSITION.
	7.2.5. DEFINITION.

	7.3 Finite-Dimensional Normed Spaces
	7.3.1. PROPOSITION.
	7.3.2. COROLLARY.
	7.3.3. COROLLARY.
	7.3.4. COROLLARY.
	7.3.5. THEOREM.

	7.4 Inner Product Spaces
	7.4.1. DEFINITION.
	7.4.2. EXAMPLE.
	7.4.3. EXAMPLE.
	7.4.4. CAUCHY–SCHWARZ INEQUALITY.
	7.4.5. COROLLARY.
	7.4.6. COROLLARY.
	7.4.7. COROLLARY.

	7.5 Finite Orthonormal Sets
	7.5.1. DEFINITION.
	7.5.2. LEMMA.
	7.5.3. COROLLARY.
	7.5.4. COROLLARY.
	7.5.5. THE GRAM–SCHMIDT PROCESS.
	7.5.6. COROLLARY.
	7.5.7. LEMMA.
	7.5.8. COROLLARY.
	7.5.9. DEFINITION.
	7.5.10. PROPOSITION.
	7.5.11. PROJECTION THEOREM.

	7.6 Fourier Series
	7.6.1. PROPOSITION.
	7.6.2. DEFINITION.
	7.6.3. EXAMPLE.
	7.6.4. PROPOSITION.

	7.7 Orthogonal Expansions and Hilbert Spaces
	7.7.1. BESSEL’S INEQUALITY.
	7.7.3. EXAMPLE.
	7.7.4. THEOREM.
	7.7.5. PARSEVAL’S THEOREM.
	7.7.6. COROLLARY.
	7.7.7. COROLLARY.



	Chapter 8
	Limits of Functions
	8.1 Limits of Functions
	8.1.1. DEFINITION.
	8.1.2. EXAMPLE.
	8.1.3. DEFINITION.
	8.1.4. THEOREM.
	8.1.5. EXAMPLE.
	8.1.6. EXAMPLE.

	8.2 Uniform Convergence and Continuity
	8.2.1. THEOREM.
	8.2.2. COMPLETENESS THEOREM FOR CK,Rm.

	8.3 Uniform Convergence and Integration
	8.3.1. INTEGRAL CONVERGENCE THEOREM.
	8.3.2. COROLLARY.
	8.3.3. PROPOSITION.
	8.3.4. LEIBNIZ’S RULE.
	8.3.5. EXAMPLE.

	8.4 Series of Functions
	8.4.1. EXAMPLE.
	8.4.2. EXAMPLE.
	8.4.3. EXAMPLE.
	8.4.4. THEOREM.
	8.4.5. DEFINITION.
	8.4.6. THEOREM.
	8.4.7. WEIERSTRASS M-TEST.
	8.4.8. EXAMPLE.
	8.4.9. EXAMPLE.

	8.5 Power Series
	8.5.1. HADAMARD’S THEOREM.
	8.5.2. EXAMPLE.
	8.5.3. TERM-BY-TERM OPERATIONS ON SERIES.
	8.5.4. EXAMPLE.
	8.5.5. EXAMPLE.
	8.5.6. EXAMPLE.

	8.6 Compactness and Subsets of CK
	8.6.1. EXAMPLE.
	8.6.2. EXAMPLE.
	8.6.3. DEFINITION.
	8.6.4. LEMMA.
	8.6.5. PROPOSITION.
	8.6.6. DEFINITION.
	8.6.7. LEMMA.
	8.6.8. COROLLARY.
	8.6.9. ARZEL `A–ASCOLI THEOREM.
	8.6.10. EXAMPLE.



	Chapter 9
	Metric Spaces
	9.1 Definitions and Examples
	9.1.1. DEFINITION.
	9.1.2. EXAMPLES.
	9.1.3. DEFINITION.
	9.1.4. DEFINITION.
	9.1.5. EXAMPLES.
	9.1.6. DEFINITION.
	9.1.7. THEOREM.
	9.1.8. THEOREM.

	9.2 Compact Metric Spaces
	9.2.1. DEFINITION.
	9.2.2. DEFINITION.
	9.2.3. BOREL–LEBESGUE THEOREM.
	9.2.4. THEOREM.

	9.3 Complete Metric Spaces
	9.3.1. DEFINITION.
	9.3.2. BAIRE CATEGORY THEOREM.
	9.3.3. PROPOSITION.



	Chapter 10
	Approximation by Polynomials
	10.1 Taylor Series
	10.1.1. DEFINITION.
	10.1.2. LEMMA.
	10.1.3. TAYLOR’S THEOREM.
	10.1.4. EXAMPLE.
	10.1.5. EXAMPLE.
	10.1.6. EXAMPLE.
	10.1.7. EXAMPLE.

	10.2 How Not to Approximate a Function
	10.2.1. EXAMPLE.
	10.2.2. WEIERSTRASS APPROXIMATION THEOREM.

	10.3 Bernstein’s Proof of theWeierstrass Theorem
	10.3.1. PROPOSITION.
	10.3.2. LEMMA.

	10.4 Accuracy of Approximation
	10.4.1. DEFINITION.
	10.4.2. DEFINITION.
	10.4.3. EXAMPLE.
	10.4.4. PROPOSITION.
	10.4.5. PROPOSITION.

	10.5 Existence of Best Approximations
	10.5.1. COROLLARY.
	10.5.2. COROLLARY.
	10.5.3. THEOREM.
	10.5.4. EXAMPLE.

	10.6 Characterizing Best Approximations
	10.6.1. EXAMPLE.
	10.6.2. EXAMPLE.
	10.6.3. DEFINITION.
	10.6.4. THEOREM.
	10.6.5. THEOREM.
	10.6.6. CHEBYSHEV APPROXIMATION THEOREM.
	10.6.7. EXAMPLE.

	10.7 Expansions Using Chebyshev Polynomials
	10.7.1. DEFINITION.
	10.7.2. LEMMA.
	10.7.3. COROLLARY.
	10.7.4. EXAMPLE.
	10.7.5. LEMMA.
	10.7.6. DEFINITION.
	10.7.7. THEOREM.

	10.8 Splines
	10.8.1. LEMMA.
	10.8.2. DEFINITION.
	10.8.3. EXAMPLE.
	10.8.4. LEMMA.
	10.8.5. THEOREM.
	10.8.7. LEMMA.
	10.8.8. THEOREM.
	10.8.9. COROLLARY.

	10.9 Uniform Approximation by Splines
	10.9.1. THEOREM.
	10.9.2. LEMMA.

	10.10 The Stone–Weierstrass Theorem
	10.10.1. DEFINITION.
	10.10.2. DEFINITION.
	10.10.3. STONE–WEIERSTRASS THEOREM.
	10.10.4. LEMMA.
	10.10.5. LEMMA.
	10.10.6. COROLLARY.
	10.10.7. COROLLARY.



	Chapter 11
	Discrete Dynamical Systems
	11.0.1. DEFINITION.
	11.1 Fixed Points and the Contraction Principle
	11.1.1. DEFINITION.
	11.1.2. LEMMA.
	11.1.3. DEFINITION.
	11.1.4. EXAMPLE.
	11.1.5. EXAMPLE.
	11.1.6. THE BANACH CONTRACTION PRINCIPLE.
	11.1.8. EXAMPLE.
	11.1.9. EXAMPLE.
	11.1.10. REMARK.
	11.1.11. EXAMPLE.

	11.2 Newton’s Method
	11.2.1. NEWTON’S METHOD.
	11.2.2. EXAMPLE.

	11.3 Orbits of a Dynamical System
	11.3.1. EXAMPLE.
	11.3.2. EXAMPLE.

	11.4 Periodic Points
	11.4.1. LEMMA.
	11.4.2. LEMMA.
	11.4.3. EXAMPLE.
	11.4.4. LEMMA.
	11.4.5. EXAMPLE.
	11.4.6. EXAMPLE.
	11.4.7. EXAMPLE.
	11.4.8. LEMMA.
	11.4.9. SHARKOVSKII’S THEOREM.

	11.5 Chaotic Systems
	11.5.1. DEFINITION.
	11.5.2. PROPOSITION.
	11.5.3. THE BIRKHOFF TRANSITIVITY THEOREM.
	11.5.4. EXAMPLE.
	11.5.5. EXAMPLE.
	11.5.6. EXAMPLE.
	11.5.7. LEMMA.
	11.5.8. PROPOSITION.
	11.5.9. DEFINITION.
	11.5.10. EXAMPLE.
	11.5.11. EXAMPLE.
	11.5.12. PROPOSITION.
	11.5.13. DEFINITION.
	11.5.14. EXAMPLE.
	11.5.15. EXAMPLE.
	11.5.16. EXAMPLE.

	11.6 Topological Conjugacy
	11.6.1. DEFINITION.
	11.6.2. EXAMPLE.
	11.6.3. EXAMPLE.
	11.6.4. DEFINITION.
	11.6.5. PROPOSITION.
	11.6.6. THEOREM.
	11.6.7. COROLLARY.
	11.6.8. REMARK.

	11.7 Iterated Function Systems
	11.7.1. EXAMPLES.
	11.7.2. THEOREM.
	11.7.4. THEOREM.
	11.7.5. COROLLARY.
	11.7.6. THEOREM.
	11.7.7. EXAMPLE.
	11.7.8. PROPOSITION.



	Chapter 12
	Differential Equations
	12.1 Integral Equations and Contractions
	12.1.1. EXAMPLE.

	12.2 Calculus of Vector-Valued Functions
	12.2.1. DEFINITION.
	12.2.2. PROPOSITION.
	12.2.3. THEOREM.
	12.2.4. COROLLARY.
	12.2.5. PROPOSITION.
	12.2.6. FUNDAMENTAL THEOREM OF CALCULUS II.
	12.2.7. LEMMA.

	12.3 Differential Equations and Fixed Points
	12.3.4. EXAMPLE.

	12.4 Solutions of Differential Equations
	12.4.1. DEFINITION.
	12.4.2. LEMMA.
	12.4.3. GLOBAL PICARD THEOREM.
	12.4.4. EXAMPLE.

	12.5 Local Solutions
	12.5.1. LOCAL PICARD THEOREM.
	12.5.2. EXAMPLE.
	12.5.3. EXAMPLE.
	12.5.4. DEFINITION.
	12.5.5. CONTINUATION THEOREM.
	12.5.6. EXAMPLE.

	12.6 Linear Differential Equations
	12.6.4. EXAMPLE.

	12.7 Perturbation and Stability of DEs
	12.7.1. PERTURBATION THEOREM.
	12.7.2. COROLLARY.
	12.7.3. EXAMPLE.
	12.7.4. EXAMPLE.

	12.8 ExistenceWithout Uniqueness
	12.8.1. PEANO’S THEOREM.



	Chapter 13
	Fourier Series and Physics
	13.1 The Steady-State Heat Equation
	13.2 Formal Solution
	13.3 Convergence in the Open Disk
	13.3.1. PROPOSITION.
	13.3.2. LEMMA.
	13.3.3. THEOREM.
	13.3.4. DEFINITION.

	13.4 The Poisson Formula
	13.4.1. THE POISSON FORMULA.
	13.4.2. PROPERTIES OF THE POISSON KERNEL.

	13.5 Poisson’s Theorem
	13.5.1. POISSON’S THEOREM.
	13.5.2. COROLLARY.
	13.5.3. COROLLARY.
	13.5.4. COROLLARY.
	13.5.5. EXAMPLE.
	13.5.6. COROLLARY.

	13.6 The Maximum Principle
	13.6.1. MAXIMUM PRINCIPLE.
	13.6.2. COROLLARY.
	13.6.3. THEOREM.

	13.7 The Vibrating String Formal Solution
	13.8 The Vibrating String Rigorous Solution
	13.8.1. THEOREM.

	13.9 Appendix: The Complex Exponential
	13.9.1. THEOREM.
	13.9.4. LEMMA.
	13.9.5. LEMMA.



	Chapter 14
	Fourier Series andApproximation
	14.1 The Riemann–Lebesgue Lemma
	14.1.1. THE RIEMANN–LEBESGUE LEMMA.
	14.1.2. COROLLARY.
	14.1.3. DEFINITION.
	14.1.4. LEMMA.
	14.1.5. LEMMA.
	14.1.6. THEOREM.
	14.1.7. EXAMPLE.

	14.2 Pointwise Convergence of Fourier Series
	14.2.1. DEFINITION.
	14.2.2. LEMMA.
	14.2.3. THEOREM.
	14.2.4. PROPERTIES OF THE DIRICHLET KERNEL.
	14.2.5. DEFINITION.
	14.2.6. THE DIRICHLET–JORDAN THEOREM.
	14.2.7. EXAMPLE.
	14.2.8. EXAMPLE.

	14.3 Gibbs’s Phenomenon
	14.3.1. THEOREM.

	14.4 Ces`aro Summation of Fourier Series
	14.4.1. LEMMA.
	14.4.2. THEOREM.
	14.4.3. PROPERTIES OF THE FEJ ´ER KERNEL.
	14.4.4. DEFINITION.
	14.4.5. FEJ ´E R’S THEOREM.
	14.4.6. EXAMPLE.

	14.5 Least Squares Approximations
	14.5.2. LEMMA.
	14.5.3. LEAST SQUARES THEOREM.
	14.5.5. EXAMPLE.
	14.5.6. COROLLARY.

	14.6 The Isoperimetric Problem
	14.7 Best Approximation by Trigonometric Polynomials
	14.7.1. DEFINITION.
	14.7.2. THEOREM.
	14.7.3. THEOREM.

	14.8 Connections with Polynomial Approximation
	14.8.1. THEOREM.
	14.8.2. THEOREM.
	14.8.3. EXAMPLE.

	14.9 Jackson’s Theorem and Bernstein’s Theorem
	14.9.1. COROLLARY.
	14.9.2. LEMMA.
	14.9.3. BERNSTEIN’S INEQUALITY.
	14.9.4. BERNSTEIN’S THEOREM.
	14.9.5. JACKSON’S THEOREM.
	14.9.6. COROLLARY.
	14.9.7. COROLLARY.
	14.9.9. LEMMA.
	14.9.10. LEMMA.
	14.9.11. LEMMA.


	Chapter 15
	Wavelets
	15.1 Introduction
	15.1.1. DEFINITION.

	15.2 The HaarWavelet
	15.2.1. LEMMA.
	15.2.2. LEMMA.
	15.2.3. THEOREM.
	15.2.4. DEFINITION.
	15.2.5. THEOREM.

	15.3 Multiresolution Analysis
	15.3.1. LEMMA.
	15.3.2. DEFINITION.
	15.3.3. LEMMA.
	15.3.4. LEMMA.
	15.3.5. THEOREM.

	15.4 Recovering the Wavelet
	15.4.2. THEOREM.

	15.5 DaubechiesWavelets
	15.5.1. THEOREM.
	15.5.3. THEOREM.
	15.5.4. COROLLARY.

	15.6 Existence of the DaubechiesWavelet
	15.6.1. THEOREM.
	15.6.2. LEMMA.
	15.6.3. LEMMA.
	15.6.4. THEOREM.

	15.7 Approximations UsingWavelets
	15.7.1. LEMMA.
	15.7.2. THEOREM.
	15.7.3. REMARK.
	15.7.4. EXAMPLE.
	15.7.5. THEOREM.

	15.8 The Franklin Wavelet
	15.8.1. DEFINITION.
	15.8.2. THEOREM.
	15.8.4. THEOREM.

	15.9 Riesz Multiresolution Analysis
	15.9.1. THEOREM.
	15.9.2. COROLLARY.
	15.9.3. REMARK.
	15.9.4. PROPOSITION.
	15.9.5. THEOREM.
	15.9.6. THEOREM.
	15.9.7. THEOREM.
	15.9.8. DEFINITION.
	15.9.9. THEOREM.
	15.9.10. EXAMPLE.



	Chapter 16
	Convexity and Optimization
	16.1 Convex Sets
	16.1.1. DEFINITION.
	16.1.2. DEFINITION.
	16.1.3. EXAMPLES.
	16.1.4. LEMMA.
	16.1.5. LEMMA.
	16.1.6. DEFINITION.
	16.1.7. THEOREM.
	16.1.8. CARATH´E ODORY’S THEOREM.
	16.1.9. COROLLARY.
	16.1.10. DEFINITION.
	16.1.11. PROPOSITION.

	16.2 Relative Interior
	16.2.1. DEFINITION.
	16.2.2. EXAMPLE.
	16.2.3. LEMMA.
	16.2.4. LEMMA.
	16.2.5. COROLLARY.
	16.2.6. ACCESSIBILITY LEMMA.
	16.2.7. COROLLARY.
	16.2.8. THEOREM.
	16.2.9. PROPOSITION.
	16.2.10. THEOREM.
	16.2.11. COROLLARY.

	16.3 Separation Theorems
	16.3.1. CONVEX PROJECTION THEOREM.
	16.3.2. EXAMPLE.
	16.3.3. SEPARATION THEOREM.
	16.3.4. COROLLARY.
	16.3.5. COROLLARY.
	16.3.6. DEFINITION.
	16.3.7. SUPPORT THEOREM.

	16.4 Extreme Points
	16.4.1. DEFINITION.
	16.4.2. EXAMPLES.
	16.4.3. LEMMA.
	16.4.4. LEMMA.
	16.4.5. LEMMA.
	16.4.6. MINKOWSKI’S THEOREM.

	16.5 Convex Functions in One Dimension
	16.5.1. DEFINITION.
	16.5.2. EXAMPLES.
	16.5.3. LEMMA.
	16.5.4. JENSEN’S INEQUALITY.
	16.5.5. EXAMPLE.
	16.5.6. DEFINITION.
	16.5.7. LEMMA.
	16.5.8. SECANT LEMMA.
	16.5.9. THEOREM.
	16.5.10. COROLLARY.
	16.5.11. DEFINITION.
	16.5.12. PROPOSITION.
	16.5.13. EXAMPLE.

	16.6 Convex Functions in Higher Dimensions
	16.6.1. LEMMA.
	16.6.2. THEOREM.
	16.6.4. THEOREM.
	16.6.5. LEMMA.

	16.7 Subdifferentials and Directional Derivatives
	16.7.1. DEFINITION.
	16.7.2. PROPOSITION.
	16.7.3. THEOREM.
	16.7.4. EXAMPLE.
	16.7.5. DEFINITION.
	16.7.6. PROPOSITION.
	16.7.7. THEOREM.
	16.7.8. SUPPORT FUNCTION LEMMA.
	16.7.9. COROLLARY.
	16.7.10. EXAMPLE.
	16.7.11. THEOREM.
	16.7.12. EXAMPLE.
	16.7.13. THEOREM.
	16.7.14. THEOREM.

	16.8 Tangent and Normal Cones
	16.8.1. DEFINITION.
	16.8.2. EXAMPLE.
	16.8.3. DEFINITION.
	16.8.4. BIPOLAR THEOREM.
	16.8.5. COROLLARY.
	16.8.6. EXAMPLE.
	16.8.7. LEMMA.
	16.8.8. THEOREM.

	16.9 Constrained Minimization
	16.9.1. THEOREM.
	16.9.2. DEFINITION.
	16.9.3. DEFINITION.
	16.9.4. KARUSH–KUHN–TUCKER THEOREM.
	16.9.5. DEFINITION.
	16.9.6. DEFINITION.
	16.9.7. THEOREM.
	16.9.8. EXAMPLE.

	16.10 The Minimax Theorem
	16.10.1. DEFINITION.
	16.10.2. LEMMA.
	16.10.3. MINIMAX THEOREM COMPACT CASE.
	16.10.4. MINIMAX THEOREM.
	16.10.5. PROPOSITION.
	16.10.6. EXAMPLE.



	References
	Index

