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Abstract

The tree of life is split into three main branches: eukaryotes, bacteria, and archaea.

Our knowledge of eukaryotic and bacteria cell biology has been built on a

foundation of studies in model organisms, using the complementary approaches

of genetics and biochemistry. Archaea have led to some exciting discoveries in the

field of biochemistry, but archaeal genetics has been slow to get off the ground, not

least because these organisms inhabit some of the more inhospitable places on

earth and are therefore believed to be difficult to culture. In fact, many species can

be cultivated with relative ease and there has been tremendous progress in the

development of genetic tools for both major archaeal phyla, the Euryarchaeota and

the Crenarchaeota. There are several model organisms available for methanogens,

halophiles, and thermophiles; in the latter group, there are genetic systems for

Sulfolobales and Thermococcales. In this review, we present the advantages and

disadvantages of working with each archaeal group, give an overview of their

different genetic systems, and direct the neophyte archaeologist to the most

appropriate model organism.

Introduction

In his ‘An Essay on Man’, the English poet Alexander Pope

exhorts us to ‘Know then thyself, presume not God to scan;

The proper study of Mankind is Man’. The resounding

success of biomedical research using model organisms gives

us reason to doubt the wisdom of Pope’s words. Most of our

knowledge of fundamental biological processes has come

from work on simple and experimentally tractable species

such as Escherichia coli, Saccharomyces cerevisiae, and Cae-

norhabditis elegans. Over time, these basic principles have

been verified in complex species such as man, but simple

model organisms remain vital to further medical discoveries

(Fields & Johnston, 2005). Nevertheless, there is danger in

such a reductionist approach – not everything in biology can

be learned from E. coli. In order to witness the ‘grandeur in

this view of life’ (apologies to Charles Darwin), we must

expand our repertoire of model organisms to include

representatives of the domain Archaea.

The choice of model organism is critically important. It

should be easy to grow, have a short generation time, and be

amenable to experimental manipulation. For microbial

geneticists, the minimal specification is the ability to grow

in isolation on solid media. Robert Koch first recognized

that a colony formed on an agar plate represents the clonal

expansion of a single cell, and this unassuming mound of

cells has always been the cornerstone of microbiology. The

ability to generate mutants is another part of the foundation

of microbial genetics. Traditionally this was carried out by

random mutagenesis (forward genetics), but since the

molecular biology revolution the preferred method has been

targeted mutation of a specific gene (reverse genetics). The

latter would not be possible without methods for transfor-

mation, selectable markers, plasmid vectors, and systems for

gene knockout by homologous or site-specific recombina-

tion. Of late, reverse genetics has been made significantly

easier by whole genome sequencing, and is now taken for

granted in the genetic toolbox.

Archaea make up one of the three main branches of the

evolutionary tree; they are as different from eukaryotes as

they are from bacteria (Garrett & Klenk, 2007). The distinct

status of archaea was revealed in the late 1970s, when Carl
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Woese and colleagues seized upon the emerging technology

of nucleic acid sequencing to tackle the problem of prokar-

yotic phylogeny. Woese chose small-subunit rRNA as a

molecular chronometer; rRNA is an essential component of

all self-replicating organisms and shows remarkable se-

quence conservation. The tree he constructed showed that

an unusual group of methane-producing microorganisms

were not bacteria, but formed a separate domain. Woese

termed these organisms ‘archaebacteria’, but later changed

this name to archaea (Woese & Fox, 1977; Woese et al.,

1990). The tree suggested a closer relationship between

archaea and eukaryotes, compared with bacteria, and re-

flected the common heritage of information-processing

systems found in the archaeo-eukaryal lineage. This had

been noted by Wolfram Zillig and colleagues in the 1980s,

when they found that archaeal DNA-dependent RNA poly-

merase is strikingly similar to its eukaryotic counterpart, in

terms of both complexity and subunit composition (Huet

et al., 1983). Genome sequencing in the 1990s confirmed

that archaea are a genetic mosaic – their information

processing systems show significant homology to eukaryotic

counterparts, while most operational (housekeeping) func-

tions have a bacterial aspect (Olsen & Woese, 1996; Rivera

et al., 1998; Yutin et al., 2008).

Over time, many halophilic and thermophilic microor-

ganisms have found their home in the archaeal domain.

Several of these species had been studied long before the

third domain of life was proposed. For example, bacterior-

hodopsin had been discovered in Halobacterium salinarum

in 1971 (Oesterhelt & Stoeckenius, 1971), Thomas Brock

had isolated Sulfolobus acidocaldarius from acidic mud

ponds in Yellowstone National Park in 1972 (Brock et al.,

1972), and in the 18th century Alessandro Volta had unwit-

tingly unearthed methanogenic archaea in the swamps of

northern Italy. What appeared to bind together all these

exotic microorganisms was their love of habitats that had

previously been considered uninhabitable. However, culti-

vation-independent analyses of microbial biodiversity have

since revealed that archaea are surprisingly abundant in

‘normal’ environments (DeLong, 1998; Karner et al., 2001;

Robertson et al., 2005). Unfortunately these archaea are not

fit for genetics, because with the exception of the recently

isolated Nitrosopumilus maritimus (Konneke et al., 2005),

they cannot yet be cultured in isolation (Hugenholtz et al.,

1998; Schleper et al., 2005). We are therefore left with four

groups of archaea for which genetic systems have been

developed: methanogens and halophiles (both euryarchaea),

as well as thermophilic euryarchaea (Thermococcales) and

crenarchaea (Sulfolobales) (Fig. 1).

Each of these archaeal groups has its own unique selling

point. Haloarchaea are renowned for the comparative

sophistication of their genetic systems, the development of

which was made possible by early work on transformation

protocols. In addition, haloarchaea are easy to cultivate

because they grow at moderate temperatures. Methanogenic

archaea are also mesophilic, but unlike haloarchaea, their

cytoplasm is not hypersaline. This has permitted the direct

adaptation of many tools from bacterial genetics to metha-

nogens; bacterial antibiotics remain the exception, their

targets are generally not found in archaea. Thermophilic

archaea of kingdoms Euryarchaeota and Crenarchaeota have

long been of interest to biochemists and structural biolo-

gists, owing to their thermostable enzymes. They offer

significant potential for biotechnology, and for researchers

wishing to use a multidisciplinary approach that combines

genetics with biochemistry.

In this review, we offer guidance to microbiologists who

wish to convert to the third domain, and reassure them that

archaeal genetics is not difficult or unusual. The first step on

this road is to choose the most appropriate model organ-

isms. We deal in turn with each archaeal group, highlighting

their advantages and disadvantages in terms of the scientific

questions that can be addressed, and the tools available to

answer these questions. Our hope is that more microbiolo-

gists will work on archaea, and those who already do so will

venture beyond the safe environs of biochemistry and

structural biology. Only when genetics has found a place in

every archaeal laboratory will the third domain of life rank

alongside its eukaryotic and bacterial cousins.

Methanogens

Introduction to methanogens, an ecologically
and biochemically distinctive group

In 1977, a collaboration between the laboratories of Carl

Woese and Ralph Wolfe resulted in the finding that the

methanogens were ‘only distantly related to typical bacteria’

(Fox et al., 1977). Thus, the methanogens became the first

known Archaea. They are now known to comprise five orders

of the Euryarchaeota: Methanococcales, Methanosarcinales,

Methanobacteriales, Methanomicrobiales, and Methanopyrales

(Liu & Whitman, 2008). Genetic tools are available for certain

species of the first two orders.

The methanogens are those organisms that generate

methane as a catabolic end-product (Wolfe, 1996). Biological

methanogenesis occurs in a variety of anaerobic habitats,

including marine and freshwater sediments, rice paddies,

bioreactors and sewage sludge digesters, landfills, animal

digestive tracts, and hydrothermal vents (Wolfe, 1996). Most

of these habitats contain an anaerobic ecosystem in which

methanogenesis is the final step in the decomposition of

organic matter. However, in habitats such as hydrothermal

vents the substrates for methanogenesis, H2 and CO2, are

presumably of geochemical origin. Much of the methane that

is generated is reoxidized to CO2 or becomes sequestered in
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Fig. 1. Phylogenetic tree showing key archaeal species with genetic systems. Phylogenetic tree based on 16S rRNA gene sequences of selected archaeal

species whose genome sequences are available. Organisms indicated with solid red stars are key species that have been the focus of genetic

development; open stars indicate species where genetics has been applied or where there is potential for genetics. Sequence alignments were

performed using Clustal W and the tree was constructed by neighbor joining; branches with bootstrap values of o 50% are not shown.
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methane hydrates. However, a significant amount of methane

is emitted into the atmosphere where it becomes a major

greenhouse gas (Liu & Whitman, 2008). The product of

methanogenesis is also of obvious importance as a fuel.

Methanogenesis is a kind of anaerobic respiration where

single-carbon (C-1) units, most notably CO2, serve as the

electron acceptor. Thermodynamics dictates that methanogen-

esis will occur only when more favorable electron acceptors are

absent. Hence, methanogenesis is most prevalent when sulfate,

nitrate, oxidized metals, and, especially, oxygen are absent.

Because CO2 is the only electron acceptor that does not owe its

abundance to photosynthesis, methanogenesis is favored as an

early metabolism on earth, predating photosynthesis and

other forms of respiration (Kasting & Siefert, 2002).

Substrates for methanogenesis are relatively restricted

(Whitman et al., 2001). Nearly all species in the orders

Methanococcales, Methanobacteriales, Methanomicrobiales,

and Methanopyrales are hydrogenotrophic, using H2 and CO2.

Many of these species can also use formate. In contrast,

the Methanosarcinales is comprised of methylotrophic species,

which use methyl compounds such as methanol and methyla-

mines; some can use H2 and CO2 as well. In addition,

Methanosarcina and Methanosaeta, members of the Methano-

sarcinales, use acetate. Most recognized species of methanogens

are mesophilic, but hyperthermophilic and psychrotolerant

species are also well known. To date, genetic tools have been

developed only for certain mesophilic species.

The methanogens are biochemically distinctive. The en-

zymes and unique coenzymes of methanogenesis are known

thanks largely to the work of Ralph Wolfe, Rolf Thauer,

Godfried Vogels, and Gerhard Gottschalk. Our understanding

of how methanogenesis is coupled to energy conservation has

been slower to develop. As for all respirers, energy conserva-

tion is fundamentally chemiosmotic. A methyl transfer step

plays a central role in most methanogenic pathways and

directly drives the export of sodium ions. Other components

of the energy conservation apparatus appear to differ in the

methylotrophic and hydrogenotrophic methanogens. Methy-

lotrophic methanogens have cytochromes and a proton-

translocating electron transport chain, which they use to

conserve energy in the last, exergonic step in methanogenesis.

These components are lacking in hydrogenotrophic methano-

gens, making it unclear how these organisms achieve a net

positive gain in energy conservation, because the first step in

methanogenesis from CO2 is endergonic. A recently proposed

mechanism involving electron bifurcation, where exergonic

electron flow directly drives endergonic electron flow, could

explain this conundrum (Thauer et al., 2008).

Why study methanogens?

The methanogenic pathway itself has captured the curiosity

of many for decades. Recently genetic approaches have

begun to fill some gaps in our knowledge left from biochem-

ical approaches, as mentioned below. In addition, methano-

gens have been chosen for many studies of the molecular

biology and physiology of Archaea. Methanocaldococcus jan-

naschii became the first species of Archaea to be subjected to

genome sequencing in 1996 (Bult et al., 1996), and many

studies followed. Genetic tools have not been developed for M.

jannaschii, but many questions can be addressed using the

genetic tools for its relatives in the genus Methanococcus

(Tumbula & Whitman, 1999). Methanogens are models for

archaeal replication (Walters & Chong, 2009), transcription,

regulation (Geiduschek & Ouhammouch, 2005), osmoregula-

tion (Spanheimer & Muller, 2008), and protein structure. The

role of methanogens in nature leads directly to questions of

syntrophy, the associations between organisms that facilitate

the transfer of nutrients (Shimoyama et al., 2009). The

discovery that close relatives of the Methanosarcinales as well

as sulfate reducers are involved in anaerobic methane oxida-

tion has broadened the importance of these organisms in the

global carbon and sulfur cycles (Knittel & Boetius, 2009).

Methanogens are strict anaerobes that require special

measures for their growth in the lab. However, in the late

1970s the relatively tricky Hungate technique was replaced

with the technique of Balch and Wolfe (Balch et al., 1979), and

the requirements for anaerobiosis are easily achieved with a

modest expenditure on equipment and minimal training.

Key species of methanogens that have genetic
systems

Species for which genetic tools have been developed belong

to the genera Methanococcus and Methanosarcina. Thus,

there are genetic systems for representatives of the two

metabolic types, hydrogenotrophic and methylotrophic

methanogens. Both genera have well-developed tools, but

each has its intrinsic advantages.

Methanococcus species grow relatively fast (doubling

times around 2 h) and liquid cultures grow to high densities

overnight. For Methanococcus maripaludis, colonies of use-

ful size often form in 2 days after inoculation on agar plates.

In addition, for M. maripaludis a robust system for contin-

uous culture in chemostats has been established and used

effectively in studies of global regulation (Haydock et al.,

2004; Hendrickson et al., 2008). The genomes of Methano-

coccus species are small (1.6–1.8 Mbp), streamlining annota-

tion and transcriptomic and proteomic analyses. Genome

sequences for four species [M. maripaludis (four strains),

Methanococcus voltae, Methanococcus vannielii, and Metha-

nococcus aeolicus] are available currently. The relatively

restricted substrate range for methanogenesis in hydrogeno-

trophic species limits the utility of genetics in Methanococcus

to study methanogenesis itself. Nevertheless, genetics de-

monstrated the role in vivo of an alternative pathway for the
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reduction of the electron carrier coenzyme F420 (Hendrick-

son & Leigh, 2008), and the role of the energy-conserving

hydrogenase Ehb in carbon fixation (Porat et al., 2006).

Methanosarcina species grow more slowly (doubling

times around 8 h), and the formation of colonies requires

about 14 days of incubation. The genomes of Methanosarci-

na species are relatively large, ranging from 4.1 to 5.8 Mbp.

Genome sequences for three species (Methanosarcina acet-

ivorans, Methanosarcina barkeri, and Methanosarcina mazei)

are available currently. Despite their slower growth, the

metabolic versatility of Methanosarcina allows more possi-

bilities for the study of the methanogenic pathway. For

example, mutants in oxidation/reduction steps between the

formyl and methyl levels lost the ability to grow on H2 and

CO2 or methanol alone, but grew well on H2 and methanol

(Welander & Metcalf, 2008).

Genetic tools for methanogens

The basic elements of the genetic toolbox consist of a means

of DNA delivery, selection for that DNA, and a way for the

DNA to replicate. Reliable plating of single cells, which grow

into clonal colonies, is also needed for mutant screening. In

methanogens a genetic manipulation of this kind was first

achieved in 1987 when Bertani (of Luria–Bertani medium

fame) and Baresi transformed auxotrophs of M. voltae to

prototrophy (Bertani & Baresi, 1987). Selection by antibiotic

resistance was initiated when A. Klein transformed M. voltae

by expressing a puromycin resistance marker from Strepto-

myces (Gernhardt et al., 1990). In addition, W. Whitman

devised a strategy for the enrichment of auxotrophic mu-

tants in M. maripaludis (Ladapo & Whitman, 1990). Since

then, the genetic tools for methanogens have been expanded

and improved. Genetics became feasible in Methanosarcina,

which normally grows in multicellular packets, when condi-

tions for growth as single cells were found (Sowers et al.,

1993), and W. Metcalf documented the high-efficiency

transformation of Methanosarcina using liposomes (Metcalf

et al., 1997). Table 1 outlines the genetic tools available for

methanogens. Most of these techniques were worked out for

M. maripaludis and M. acetivorans, but many of them have

also been applied successfully in M. voltae, M. barkeri, and

M. mazei. It has been possible to adapt many tools from

standard bacterial genetics to the methanogens because they

grow at moderate temperatures and salt concentrations.

DNA delivery, positive selection, shuttle vectors,
and insertional gene disruption

DNA is introduced into Methanococcus and Methanosarcina

species by transformation and plating under anaerobic

conditions. In M. maripaludis the polyethylene glycol

(PEG)-mediated transformation of spheroplasts results in

frequencies near 105 transformants mg�1 DNA and

10�5 transformants CFU�1. In M. acetivorans a liposome-

mediated method achieves higher frequencies, as high as

108 transformants mg�1 DNA and 20% of the CFU. In both

cases, one easily obtains thousands of colonies in a single

experiment. Puromycin transacetylase from Streptomyces

works well (Gernhardt et al., 1990), and selection in both

genera is most commonly achieved using puromycin. In M.

maripaludis, neomycin resistance is also achieved using

aminoglycoside phosphotransferase genes (Argyle et al.,

1996). Replicative shuttle vectors have been devised for both

Table 1. Genetic tools for methanogens

Methanococcus Methanosarcina

Negative enrichment Enrichment of auxotrophic mutants (Ladapo & Whitman, 1990)

DNA delivery PEG-mediated transformation (Tumbula et al., 1994),

conjugation (Dodsworth et al., 2010)

Liposome-mediated transformation

(Metcalf et al., 1997)

Replicative shuttle vectors Gardner & Whitman (1999) Metcalf et al. (1997)

Positive selection Puromycin (Gernhardt et al., 1990), neomycin

(Argyle et al., 1996)

Puromycin (Gernhardt et al., 1990),

pseudomonic acid (Boccazzi et al., 2000)

Counterselection hpt (8-azahypoxanthine), upt (6-azauracil) (Moore & Leigh, 2005) hpt (8-aza-2,6-diaminopurine)

(Pritchett et al., 2004)

Markerless genetic exchange

(pop-in/pop-out gene

replacement)

Moore & Leigh (2005) (Pritchett et al., 2004)

Ectopic integration Into hpt or upt (Moore & Leigh, 2005) Enhanced with fC31 site-specific

recombination system (Guss et al., 2008)

Transposon insertion In vitro (Porat & Whitman, 2009) In vivo (Zhang et al., 2000)

Reporter genes lacZ (b-galactosidase) (Lie & Leigh, 2002), uidA

(b-glucuronidase) (Beneke et al., 1995)

uidA (b-glucuronidase) (Pritchett et al., 2004)

Regulated gene expression nif promoter (Lie & Leigh, 2002; Chaban et al., 2007) Tetracycline-responsive promoters

(Guss et al., 2008)
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genera, using replicative elements from naturally occurring

plasmids of strains of each genus. DNA lacking autonomous

replication can integrate into the chromosome via homolo-

gous recombination, which appears to occur at a particularly

high frequency in M. maripaludis (Tumbula et al., 1997). This

allows for gene replacement and disruption by insertion of the

selectable marker (Fig. 2a), and other genetic manipulations

described below. In addition to transformation, a conjugation

system from E. coli to M. maripaludis has been described

recently (Dodsworth et al., 2010). It is less laborious than

transformation and may be useful for routine genetic manip-

ulation of this methanogen.

Markerless genetic exchange

In both Methanococcus and Methanosarcina, systems have also

been devised for markerless genetic exchange. Using these

systems, mutations, including in-frame deletions, can be made

in which the selectable marker is removed, allowing its re-use

for subsequent manipulations. Vectors for this purpose con-

tain both selectable and counterselectable markers. hpt and

upt, encoding hypoxanthine and uracil phosphoribosyltrans-

ferase, respectively, allow for counterselection in the presence

of nucleobase analogs in genetic backgrounds from which

these genes have been deleted. In this approach, often termed

pop-in/pop-out gene replacement, the construct to be ex-

changed into the genome is cloned with homologous flanking

DNA on both sides (Fig. 2b). After transformation, positive

selection results in a merodiploid in which integration of the

entire plasmid has occurred in a single recombination event.

Counterselection results in a second recombination event,

removing the vector. Because the second recombination event

can occur on the same or the opposite side from the first, the

result is either a wild type or a mutant locus, which must be

distinguished by screening. For Methanosarcina, vectors have

been equipped with recognition sites for the Flp site-specific

recombination system, allowing more expedient removal of

the marker (Rother & Metcalf, 2005).

Ectopic integration

Integration of constructs into the genome is desirable not

only for gene disruption or for modification but also in cases

where artifacts due to multiple copies on a plasmid are to be

avoided. In M. maripaludis this has been achieved by ectopic

incorporation of constructs into the sites of the counter-

selectable genes hpt or upt (Fig. 2e) (Moore & Leigh, 2005).

For Methanosarcina a system has been devised that uses the

fC31 site-specific recombination system to considerably

increase the efficiency of integration (Guss et al., 2008).

Overexpression and controlled expression

Replicative vectors for Methanococcus and Methanosarcina

are equipped with strong promoters that allow overexpres-

sion of genes. These vectors have been used to overexpress

(a)

(b) (c) (d) (e)

Fig. 2. Gene knockout methods used in archaeal genetics. Specific details (such as selectable markers) are illustrative and do not necessarily apply for all

archaeal groups. See text for further details. (a) Gene replacement with selectable marker (in this case trp), by recombination between flanking regions

of the gene and a chromosomal target, uses linear DNA. (b) Pop-in/pop-out deletion method uses circular DNA. Integration of the deletion construct

(pop-in) is selected by transformation to uracil prototrophy. Intramolecular recombinants that have lost the plasmid (pop-out) are counterselected using

5-FOA. In methanogens, two different markers are used for selection and counterselection, respectively. (c) Variant of the pop-in/pop-out method for

gene deletion, where the gene is replaced with a marker allowing direct selection (in this case trp). Used for deletion of genes that are important for cell

viability. (d) Refinement of the pop-in/pop-out gene replacement method, where the gene function is complemented in trans from a shuttle vector. Loss

of the shuttle vector (plasmid shuffling) and gene deletion is ensured by counterselection with 5-FOA. (e) Ectopic integration at the ura locus. Pop-in of a

construct bearing the point mutation (of experimental gene, not ura) is selected by transformation to thymidine prototrophy. Counterselection with 5-

FOA ensures that the ura gene is replaced with the point mutation.
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His-tagged proteins in their native species for subsequent

purification (Dodsworth & Leigh, 2006). A tetracycline-in-

ducible promoter has been constructed for Methanosarcina by

combining a strong promoter from M. barkeri with binding

sites for the bacterial TetR protein, and used in a test for gene

essentiality (Guss et al., 2008). This system also has promise

for the induction of gene expression for the purpose of protein

production and purification. Attempts to adapt the tetracy-

cline induction system for Methanococcus have not been

successful. However, the nif (nitrogen fixation) promoter has

been used in M. maripaludis for differential controlled expres-

sion (Lie & Leigh, 2002; Chaban et al., 2007) and has potential

application in tests for gene essentiality.

Transposon insertion

In vivo transposon insertion has been devised for M.

acetivorans. The transposon system is derived from a mini-

mariner element and inserts randomly into the genome at

high frequency. The transposon contains selectable markers

for E. coli as well as for Methanosarcina, and contains an E.

coli origin of replication, facilitating cloning of the transpo-

son insertion sites (Zhang et al., 2000). This system works in

M. maripaludis only at low frequency. However, transposi-

tion in vitro (Porat & Whitman, 2009) and into an E. coli l
lysate (Blank et al., 1995) have been used successfully to

generate insertions in a cloned M. maripaludis gene cluster,

followed by transformation into M. maripaludis. These

approaches have potential for development into an efficient

transposon insertion system for Methanococcus.

Reporter genes

Genes used in reporter gene fusions are uidA (encoding b-

glucuronidase) for Methanosarcina (Pritchett et al., 2004) and

uidA (Beneke et al., 1995) and lacZ (b-galactosidase) (Lie &

Leigh, 2002) for Methanococcus. Most applications measure

reporter enzyme activity in cell extracts. The use of reporter

genes for in vivo screening is more limited, because color

development requires oxygen. However, M. maripaludis colo-

nies have been exposed to air and sprayed with X-gal. Color

development occurs before loss of viability, and colonies can

be returned to anaerobic conditions and picked. This ap-

proach was used to identify super-repressor variants of the

transcriptional repressor NrpR (Lie & Leigh, 2007).

Discoveries and recent progress

Genetic approaches have been particularly useful in Metha-

nosarcina for filling gaps in our knowledge of the methano-

genic pathway. For example, the energy-conserving

hydrogenase Ech was shown to be required for methanogen-

esis and carbon fixation (Meuer et al., 2002) in Methano-

sarcina. In another study, hydrogen cycling, a fundamental

strategy in chemiosmotic energy conservation, was shown to

occur (Kulkarni et al., 2009). A striking feature in Methano-

sarcina is that the methylamine methyltransferases contain

pyrrolysine, the 22nd genetically encoded amino acid.

Genetic studies have helped determine the function of a

dedicated tRNA and aminoacyl-tRNA synthetase in pyrro-

lysyl-tRNA synthesis (Mahapatra et al., 2006, 2007).

Genetic studies in Methanococcus have addressed a wide

range of questions. A number of regulatory mechanisms

have been studied, and regulatory factors have been identi-

fied that govern the expression of genes for hydrogen

metabolism (Sun & Klein, 2004) and nitrogen assimilation

(Lie & Leigh, 2003; Lie et al., 2005). A novel mechanism for

the regulation of nitrogenase activity was discovered in M.

maripaludis, and evidently exists in a variety of diazotrophic

Archaea and Bacteria (Dodsworth et al., 2005; Dodsworth &

Leigh, 2006). Genetic studies in M. maripaludis have led to

the identification of components of the archaeal flagellum

system (Chaban et al., 2007), tRNA-dependent cysteine

biosynthesis (Stathopoulos et al., 2001; Sauerwald et al.,

2005), and requirements for selenocysteine biosynthesis

(Rother et al., 2001; Yuan et al., 2006; Stock et al., 2010).

Numerous studies of global regulation at the transcrip-

tomic and proteomic levels have been carried out with

Methanococcus and Methanosarcina species, showing the

global responses to alternative substrates, salt stress, and

availabilities of nutrients including hydrogen and nitrogen

(Hovey et al., 2005; Li et al., 2005a, b; Lessner et al., 2006;

Veit et al., 2006; Xia et al., 2006, 2009; Hendrickson et al.,

2007, 2008; Pfluger et al., 2007; Jager et al., 2009).

Halophiles

Introduction to haloarchaea, the heterotrophic,
aerobic halophiles of the Euryarchaeota

Halophilic archaea inhabit the most saline environments on

earth, including solar salterns and natural salt lakes. Like

many other habitats where archaea are found, salt lakes were

once thought devoid of life. In 1936, Benjamin Elazari-

Volcani published the first report of microbial life in the

Dead Sea (Elazari-Volcani, 1936). His work was commemo-

rated by the naming of Haloferax volcanii, which was

isolated from Dead Sea mud in 1977 (Mullakhanbhai &

Larsen, 1975). In fact, the discovery of halophilic archaea

predates the proposal of the domain Archaea by Carl Woese

in the late 1970s (Woese & Fox, 1977; Woese et al., 1990).

For instance, H. salinarum was unwittingly discovered in

1922 as a red discoloration of salted fish (Harrison &

Kennedy, 1922). All halophilic archaea are members of the

Euryarchaeota and somewhat confusingly, the family Halo-

bacteriaceae (Oren et al., 2009). In this review, we will use
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instead the term haloarchaea unless when referring to the

genus Halobacterium.

Archaea are not alone in hypersaline environments; they

share this habitat with bacteria, fungi and algae. In contrast to

most halophilic bacteria and eukaryotes, haloarchaea main-

tain an osmotic balance with their medium by accumulating

equimolar salt concentrations in the cytoplasm (Christian &

Waltho, 1962; Oren, 2008). This ‘salt-in’ strategy predomi-

nantly uses potassium because it attracts less water than

sodium. The converse ‘salt-out’ strategy favored by halotoler-

ant bacteria excludes salt from the cytoplasm and uses organic

solutes such as glycerol or glycine betaine to maintain an

osmotic balance. The salt-out strategy is energetically costly

and less suitable at saturating salt concentrations, which is

probably why haloarchaea predominate under hypersaline

conditions (Oren, 1999). There are notable exceptions: the

bacterium Salinibacter ruber uses the archaeal salt-in strategy

and coexists with haloarchaea at near-saturating salt concen-

trations (Oren et al., 2002).

Because of the salt-in strategy, haloarchaeal proteins are

adapted to function in molar salt concentrations and

commonly denature in low-salt solutions. The adaptation

to salt relies on several different strategies (Lanyi, 1974;

Mevarech et al., 2000).

� A reduction in overall hydrophobicity, by replacing large

hydrophobic residues on the protein surface with small

hydrophilic residues. This strategy is used by the dihydrofo-

late reductase of Hfx. volcanii, which requires higher salt

concentrations for correct folding than the E. coli enzyme

(Wright et al., 2002).

� An increase in acidic residues. A high density of negative

charges coordinates a network of hydrated cations, which

maintain the protein in solution (Lanyi, 1974). For example,

glucose dehydrogenase of Haloferax mediterranei is very acidic

(Britton et al., 2006), and the median pI of the Hbt. salinarum

proteome is predicted to be 4.9 (Kennedy et al., 2001). By

altering the total charge, it is possible to interconvert halophi-

lic and mesophilic forms of a protein (Tadeo et al., 2009).

� An additional domain that is not found in mesohalic

proteins, as seen in the ferredoxin of Hbt. salinarum (Marg

et al., 2005). The latter features a 30-amino acid insertion

near its N-terminus, which is extremely rich in acidic amino

acids and is essential for correct protein folding at high salt

concentrations.

Besides their adaptation to salt, haloarchaea have other

characteristic features. They are aerobic heterotrophs, some

of which have the potential for anaerobic growth (Falb et al.,

2008). They are slightly thermophilic with an optimum

temperature of 40–50 1C, can withstand up to 60 1C, and

grow reasonably well at 37 1C (Robinson et al., 2005). Even

Halorubrum lacusprofundi, which was isolated in Antarctica,

grows best at 36 1C. Haloarchaea are generally pigmented

with C-50 bacterioruberins and some species contain retinal

proteins such as bacteriorhodopsin. It is unlikely that these

pigments play a significant role in protection against UV.

While Hbt. salinarum can withstand very high doses of UV

(McCready & Marcello, 2003), other pigmented species such

as Hfx. volcanii are no more resistant than the model

bacterium E. coli (Delmas et al., 2009).

To date, 12 haloarchaeal genomes have been sequenced

[Halalkalicoccus jeotgali B3(T), Haloarcula marismortui ATCC

43049, Halobacterium sp. NRC-1, Hfx. volcanii DS2, Halogeo-

metricum borinquense DSM 11551, Halomicrobium mukoha-

taei DSM 12286, Haloquadratum walsbyi DSM 16790,

Halorhabdus utahensis DSM 12940, Halorubrum lacusprofundi

ATCC 49239, Haloterrigena turkmenica DSM 5511, Natrono-

monas pharaonis DSM 2160, Natrialba magadii ATCC 43099]

and many more are underway. They usually consist of one

main chromosome and a number of megaplasmids (Pfeiffer

et al., 2008a; Soppa et al., 2008). Structural differences in their

respective megaplasmids underlie the distinction between Hbt.

salinarum and Halobacterium sp. NRC-1, but they are essen-

tially the same species (we refer to both as Hbt. salinarum) (Ng

et al., 2000; Pfeiffer et al., 2008b). Polyploidy is a signature of

haloarchaea; there are 15–30 genome copies in Hfx. volcanii

and Hbt. salinarum (Breuert et al., 2006). Haloarchaeal

genomes are characterized by a high G1C content (�65%)

(Soppa et al., 2008); the one known exception is Haloquadra-

tum walsbyi (45% G1C) (Bolhuis et al., 2006). It is often

stated that the high G1C content is linked to the acidic

proteome of haloarchaea (average pI of �4.4), but it is more

probably due to evasion of insertion sequence (IS) elements

that target A1T-rich sequences (Pfeifer & Betlach, 1985;

Cohen et al., 1992; Hartman et al., 2010). Interestingly, IS

elements in H. walsbyi have a higher GC content than the rest

of the genome (Bolhuis et al., 2006). While all halophiles are

infested with IS elements (Brugger et al., 2002), their activity

varies between species. Halobacterium salinarum exhibits

genome instability due to frequent IS-mediated rearrange-

ments (Sapienza et al., 1982; Simsek et al., 1982), but this is

much less of a problem in Hfx. volcanii, where IS elements are

confined to nonessential regions on the megaplasmids (Cohen

et al., 1992; Lopez-Garcia et al., 1995).

In common with methanogens, the genomes of haloarch-

aea encode multiple isoforms of genes that are present as a

single copy in other organisms. For instance, there are 16

orc1/cdc6 genes for the DNA replication initiator in Hfx.

volcanii and 10 in Hbt. salinarum (Berquist et al., 2007;

Norais et al., 2007; Hartman et al., 2010). This might be due

to a requirement for regulatory and metabolic flexibility in

haloarchaea (Facciotti et al., 2007), but it is also possible that

these redundant homologs have accumulated as a result of

lateral gene transfer (LGT). There is ample evidence for

large-scale LGT, often with bacteria, and it has been pro-

posed that haloarchaea originally descended from methano-

gens that had acquired the genes for aerobic respiration
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from bacteria (Boucher et al., 2003). Underpinning this LGT

is a system for mating and gene transfer in Hfx. volcanii

(Rosenshine et al., 1989) and a wide variety of haloarchaeal

viruses (Dyall-Smith et al., 2003).

Why study halophiles?

A significant motivation for working on haloarchaea is the

sophistication of their genetic systems. They are easy to

cultivate in the laboratory, have fast growth kinetics (Ro-

binson et al., 2005), and are resistant to contamination by

nonhalophilic microorganisms (of course, cross-contamina-

tion of haloarchaeal strains within the laboratory remains a

constant threat). Halophiles were the first archaeal group in

which routine transformation with foreign DNA was possi-

ble (Charlebois et al., 1987; Cline et al., 1989). The ease,

efficiency, and broad applicability of PEG-mediated trans-

formation has ensured that haloarchaea have remained at

the forefront of genetic tool development (Soppa, 2006).

Perhaps the greatest testament to the popularity of haloarch-

aea is the Halohandbook, an invaluable compendium of

methods for working with halophiles, which is diligently

curated by Mike Dyall-Smith (Dyall-Smith, 2009).

Besides sophisticated genetics, there are many other

reasons for working on halophiles. Haloferax volcanii and

Hbt. salinarum can grow over a range of salinities and have

been exploited to uncover genes involved in osmotic stress

(Bidle et al., 2007, 2008; Coker et al., 2007). Because

halophilic proteins function under conditions of low water

availability, they offer distinct advantages for structural

biology and biotechnology. For example, the structure of

the ribosome was solved using the complex from Har.

marismortui, leading to the Nobel Prize for Chemistry in

2009 (Ban et al., 2000). In biotechnology, there are few

success stories that can match bacteriorhodopsin. This

purple membrane protein from Hbt. salinarum was identi-

fied by Walther Stoeckenius in 1971 (Oesterhelt & Stoeck-

enius, 1971) and has been used in countless photochemical

applications (Margesin & Schinner, 2001; Oren, 2010).

Haloarchaea are an excellent choice to address the ‘pro-

karyotic species question’: do prokaryotic organisms form

genomic and phenomic clusters that are sufficiently cohesive

that we might legitimately call them species (Doolittle &

Zhaxybayeva, 2009)? Haloarchaea are physiologically diverse

and inhabit distinct ecological niches (Oren, 2008), they

have dynamic genomes with systems for gene exchange and

show evidence for LGT. Work on isolates of the genus

Halorubrum from solar salterns and natural salt lakes has

shown that haloarchaea exchange genetic information pro-

miscuously, leading to the suggestion that there is no

nonarbitrary way to define a prokaryotic species (Papke

et al., 2004, 2007). Genetics has been used to answer the

question of whether genes acquired by LGT can supplant an

endogenous function. The UvrABC complex, which is of

bacterial origin, is functional in the repair of UV-induced

DNA damage in both Hbt. salinarum and Hfx. volcanii

(Crowley et al., 2006; Lestini et al., 2010).

Key species of halophiles that have genetic
systems

There are two haloarchaeal model organisms: Hbt. salinar-

um and Hfx. volcanii. Both species have mature genetic

systems, but each has intrinsic advantages. Halobacterium

salinarum is the traditional choice for haloarchaeal cell

biology; it was isolated many years ago and quickly became

a popular choice owing to its purple membrane protein,

bacteriorhodopsin (Oesterhelt & Stoeckenius, 1971; Marge-

sin & Schinner, 2001). The genome of Hbt. salinarum NRC-

1 was published in 2000 (Ng et al., 2000), a second

annotation with a different assembly of the megaplasmids

was published for Hbt. salinarum R1 in 2008 (Pfeiffer et al.,

2008b). The first archaeal method for gene knockout using a

counterselectable marker was also published in 2000, using

the ura3 gene of Hbt. salinarum (Peck et al., 2000) (Fig. 2).

Availability of the genome sequence coincided with the

growth of transcriptomics, and consequently Hbt. salinarum

has been a favorite model for systems biology (DasSarma

et al., 2006). DNA repair has been a fruitful topic, because

Hbt. salinarum is extremely resistant to UV and ionizing

radiation (Baliga et al., 2004; Whitehead et al., 2006).

However, for those wishing to carry out traditional genetics,

Hbt. salinarum is perhaps not ideal. It grows slowly, its

genome is unstable due to frequent IS-mediated rearrange-

ments (Sapienza et al., 1982; Simsek et al., 1982), and the

range of selectable markers is somewhat limited.

Haloferax volcanii is better suited to traditional genetics. It

has a generation time of �2 h (Robinson et al., 2005), its

genome is stable (Lopez-Garcia et al., 1995), and it grows on

synthetic media (Mevarech & Werczberger, 1985). PEG-

mediated transformation protocols were originally developed

for Hfx. volcanii (Charlebois et al., 1987; Cline et al., 1989), and

methods for gene knockout have incorporated additional

selectable markers (Bitan-Banin et al., 2003; Allers et al., 2004),

thus facilitating the construction of multiply-mutated cells (Fig.

2). A Gateway system for deletion construction (El Yacoubi

et al., 2009), several reporter genes (Holmes & Dyall-Smith,

2000; Reuter & Maupin-Furlow, 2004), an inducible promoter

(Large et al., 2007), and a system for protein overexpression

(Allers et al., 2010) have been developed in the last decade.

Haloferax volcanii has a long history of genome research going

back to 1991, when a physical map of overlapping genomic

clones was published (Charlebois et al., 1991). Publication of

the annotated genome sequence in 2010 (Hartman et al., 2010)

has spurred the development of whole-genome microarrays (S.

Chimileski & T. Papke, pers. commun.), which will allow faster
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data analysis than the shotgun DNA microarrays available

previously (Zaigler et al., 2003).

Rudimentary genetic systems are available for other ha-

loarchaea. Haloarcula marismortui can be transformed with

shuttle plasmids from Hbt. salinarum and Hfx. volcanii (Cline

& Doolittle, 1992) and gene replacement studies have been

used to investigate the Har. marismortui ribosome (Tu et al.,

2005). However, this species harbors restriction/modification

systems that reduce the efficiency of transformation by 104-fold

(Cline & Doolittle, 1992). Systems for Halorubrum are cur-

rently under development (S. Chimileski & T. Papke, pers.

commun.). Haloferax mediterranei is closely related to Hfx.

volcanii; they differ in that Hfx. mediterranei produces gas

vesicles. These gas-filled proteinaceous particles are used by

cells to increase their buoyancy and float to the surface of the

brine; they have been studied intensively by the laboratory of

Felicitas Pfeifer, often using Hfx. volcanii as a heterologous host

(Pfeifer et al., 2002; Hechler & Pfeifer, 2009). This is one of the

great strengths of haloarchaeal genetics: because there are

several organisms with mature genetic systems, complementa-

tion by genes from a related species can be used to identify

random mutations and thereby isolate novel enzymes. This

approach was used to find a novel thymidylate synthase and an

alternative pathway for reduced folate biosynthesis in Hbt.

salinarum, using genes from Hfx. volcanii (Giladi et al., 2002;

Levin et al., 2004). More recently, the essential pitA gene of Hfx.

volcanii was replaced by an ortholog from the haloalkaliphile

Natronomonas pharaonis; the latter lacks the histidine-rich

linker region found in Hfx. volcanii PitA and does not copurify

with His-tagged recombinant proteins (Allers et al., 2010).

Genetic tools for halophiles

Transformation

Modern genetics takes for granted a method for introducing

DNA into cells, and a means to select for cells that have

taken up the DNA. The development of transformation

protocols is intimately linked with selectable markers. This

was an acute problem in the early days of archaeal genetics,

because bacterial antibiotics are largely ineffective against

archaea (Hilpert et al., 1981). Cline and Doolittle overcame

this hurdle by assaying for transfection of Hbt. salinarum

with naked DNA from halovirus FH, and scoring for

plaques on a lawn of cells (Cline & Doolittle, 1987). This

allowed them to develop the PEG transformation protocol

that is used today (Cline et al., 1989): the glycoprotein cell

surface layer, which depends on Mg21, is removed by

treatment with EDTA and DNA is introduced into spher-

oplasts using PEG 600, after which cells recover in rich broth

before plating on selective medium. This protocol yields up

to 107 transformants mg�1 DNA, depending on restriction/

modification systems. Haloferax volcanii has two such

systems: one that targets unmethylated 50-CTAG-30 sites

(Charlebois et al., 1987) (T. Allers, unpublished data) and

another that restricts methylated 50-GmeATC-30 DNA

(Holmes & Dyall-Smith, 1991). The latter results in a 102-

fold drop in transformation efficiency and has been circum-

vented by passaging DNA through an E. coli dam mutant,

which lacks the methylase that modifies 50-GATC-30 sites.

This is no longer necessary, because anDmrr mutant of Hfx.

volcanii was recently shown to lack the restriction enzyme

that targets 50-GmeATC-30 DNA (Allers et al., 2010).

Shuttle vectors

Many replicative shuttle vectors have been developed, using

origins of DNA replication taken from indigenous haloarch-

aeal plasmids (Table 2). For Hbt. salinarum there are plasmids

based on pGRB1, pHH1, and pNRC100 origins (Blaseio &

Pfeifer, 1990; Krebs et al., 1991; DasSarma, 1995), while for

Hfx. volcanii there are vectors based on pHK2, pHV2, and

pHV1/4 origins (Lam & Doolittle, 1989; Holmes et al., 1994;

Allers et al., 2004; Norais et al., 2007). Some of these origins

are broad range: for example, pHV2-based vectors replicate in

both species (Blaseio & Pfeifer, 1990). Interestingly, pHV2-

based plasmids do not function in Hfx. volcanii mutants

deficient in the RadA recombinase, where pHK2-based vectors

are used instead (Woods & Dyall-Smith, 1997). For a com-

prehensive list of plasmid vectors, see Allers & Mevarech

(2005) or Berquist et al. (2006).

Selectable markers

Bacterial antibiotics that are safe to use in eukaryotes are

largely ineffective against archaea, because the targets of these

drugs (e.g. peptidoglycan cell walls) are not encountered in

archaeal or eukaryotic cells. There are some exceptions

(Hilpert et al., 1981); they have been exploited to develop

selectable markers for haloarchaeal genetics. Novobiocin is an

inhibitor of DNA gyrase (gyrB), an essential enzyme found in

both bacteria and archaea, and a resistant form of the gyrB

gene was isolated from Haloferax strain Aa2.2 (Holmes &

Dyall-Smith, 1991). Novobiocin has since become the most

widely used haloarchaeal antibiotic. An alternative is mevi-

nolin (simvastatin), which inhibits HMG-CoA reductase. In

humans, it is prescribed as a cholesterol-lowering drug, while

in archaea it inhibits membrane synthesis. A mutant allele of

the Hfx. volcanii hmgA gene that leads to overexpression of

the enzyme has been harnessed as a mevinolin-resistant

marker for both Hfx. volcanii and Hbt. salinarum (Blaseio &

Pfeifer, 1990; Lam & Doolittle, 1992).

The last decade has seen a shift away from antibiotics and

towards auxotrophic selectable markers, where genes in-

volved in amino acid or nucleotide biosynthesis are used to

complement chromosomal mutations. Deletion of the gene
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circumvents the instability that results from homologous

recombination of the marker with a chromosomal allele;

this is a problem for antibiotics, because both novobiocin-

and mevinolin-resistance markers have homology to essen-

tial chromosomal genes. The first auxotrophic marker to be

developed was the ura3 gene for uracil biosynthesis in Hfx.

salinarum (Peck et al., 2000); it was followed by a similar

system based on the pyrE2 gene of Hfx. volcanii (Bitan-

Banin et al., 2003). These markers are particularly useful for

gene knockout or replacement (Fig. 2b), because they can be

counterselected using 5-fluoroorotic acid (5-FOA). Integra-

tion of a deletion construct is selected by transformation to

uracil prototrophy and loss of the construct (resulting in

gene deletion) is counterselected with 5-FOA, which is

converted to toxic 5-fluorouracil in ura1 (but not ura�)

cells. Selection for 5-FOA-resistance is also used to bring

about ectopic integration, where a gene construct is used to

replace the ura3 or pyrE2 gene (Fig. 2e).

In Hfx. volcanii there are five additional auxotrophic

markers. The trpA gene for tryptophan and leuB gene for

leucine biosynthesis are often used in conjunction with pyrE2

(Allers et al., 2004), for gene replacement with a selectable

marker (Fig. 2c). This has proved essential for the construc-

tion of some mutants, where the gene is important for cell

viability and therefore difficult to delete. The hdrB marker for

thymidine biosynthesis is well suited for shuttle plasmids,

because it allows them to be maintained in rich media based

on yeast extract (which lacks thymidine) (Allers et al., 2004).

For example, a shuttle vector with the hdrB marker was used

for in trans complementation of radA (Fig. 2d) to generate a

radA mre11 rad50 mutant (Delmas et al., 2009). This ap-

proach, known as plasmid shuffling, was also used to demon-

strate that Hfx. volcanii mutants lacking both the Holliday

junction resolvase Hjc and the Xpf homolog Hef are synthe-

tically lethal (Lestini et al., 2010). Additional selectable mar-

kers based on the hisC and metX genes of Hfx. volcanii

(involved in histidine and methionine biosynthesis, respec-

tively) have recently been developed (M. Mevarech, pers.

commun.). This approach has been less fruitful for Hbt.

salinarum, because it lacks the biosynthetic capability for five

amino acids and cannot grow on synthetic media (Falb et al.,

2008).

Table 2. Genetic tools for haloarchaea

Hbt. salinarum Hfx. volcanii

Synthetic media No, lacks biosynthetic capability for five amino

acids (Falb et al., 2008)

Yes (Mevarech & Werczberger, 1985)

DNA delivery PEG-mediated transformation (Cline et al., 1989) PEG-mediated transformation (Cline et al., 1989)

Restriction barrier Some restriction of methylated CTTCCT DNA�,

lacking in some strains (Schinzel & Burger, 1986;

Blaseio & Pfeifer, 1990)

Severe restriction of GmeATC DNA, eliminated inmrr mutant

(Holmes & Dyall-Smith, 1991; Allers et al., 2010)

Replicative shuttle vectors Based on pGRB1, pHH1 and pNRC100 origins

(Blaseio & Pfeifer, 1990; Krebs et al., 1991;

DasSarma, 1995; Berquist et al., 2006)

Based on pHK2, pHV2 and pHV1/4 origins (Lam & Doolittle,

1989; Holmes et al., 1994; Allers et al., 2004; Allers & Mevarech,

2005; Norais et al., 2007)

Positive selection Mevinolin, novobiocin, uracil (ura3) (Blaseio &

Pfeifer, 1990; Holmes & Dyall-Smith, 1991; Peck

et al., 2000)

Mevinolin, novobiocin, uracil (pyrE2), leucine (leuB), thymidine

(hdrB), tryptophan (trpA) (Lam & Doolittle, 1989; Holmes &

Dyall-Smith, 1991; Bitan-Banin et al., 2003; Allers et al., 2004).

Also histidine (hisC) and methionine (metX) (M. Mevarech,

pers. commun.)

Counterselection 5-FOA (ura3) (Peck et al., 2000) 5-FOA (pyrE2) (Bitan-Banin et al., 2003; Allers et al., 2004)

Random mutagenesis Using UV and X-rays (Soppa & Oesterhelt, 1989) Using ethyl methanesulphonate (EMS) (Mevarech &

Werczberger, 1985)

Negative enrichment Using 5-bromo-20-deoxyuridine (BrdU) (Soppa &

Oesterhelt, 1989)

Using 5-bromo-20-deoxyuridine (BrdU) (Soppa & Oesterhelt,

1989; Wanner & Soppa, 1999)

Markerless gene knockout

or replacement

Using ura3 (Peck et al., 2000) Using pyrE2 (Bitan-Banin et al., 2003; Allers et al., 2004).

Gateway system available (El Yacoubi et al., 2009)

Ectopic integration At ura3 (Peck et al., 2000) At pyrE2 (T. Allers, unpublished data)

Natural genetic exchange Not observed (Tchelet & Mevarech, 1994) Involves cell-cell contact (Rosenshine et al., 1989)

Reporter genes b-Galactosidase (bgaH) and GFP (Nomura &

Harada, 1998; Patenge et al., 2000)

b-Galactosidase (bgaH) and GFP (Holmes & Dyall-Smith, 2000;

Reuter & Maupin-Furlow, 2004)

Regulated gene expression No Tryptophan-inducible p.tnaA promoter (Large et al., 2007)

Protein overexpression pBBEV1 expression plasmid with constitutive bop

promoter (Berquist et al., 2006), pNBPA

expression plasmid with constitutive fdx promoter

(Facciotti et al., 2007)

pitANph gene replacement strain H1209 and

tryptophan-inducible expression plasmid pTA963, for

His-tagged proteins (Allers et al., 2010)

�M. Dyall-Smith, pers. commun.
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Regulated gene expression

The ability to regulate gene expression via a tightly repressed

promoter is taken for granted in bacterial and eukaryotic

systems. Heat-inducible chaperonin promoters have been

available for some time in Hfx. volcanii (Kuo et al., 1997), but

given the pleiotropic effects of heat-shock, they are far from

ideal. In 2007 the p.tnaA promoter from the tryptophanase

gene of Hfx. volcanii was characterized; it is tightly repressed in

the absence of tryptophan and shows rapid, strong induction

upon addition of Z1 mM tryptophan (Large et al., 2007). It

has been used to construct a depletion mutant of the essential

cct1 gene (Large et al., 2007) and to generate an overexpression

system for hexahistidine-tagged halophilic proteins (Allers

et al., 2010). This overexpression system features a Hfx.

volcanii host strain with deletion of the mrr gene, allowing

high-efficiency transformation with DNA isolated from E. coli,

and replacement of the pitA gene by its ortholog from N.

pharaonis, preventing copurification with His-tagged recom-

binant proteins (Allers et al., 2010).

Reporter genes

A number of biosynthetic genes have been used as reporters in

haloarchaea: for example the dhfr gene has been used to study

transcription and translation in Hfx. volcanii (Danner &

Soppa, 1996; Hering et al., 2009). Two colorimetric reporter

genes are available for monitoring gene expression in ha-

loarchaea: b-galactosidase and green fluorescent protein

(GFP). They succinctly illustrate the ‘halophilic adaptation’

of existing genetic tools, which takes into account the high

intracellular salt concentrations of haloarchaea. Because the

lacZ gene product of E. coli is not active at high salt

concentrations, the laboratory of Mike Dyall-Smith isolated a

b-galactosidase gene bgaH from Haloferax alicantei that

develops a blue color from X-gal (Holmes & Dyall-Smith,

2000). It has been used extensively as a transcriptional reporter

in Hfx. volcanii and Hbt. salinarum, both of which lack

detectable b-galactosidase activity (Patenge et al., 2000). A

different approach was used to generate a halophilic version of

GFP. Because GFP is a stable protein that is resistant to many

denaturants, it was possible, by introducing just four muta-

tions, to generate a soluble modified derivative that exhibits

fluorescence in Hfx. volcanii cells (Reuter & Maupin-Furlow,

2004).

Discoveries and recent progress

The last 5 years have seen considerable progress in the area of

‘whole genome’ studies of Hbt. salinarum. Systems biology has

taken advantage of the genome sequence since its publication

in 2000 (Ng et al., 2000), leading to insights into the cellular

response to anaerobic growth, phototrophy, X-ray and UV

irradiation, salinity and temperature shifts, heavy metal

resistance, and phosphate limitation (Baliga et al., 2004;

McCready et al., 2005; Muller & DasSarma, 2005; Kaur et al.,

2006; Whitehead et al., 2006; Coker et al., 2007; Twellmeyer

et al., 2007; Wende et al., 2009). Now that the Hfx. volcanii

genome sequence is published (Hartman et al., 2010), we hope

to see similar progress in the other model haloarchaeon. This

species holds considerable potential for combining mutant

strain construction by reverse genetics with ‘-omics’ technol-

ogy, for example proteomics and metabolomics (Kirkland

et al., 2008; Sisignano et al., 2010).

One of the most fascinating aspects of halophiles is how

their proteins can function in molar salt concentrations. The

stability of halophilic proteins is partly due to their unusually

hydrophilic surfaces, which leads to a requirement for efficient

protein folding. This poses problems for secreted proteins,

owing to a lack of ATP-dependent chaperones in the extra-

cytoplasmic space. In halophiles, an unusually large number of

proteins are rerouted via the twin-arginine transport (Tat)

pathway, which allows cytoplasmic folding of proteins before

their secretion (Rose et al., 2002; Hutcheon & Bolhuis, 2003).

Haloarchaea have also yielded surprising insights into the

evolutionary origin of cellular processes that were once

thought to be exclusive to eukaryotes or bacteria. Ubiquitin-

like proteins have been found in Hfx. volcanii and shown to act

in protein conjugation, probably targeting these proteins for

proteasome-mediated proteolysis (Humbard et al., 2010). A

caspase-like activity has also been found; its expression is

induced by salt stress and may play a role in programmed cell

death (Bidle et al., 2010). N-linked glycosylation has been

shown to be widespread in archaea, with a wider variety of

sugar subunits than seen in eukaryal or bacterial glycoproteins

it is commonly encountered in S-layer proteins and flagellins

(Calo et al., 2010; Jarrell et al., 2010). Archaeal flagellins

assemble to form a structure with superficial similarity to

bacterial flagella, but on a molecular level they are unrelated

(Ng et al., 2006). Studies on Hbt. salinarum have shown how a

chemotaxis signal transduction system consisting of bacterial-

like proteins, and proteins unique to archaea, is used to

modulate rotation of the flagellum (Schlesner et al., 2009).

Thermococcales

Introduction to Thermococcales, the
heterotrophic, sulfur-reducing
hyperthermophiles of the Euryarchaeota

The Euryarchaeota include an abundant number of hy-

perthermophiles that exhibit considerable diversity in terms

of metabolism. Hyperthermophiles are found in the orders

Archaeoglobales (sulfate reducers), Methanococcales/Metha-

nopyrales (methanogens), and Thermococcales (sulfur redu-

cers). The Thermococcales consist of three genera: Pyrococcus

(Fiala & Stetter, 1986), Thermococcus (Zillig et al., 1983), and
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Palaeococcus (Takai et al., 2000). Although several excep-

tions are present such as the freshwater Thermococcus

waiotapuensis (Gonzalez et al., 1999), the majority of the

Thermococcales have been isolated from shallow marine

thermal springs or deep-sea hydrothermal vents. They are

all considered to be obligate anaerobes and heterotrophs

that assimilate amino acids, peptides, pyruvate, and oligo-

saccharides, coupled with sulfur reduction or hydrogen

fermentation (Amend & Shock, 2001). Among the three

genera, Thermococcus contains the highest number of char-

acterized isolates, and environmental studies have indicated

that the members of Thermococcus are ubiquitously present

in deep-sea hydrothermal vent systems (Orphan et al., 2000;

Holden et al., 2001).

Most members of the Thermococcales exhibit optimal

growth temperatures 4 80 1C. Members of the genus Thermo-

coccus exhibit growth temperature ranges that fall between 50

and 100 1C, with optimal temperatures between 80 and 90 1C.

Members of Pyrococcus exhibit slightly higher growth tempera-

tures, with growth observed between 65 and 105 1C, with

optimums between 95 and 105 1C. Palaeococcus ferrophilus,

the only member of the genus studied in detail, grows between

60 and 88 1C, with an optimum of 83 1C (Takai et al., 2000). As

the members of the Thermococcales grow at these high tem-

perature ranges, all of their cell components, including mem-

brane lipids, nucleic acids, and proteins, must display extreme

thermostability in order to function at these high temperatures.

Due to both fundamental and application-based interests, an

abundant number of studies have focused on the structures of

the thermostable proteins from hyperthermophiles.

In most cases, enzymes from hyperthermophiles are highly

similar to their counterparts from mesophilic organisms in

terms of both primary and tertiary structure, and share

common catalytic mechanisms. Studies on enzymes from

(hyper)thermophilic organisms have helped us understand

the effects of temperature on enzyme activity (Daniel et al.,

2010), and the structural characteristics that lead to protein

thermostability. Enhancement of protein thermostability is

brought about by several general strategies and their degrees of

contribution vary according to the protein. One major

strategy is the presence of extensive ion pair networks formed

by acidic and basic amino acid residues. Glutamate dehydro-

genases from a variety of Thermococcales species have been

studied as model proteins, confirming the importance of ion

pair networks in protein thermostability (Yip et al., 1995,

1998; Rice et al., 1996; Rahman et al., 1998; Vetriani et al.,

1998). Another factor is increased packing and loop short-

ening. An increase in the number of buried atoms and a

decrease in internal cavity volume is observed in the citrate

synthase from Pyrococcus furiosus compared with its counter-

parts from mesophiles. The enzyme also has six loops that are

shorter than those found in the pig citrate synthase (Russell

et al., 1997; Arnott et al., 2000). These studies on citrate

synthases have also revealed the importance of subunit inter-

action towards thermostability. The third major strategy is an

increase in hydrophobic interactions in the protein core. O6-

methylguanine DNA methyltransferase from Thermococcus

kodakarensis harbors increased aromatic amino acids in the

enzyme core compared with its counterpart from E. coli

(Hashimoto et al., 1999).

Why study Thermococcales?

Other than the fact that they are obligate anaerobes, the

Thermococcales can be grown on simple, organic media and

exhibit cell yields sufficient for biochemical analyses. In

addition, as complete genome sequences of three Pyrococcus

species became available at a relatively early stage, members of

the Thermococcales have been utilized to study a wide range of

archaeal biology. These include DNA replication and repair

(Hopkins & Paull, 2008; Williams et al., 2008; Yoshimochi

et al., 2008; Kiyonari et al., 2009; Mayanagi et al., 2009;

Nishida et al., 2009), transcription and its regulation (Vierke

et al., 2003; Lee et al., 2005, 2007; Goede et al., 2006; Kanai

et al., 2007; Santangelo et al., 2007; Hirata et al., 2008a),

carbon and energy metabolism (Sapra et al., 2003; Verhees

et al., 2003; Siebers & Schönheit, 2005), CRISPR systems (Hale

et al., 2009), and cellular responses to stress, such as oxidative

(Jenney et al., 1999; Clay et al., 2003), osmotic (Neves et al.,

2005; Rodrigues et al., 2007), and temperature stress (Laksa-

nalamai & Robb, 2004; Danno et al., 2008; Fujiwara et al.,

2008; Kanzaki et al., 2008; Kida et al., 2008). The abundant

genome sequences have also promoted a wealth of ‘-omics’

research including transcriptomics (Schut et al., 2003; Lee

et al., 2006; Trauger et al., 2008), proteomics (Menon et al.,

2009), structural genomics (Hura et al., 2009), and other

genome-based high-throughput strategies (Keese et al., 2010).

In terms of metabolism, the Thermococcales assimilate a

wide range of organic compounds, in many cases via novel

or modified metabolic pathways that have not been identi-

fied in other organisms. They have thus attracted much

attention to those interested in carbon/energy metabolism.

The Thermococcales are also known to efficiently utilize

polymeric substrates, namely poly- and oligosaccharides

and peptides, and are armed with a vast array of stable,

polymer-degrading hydrolases, which are expected to be

applicable in various fields of biotechnology (Atomi, 2005;

Egorova & Antranikian, 2005).

A variety of thermostable poly(oligo)maltosaccharide-

modifying enzymes have been identified and characterized,

which include a-amylases (Laderman et al., 1993; Dong et al.,

1997a), amylopullulanases (Dong et al., 1997b), cyclodextrin

glucanotransferases (Tachibana et al., 1999; Rashid et al.,

2002a), 4-a-glucanotransferases (Jeon et al., 1997), maltodex-

trin phosphorylases (Mizanur et al., 2008), cyclodextrinases

(Hashimoto et al., 2001), and branching enzymes (Murakami
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et al., 2006). In addition, many enzymes that cleave b-1,3- or

b-1,4-glycosidic bonds have been studied such as b-glucosi-

dases, b-galactosidases, b-mannosidases, endo-b-1,3-gluca-

nases, chitinases, and b-glucosaminidases (Kengen et al.,

1993; Voorhorst et al., 1995; Bauer et al., 1996; Gueguen

et al., 1997; Driskill et al., 1999; Matsui et al., 2000). Based on

genome sequence predictions, members of the Thermococcales

each harbor over 30 protease/peptidase-related genes (Ward

et al., 2002), and many of their protein products have been

examined (Halio et al., 1996; Voorhorst et al., 1996; Story

et al., 2005). In terms of the active site nucleophile, hyperther-

mophilic proteases include serine proteases, cysteine pro-

teases, the threonine-dependent proteasomes, metal-

dependent proteases, and those of which the catalytic mechan-

isms have not been elucidated. It is worthy to note that a

remarkable number of crystal structures have been reported

for the proteases/peptidases from the Thermococcales (Du

et al., 2000; Arndt et al., 2002; Maher et al., 2004; Yokoyama

et al., 2006; Delfosse et al., 2009; Dura et al., 2009).

Intracellular sugar metabolism has been another major

topic of interest in the Thermococcales. Glycolysis is carried

out through a modified Embden–Meyerhof (EM) pathway.

Studies with P. furiosus have revealed that sugar phosphoryla-

tion is carried out by novel ADP-dependent glucokinases and

ADP-dependent phosphofructokinases that are structurally

unrelated to the ATP-dependent enzymes of the classical EM

pathway (Kengen et al., 1994, 1995; Tuininga et al., 1999).

Fructose-1,6-bisphosphate aldolases are structurally distinct to

the previously known enzymes from bacteria/eukaryotes

(Galperin et al., 2000; Siebers et al., 2001; Imanaka et al.,

2002), as is the case with the gluconeogenic enzyme fructose-

1,6-bisphosphatase (Rashid et al., 2002b; Sato et al., 2004).

Metabolism of glyceraldehyde 3-phosphate (GAP) involves a

novel GAP:ferredoxin oxidoreductase (Mukund & Adams,

1995; van der Oost et al., 1998), in addition to the phosphor-

ylating GAP dehydrogenase and phosphoglycerate kinase. In

the final step from phosphoenolpyruvate to pyruvate, phos-

phoenolpyruvate synthase is the major enzyme rather than the

well-known pyruvate kinase (Imanaka et al., 2006). Studies on

this single glycolytic pathway have revealed the presence of

enzymes with novel structures, novel activities, and novel

metabolic roles.

An encouraging fact for those interested in studying the

Thermococcales is the wealth of sequence information that

has accumulated in recent years. Complete genome se-

quences have been reported for P. furiosus JCM8422 (Robb

et al., 2001), Pyrococcus abyssi GE5 (Cohen et al., 2003),

Pyrococcus horikoshii OT3 (Kawarabayasi et al., 1998), T.

kodakarensis KOD1 (Fukui et al., 2005), Thermococcus

gammatolerans EJ3 (Zivanovic et al., 2009), Thermococcus

onnurineus NA1 (Lee et al., 2008), and Thermococcus sibir-

icus MM739 (Mardanov et al., 2009), and are publicly

available for Thermococcus barophilus MP and Thermococcus

sp. AM4. This will provide an advantage not only in

structure–function studies of individual proteins, but also

in predicting functional relationships of genes in various

biological systems of the Thermococcales.

Genetic tools for Thermococcales

Genetic manipulation techniques have been developed for T.

kodakarensis (Morikawa et al., 1994; Atomi et al., 2004a) by

the groups of Tadayuki Imanaka and John Reeve. As will be

described below, gene disruption, insertion, and replace-

ment on the chromosome occur through homologous

recombination. Thermococcus kodakarensis–E. coli shuttle

vectors have also been developed. Strong constitutive pro-

moters have been identified and can be used for gene

expression. A b-glycosidase gene and a chitinase gene have

been utilized as reporter genes. As for members of Pyrococ-

cus, shuttle vector-based transformation systems are avail-

able for P. abyssi (Lucas et al., 2002), and have recently been

developed in P. furiosus (Waege et al., 2010). The current

range of genetic tools for Thermococcales is shown in Table 3.

Genetic systems using auxotrophic host strains in
defined media

Uracil auxotrophs with mutations in the pyrE or pyrF genes

of T. kodakarensis were positively selected in a medium

containing uracil and 5-FOA. Homologous recombination

was tested using a pyrF� strain as the host strain and the

wild-type pyrF gene as the marker. Specific gene disruption

was achieved with plasmids designed for double-crossover

recombination (Fig. 2a). Double crossover plasmids were

used to delete the pyrF gene from the wild-type KOD1

strain, resulting in strain KU216 (DpyrF), and the pyrF

marker gene was subsequently used to disrupt the trpE gene,

leading to strain KW128 (DpyrF, DtrpE<pyrF), a trypto-

phan auxotroph. The pyrF and trpE genes can be used as

markers for gene manipulation in strains KU216 and

KW128, respectively (Sato et al., 2003, 2005).

Thermococcus kodakarensis displays natural competency

and cells collected from a routine culture can be used

directly for transformation. However, frequencies are low

(�102 mg�1 DNA with homologous regions of 1000 bp), and

the use of this methodology is limited to specific gene

modifications, and is not applicable for experiments such

as random mutagenesis/gene complementation. Frequencies

become even lower when the length of the homologous

region becomes shorter. No prototrophs are obtained with

flanking regions of 100 bp (Sato et al., 2003, 2005).

The pop-in/pop-out strategy using the counterselectable

pyrF gene is applicable in T. kodakarensis. Plasmids are

designed so that two regions on the chromosome are directly

fused on the plasmid, with the pyrF marker gene flanking this
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construct (Fig. 2b). Host cells (DpyrF) are transformed with

the plasmid, and transformants that have undergone single-

crossover recombination (pyrF1) at either one of the homo-

logous regions are enriched in liquid medium depleted of

pyrimidines. Cells are then spread on Gelrite solid medium

containing uracil and 5-FOA, which allows only growth of

cells that have undergone a second recombination event that

removes the pyrF marker gene. If the second recombination

event occurs at the same homologous region that was used in

the first recombination, the genotype returns to that of the

host strain, whereas recombination at the opposite region

results in gene modification and marker removal. This strategy

and other similar strategies utilizing counterselection with the

pyrF gene have been used to construct double and triple

auxotrophic host strains such as KUW1 (DpyrF, DtrpE) and

KUWH1 (DpyrF,DtrpE,DhisD) (Sato et al., 2005), and various

markerless gene knockout strains (Yokooji et al., 2009).

Counterselection is also possible using the TK0664 gene,

annotated as hypoxanthine–guanine phosphoribosyltrans-

ferase. Deletion of this gene results in a strain that is resistant

to 6-methyl purine. Therefore, by utilizing a host strain

deleted of the TK0664 and trpE genes (T. kodakarensis

TS517), a gene cassette consisting of the TK0664 and trpE

gene under the control of strong promoters (trp-6MPS

cassette) can be used for selection/counterselection (Fig.

2c) (Santangelo et al., 2010).

Genetic systems applicable in nutrient-rich media

Conventional antibiotic resistance marker genes cannot be

used in hyperthermophiles due to the lack of thermostability

in their protein products. However, a strategy based on

inhibition of a particular endogenous protein by an anti-

biotic and relieving the inhibition by overexpressing the

protein or by introducing a mutant protein insensitive to the

antibiotic is feasible. As demonstrated in the halophiles,

simvastatin, a specific inhibitor of 3-hydroxy-3-methylglu-

taryl coenzyme A (HMG-CoA) reductase, displays severe

effects on the growth of T. kodakarensis. Growth of the wild-

type T. kodakarensis KOD1 was completely inhibited for 5

days in the presence of 4 mM simvastatin. Overexpression

cassettes for the endogenous HMG-CoA reductase gene

from T. kodakarensis (hmgTk) and the heterologous gene

from P. furiosus (hmgPf) have been shown to be applicable as

selection markers (Matsumi et al., 2007). The promoter

applied for overexpression was the 50-upstream region of the

glutamate dehydrogenase gene (Pgdh) from T. kodakarensis.

Transformants harboring the overexpression cassette display

resistance and can be selected in the presence of 10 mM

simvastatin. Although both hmgTk and hmgPf can be used,

the hmgPf gene is recommended as it will prevent unin-

tended recombination at the native hmg locus that can occur

with the endogenous hmgTk. This system allows gene

disruption in nutrient-rich media, and can be directly

applied on the wild-type T. kodakarensis KOD1. Moreover,

this system has proved applicable in several other Thermo-

coccus species such as T. onnurineus NA1 (Kim et al., 2010).

Another system that has recently been reported utilizes a

T. kodakarensis strain deleted of its arginine decarboxylase

gene (pda). Arginine decarboxylase converts arginine to

agmatine, a vital precursor for polyamine biosynthesis. Even

in a nutrient-rich medium, the pda disruption strain can

only grow when agmatine is supplemented to the medium

(Fukuda et al., 2008). The pda gene can thus be used as a

Table 3. Genetic tools for Thermococcales

T. kodakarensis P. abyssi P. furiosus

Defined media Yes (Sato et al., 2003) Yes (Lucas et al., 2002) Yes (Blumentals et al., 1990)

DNA delivery Transformation (Sato et al., 2003) PEG-mediated transformation

(Lucas et al., 2002)

Transformation

(Waege et al., 2010)

Restriction barrier No No No

Replicative shuttle vectors pLC70 (Santangelo et al., 2008a, b) pYS2 (Lucas et al., 2002) pYS3 (Waege et al., 2010)

Positive selection Simvastatin (Matsumi et al., 2007) Simvastatin

(Waege et al., 2010)

Counterselection 5-FOA (pyrF) (Sato et al., 2005; Yokooji et al., 2009)

6-Methyl purine (TK0664) (Santangelo et al., 2010)

Markerless gene knockout

or replacement

Using pyrF (Sato et al., 2005; Yokooji et al., 2009)

Using TK0664 (Santangelo et al., 2010)

Ectopic integration At chitinase gene (TK1765) locus

(Mueller et al., 2009)

Reporter genes TK1761 (b-galactosidase)

(Santangelo et al., 2008a, b, 2010)

Regulated gene expression fbp (TK2164) promoter (Hirata et al., 2008a, b)

Protein overexpression gdh (TK1431) and csg (TK0895) promoters (Matsumi

et al., 2007; Mueller et al., 2009; Yokooji et al., 2009)

gdh (PF1602) promoter

(Waege et al., 2010)
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selectable marker in nutrient-rich medium (without agma-

tine) when a pda gene disruption strain (T. kodakarensis

TS559) is used as a host (Santangelo et al., 2010). This

system allows selection in nutrient-rich medium without the

addition of antibiotics.

Shuttle vectors in Thermococcus and Pyrococcus

Shuttle vectors have been developed that replicate stably and

express selectable phenotypes in both T. kodakarensis and E.

coli (Santangelo et al., 2008b). A plasmid from Thermococcus

nautilis (pTN1) was ligated to a commercial vector for E.

coli, and the selectable markers trpE and the Pgdh-hmgPf

overexpression cassette were added so that T. kodakarensis

transformants could be selected by DtrpE complementation

and/or mevinolin resistance. The plasmids are maintained

in T. kodakarensis at a copy number of approximately three

copies per chromosome. The use of these plasmids for gene

expression in T. kodakarensis has also been shown (Santan-

gelo et al., 2008b).

Shuttle vector-based transformation is also possible in P.

abyssi (Lucas et al., 2002) and P. furiosus (Waege et al., 2010).

In the P. abyssi system, strains with mutations in the pyrE gene

were used as host cells. The shuttle vector pYS2, which harbors

the pyrE gene from S. acidocaldarius as a selectable marker, can

be introduced into P. abyssi cells by a PEG-spheroplast

method. pYS2 is stably maintained in P. abyssi with a high

copy number of 20–30 copies per chromosome (Lucas et al.,

2002). In the P. furiosus system, pYS2 was modified so that the

pyrE gene was replaced by an hmgPf overexpression cassette

(pYS3). The promoter used was the gdh promoter from P.

furiosus. Transformants can be selected based on their resis-

tance towards 10mM simvastatin. pYS3 is stable in P. furiosus,

and the copy number of the vector was 1–2 copies per

chromosome. Induced expression of the RNA polymerase

subunit D has been achieved using this vector. It has also been

mentioned that the introduction of mutations on the chro-

mosome of P. furiosus is now possible using hmgPf as a

selectable marker (Waege et al., 2010).

Reporter genes

Thermococcus kodakarensis harbors two nonessential genes

that encode b-glycosidases (TK1761 and TK1827). As

intracellular activity deriving from TK1827 was very low

and remained constant; an in vivo gene reporter system was

established based on TK1761 (Santangelo et al., 2008a). This

initial system has been utilized to display the occurrence of

polarity in archaea (Santangelo et al., 2008a) and to eluci-

date the transcription termination signal [oligo(T) se-

quence] recognized by archaeal RNA polymerases

(Santangelo et al., 2009). Recently, a T. kodakarensis strain

deleted of both TK1761 and TK1827 has been constructed as

an improved host for the in vivo b-glycosidase gene reporter

system (Santangelo et al., 2010).

Gene expression

Several strong promoters have been identified for use in

gene expression in T. kodakarensis. The glutamate dehydro-

genase gene promoter (Pgdh) mentioned above is a 551-bp

50-flanking region of TK1431 (Matsumi et al., 2007). A 200-

bp 50-flanking region of the TK0895 gene (Pcsg), which

encodes a cell surface glycoprotein, has also been utilized

for gene expression (Yokooji et al., 2009). In addition, a

heterologous promoter of the histone-encoding hmtB gene

from Methanothermobacter thermautotrophicus (PhmtB) sup-

ports high expression levels in T. kodakarensis (Santangelo

et al., 2010). Heterologous expression of the a-1,4-glucan

phosphorylase gene from Sulfolobus solfataricus, which

could not be functionally expressed in mesophilic host cells,

was achieved in T. kodakarensis using Pcsg (Mueller et al.,

2009). Heterologous gene constructs can be integrated into

the chitinase gene locus without any apparent decrease in

growth rate and cell yield (Fig. 2e) (Mueller et al., 2009).

Discoveries and recent progress

Until recently, the use of genetics in the Thermococcales has

been carried out mainly in T. kodakarensis. In addition to the

studies described above, disruption of the reverse gyrase gene

in T. kodakarensis has demonstrated that the enzyme provides

a significant advantage for hyperthermophiles to grow at high

temperatures, but is not essential for life at 90 1C (Atomi et al.,

2004b). The use of genetics has also contributed in elucidating

metabolic pathways unique to the archaea, such as pentose

synthesis via the reverse flux of the ribulose monophosphate

pathway (Orita et al., 2006), AMP degradation via a novel

route involving Type III Rubiscos (Sato et al., 2007), and

coenzyme A biosynthesis involving two novel enzymes panto-

ate kinase and phosphopantothenate synthetase (Yokooji

et al., 2009). Further genetic studies have provided insight

into how T. kodakarensis responds to various carbon sources

and environmental stress (Kanai et al., 2007, 2010). Applica-

tion of the simvastatin-based gene disruption system to T.

onnurineus NA1 has contributed to the identification of genes

involved in growth of this strain on formate (Kim et al., 2010).

Sulfolobales

Introduction to the Sulfolobales, the aerobic
thermoacidophiles of the Crenarchaeota

The first member of the Sulfolobales, S. acidocaldarius, was

described by T. Brock in 1972 and isolated from a hot spring

in Yellowstone National Park (Brock et al., 1972). Later on,

different members of Sulfolobales were characterized from
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acidic hotsprings and mudholes all over the world, with S.

solfataricus (Pozzuoli, Italy; Zillig et al., 1980) and Sulfolobus

tokodaii (Japan; Suzuki et al., 2002) being the most commonly

used strains in laboratories. Recently, seven genomes of

Sulfolobus islandicus were sequenced from a variety of acidic

hot springs in the United States, Iceland, and Russia (Whitaker

et al., 2005), and have been used to describe the mechanism of

archaeal genome evolution (Reno et al., 2009).

Sulfolobus solfataricus and S. islandicus are metabolically the

most diverse species and are able to grow on a wide variety of

peptide sources, amino acids mixtures, and minimal media

containing only sugars such as arabinose, glucose, sucrose,

trehalose, cellobiose, and others by aerobic respiration (Gro-

gan, 1989). In contrast, although S. acidocaldarius and S.

tokodaii contain the genes for the nonphosphorylated Entner–-

Doudoroff pathway and the partially overlapping alternative

pathway that generates ATP (Siebers & Schönheit, 2005), they

cannot grow in these media because they lack the wide variety

of sugar and peptide uptake systems present in the previously

mentioned strains (Elferink et al., 2001; Albers et al., 2004).

Very recently, a systems biology approach was undertaken to

understand the temperature adaptation of glucose metabolism

in S. solfataricus (Albers et al., 2009). These studies initiated the

development of standard operating procedures for a wide

variety of techniques for Sulfolobales including fermentation,

transcriptomics, proteomics, and metabolomics, which should

facilitate the comparability of results once researchers use these

standardized protocols (Zaparty et al., 2010).

The cell cycle in Sulfolobales is characterized by a short

prereplication period and an extensive postreplication stage

that accounts for up to 70% of the generation time

(Lundgren et al., 2008). In stationary-phase Sulfolobus

cultures, all cells contain two genome copies resulting in an

increase in the average cellular DNA content relative to an

exponentially growing culture (Bernander, 2007). In con-

trast to Euryarchaeota, Crenarchaeota do not exhibit FtsZ for

septum formation during cell division. Recently, it was

found that in S. solfataricus and S. acidocaldarius, homologs

of the eukaryotic endosomal sorting (ESCRT) pathway are

located at midcell before cell division (Lindas et al., 2008;

Samson et al., 2008). However, the exact role of these

proteins during division is unknown.

As the archaeal enzymes involved in DNA replication are

more similar to their eukaryal counterpart than to their

bacterial one, a common origin of the eukaryal and archaeal

replication apparatus was further strengthened by the de-

monstration of three origins of replication in the genomes of

S. solfataricus and S. acidocaldarius (Duggin et al., 2008).

However, it is not yet clear whether all of these origins are

used at the same time or are differentially induced.

As an important adaptation to their extreme habitat,

membranes of Sulfolobus species contain a large amount of

tetraether lipids (up to 98% of all membrane lipids) resulting

in a monolayer membrane (Elferink et al., 1992). These lipids

are highly proton-impermeable and therefore enable Sulfolobus

to maintain an internal pH of 6.5 in a highly acidic surround-

ing (Moll & Schäfer, 1988; van de Vossenberg et al., 1995).

Full genome sequences have been determined for all

commonly used Sulfolobus strains, and are characterized by

a high A1T content (between 63% and 67%). The genome

size ranges from 2 to 3 Mbp, with S. solfataricus having the

largest genome (She et al., 2001). This is mainly due to the

fact that 11% of the S. solfataricus genome consists of mobile

elements including over 200 different IS elements whereas

other Sulfolobus strains only contain very few mobile

elements. Large genome arrangements are reported for S.

solfataricus species (Redder & Garrett, 2006).

Sulfolobus species have been a source for the isolation and

characterization of a large number of genetic elements such

as viruses, plasmids, and conjugative plasmids (Zillig et al.,

1996; Prangishvili et al., 1998, 2006; Peng et al., 2000; Greve

et al., 2004). These genetic elements are intensively being

studied and some of them have been used for the develop-

ment of genetic tools (Berkner & Lipps, 2008).

Why study Sulfolobales?

Sulfolobales are the only representatives of the Crenarchaeota

that are amenable for genetic manipulation so far. All of the

above-mentioned strains have growth optima between 70 and

85 1C and grow at pH values of 2–3. A few Sulfolobus species

are reported to grow chemolithoautotrophically (Huber &

Stetter, 1991), but are easily cultivated aerobically under

heterotrophic conditions in the laboratory and exhibit dou-

bling times of 3–6 h. Sulfolobus spp. have developed into

model organisms for studies on DNA translation, transcrip-

tion, and replication, DNA repair, cell division, RNA proces-

sing, metabolism, and many other cellular aspects.

One reason for this popularity is that the proteins of

hyperthermophiles such as Sulfolobus are very amenable for

obtaining 3D structures, and the PDB database contains 501

crystal structures obtained from different Sulfolobus species

(December 2010). Among these is the structure of its

complete RNA polymerase (Hirata et al., 2008b; Korkhin

et al., 2009), and understanding in eukaryotic DNA repair

mechanisms has been achieved interpreting structures ob-

tained from Sulfolobus (Liu et al., 2008).

As mentioned before, a systems biology project (Sul-

foSYS) was initiated leading to a wealth of metabolomic,

transcriptomic, and proteomic data available and a set of

standardized methods that will enable researchers to com-

pare results from different laboratories better with each

other (Albers et al., 2009; Zaparty et al., 2010). The first

archaeal deep sequencing project was carried out with S.

solfataricus providing detailed information of transcription

start sites of all genes present in the genome, and identified
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100 previously unknown expressed genes and antisense

RNAs (Wurtzel et al., 2010).

Key species of Sulfolobales that have genetic
systems

A major problem for the development of genetic tools in the

Sulfolobales has been and still is that only two selectable

markers, uracil auxotrophy and growth on lactose, are available.

Moreover, the main species researchers worked on, namely S.

solfataricus P1 and P2, until now have not yet shown to

recombine foreign DNA into their genome. The breakthrough

came when Worthington et al. (2003) used a natural mutant of

the S. solfataricus strain 98/2 PBL2002 for the construction of

the first directed deletion mutant. The strain had an insertion in

the b-galactosidase gene (lacS) that is necessary for S. solfatar-

icus to grow in minimal medium containing lactose. Selection

for growth on lactose often resulted in revertants; therefore, a

naturally occurring mutant of PBL2002, PBL2025, is now being

used that exhibits a large deletion of 50 genes (Schelert et al.,

2004). A disadvantage of working with the selection for growth

on lactose is that this procedure is rather time consuming (7–14

days in liquid medium before plating; Albers & Driessen, 2008).

PBL2025 has a different morphology to wild-type S. solfataricus

cells, regularly showing very large cells in growing cultures. As

the genome sequence of PBL2025 is not publicly available, it is

unclear what causes the morphological changes and care should

be taken when using this strain. For example, it has been

demonstrated that PBL2025 shows a profound difference in the

production of extracellular matrix once cells are attached to a

variety of surfaces (Zolghadr et al., 2010).

The first strain that was used for the expression of

proteins in Sulfolobus was the uracil auxotrophic S. solfatar-

icus P1 strain PH1-16, which also contains an IS element in

the lacS gene (Martusewitsch et al., 2000; Albers et al., 2006).

However, so far it has not been possible to introduce any

foreign DNA into the genomic DNA of this strain using

analogous methods as for S. islandicus and S. acidocaldarius.

Very recently, MR31, a uracil auxotrophic S. acidocaldarius

mutant (Reilly & Grogan, 2001), was used for the construction

of deletion mutants (Wagner et al., 2009; Ellen et al., 2010). An

advantage of this strain is the possibility of direct plating after

electroporation and only 4–6 days growth until colonies

appear on gelrite plates. A markerless deletion mutant can be

obtained in o 3 weeks, which makes this strain a prime

candidate for deletion mutant studies (Wagner et al., 2009). A

plasmid-based system has been developed for maltose-in-

duced protein expression in MR31 (Berkner et al., 2010).

Another recently developed strain is the uracil auxo-

trophic S. islandicus E233S1 that has been used to obtain a

markerless lacS mutant (Deng et al., 2009; She et al., 2009).

A shuttle vector is available for this strain, which was used in

a detailed study of the arabinose-binding protein promoter

araS (Peng et al., 2009). Both the S. acidocaldarius and the S.

islandicus strains have the advantage that 5-FOA can be used

for counterselection (Fig. 2b).

Genetic tools for Sulfolobales

The transformation of Sulfolobus strains was already estab-

lished in 1992 when Christa Schleper demonstrated that S.

solfataricus could efficiently be transfected with SSV1 virus

DNA by electroporation (Schleper et al., 1992). Because the

lack of positive selection pressure made the use of plasmids for

transformation impractical in early trials, E. coli–Sulfolobus

shuttle vectors were constructed based on conjugative plasmids

and viruses that would spread through a transfected culture

(for a detailed review, see Berkner & Lipps, 2008). The most

successfully used vector of this generation is pMJ0503, a shuttle

vector based on SSV1 (Jonuscheit et al., 2003). This vector was

used for promoter studies and adapted for the homologous

and heterologous expression of tagged proteins in S. solfatar-

icus (Jonuscheit et al., 2003; Albers et al., 2006). The vector has

also been used for the complementation of deletion mutants in

PBL2025 (Zolghadr et al., 2007; Frols et al., 2008). The in vivo

overexpression with the virus vector of the translation elonga-

tion factor a/eIF2-g demonstrated that this factor stabilizes

mRNA in S. solfataricus (Hasenohrl et al., 2008).

Since the first deletion mutant was constructed in PBL2025

(Worthington et al., 2003), the development of genetic tools

for Sulfolobales has gone into warp speed and the most recent

methods will be discussed and summarized in Table 4.

Insertional gene disruption and markerless genetic
exchange

Marked gene disruptions in S. solfataricus PBL2025 were

first obtained by single-crossover events using plasmid DNA

and later by double-crossover events using linearized plas-

mids or PCR products (Fig. 2a and c) (Worthington et al.,

2003; Schelert et al., 2004; Albers & Driessen, 2008; Wagner

et al., 2009). Integration of plasmid DNA via single crossover

leads to tandem integration (Wagner et al., 2009). Selection

for positive transformants by growth on lactose is rather

time consuming in this strain, and unfortunately direct

plating of cells after electroporation does not yield colonies.

Very recently, in both S. islandicus and S. acidocaldarius,

deletion mutants were obtained via homologous recombina-

tion via double-crossover and unmarked deletions via single-

crossover events using uracil autotrophy for enrichment (Fig.

2b) (Deng et al., 2009; Wagner et al., 2009; Ellen et al., 2010).

Ectopic integration

To avoid complication by multiple copies during expression of

genes or promoter fusion constructs in cells, ectopic
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integration was successfully used by inserting promoter fusion

constructs into the amyA (a-amylase) locus of S. acidocaldarius

(Fig. 2e) (M. Wagner & S.-V. Albers, pers. commun.).

Reporter genes, overexpression and controlled
expression

lacS, the gene encoding the b-galactosidase, has been used in

all plasmids to demonstrate expression, as its activity can

easily be determined by an X-gal assay. In the virus-based

plasmid pMJ0503 (Jonuscheit et al., 2003), the pRN1-based

pA-pK (Berkner et al., 2007) and the pRN2-based pHZ2lacS

(Deng et al., 2009) lacS was used as a reporter gene for

promoter studies. In PBL2025 and S. islandicus the arabi-

nose-inducible arabinose-binding protein promoter araS has

been implemented for the expression of proteins and com-

plementation of deletion mutants (Albers et al., 2006; Zol-

ghadr et al., 2007). Because S. acidocaldarius does not contain

an arabinose uptake system, the promoter of the maltose-

binding protein was used for homologous and heterologous

expression (Berkner et al., 2010). Unfortunately, the malE

promoter is quite leaky even in the absence of maltose.

Homologous expression of proteins in Sulfolobus leads to

the correct assembly of cofactors in recombinant proteins,

and Histidine and Strep-tags are stably expressed on fusion

proteins, which have been successfully isolated by affinity

chromatography (Albers et al., 2006). The overexpression of

a mutant protein was used to demonstrate a dominant

negative effect in vivo (Samson et al., 2008) and expression

vectors were also used to complement deletion mutants

(Fig. 2d) (Zolghadr et al., 2007; Frols et al., 2008).

Discoveries and recent progress

Sulfolobus species are the only genetically tractable members

of the Crenarchaeota. Various genetic tools are now available

and have led to important new discoveries including a

eukaryotic-like cell division apparatus (Samson et al.,

2008), identification of a general stress response (Maaty

et al., 2009), the identification of several transcriptional

regulators (Schelert et al., 2006; Peeters et al., 2009), and

new cell surface structures (Szabo et al., 2007; Zolghadr

et al., 2007; Frols et al., 2008). A detailed mapping of the

araS promoter was obtained, showing unexpected parts of

the promoter to be involved in regulation (Peng et al., 2009),

and in vivo studies showed that a/ELF2g counteracts 50–30

mRNA decay in Sulfolobus (Hasenohrl et al., 2008).

Conclusion and outlook

To write a review encompassing an entire domain of life

might seem overly ambitious, and archaea are indeed

exceedingly diverse. On the other hand, the development of

Table 4. Genetic tools for Sulfolobales

S. solfataricus PBL2025 S. islandicus E322S S. acidocaldarius

Defined media Yes (Grogan, 1989) Yes Yes (Grogan, 1989)

DNA delivery Electroporation (Schleper et al., 1992;

Worthington et al., 2003; Albers & Driessen, 2008)

Electroporation

(Deng et al., 2009)

Electroporation (Kurosawa &

Grogan, 2005; Wagner et al., 2009)

Restriction barrier No SuiI cuts at GCwGC

(Sollner et al., 2006)

SuaI, restricts unmethylated DNA

at CCGG (Prangishvili et al., 1985)

Replicative shuttle

vectors

pEXSs (Cannio et al., 1998), pKMSD48

(Stedman et al., 1999), pMSS derivatives

(Aucelli et al., 2006), pJlacS (Berkner et al., 2007),

pMJ0503 derivatives (Jonuscheit et al., 2003)

pRN2 based vectors

(Deng et al., 2009)

pCSV1 and pAG based vectors

(Aagaard et al., 1996; Aravalli &

Garrett, 1997), pCmalLacS

(Berkner et al., 2010)

Positive selection Lactose (Worthington et al., 2003), uracil

(Jonuscheit et al., 2003), hygromycin

(Cannio et al., 1998)

Uracil (Deng et al., 2009) Uracil (Wagner et al., 2009),

alcohols (Aravalli & Garrett, 1997)

Counterselection No 5-FOA (pyrEF)

(Deng et al., 2009)

5-FOA (pyrEF) (Wagner et al., 2009)

Markerless gene

knockout or

replacement

Using lacS (Schelert et al., 2004;

Albers & Driessen, 2008)

Using pyrE

(Deng et al., 2009)

Using pyrE (Wagner et al., 2009;

Ellen et al., 2010)

Ectopic integration At pyrEF and amyA (M. Wagner &

S.-V. Albers, unpublished data)

Reporter genes lacS (b-galactosidase)(Jonuscheit et al., 2003) lacS (b-galactosidase)

(Deng et al., 2009)

lacS (b-galactosidase)

Regulated gene

expression

araS promoter (Albers et al., 2006) araS promoter

(Peng et al., 2009)

malE promoter (Berkner et al., 2010)

Protein overexpression pMJ0503 virus vectors with arabinose inducible

induction with His and Strep tags, pRN1-based

vectors (Albers et al., 2006; Berkner et al., 2007)

Based on pRN2 pHZ2lacS

(Peng et al., 2009)

Maltose inducible expression using

pCmal (Berkner et al., 2010)
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genetic technologies for each branch of archaea has involved

common challenges. Characteristics that make archaea so

interesting, such as thermophily, halophily, and strict anaero-

biosis, pose challenges to routine laboratory culture. Further-

more, the immunity of the archaea to most conventional

antibiotics has meant that other means of selection have had

to be devised. This article describes how these challenges have

now been overcome for various archaeal species. These devel-

opments allow us to more effectively characterize and exploit

the very features that make archaea so fascinating as well as

challenging. For instance, the Sulfolobales and Thermococcales

host thermostable proteins, which, in addition to being of

inherent interest, are very often used for biochemical studies,

because they crystallize easily and are stable under laboratory

conditions. The availability of genetic tools for Sulfolobus and

Thermococcus species will now enable us to study these proteins

not only in vitro but also in vivo. Among the methanogens,

genetic approaches are starting to prove useful in elucidating

the relatively constrained world of hydrogenotrophic metha-

nogenesis as well as the more versatile methylotrophic metha-

nogenesis (Costa et al., 2010). The halophiles have shown us

how with a few cunning modifications, proteins can function

in salt concentrations that were once thought to be incompa-

tible with life.

Opportunities for studies in archaea have never been

better. In addition to genetic tools, the number of genome

sequences continues to expand. A glance at NCBI Microbial

Genomes reveals a current repertoire of seven strains of

Methanococcus, three of Methanosarcina, six of Thermococ-

cus, three of Pyrococcus, 11 of Sulfolobus, two of Halobacter-

ium, and one of Haloferax, to say nothing of taxa for which

genetic tools are not yet available. Clearly, comparative

studies are now feasible – they are important as well. The

considerable diversity of archaea offers countless opportu-

nities for interesting discoveries, but no single archaeal

species can be representative of the domain as a whole, or

even its own specific grouping. For example, Hbt. salinarum

is known to be extremely resistant to UV irradiation, while

Hfx. volcanii, a closely related species that grows in the same

habitat, is not (Baliga et al., 2004; Delmas et al., 2009).

Rather than extrapolating results from one archaeal model

organism to another, it is better to study each organism in its

own right. Encouragingly, genetic tools continue to expand

into new taxa. For example, shuttle vector-based technology

is available in P. abyssi and P. furiosus, and chromosome

modification in the latter species is now possible. As the

application of these tools to other members of this order has

just begun, we will probably be able to witness the develop-

ment of genetic systems in a wide range of Thermococcales in

the near future. Systems biology is also making inroads.

Numerous global regulation studies have been carried out in

Hbt. salinarum and a predictive model for transcriptional

control of physiology has been generated – the first in any

domain of life (Bonneau et al., 2007). Transcriptomic and

proteomic studies have been carried out with members of all

the archaeal groups described here. As systems biology

matures in these organisms, genetics will play an increasing

role in testing the hypotheses that are generated.

To be sure, the genetic toolbox for archaea needs to

expand and the number of selectable markers is still limited.

A driving force has been reverse genetics, where a gene is

precisely deleted or mutated. Unfortunately, there is only so

much that we can learn from deletion mutants. Regulated

promoters, already in place for some archaea and under

development in others, will facilitate the study of essential

genes that cannot otherwise be mutated. In addition, if we

are to take advantage of the explosion in genomic data, we

must carry out mutagenesis on a whole-genome level.

Traditional protocols for mutagenesis with chemicals, UV

or X-rays have been used in Hbt. salinarum and Hfx.

volcanii, and negative enrichment for nondividing cells is

possible using 5-bromo-20-deoxyuridine (BrdU) (Soppa &

Oesterhelt, 1989; Wanner & Soppa, 1999). Similarly, in M.

maripaludis, after mutagenesis with ethyl methanesulfonate,

growing cells were selectively killed upon exposure to the

base analogs 6-azauracil and 8-azahypoxanthine (Ladapo &

Whitman, 1990). However, with these methods it is difficult

to isolate the resulting mutations. Insertion mutagenesis

using recombinant transposons is a solution that allows for

facile identification of the mutant allele. Transposon muta-

genesis has been worked out for Methanosarcina, but is still

lacking in other archaea; in halophiles, early attempts met

with limited success (Dyall-Smith & Doolittle, 1994; Woods

et al., 1999). An alternative is to use next generation

sequencing to identify mutations; this is currently too

expensive for routine usage, but costs will inevitably fall to

within the reach of all researchers.
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Noteadded in theproof

During the final stages of the reviewing process, Lipscomb

et al. (2011) reported the development of a gene disruption

system in Pyrococcus furiosus (REF). A pyrF deletion strain

was used as the host strain, and markerless gene disruption

was demonstrated via selection and counterselection with

the pyrF marker based on uracil prototrophy and resistance

towards 5-FOA.
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