II. Programação Linear (PL)

Dualidade – revisão e interpretação econômica

Seja o pl

$$\max Z = 3x_1 + 5x_2$$
sa $x_1 \le 4$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

Formulação do Problema de PL em termos de Atividades. Exemplo Protótipo.

Atividade Principal

 P_1 - produção de portas por minuto,

Atividade Auxiliar

P₃- não utilização da capacidade de produção da seção 1 por minuto

$$max \ Z=3x_1 + 5 \ x_2$$
sujeito a

$$x_{1}\begin{bmatrix} 1\\0\\3 \end{bmatrix} + x_{2}\begin{bmatrix} 0\\2\\2 \end{bmatrix} + F_{1}\begin{bmatrix} 1\\0\\0 \end{bmatrix} + F_{2}\begin{bmatrix} 0\\1\\0 \end{bmatrix} + F_{3}\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 4\\12\\18 \end{bmatrix}$$

$$x_{1}, x_{2}, f_{1}, f_{2}, f_{3} \ge 0$$

Atividade Auxiliar

P₅- não utilização da capacidade de produção da seção 3 por minuto

Atividade Principal

 ${m P}_2$ - produção de janelas por minuto

As variáveis correspondem aos níveis das atividades

Atividade Auxiliar

 P_4 - não utilização da capacidade de produção da seção 2 por minuto

Exemplo Protótipo. Problema Primal. Interpretação Econômica das Variáveis.

variáveis de decisão:

- x_i nível de produção de portas por minuto;
- x_2 nível de produção de janelas por minuto;

unidade de medida: unidade física

variáveis de folga:

- \mathbf{F}_{I} capacidade de produção não utilizada na 1ª seção, por minuto;
- F₂ capacidade de produção não utilizada na 2^a seção, por minuto;
- F_3 capacidade de produção não utilizada na 3^a seção, por minuto;

unidade de medida: unidade física

função objetivo → max:

Maximizar o lucro total por minuto.

unidade de medida: unidade monetária (R\$)

Formulação do Problema de PL em termos de Atividades. Exemplo Protótipo.

$$\max Z = 3x_1 + 5 x_2$$
sa

$$x_{I} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + x_{2} \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} + F_{I} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + F_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + F_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

$$x_{1}, x_{2}, F_{1}, F_{2}, F_{3} \ge 0$$

-> Solução do Dual

	E_1	E_2	y_1	<i>y</i> ₂ .	y ₃ ,,,,	
Base	x_1	x_2	F_1	F_2	\mathcal{F}_3	b
Z				3/2 ′	1	36
f_1			1	1/3	-1/3	2
x_2		1		1/2	0	6
x_1	1			-1/3	1/3	2

Interpretação Econômica do Problema Dual. Preços Sombras.

o valor da f.o. traduz o valor total atribuído aos recursos

min
$$W = 4 y_1 + 12 y_2 + 18 y_3$$

As variáveis de decisão duais

 y_1, y_2, y_3

são valorizações unitárias a atribuir a cada recurso e podem ser interpretadas como a contribuição ao lucro total por cada unidade de recurso i utilizada. Estes são **preços internos**, também designados como **preços sombra**

$$y_1 + 3y_3 \ge 3$$

$$2y_2 + 2y_3 \geq 5$$

$$y_1, y_2, y_3 \ge 0$$

Interpretação Econômica do Problema Dual. **Preços Sombras.**

Preço sombra corresponde ao custo de oportunidade de uma atividade, que pode ser referido como sendo o seu verdadeiro preço econômico

Na pesquisa operacional, o **preço sombra** é a variação do valor objetivo da solução ótima de um problema de programação linear obtido através do relaxamento da restrição por uma unidade - é a utilidade marginal de relaxar a restrição.

Um exemplo **custo de oportunidade**: imagine uma fábrica que produzia 20 cadeiras por mês num mercado que absorvia totalmente esta produção. Diante de uma oportunidade de negócios, esta fábrica resolveu iniciar uma produção de um novo produto: mesas. Porém, ao alocar recursos para tal, descobriu que terá de deixar de produzir 2 cadeiras para suprir a demanda de 2 mesas. O custo de oportunidade está no valor perdido da venda das 2 cadeiras que deixaram de ser fabricadas.

Base

-W

 y_3

Investigação Operacional e Optimização

Interpretação Econômica do Problema Dual. **Preços Sombras.**

 F_2 F_3

 y_3

 y_2

1

 E_1

-1/3

1/3

-1/2

3/2

1/3

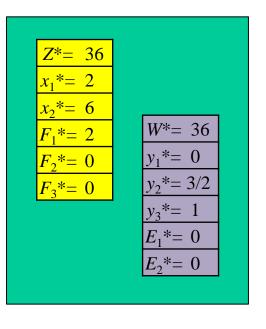
-1/3

> So	lução do Primal
b	
36	
1	

Formulação do Problema de PL em termos de Atividades. Exemplo Protótipo.

	E_1	E_2	y_1	y_2	y_3	
Base	x_1	x_2	F_1	\overline{F}_2	\overline{F}_3	b
Z	 →	ا >	 	→3/2	→ 1	36
f_1			1	1/3	-1/3	2
x_2		1		1/2	0	6
x_1	1			-1/3	1/3	2

	F_1	F_2	F_3	x_1	x_2	
Base	y_1	y_2	y_3	E_1	E_2	b
-W	2			2	6	36
y_3	1/3		1	-1/3	0	1
y_2	-1/3	1		1/3	-1/2	3/2

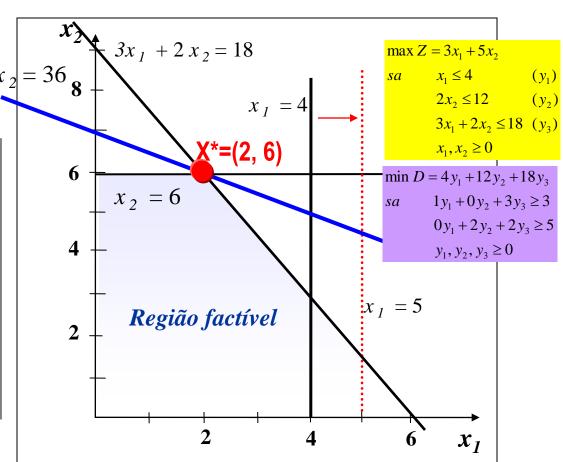


Exemplo Protótipo: Recurso 1. Preços Sombras. Representação Gráfica.

$$z^* = 3x_1 + 5x_2 = 36_8$$

 $y_1^* = 0$ Se incrementar a
capacidade de produção
da seção 1 em 1 unidade
($b_1 = 5$) o valor ótimo
($z^*=36$) não muda.
Este recurso é abundante

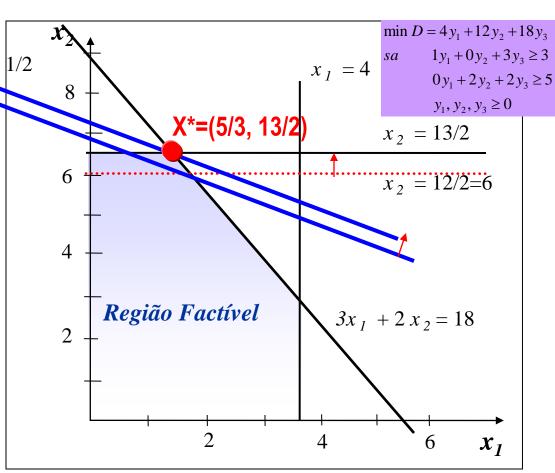
("gratis")



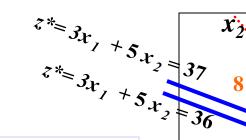
Exemplo Protótipo: Recurso 2. Preços Sombras. Representação Gráfica.

$$z^* = 3x_1 + 5 x_2 = 37$$
 1/2
 $z^* = 3x_1 + 5 x_2 = 36$

 $y_2^* = 3/2$ Se incrementar a
capacidade de
produção da seção 2 em
1 unidade
($b_2 = 13$) o valor
ótimo será
incrementado em 3/2Euros ($z^*=37 \frac{1}{2}$).
Este recurso é escasso.



Exemplo Protótipo. Recurso 3. Preços Sombras. Representação Gráfica.



 $y_3^* = 1$ Se incrementar a
capacidade de
produção da seção 3
em 1 unidade
($b_3 = 19$) o valor
ótimo será
incrementado em 1Euro
($z^* = 37$).
Este recurso é escasso.

