Teorias de Avaliação - CE095

Adilson dos Anjos¹

¹Departamento de Estatística Universidade Federal do Paraná aanjos@ufpr.br

Curitiba, PR 11 de setembro de 2014

CE095

Teoria da Resposta ao Item –Modelo de dois parâmetros–

Modelo de dois parâmetros

Suposições

- As mesmas para o modelo de 3 parâmetros;
 - unidimensionalidade;
 - independência local;

Modelo de dois parâmetros

Suposições

- Sem acerto casual;
- Utilizado para itens que não são igualmente relacionados com o traço latente;
- Exemplos de aplicação:
 - Escala de Atitude;
 - Escala de Personalidade;
 - 3 Escala de Escala de depressão;
 - Questionário sobre altura;

Modelo de 2 parâmetros

$$P(U_{ij} = 1 | \theta_j, a_i, b_i) = \frac{e^{a_i(\theta_j - b_i)}}{1 + e^{a_i(\theta_j - b_i)}}$$

em que,

 $P(U_{ij} = 1 | \theta_j, a_i, b_i)$ é a probabilidade do indivíduo j com habilidade θ_i acertar o item i;

 b_i é o parâmetro de dificuldade (ou de posição) do item i, medido na mesma escala de habilidade;

 a_i é o parâmetro de discriminação (ou inclinação) do item i, com valor proporcional à inclinação da Curva Característica do Item no ponto b_i ;

Características

- No modelo de 2 parâmetros o coeficiente de dificuldade ainda indica a probabilidade de acerto de 50%;
- Teoricamente a_i pode assumir valores entre $+\infty$ e $-\infty$.
- Na prática, os valores de a_i desejáveis seriam entre 0,8 até 2,5;
- Valores de $a_i > 1,0$: desejável;
- O coeficiente a_i indica como um item pode diferenciar indivíduos em diferentes pontos da escala do traço latente;
- .

Diferentes valores de a:

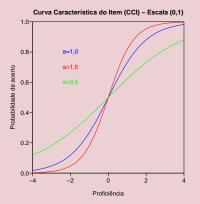


Figura 1: Curvas características dos itens para diferentes valores do coeficiente de discriminação a.

Características

- Valores negativos de a_i indicam que pessoas com um traço latente alto possuem baixa probabilidade de acertar o item e pessoas com um traço latente baixo possuem alta probabilidade de acertar o item;
- Itens com a_i negativos devem ser descartados;
 - Verificar se não pode ser um erro de gabarito;
 - 2 Verificar se não há problemas no enunciado;
- 'Dificuldade' e 'Discriminação' são independentes um do outro;

Diferentes valores negativos de a:

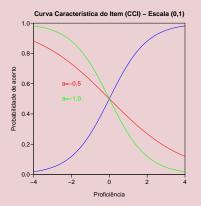


Figura 2 : Curvas características dos itens para valores negativos do coeficiente de discriminação a.

Modelo de dois parâmetros

Exemplo: Dados sobre Altura

- ▶ Questionário sobre Altura com 14 itens (Tabela 1).
- ▶ 211 respostas, incluindo a altura em metros.
- ▶ Objetivo: obter uma estimativa da altura das pessoas.

Medindo altura com questionário

Tabela 1 : Questionário com itens para estimar a altura de pessoas.

Item	Descrição (pergunta): Assinale 1 para 'sim' e 0 para 'não'.
1	Na cama, eu frequentemente sinto frio nos pés.
2	Eu frequentemente desço as escadas de dois em dois degraus.
3	Eu acho que me daria bem em um time de basquete.
4	Como policial eu impressionaria muito.
5	Na maioria dos carros eu me sinto desconfortável.
6	Eu literalmente olho para meus colegas de cima para baixo
7	Você é capaz de pegar um objeto no alto de um armário
	sem usar escada?
8	Você abaixa quando vai passar por uma porta?
9	Você consegue guardar a bagagem no porta-malas do avião?
10	Você regula o banco do carro para trás?
11	Normalmente, quando você está andando de carona,
	Ihe oferecem o banco da frente?
12	Quando você e várias outras pessoas vão tirar fotos, formando-se três
	fileiras, onde ninguém ficará agachado, você costuma ficar atrás?
13	Você tem dificuldade para se acomodar no ônibus?
14	Em uma fila, por ordem de tamanho, você é sempre colocado atrás?

Modelo de 2 parâmetros

Resultado da calibração:

```
> altura.par$est
    [,1] [,2] [,3]
   0.30 2.519
i1
                  0
i2 1.18 1.224
                  0
i3 1.47 1.244
                  0
i4
   0.89 1.330
                  0
                  0
i5 2.21 1.091
i6 1.80 1.143
                  0
i7 4.09 -0.103
                  0
i8 1.11 2.642
                  0
i9 1.14 -0.788
                  0
i10 3.19 0.055
                  0
i11 1.16 0.427
                  0
i12 2.37 0.256
                  0
i13 1.74 0.829
                  0
```

0.533

0

i14 2.81

Curva Característica dos itens:

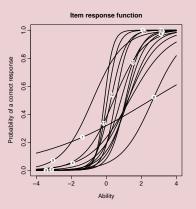


Figura 3 : Curva característica dos itens para os dados sobre altura.

Curva de informação dos itens:

A função de informação do item (item information function) permite analisar o quanto um item contém de informação sobre a medida de habilidade.

Para um modelo logístico unidimensional de 2 parâmetros, a função de informação do item pode ser escrita como:

$$I_i(\theta) = a_i^2 P_i(\theta) Q_i(\theta) \tag{1}$$

em que,

 $I_i(\theta)$ é a informação fornecida pelo item i no nível de habilidade θ ;

$$P_i(\boldsymbol{\theta}) = P(X_{ij} = 1|\boldsymbol{\theta});$$

$$Q_i(\boldsymbol{\theta}) = 1 - P_i(\boldsymbol{\theta}).$$

Observe a similaridade com o modelo de 1 parâmetro.

Curva de informação dos itens:

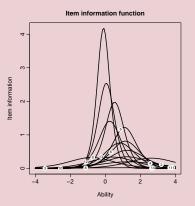


Figura 4: Curva de informação dos itens para os dados sobre altura.

Curva de informação do teste:

Dada a independência entre os itens, a função de informação do teste (*test information function*) é a soma das informações fornecidas por cada item, que foram calibrados em uma mesma escala. A função de informação do teste é escrita como:

$$I(\boldsymbol{\theta}) = \sum_{i=1}^{I} I_i(\boldsymbol{\theta})$$

Curva de informação do teste:

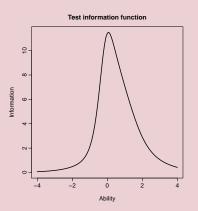


Figura 5 : Curva de informação do teste para os dados sobre altura.

Estimativa da habilidade (altura) : $\hat{ heta}$

Estimativa da habilidade:

```
est sem n
[1,] 0.884 0.35 14
[2,] -0.995 0.52 14
[3,] 0.721 0.32 14
[4,] 1.134 0.37 14
[5,] 0.016 0.28 14
[6,] 0.016 0.28 14
```

Repostas de Adilson e Dalton:

Estimando a altura:

Modelo de 2 parâmetros

Estimando o traço latente:

> theta.resposta

est sem n

[1,] 1.21 0.38 14

[2,] 0.22 0.31 14

Modelo de 2 parâmetros

Correlação entre altura e traço latente:

```
> x<-altura.sco[,1] # theta estimado de cada pessoa
```

- > y<-altura\$altura # altura de cada pessoa
- > cor(x,y)

[1] 0.8

> plot(x,y,xlab='Traço latente',ylab='altura em metros')

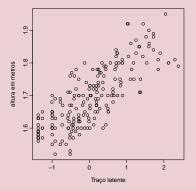


Figura 6 : Gráfico de dispersão entre o traço latente estimado de cada pessoa (x) e sua altura em metros (y) .

Modelo de dois parâmetros

Escala

- Interpretação do traço latente (altura);
- Critérios para interpretar a escala?
 - Itens âncora
 - Níveis âncora