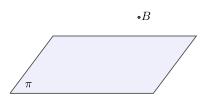
O plano no espaço \mathbb{R}^3 - Parte 2

Ademir Alves Ribeiro

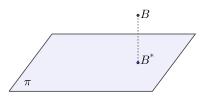
2021

https://youtu.be/_vqObVrXBbU

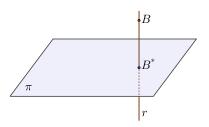
• Sejam
$$B = (x_0, y_0, z_0)$$
 e $\pi : ax + by + cz + d = 0$;



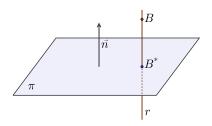
- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \operatorname{proj}_{\pi} B$?



- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;

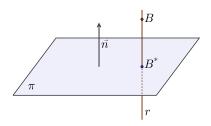


- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;
- $\vec{v} = \vec{n} = (a, b, c)$

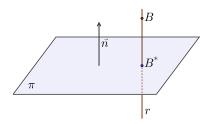


- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;

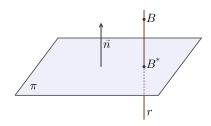
•
$$\vec{v} = \vec{n} = (a, b, c) \Rightarrow r : (x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct)$$



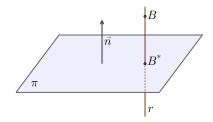
- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;
- $\vec{v} = \vec{n} = (a, b, c) \Rightarrow r : (x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct) = B + t\vec{n};$



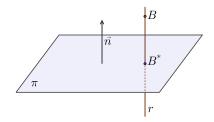
- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;
- $\vec{v} = \vec{n} = (a, b, c) \Rightarrow r : (x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct) = B + t\vec{n};$
- $a(x_0 + at) + b(y_0 + bt) + c(z_0 + ct) + d = 0;$



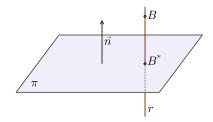
- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;
- $\vec{v} = \vec{n} = (a, b, c) \Rightarrow r : (x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct) = B + t\vec{n};$
- $a(x_0 + at) + b(y_0 + bt) + c(z_0 + ct) + d = 0$;
- $\|\vec{n}\|^2 t + ax_0 + by_0 + cz_0 + d = 0$



- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;
- $\vec{v} = \vec{n} = (a, b, c) \Rightarrow r : (x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct) = B + t\vec{n};$
- $a(x_0 + at) + b(y_0 + bt) + c(z_0 + ct) + d = 0$;
- $\|\vec{n}\|^2 t + ax_0 + by_0 + cz_0 + d = 0 \Rightarrow t^*$



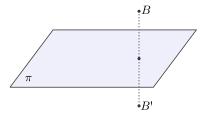
- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter a projeção de B sobre π : $B^* = \text{proj}_{\pi}B$?
- Basta tomar a reta por B, perpendicular a π , e intersectar com π ;
- $\vec{v} = \vec{n} = (a, b, c) \Rightarrow r : (x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct) = B + t\vec{n};$
- $a(x_0 + at) + b(y_0 + bt) + c(z_0 + ct) + d = 0;$
- $\|\vec{n}\|^2 t + ax_0 + by_0 + cz_0 + d = 0 \Rightarrow t^* \Rightarrow B^* = B + t^* \vec{n}$.



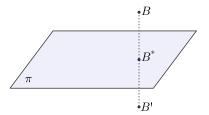
• Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;



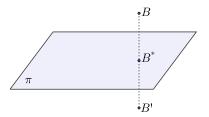
- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?



- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?
- Basta obter a projeção B^* e fazer $B^* = \frac{B + B'}{2}$.

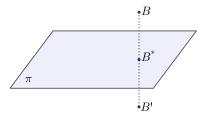


- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?
- Basta obter a projeção B^* e fazer $B^* = \frac{B + B'}{2}$.



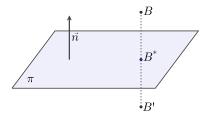
• Note que $B^* - B = B' - B^*$,

- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?
- Basta obter a projeção B^* e fazer $B^* = \frac{B+B'}{2}$.



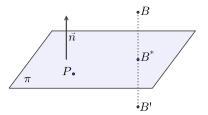
• Note que $B^*-B=B'-B^*$, ou seja, $\overrightarrow{BB^*}=\overrightarrow{B^*B'}$

- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?
- Basta obter a projeção B^* e fazer $B^* = \frac{B + B'}{2}$.



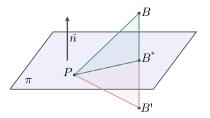
• Note que $B^* - B = B' - B^*$, ou seja, $\overrightarrow{BB^*} = \overrightarrow{B^*B'} \ // \ \vec{n}$;

- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?
- Basta obter a projeção B^* e fazer $B^* = \frac{B + B'}{2}$.



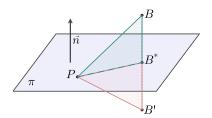
- Note que $B^* B = B' B^*$, ou seja, $\overrightarrow{BB^*} = \overrightarrow{B^*B'} \ // \ \vec{n}$;
- Dado $P \in \pi$,

- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?
- Basta obter a projeção B^* e fazer $B^* = \frac{B + B'}{2}$.



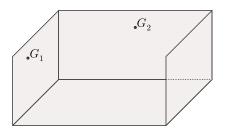
- Note que $B^* B = B' B^*$, ou seja, $\overrightarrow{BB^*} = \overrightarrow{B^*B'} \ // \ \vec{n}$;
- Dado $P \in \pi$, os triângulos $\triangle PBB^*$ e $\triangle PB^*B'$ são congruentes;

- Sejam $B = (x_0, y_0, z_0)$ e $\pi : ax + by + cz + d = 0$;
- Como obter B', o simétrico de B em relação a π ?
- Basta obter a projeção B^* e fazer $B^* = \frac{B + B'}{2}$.



- Note que $B^* B = B' B^*$, ou seja, $\overrightarrow{BB^*} = \overrightarrow{B^*B'} \ // \ \vec{n}$;
- Dado $P \in \pi$, os triângulos $\triangle PBB^*$ e $\triangle PB^*B'$ são congruentes;
- Portanto, d(P,B) = d(P,B').

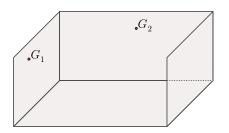
O problema da corda



O problema da corda

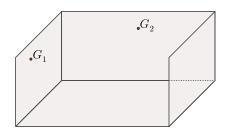
Dois ganchos estão presos nas paredes de uma sala.

• Qual o comprimento máximo de uma rede que pode ser estendida?



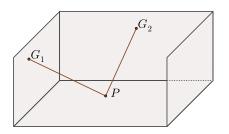
O problema da corda

- Qual o comprimento máximo de uma rede que pode ser estendida?
- Qual o comprimento mínimo de uma corda que pode ser presa nos ganchos e esticada até o chão?



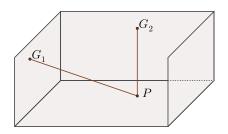
O problema da corda

- Qual o comprimento máximo de uma rede que pode ser estendida?
- Qual o comprimento mínimo de uma corda que pode ser presa nos ganchos e esticada até o chão?



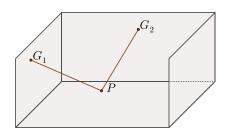
O problema da corda

- Qual o comprimento máximo de uma rede que pode ser estendida?
- Qual o comprimento mínimo de uma corda que pode ser presa nos ganchos e esticada até o chão?



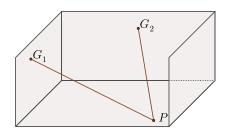
O problema da corda

- Qual o comprimento máximo de uma rede que pode ser estendida?
- Qual o comprimento mínimo de uma corda que pode ser presa nos ganchos e esticada até o chão?



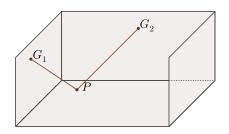
O problema da corda

- Qual o comprimento máximo de uma rede que pode ser estendida?
- Qual o comprimento mínimo de uma corda que pode ser presa nos ganchos e esticada até o chão?



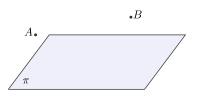
O problema da corda

- Qual o comprimento máximo de uma rede que pode ser estendida?
- Qual o comprimento mínimo de uma corda que pode ser presa nos ganchos e esticada até o chão?



Modelando matematicamente

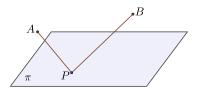
Modelando matematicamente



Modelando matematicamente

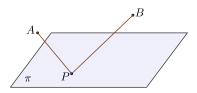
Considere os pontos A=(1,0,1) e B=(0,3,3). Encontre o ponto do plano $\pi: x+2y-z+3=0$ cuja soma das distâncias aos pontos A e B é mínima.

• Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;



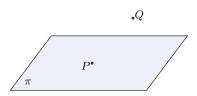
Modelando matematicamente

- Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- Vejamos primeiro que A e B estão de fato no mesmo semiespaço;



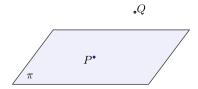
Modelando matematicamente

- Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- Vejamos primeiro que A e B estão de fato no mesmo semiespaço;
- Considere $P = (x, y, z) \in \pi : ax + by + cz + d = 0$ e $Q = (x_0, y_0, z_0)$;



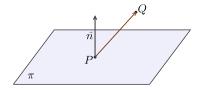
Modelando matematicamente

- Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- Vejamos primeiro que A e B estão de fato no mesmo semiespaço;
- Considere $P = (x, y, z) \in \pi : ax + by + cz + d = 0$ e $Q = (x_0, y_0, z_0)$;
- $ax_0 + by_0 + cz_0 + d = a(x_0 x) + b(y_0 y) + c(z_0 z)$



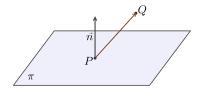
Modelando matematicamente

- Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- Vejamos primeiro que A e B estão de fato no mesmo semiespaço;
- Considere $P = (x, y, z) \in \pi : ax + by + cz + d = 0$ e $Q = (x_0, y_0, z_0)$;
- $ax_0 + by_0 + cz_0 + d = a(x_0 x) + b(y_0 y) + c(z_0 z) = \overrightarrow{PQ} \cdot \overrightarrow{n}$



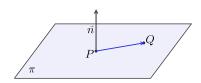
Modelando matematicamente

- Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- Vejamos primeiro que A e B estão de fato no mesmo semiespaço;
- Considere $P = (x, y, z) \in \pi : ax + by + cz + d = 0$ e $Q = (x_0, y_0, z_0)$;
- $ax_0 + by_0 + cz_0 + d = a(x_0 x) + b(y_0 y) + c(z_0 z) = \overrightarrow{PQ} \cdot \overrightarrow{n} > 0$



Modelando matematicamente

- Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- Vejamos primeiro que A e B estão de fato no mesmo semiespaço;
- Considere $P = (x, y, z) \in \pi : ax + by + cz + d = 0$ e $Q = (x_0, y_0, z_0)$;
- $ax_0 + by_0 + cz_0 + d = a(x_0 x) + b(y_0 y) + c(z_0 z) = \overrightarrow{PQ} \cdot \overrightarrow{n} = 0$



Modelando matematicamente

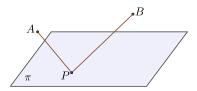
- Queremos $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- Vejamos primeiro que A e B estão de fato no mesmo semiespaço;
- Considere $P = (x, y, z) \in \pi : ax + by + cz + d = 0$ e $Q = (x_0, y_0, z_0)$;
- $ax_0 + by_0 + cz_0 + d = a(x_0 x) + b(y_0 y) + c(z_0 z) = \overrightarrow{PQ} \cdot \overrightarrow{n} < 0;$



Modelando matematicamente

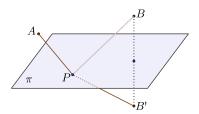
Considere os pontos A=(1,0,1) e B=(0,3,3). Encontre o ponto do plano $\pi: x+2y-z+3=0$ cuja soma das distâncias aos pontos A e B é mínima.

• Vejamos agora como obter $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;



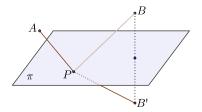
Modelando matematicamente

- Vejamos agora como obter $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- $\bullet \ d(P,B) = d(P,B')$



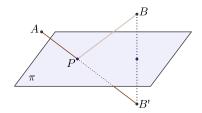
Modelando matematicamente

- Vejamos agora como obter $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- $d(P,B) = d(P,B') \Rightarrow d(P,A) + d(P,B) = d(A,P) + d(P,B');$



Modelando matematicamente

- Vejamos agora como obter $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- $d(P,B) = d(P,B') \Rightarrow d(P,A) + d(P,B) = d(A,P) + d(P,B');$
- ullet d(A,P)+d(P,B') é mínima quando A,P e B' estão alinhados;



Modelando matematicamente

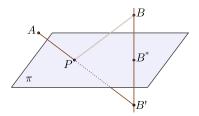
- Vejamos agora como obter $P \in \pi$ tal que d(P,A) + d(P,B) é mínima;
- $d(P,B) = d(P,B') \Rightarrow d(P,A) + d(P,B) = d(A,P) + d(P,B');$
- ullet d(A,P)+d(P,B') é mínima quando A,P e B' estão alinhados;
- Vamos calcular B* e depois B';



Modelando matematicamente

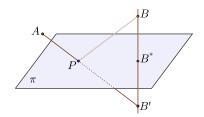
Considere os pontos A=(1,0,1) e B=(0,3,3). Encontre o ponto do plano $\pi: x+2y-z+3=0$ cuja soma das distâncias aos pontos A e B é mínima.

• Reta por B e perpendicular a π : (x,y,z)=(t,3+2t,3-t);



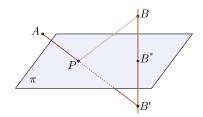
Modelando matematicamente

- Reta por *B* e perpendicular a π : (x,y,z) = (t,3+2t,3-t);
- B^* : t + 2(3+2t) (3-t) + 3 = 0



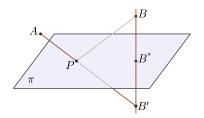
Modelando matematicamente

- Reta por *B* e perpendicular a π : (x,y,z) = (t,3+2t,3-t);
- B^* : $t + 2(3+2t) (3-t) + 3 = 0 \Rightarrow t = -1$



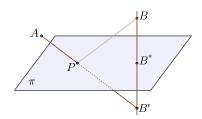
Modelando matematicamente

- Reta por *B* e perpendicular a π : (x,y,z) = (t,3+2t,3-t);
- B^* : $t + 2(3+2t) (3-t) + 3 = 0 \Rightarrow t = -1 \Rightarrow B^* = (-1,1,4)$;



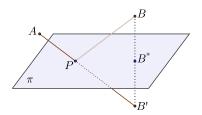
Modelando matematicamente

- Reta por *B* e perpendicular a π : (x,y,z)=(t,3+2t,3-t);
- B^* : $t + 2(3+2t) (3-t) + 3 = 0 \Rightarrow t = -1 \Rightarrow B^* = (-1, 1, 4)$;
- $B' = 2B^* B = (-2, -1, 5);$



Modelando matematicamente

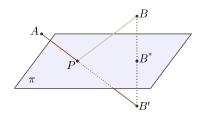
- Reta por *B* e perpendicular a π : (x,y,z) = (t,3+2t,3-t);
- B^* : $t + 2(3+2t) (3-t) + 3 = 0 \Rightarrow t = -1 \Rightarrow B^* = (-1, 1, 4)$;
- $B' = 2B^* B = (-2, -1, 5);$
- Agora vamos calcular P;



Modelando matematicamente

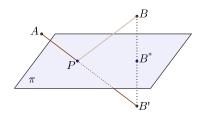
Considere os pontos A=(1,0,1) e B=(0,3,3). Encontre o ponto do plano $\pi: x+2y-z+3=0$ cuja soma das distâncias aos pontos A e B é mínima.

• Reta por $A \in B'$: (x, y, z) = (1 - 3t, -t, 1 + 4t);



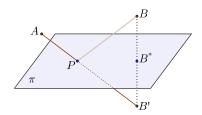
Modelando matematicamente

- Reta por $A \in B'$: (x, y, z) = (1 3t, -t, 1 + 4t);
- Cálculo de P: 1-3t+2(-t)-(1+4t)+3=0



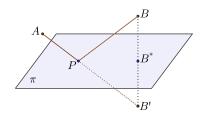
Modelando matematicamente

- Reta por $A \in B'$: (x, y, z) = (1 3t, -t, 1 + 4t);
- Cálculo de $P: 1 3t + 2(-t) (1+4t) + 3 = 0 \Rightarrow t = 1/3;$

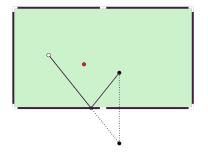


Modelando matematicamente

- Reta por $A \in B'$: (x, y, z) = (1 3t, -t, 1 + 4t);
- Cálculo de P: $1 3t + 2(-t) (1 + 4t) + 3 = 0 \Rightarrow t = 1/3$;
- P = (0, -1/3, 7/3).



Problemas diferentes com mesmo modelo



https://youtu.be/HU6oxEyq2F0

