Continuity of convex functions

Ademir Alves Ribeiro ${ }^{\S}$

March 28, 2019

Definition 1 Given an arbitrary set $X \subset \mathbb{R}^{n}$, we define its convex hull as the set

$$
\operatorname{conv}(X)=\left\{\alpha_{1} x^{1}+\cdots+\alpha_{r} x^{r} \mid x^{i} \in X, \alpha_{i} \geq 0, \alpha_{1}+\cdots+\alpha_{r}=1, r \in \mathbb{N}\right\} .
$$

It can be proved that this set is indeed convex and it is the intersection of all convex sets that contain X. Figures 1 and 2 show some sets and their corresponding convex hulls.

Figure 1: On the left, a finite set with 50 random points in \mathbb{R}^{2}. On the right, its convex hull.

Figure 2: The set $X=\left\{x \in \mathbb{R}^{2} \mid x_{1} \geq 0,0 \leq x_{2} \leq 2, x_{1} x_{2}=0\right\}$ and its convex hull. This figure illustrates the fact that the convex hull of a closed set is not necessarily closed.

[^0]Lemma 2 Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$ be arbitrary sets. Then

$$
\operatorname{conv}(A \times B)=\operatorname{conv}(A) \times \operatorname{conv}(B)
$$

Proof. Note first that if $\binom{x}{y} \in \operatorname{conv}(A \times B)$, then

$$
\binom{x}{y}=\sum_{i=1}^{k} \gamma_{i}\binom{a^{i}}{b^{i}}=\binom{\sum \gamma_{i} a^{i}}{\sum \gamma_{i} b^{i}},
$$

with $\gamma_{i} \geq 0, \sum \gamma_{i}=1, a^{i} \in A$ and $b^{i} \in B$. This means that $\binom{x}{y} \in \operatorname{conv}(A) \times \operatorname{conv}(B)$.
Conversely, if $\binom{x}{y} \in \operatorname{conv}(A) \times \operatorname{conv}(B)$, we have

$$
x=\sum_{i=1}^{p} \alpha_{i} a^{i} \quad \text { and } \quad y=\sum_{j=1}^{q} \beta_{j} b^{j}
$$

with $\alpha_{i}, \beta_{j} \geq 0, \sum \alpha_{i}=\sum \beta_{j}=1, a^{i} \in A$ and $b^{j} \in B$. Therefore,

$$
\sum_{i=1}^{p} \sum_{j=1}^{q} \alpha_{i} \beta_{j}\binom{a^{i}}{b^{j}}=\sum_{i=1}^{p} \alpha_{i}\left(\sum_{j=1}^{q}\binom{\beta_{j} a^{i}}{\beta_{j} b^{j}}\right)=\sum_{i=1}^{p} \alpha_{i}\binom{a^{i}}{y}=\binom{x}{y}
$$

and

$$
\sum_{i=1}^{p} \sum_{j=1}^{q} \alpha_{i} \beta_{j}=\sum_{i=1}^{p} \alpha_{i} \sum_{j=1}^{q} \beta_{j}=1
$$

Since $\alpha_{i} \beta_{j} \geq 0$, we have $\binom{x}{y} \in \operatorname{conv}(A \times B)$.
Corollary 3 Considering the sets $A=\{-1,1\}$ and $C=\left\{u \in \mathbb{R}^{n} \mid u_{j} \in A\right\}=A \times \cdots \times A$, there holds $\operatorname{conv}(C)=B_{\|\cdot\|_{\infty}}[0,1]$.

Lemma 4 Let $D \subset \mathbb{R}^{n}$ be a convex set and let $g: D \rightarrow \mathbb{R}$ be a convex function. Then, given $\alpha_{i} \geq 0, i=1, \ldots, m$, with $\sum \alpha_{i}=1$, and $x^{i} \in D$, we have

$$
g\left(\sum_{i=1}^{m} \alpha_{i} x^{i}\right) \leq \sum_{i=1}^{m} \alpha_{i} g\left(x^{i}\right) .
$$

Proof. Note first that if $\alpha_{1}=1$, there is nothing to prove. So, assume that $\alpha_{1}<1$ and write

$$
\sum_{i=1}^{m} \alpha_{i} x^{i}=\alpha_{1} x^{1}+\beta \sum_{i=2}^{m} \frac{\alpha_{i}}{\beta} x^{i}
$$

where $\beta=\sum_{i=2}^{m} \alpha_{i}=1-\alpha_{1}$. Thus, the convexity of g implies that

$$
g\left(\sum_{i=1}^{m} \alpha_{i} x^{i}\right) \leq \alpha_{1} g\left(x^{1}\right)+\beta g\left(\sum_{i=2}^{m} \frac{\alpha_{i}}{\beta} x^{i}\right) .
$$

An induction argument finishes the proof.

Theorem 5 Consider $D=B_{\|\cdot\|_{\infty}}[0,1] \subset \mathbb{R}^{n}$ and suppose that $g: D \rightarrow \mathbb{R}$ is convex. Then g is bounded and continuous at the origin.

Proof. Let $M=\max \{g(u) \mid u \in C\}$, where C is the (finite) set given in Corollary 3. Given $y \in D$, this corollary allows us to write $y=\sum \alpha_{i} u^{i}$ with $\alpha_{i} \geq 0, \sum \alpha_{i}=1$ and $u^{i} \in C$. So, by Lemma 4 we have

$$
\begin{equation*}
g(y) \leq \sum \alpha_{i} g\left(u^{i}\right) \leq \sum \alpha_{i} M=M \tag{1}
\end{equation*}
$$

Moreover, since $0=\left(1-\frac{1}{2}\right) y+\frac{1}{2}(-y)$ and $-y \in D$, we conclude that

$$
g(0) \leq\left(1-\frac{1}{2}\right) g(y)+\frac{1}{2} g(-y)
$$

which in turn implies that

$$
g(y) \geq 2 g(0)-g(-y) \geq 2 g(0)-M .
$$

Thus, using (1), we have the boundedness of g.
Now, consider a sequence $\left(y^{k}\right) \subset D$ such that $y^{k} \rightarrow 0$. Since we want to prove that $g\left(y^{k}\right) \rightarrow g(0)$, we may assume, without loss of generality, that $y^{k} \neq 0$ for all $k \in \mathbb{N}$. So, defining $t_{k}=\left\|y^{k}\right\|_{\infty}$, $z^{k}=\frac{y^{k}}{t_{k}}$ and $w^{k}=-\frac{y^{k}}{t_{k}}$, we have

$$
y^{k}=\left(1-t_{k}\right) 0+t_{k} z^{k} \quad \text { and } \quad 0=\frac{1}{1+t_{k}} y^{k}+\frac{t_{k}}{1+t_{k}} w^{k} .
$$

By the convexity of g, we obtain

$$
g\left(y^{k}\right) \leq\left(1-t_{k}\right) g(0)+t_{k} g\left(z^{k}\right) \quad \text { and } \quad g(0) \leq \frac{1}{1+t_{k}} g\left(y^{k}\right)+\frac{t_{k}}{1+t_{k}} g\left(w^{k}\right)
$$

which implies

$$
\left(1+t_{k}\right) g(0)-t_{k} g\left(w^{k}\right) \leq g\left(y^{k}\right) \leq\left(1-t_{k}\right) g(0)+t_{k} g\left(z^{k}\right)
$$

Since $t_{k} \rightarrow 0$, using the boundedness of the sequences $\left(g\left(z^{k}\right)\right)$ and $\left(g\left(w^{k}\right)\right)$ and taking limits, we conclude that $g\left(y^{k}\right) \rightarrow g(0)$.

Theorem 6 Let $X \subset \mathbb{R}^{n}$ be a convex set with nonempty interior and let $f: X \rightarrow \mathbb{R}$ be a convex function. If $\bar{x} \in \operatorname{int}(X)$, then f is continuous at \bar{x}.

Proof. Consider $\delta>0$ such that $B_{\|\cdot\|_{\infty}}[\bar{x}, \delta] \subset X$ and define $g: B_{\|\cdot\|_{\infty}}[0,1] \rightarrow \mathbb{R}$ by $g(y)=f(\bar{x}+\delta y)$. We claim that g is convex. Indeed, given $y, z \in B_{\|\cdot\|_{\infty}}[0,1]$ and $t \in[0,1]$, we have

$$
g((1-t) y+t z)=f((1-t)(\bar{x}+\delta y)+t(\bar{x}+\delta z)) \leq(1-t) g(y)+t g(z) .
$$

Now, take $\left(x^{k}\right) \subset X$ such that $x^{k} \rightarrow \bar{x}$. Assume, without loss of generality, that $x^{k} \in B_{\|\cdot\|_{\infty}}[\bar{x}, \delta]$ for all $k \in \mathbb{N}$. So, $y^{k}=\frac{x^{k}-\bar{x}}{\delta} \in B_{\|\cdot\|_{\infty}}[0,1]$ and $y^{k} \rightarrow 0$, which by Theorem 5 imply that

$$
f\left(x^{k}\right)=f\left(\bar{x}+\delta y^{k}\right)=g\left(y^{k}\right) \rightarrow g(0)=f(\bar{x})
$$

[^0]: ${ }^{\text {§ }}$ Department of Mathematics, Federal University of Paraná, Brazil (email: ademir.ribeiro@ufpr.br).

