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Definition 1 Given an arbitrary set X ⊂ Rn, we define its convex hull as the set

conv(X) = {α1x
1 + · · ·+ αrx

r | xi ∈ X, αi ≥ 0, α1 + · · ·+ αr = 1, r ∈ N}.

It can be proved that this set is indeed convex and it is the intersection of all convex sets that
contain X. Figures 1 and 2 show some sets and their corresponding convex hulls.
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Figure 1: On the left, a finite set with 50 random points in R2. On the right, its convex hull.
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Figure 2: The set X = {x ∈ R2 | x1 ≥ 0, 0 ≤ x2 ≤ 2, x1x2 = 0} and its convex hull. This figure
illustrates the fact that the convex hull of a closed set is not necessarily closed.
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Lemma 2 Let A ⊂ Rn and B ⊂ Rm be arbitrary sets. Then

conv(A×B) = conv(A)× conv(B).

Proof. Note first that if

(
x
y

)
∈ conv(A×B), then

(
x
y

)
=

k∑
i=1

γi

(
ai

bi

)
=

(∑
γia

i∑
γib

i

)
,

with γi ≥ 0,
∑
γi = 1, ai ∈ A and bi ∈ B. This means that

(
x
y

)
∈ conv(A)× conv(B).

Conversely, if

(
x
y

)
∈ conv(A)× conv(B), we have

x =

p∑
i=1

αia
i and y =

q∑
j=1

βjb
j

with αi, βj ≥ 0,
∑
αi =

∑
βj = 1, ai ∈ A and bj ∈ B. Therefore,

p∑
i=1

q∑
j=1

αiβj

(
ai

bj

)
=

p∑
i=1

αi

 q∑
j=1

(
βja

i

βjb
j

) =

p∑
i=1

αi

(
ai

y

)
=

(
x
y

)
and

p∑
i=1

q∑
j=1

αiβj =

p∑
i=1

αi

q∑
j=1

βj = 1.

Since αiβj ≥ 0, we have

(
x
y

)
∈ conv(A×B).

Corollary 3 Considering the sets A = {−1, 1} and C = {u ∈ Rn | uj ∈ A} = A × · · · × A, there
holds conv(C) = B‖·‖∞ [0, 1].

Lemma 4 Let D ⊂ Rn be a convex set and let g : D → R be a convex function. Then, given
αi ≥ 0, i = 1, . . . ,m, with

∑
αi = 1, and xi ∈ D, we have

g

(
m∑
i=1

αix
i

)
≤

m∑
i=1

αig(xi).

Proof. Note first that if α1 = 1, there is nothing to prove. So, assume that α1 < 1 and write
m∑
i=1

αix
i = α1x

1 + β

m∑
i=2

αi

β
xi,

where β =

m∑
i=2

αi = 1− α1. Thus, the convexity of g implies that

g

(
m∑
i=1

αix
i

)
≤ α1g(x1) + βg

(
m∑
i=2

αi

β
xi

)
.

An induction argument finishes the proof.
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Theorem 5 Consider D = B‖·‖∞ [0, 1] ⊂ Rn and suppose that g : D → R is convex. Then g is
bounded and continuous at the origin.

Proof. Let M = max{g(u) | u ∈ C}, where C is the (finite) set given in Corollary 3. Given y ∈ D,
this corollary allows us to write y =

∑
αiu

i with αi ≥ 0,
∑
αi = 1 and ui ∈ C. So, by Lemma 4

we have
g(y) ≤

∑
αig(ui) ≤

∑
αiM = M. (1)

Moreover, since 0 =

(
1− 1

2

)
y +

1

2
(−y) and −y ∈ D, we conclude that

g(0) ≤
(

1− 1

2

)
g(y) +

1

2
g(−y),

which in turn implies that
g(y) ≥ 2g(0)− g(−y) ≥ 2g(0)−M.

Thus, using (1), we have the boundedness of g.
Now, consider a sequence (yk) ⊂ D such that yk → 0. Since we want to prove that g(yk)→ g(0),

we may assume, without loss of generality, that yk 6= 0 for all k ∈ N. So, defining tk = ‖yk‖∞,

zk =
yk

tk
and wk = −y

k

tk
, we have

yk = (1− tk)0 + tkz
k and 0 =

1

1 + tk
yk +

tk
1 + tk

wk.

By the convexity of g, we obtain

g(yk) ≤ (1− tk)g(0) + tkg(zk) and g(0) ≤ 1

1 + tk
g(yk) +

tk
1 + tk

g(wk),

which implies
(1 + tk)g(0)− tkg(wk) ≤ g(yk) ≤ (1− tk)g(0) + tkg(zk).

Since tk → 0, using the boundedness of the sequences
(
g(zk)

)
and

(
g(wk)

)
and taking limits, we

conclude that g(yk)→ g(0).

Theorem 6 Let X ⊂ Rn be a convex set with nonempty interior and let f : X → R be a convex
function. If x̄ ∈ int(X), then f is continuous at x̄.

Proof. Consider δ > 0 such that B‖·‖∞ [x̄, δ] ⊂ X and define g : B‖·‖∞ [0, 1]→ R by g(y) = f(x̄+δy).
We claim that g is convex. Indeed, given y, z ∈ B‖·‖∞ [0, 1] and t ∈ [0, 1], we have

g
(
(1− t)y + tz

)
= f

(
(1− t)(x̄+ δy) + t(x̄+ δz)

)
≤ (1− t)g(y) + tg(z).

Now, take (xk) ⊂ X such that xk → x̄. Assume, without loss of generality, that xk ∈ B‖·‖∞ [x̄, δ]

for all k ∈ N. So, yk =
xk − x̄
δ

∈ B‖·‖∞ [0, 1] and yk → 0, which by Theorem 5 imply that

f(xk) = f(x̄+ δyk) = g(yk)→ g(0) = f(x̄).

3


