4ª lista de exercícios - CM068 Variáveis Complexas - 18/04/2016

- 1. Descreva uma parametrização para triângulo de vértices -1, $i \in 1$.
- 2. Descreva uma parametrização para o quadrado de vértices 0, i, -1 + i = -1.
- 3. Para cada f e caminho γ abaixo determinar o valor de $\int_{\gamma} f(z) dz$.
 - (a) $f(z) = y x 3x^2i$, sendo $x = \text{Re } z, y = \text{Im } z = \gamma$ é o segmento de reta que une z = 0 a z = 1 + i.
 - (b) f como acima e γ é formado pelos segmento de reta que unem z=0 a z=i e z=i a z=1+i.
 - (c) f(z) = (z+2)/z e γ é o semicírculo de raio 2 centrado em z=0 contido no semiplano $\text{Im}(z) \geq 0$.
 - (d) f como acima e γ é o semicírculo de raio 2 centrado em z=0 contido no semiplano $\mathrm{Im}\,(z)\leq 0$.
 - (e) f como acima e γ é o círculo de raio 2 centrado em z=0.
 - (f) $f(z) = |z|^4$ e γ é o segmento que liga i 1 a i + 1.
- 4. Se γ é a fronteira do quadrado com vértices z=0, z=1, z=1+i e z=i percorrida no sentido positivo (anti-horário), mostre que $\int_{\mathbb{R}} \pi e^{\pi \bar{z}} dz = 4(e^{\pi} - 1)$.
- 5. Se γ é o arco da circunferência |z|=2 que está contido no primeiro quadrante, mostre, sem calcular a integral,

$$\left| \int_{\gamma} \frac{dz}{z^2 + 1} \right| \le \frac{\pi}{3}.$$

6. Mostre que $\int_{\mathbb{R}} f(z) dz = 0$, sendo γ a circunferência |z| = 1, quando:

(a)
$$f(z) = \frac{z^2}{z-3}$$

(c)
$$f(z) = \frac{1}{z^2 + 2z + 2}$$
.

(e)
$$f(z) = \operatorname{tg}(z)$$

(b)
$$f(z) = ze^{-z}$$
.

(d)
$$f(z) = \operatorname{senh}(z)$$

(f)
$$f(z) = \log(z+2)$$

7. Se γ é a fronteira, orientada positivamente, da região compreendida entre a circunferência |z|=4 e o quadrado com vértices z = 1 + i, z = -1 + i, z = -1 - i, z = 1 - i, mostre que $\int_{\gamma} f(z) dz = 0$, sendo

(a)
$$f(z) = \frac{1}{3z^2 + 1}$$

(b)
$$f(z) = \frac{z+2}{\text{sen}(z/2)}$$
.

(c)
$$f(z) = \frac{z}{1 - e^{-z}}$$
.

8. Se γ_0 é a circunferência $z-z_0=r_0e^{i\theta},\,0\leq\theta\leq2\pi,\,r_0>0,$ orientada positivamente e f é contínua em $\gamma_0,$ mostre

$$\int_{\gamma_0} f(z) \, dz = i r_o \int_0^{2\pi} f(z_0 + r_0 e^{i\theta}) e^{i\theta} \, d\theta.$$

- 9. Use o exercício anterior para mostrar que $\int_{\gamma_0} \frac{dz}{z-z_0} = 2\pi i$ e $\int_{\gamma_0} \frac{dz}{(z-z_0)^n} = 0$, para $n=2,3,\cdots$
- 10. Calcule o valor das integrais abaixo, ao longo de uma caminho arbitrário ligando os limites de integração:

(a)
$$\int_{i}^{i/2} e^{\pi z} dz$$

(b)
$$\int_0^{\pi+2i} \cos(z/2) dz$$
 (c) $\int_1^3 (z-2)^3 dz$.

(c)
$$\int_{1}^{3} (z-2)^{3} dz$$

- 11. Calcular $\int_{\gamma} \frac{1}{z^3(4-z)} dz$ sendo γ é qualquer caminho fechado que:
 - (a) não contém z = 0 e z = 4 no seu interior.
 - (b) contém no seu interior z=0 e está contido na região |z|<4.
 - (c) contém no seu interior z=4 e está contido na região |z|>3 e que não contém z=0 no seu interior.
 - (d) que contém z = 0 e z = 4 no seu interior.