Pseudo-differential operators

Exercises 1-07.03.16

1. A function $f: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ is called homogeneous os degree $d \in \mathbb{R}$ if $f(r x)=r^{d} f(x)$, for all $r>0$ and $x \neq 0$.
(a) If f is continuous and homogeneous os degree $d \in \mathbb{R}$, show that there is a constant $C>0$, depending on f, such that

$$
|f(x)| \leq|x|^{d}, \text { for all } x \neq 0
$$

Determine the smallest C possible.
(b) If f is k-times continuously differentiable and homogeneous os degree $d \in \mathbb{R}$, show that $\partial^{\alpha} f$ is homogeneous of degree $d-|\alpha|$, for all $|\alpha| \leq k$. Moreover, conclude that

$$
\left|\partial^{\alpha} f(x)\right| \leq C_{\alpha}|x|^{d-|\alpha|}, \text { for all } x \neq 0 .
$$

Here C_{α} depends on α and f, and $|\alpha| \leq k$.
2. Let $a>0$. Compute the Fourier transformation of the functions $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$:
(a) $f_{1}(x)=e^{-a x} \chi_{[0,+\infty)}(x)$;
(b) $f_{2}(x)=e^{-a|x|}$,
(c) $f_{3}(x)=\chi_{[-a, a]}(x)$,

Compare the properties of the functions f_{j} (continuity, differentiability, analyticity, and the decay for $|x| \rightarrow \infty)$ with the corresponding properties of \widehat{f}_{j}.
3. Let $\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$. Prove that for any $s \in \mathbb{R}$ and $\alpha \in \mathbb{N}_{0}^{n}$ there s some $C_{s}, \alpha>0$ such that

$$
\left|\partial_{\xi}^{\alpha}\langle\xi\rangle^{s}\right| \leq(1+|\xi|)^{s-|\alpha|}, \text { for all } \xi \in \mathbb{R}^{n} .
$$

Hint: the function $f(a, x)=\left(a_{2}+|x|^{2}\right)^{m / 2}$, where $a \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$, is homogeneous of degree m.
4. In the following, for $f \in \mathcal{S}$ and $m \in N$ let

$$
|f|_{m, \mathcal{S}}:=\sup _{|\alpha|+|\beta| \leq m} \sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial_{x}^{\beta} f(x)\right| .
$$

Prove that for every $\alpha \in \mathbb{N}_{0}^{n}$ and $m \in \mathbb{N}$ there are constants $C_{m, \alpha}, C_{m, \alpha}^{\prime}>0$ such that

$$
\left|x^{\alpha} f\right|_{m, \mathcal{S}} \leq C_{m, \alpha}|f|_{m+|\alpha|, \mathcal{S}} \quad \text { and } \quad\left|\partial_{x}^{\alpha} f\right|_{m, \mathcal{S}} \leq C_{m, \alpha}^{\prime}|f|_{m+|\alpha|, \mathcal{S}}
$$

uniformly in $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
5. Let $C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$ be the set of all smooth functions $m: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth, i.e., for every $\alpha \in \mathbb{N}_{0}^{n}$ there exist a $k(\alpha) \in \mathbb{N}$ and $C_{\alpha}>0$ with

$$
\left|\partial_{x}^{\alpha} m(x)\right| \leq C_{\alpha}(1+|x|)^{k(\alpha)}, \quad \text { for all } x \in \mathbb{R}^{n}
$$

Moreover, let $m \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $(M f)(x):=m(x) f(x)$ for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
(a) Prove that $M: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is a bounded operator, i.e., for all $k \in \mathbb{N}$ there exist $n(k) \in \mathbb{N}$ and $C>0$ such that

$$
|M f|_{k, \mathcal{S}} \leq C|f|_{n(k), \mathcal{S}} .
$$

(b) For any pair of functions $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ the product $f g$ lies in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
6. Let $(M f)(x):=m(x) f(x)$ for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, where $m: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a smooth function. Prove that $m \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$ if $M: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is a bounded operator.

Hint: First of all

$$
\sup _{x \in \mathbb{R}^{n}}|m(x) f(x)| \leq C|f|_{k, \mathcal{S}}, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

for some $k \in \mathbb{N}$. Then consider $f(x)=\left(1+|x|^{2}\right)^{-k / 2} e^{-\varepsilon|x|^{2} / 2}, \varepsilon>0$.

