Pseudo-differential operators

Exercises 1 - 07.03.16

- 1. A function $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ is called *homogeneous os degree* $d \in \mathbb{R}$ if $f(rx) = r^d f(x)$, for all r > 0 and $x \neq 0$.
 - (a) If f is continuous and homogeneous os degree $d \in \mathbb{R}$, show that there is a constant C > 0, depending on f, such that

$$|f(x)| \le |x|^d$$
, for all $x \ne 0$

Determine the smallest C possible.

(b) If f is k-times continuously differentiable and homogeneous os degree $d \in \mathbb{R}$, show that $\partial^{\alpha} f$ is homogeneous of degree $d - |\alpha|$, for all $|\alpha| \leq k$. Moreover, conclude that

$$|\partial^{\alpha} f(x)| \leq C_{\alpha} |x|^{d-|\alpha|}, \text{ for all } x \neq 0.$$

Here C_{α} depends on α and f, and $|\alpha| \leq k$.

2. Let a > 0. Compute the Fourier transformation of the functions $f_j : \mathbb{R} \to \mathbb{R}$:

(a)
$$f_1(x) = e^{-ax}\chi_{[0,+\infty)}(x);$$
 (b) $f_2(x) = e^{-a|x|},$ (c) $f_3(x) = \chi_{[-a,a]}(x),$

Compare the properties of the functions f_j (continuity, differentiability, analyticity, and the decay for $|x| \to \infty$) with the corresponding properties of \hat{f}_j .

3. Let $\langle \xi \rangle = \sqrt{1 + |\xi|^2}$. Prove that for any $s \in \mathbb{R}$ and $\alpha \in \mathbb{N}_0^n$ there s some $C_s, \alpha > 0$ such that

$$|\partial_{\xi}^{\alpha}\langle\xi\rangle^{s}| \leq (1+|\xi|)^{s-|\alpha|}, \text{ for all } \xi \in \mathbb{R}^{n}.$$

Hint: the function $f(a, x) = (a_2 + |x|^2)^{m/2}$, where $a \in \mathbb{R}$ and $x \in \mathbb{R}^n$, is homogeneous of degree m.

4. In the following, for $f \in \mathcal{S}$ and $m \in N$ let

$$|f|_{m,\mathcal{S}} := \sup_{|\alpha|+|\beta| \le m} \sup_{x \in \mathbb{R}^n} \left| x^{\alpha} \partial_x^{\beta} f(x) \right|.$$

Prove that for every $\alpha \in \mathbb{N}_0^n$ and $m \in \mathbb{N}$ there are constants $C_{m,\alpha}, C'_{m,\alpha} > 0$ such that

 $|x^{\alpha}f|_{m,\mathcal{S}} \leq C_{m,\alpha}|f|_{m+|\alpha|,\mathcal{S}}$ and $|\partial_x^{\alpha}f|_{m,\mathcal{S}} \leq C'_{m,\alpha}|f|_{m+|\alpha|,\mathcal{S}}$

uniformly in $f \in \mathcal{S}(\mathbb{R}^n)$.

5. Let $C_{\text{poly}}^{\infty}(\mathbb{R}^n)$ be the set of all smooth functions $m \colon \mathbb{R}^n \to \mathbb{C}$ of *polynomial growth*, i.e., for every $\alpha \in \mathbb{N}_0^n$ there exist a $k(\alpha) \in \mathbb{N}$ and $C_{\alpha} > 0$ with

 $|\partial_x^{\alpha} m(x)| \le C_{\alpha} (1+|x|)^{k(\alpha)}, \qquad \text{for all } x \in \mathbb{R}^n.$

Moreover, let $m \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$ and let (Mf)(x) := m(x)f(x) for all $f \in \mathcal{S}(\mathbb{R}^n)$.

(a) Prove that $M: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is a bounded operator, i.e., for all $k \in \mathbb{N}$ there exist $n(k) \in \mathbb{N}$ and C > 0 such that

$$|Mf|_{k,\mathcal{S}} \le C|f|_{n(k),\mathcal{S}}.$$

- (b) For any pair of functions $f, g \in \mathcal{S}(\mathbb{R}^n)$ the product fg lies in $\mathcal{S}(\mathbb{R}^n)$.
- 6. Let (Mf)(x) := m(x)f(x) for $f \in \mathcal{S}(\mathbb{R}^n)$, where $m : \mathbb{R}^n \to \mathbb{C}$ is a smooth function. Prove that $m \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$ if $M : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is a bounded operator.

Hint: First of all

$$\sup_{x \in \mathbb{R}^n} |m(x)f(x)| \le C|f|_{k,\mathcal{S}}, \qquad f \in \mathcal{S}(\mathbb{R}^n)$$

for some $k \in \mathbb{N}$. Then consider $f(x) = (1 + |x|^2)^{-k/2} e^{-\varepsilon |x|^2/2}, \varepsilon > 0$.