## Pseudo-differential operators

## Exercises 2-23.03.16

1. Find a function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $\hat{f} \notin L^{1}\left(\mathbb{R}^{n}\right)$.
2. Let $p(x)=\sum_{|\alpha| \leq m} c_{\alpha} x^{\alpha}$ be a polynomial on $\mathbb{R}^{n}$. Calculate $\mathscr{F}[p]$ in the sense of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
3. For any $x \in \mathbb{R}^{n}$, let $\delta_{x} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ the delta distribution in $x$.
(a) Prove that $\delta_{x}$ is not a regular distribution;
(b) Show that $\delta_{x} * g=\tau_{-x} g$, for any $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$;
(c) Find $\mathscr{F}\left[\delta_{x}\right]$.
4. Let $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Prove that:
(a) $f * g$ is a regular tempered distribution with $f * g \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$;
(b) $\mathscr{F}(f * f)=\hat{f} \cdot \hat{g}$;
(c) $\partial_{x}^{\alpha}(f * g)=\left(\partial_{x}^{\alpha} f\right) * g=f *\left(\partial_{x}^{\alpha} g\right)$.
5. Consider the PDE $(1-\Delta) u(x)=f(x)$ in $\mathbb{R}^{n}$, with $u, f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
(a) Find $p(\xi)$ such that $(1-\Delta) u(x)=\mathscr{F}^{-1}[p(\xi) \hat{u}(\xi)]$;
(b) Show that for every $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ there is a unique solution $u=(1-\Delta)^{-1} f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ of the PDE.
(c) Show that $(1-\Delta)^{-1} \in \mathscr{L}\left(\mathcal{S}\left(\mathbb{R}^{n}\right)\right)$;
6. Let $p: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a measurable function and set $\Sigma \doteq \overline{p\left(\mathbb{R}^{n}\right)}$. For each $F \in L^{\infty}(\Sigma)$ let

$$
F\left(p\left(D_{x}\right)\right) f \doteq \mathscr{F}^{-1}[F(p(\xi)) \hat{f}(\xi)], \forall f \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Prove that:
(a) For all $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, we have $F\left(p\left(D_{x}\right)\right) f \in \mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$;
(b) The mapping $\Phi: L^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$, defined as above, is linear and

$$
F\left(p\left(D_{x}\right)\right) \circ G\left(p\left(D_{x}\right)\right)=(F \cdot G)\left(p\left(D_{x}\right)\right), \forall F, G \in L^{\infty}\left(\mathbb{R}^{n}\right) ;
$$

(c) For all $\lambda \in \mathbb{C} \backslash \Sigma$ we have $\left(\lambda-p\left(D_{x}\right)\right)^{-1} \in \mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$

$$
\left(\lambda-p\left(D_{x}\right)\right)\left(\lambda-p\left(D_{x}\right)\right)^{-1} f=\left(\lambda-p\left(D_{x}\right)\right)^{-1}\left(\lambda-p\left(D_{x}\right)\right) f=f, \forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where $p\left(D_{x}\right) f=\mathscr{F}^{-1}[p(\xi) \hat{f}(\xi)]$, for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$
(d) For which $\lambda \in \mathbb{C}$ there exists $(\lambda-\Delta)^{-1}$ in the sense above?

