Pseudo-differential operators Exercises 3 - 04.04.16

1. Let $p \in S_{1,0}^m(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$ and $q \in S_{1,0}^\ell(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$ be pseudo-differential symbols, with $\ell, m \in \mathbb{R}$. Prove that $pq \in S_{1,0}^{m+\ell}(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$ and that for every $k \in \mathbb{N}_0$ one has

$$|pq|_{k}^{(\ell+m)} \le C_{k}|p|_{k}^{(m)}|q|_{k}^{(\ell)},$$

where C_k depends only on k and n.

2. Prove that if $p \in S_{1,0}^m(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$ then $D_x^{\alpha} D_{\xi}^{\beta} p \in S_{1,0}^{m-|\beta|}(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$, for all multi-indices α and β , and and that for every $k \in \mathbb{N}_0$ one has

$$|D_x^{\alpha} D_{\xi}^{\beta} p|_k^{(m-|\beta|)} \le C |p|_{k+|\alpha|+|\beta|}^{(m)},$$

where C depends only on α, β, k and n.

3. Let $p \in S_{1,0}^m(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$ and $\varphi \in S(\mathbb{R}^n_{\xi})$. Prove that the function

$$r(x,\varphi) \doteq p(x,\varphi) \cdot \varphi(\xi), \ x, \xi \in \mathbb{R}^n,$$

is a symbol in $S_{1,0}^{-\infty}(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$.

- 4. Prove that $p \in S_{1,0}^m$ if and only if $\langle \xi \rangle^{-m} p \in S_{1,0}^0$.
- 5. For each $G \in \mathsf{L}^{\infty}(\mathbb{R}^n)$ set

$$G(D_x)f \doteq \mathcal{F}^{-1}[G(\xi)\hat{f}(\xi)], \ \forall f \in L^2(\mathbb{R}^n).$$
(1)

(a) Prove that $G(D_x) \in \mathcal{L}(L^2(\mathbb{R}^n))$ and the mapping

$$\Phi \colon \mathsf{L}^{\infty}(\mathbb{R}^n) \to \mathcal{L}(L^2(\mathbb{R}^n)) G \mapsto \Phi(G) \doteq G(D_x)$$

is linear and bounded. Moreover, show that for every $G, H \in L^{\infty}(\mathbb{R}^n)$, we have

$$G(D_x) \circ H(D_x) = (G \cdot H)(D_x).$$
⁽²⁾

- (b) Prove that if $G \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$, then $G(D_x) \colon \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ (defined similarly as in (1)), is a bounded operator, and for $G_j \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$, j = 1, 2, Equation (2) holds as well.
- (c) Let $p \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$. Prove that for all $\lambda \in \mathbb{C} \setminus \overline{p(\mathbb{R}^n)}$ we have $(\lambda p(D_x))^{-1} \in \mathcal{L}(L^2(\mathbb{R}^n))$ and

$$(\lambda - p(D_x))(\lambda - p(D_x))^{-1}f = (\lambda - p(D_x))^{-1}(\lambda - p(D_x))f = f$$

for all $f \in \mathcal{S}(\mathbb{R}^n)$, where $p(D_x)f = \mathcal{F}^{-1}[p(\xi)\hat{f}(\xi)]$ for all $f \in \mathcal{S}(\mathbb{R}^n)$.

(d) For which $\lambda \in \mathbb{C}$ there exists $(\lambda - \Delta)^{-1}$ in the sense above?