Pseudo-differential operators

Exercises 3-04.04.16

1. Let $p \in S_{1,0}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ and $q \in S_{1,0}^{\ell}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ be pseudo-differential symbols, with $\ell, m \in \mathbb{R}$. Prove that $p q \in S_{1,0}^{m+\ell}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ and that for every $k \in \mathbb{N}_{0}$ one has

$$
|p q|_{k}^{(\ell+m)} \leq C_{k}|p|_{k}^{(m)}|q|_{k}^{(\ell)},
$$

where C_{k} depends only on k and n.
2. Prove that if $p \in S_{1,0}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ then $D_{x}^{\alpha} D_{\xi}^{\beta} p \in S_{1,0}^{m-|\beta|}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$, for all multi-indices α and β, and and that for every $k \in \mathbb{N}_{0}$ one has

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} p\right|_{k}^{(m-|\beta|)} \leq C|p|_{k+|\alpha|+|\beta|}^{(m)},
$$

where C depends only on α, β, k and n.
3. Let $p \in S_{1,0}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ and $\varphi \in S\left(\mathbb{R}_{\xi}^{n}\right)$. Prove that the function

$$
r(x, \varphi) \doteq p(x, \varphi) \cdot \varphi(\xi), x, \xi \in \mathbb{R}^{n}
$$

is a symbol in $S_{1,0}^{-\infty}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$.
4. Prove that $p \in S_{1,0}^{m}$ if and only if $\langle\xi\rangle^{-m} p \in S_{1,0}^{0}$.
5. For each $G \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{n}\right)$ set

$$
\begin{equation*}
G\left(D_{x}\right) f \doteq \mathcal{F}^{-1}[G(\xi) \hat{f}(\xi)], \forall f \in L^{2}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

(a) Prove that $G\left(D_{x}\right) \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ and the mapping

$$
\begin{aligned}
\Phi: \mathrm{L}^{\infty}\left(\mathbb{R}^{n}\right) & \rightarrow \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \\
G & \mapsto \Phi(G) \doteq G\left(D_{x}\right)
\end{aligned}
$$

is linear and bounded. Moreover, show that for every $G, H \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{equation*}
G\left(D_{x}\right) \circ H\left(D_{x}\right)=(G \cdot H)\left(D_{x}\right) . \tag{2}
\end{equation*}
$$

(b) Prove that if $G \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$, then $G\left(D_{x}\right): \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (defined similarly as in (1)), is a bounded operator, and for $G_{j} \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right), j=1,2$, Equation (2) holds as well.
(c) Let $p \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$. Prove that for all $\lambda \in \mathbb{C} \backslash \overline{p\left(\mathbb{R}^{n}\right)}$ we have $\left(\lambda-p\left(D_{x}\right)\right)^{-1} \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ and

$$
\left(\lambda-p\left(D_{x}\right)\right)\left(\lambda-p\left(D_{x}\right)\right)^{-1} f=\left(\lambda-p\left(D_{x}\right)\right)^{-1}\left(\lambda-p\left(D_{x}\right)\right) f=f
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, where $p\left(D_{x}\right) f=\mathcal{F}^{-1}[p(\xi) \hat{f}(\xi)]$ for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
(d) For which $\lambda \in \mathbb{C}$ there exists $(\lambda-\Delta)^{-1}$ in the sense above?

