Pseudo-differential operators
 Exercises 4-02.05.16

1. Prove that a pseudo-differential operator has a unique formal adjoint.
2. Let $p(x, \xi)$ and $q(x, \xi)$ be any two symbols. Prove that:
(a) $\left(p^{*}\left(x, D_{x}\right)\right)^{*}=p\left(x, D_{x}\right) ;$
(b) $\left(p\left(x, D_{x}\right) q\left(x, D_{x}\right)\right)^{*}=q^{*}\left(x, D_{x}\right) p^{*}\left(x, D_{x}\right)$.
3. Let $P\left(x, D_{x}\right)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ and $Q\left(x, D_{x}\right)=\sum_{|\beta| \leq \ell} b_{\beta}(x) D^{\beta}$ operators with $a_{\alpha}, b_{\beta} \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$.
(a) Compute the symbol of product $P\left(x, D_{x}\right) Q\left(x, D_{x}\right)$ directly;
(b) Compute the symbol of the formal adjoint of $P(x, D)$ directly;
(c) Compare you answers with the symbols obtained by theorems given in the theory of $\Psi \mathrm{DO}$.
4. Let $p \in S_{1,0}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right), m \in \mathbb{R}$, be any symbol. Show that for all $x, \xi \in \mathbb{R}^{n}$ we have

$$
e^{-i x \cdot \xi}\left(p\left(x, D_{x}\right) e^{i x \cdot \xi}\right)(x)=p(x, \xi)
$$

5. Fixed $y \in \mathbb{R}^{n}$, define the operator $\tau_{y}: C_{b}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ by $\tau_{y} u(x)=u(x-y), \forall x \in \mathbb{R}^{n}$.
(a) Use the last exercise to compute the symbol of this operator.
(b) Does $\tau(x, \xi) \in S_{1,0}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ for some $m \in \mathbb{R}$?
6. Let $p \in S_{1,0}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$ and $v \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Prove that

$$
w(\xi) \doteq \int_{\mathbb{R}_{x}^{n}} e^{-i x \cdot \xi}\left(p(x, \xi) v(x) d x \in \mathcal{S}\left(\mathbb{R}^{n}\right)\right.
$$

