Pseudo-differential operators Exercises 4 - 02.05.16

- 1. Prove that a pseudo-differential operator has a unique formal adjoint.
- 2. Let $p(x,\xi)$ and $q(x,\xi)$ be any two symbols. Prove that:
 - (a) $(p^*(x, D_x))^* = p(x, D_x);$
 - (b) $(p(x, D_x)q(x, D_x))^* = q^*(x, D_x)p^*(x, D_x).$

3. Let
$$P(x, D_x) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$$
 and $Q(x, D_x) = \sum_{|\beta| \le \ell} b_{\beta}(x) D^{\beta}$ operators with $a_{\alpha}, b_{\beta} \in C_b^{\infty}(\mathbb{R}^n)$.

- (a) Compute the symbol of product $P(x, D_x)Q(x, D_x)$ directly;
- (b) Compute the symbol of the formal adjoint of P(x, D) directly;
- (c) Compare you answers with the symbols obtained by theorems given in the theory of Ψ DO.
- 4. Let $p \in S_{1,0}^m(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$, $m \in \mathbb{R}$, be any symbol. Show that for all $x, \xi \in \mathbb{R}^n$ we have

$$e^{-ix\cdot\xi}(p(x,D_x)e^{ix\cdot\xi})(x) = p(x,\xi).$$

- 5. Fixed $y \in \mathbb{R}^n$, define the operator $\tau_y : C_b^{\infty}(\mathbb{R}^n) \to C_b^{\infty}(\mathbb{R}^n)$ by $\tau_y u(x) = u(x-y), \forall x \in \mathbb{R}^n$.
 - (a) Use the last exercise to compute the symbol of this operator.
 - (b) Does $\tau(x,\xi) \in S^m_{1,0}(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ for some $m \in \mathbb{R}$?
- 6. Let $p \in S_{1,0}^m(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$ and $v \in \mathcal{S}(\mathbb{R}^n)$. Prove that

$$w(\xi) \doteq \int_{\mathbb{R}^n_x} e^{-ix \cdot \xi} (p(x,\xi)v(x)dx \in \mathcal{S}(\mathbb{R}^n).$$