2ª Prova de Análise na Reta 11/10/2018

Essa prova é composta de duas partes:

- 1. Entregue 4 questões resolvidas até às 17h30 (2 de derivação e 2 de integral de Riemann).
- 2. Enviar a resolução escaneada de todas as questões até às 24h de domingo, 14/out, para o endereço: analise.na.reta.ufpr@gmail.com.

Derivação

- 1. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável. Mostre que:
 - a) Se existe $\delta > 0$ tal que $f|_{(a-\delta,a+\delta)}$ é crescente, então $f'(a) \geqslant 0$;
 - b) Se b é ponto de máximo local de f então f'(b) = 0.
- 2. Sejam $f:[a,b]\to\mathbb{R}$ uma função contínua em [a,b] e derivável em (a,b).
 - a) Se f'(x) = 0 para todo $x \in (a, b)$, mostre que f é uma função constante;
 - b) Se f' é constante, mostre que existem $p, q \in \mathbb{R}$ tais que f(x) = px + q.
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável no ponto $a \in \mathbb{R}$:
 - a) Prove que f é contínua no ponto a;
 - b) Dê um exemplo de uma função f derivável em $a \in \mathbb{R}$, tal que a derivada f' não seja contínua no ponto a.

Integral de Riemann

- 4. Seja $f:[a,b]\to\mathbb{R}$ a função definida por f(x)=5, para $x\in(a,b]$ e f(a)=2. Prove que f é integrável e calcule $\int_a^b f(x)dx$.
- 5. Dada $f:[a,b]\to\mathbb{R}$ uma função limitada e integrável, defina a função $F:[a,b]\to\mathbb{R}$ por $F(x)=\int_a^x f(t)dt$. Mostre que F é lipschitziana, ou seja, que existe k>0 tal que

$$|F(x) - F(y)| \leqslant k|x - y|, \ \forall x, y \in [a, b].$$

6. Seja $f:[a,b]\to\mathbb{R}$ uma função limitada. Chamamos de parte positiva e parte negativa de f as funções $f_+,f_-:[a,b]\to\mathbb{R}$ definidas por

$$f_{+}(x) = \begin{cases} f(x), \text{ se } f(x) \ge 0\\ 0, \text{ se } f(x) < 0. \end{cases}$$
 e $f_{-}(x) = \begin{cases} -f(x), \text{ se } f(x) \le 0\\ 0, \text{ se } f(x) > 0. \end{cases}$

- a) Mostre que $f_{+} f_{-} = f$ e $f_{+} + f_{-} = |f|$;
- b) Prove que f_- e f_+ são integráveis se e somente se f é integrável.