Lista de Exercícios – Sequências

(definição e primeiras propriedades)

Envie a resolução escaneada (em PDF) até 22/10, para fundamentos.analise.ufpr@gmail.com.

1. Use a definição (com ε e n) para provar que:

$$a) \lim \frac{2n}{n^2 + 1} = 0$$

a)
$$\lim \frac{2n}{n^2 + 1} = 0$$
 b) $\lim \frac{4n^2}{1 - 2n^2} = -2$.

- 2. Escreva a **negação** da definição de limite e a use para garantir que $\lim \frac{n+1}{r} \neq 2$.
- 3. Se $\lim x_n = a$, mostre que $\lim |x_n| = |a|$. Dê um contra-exemplo para mostrar que a recíproca desse resultado é falsa.
- 4. Usando apenas a definição de convergência, prove que, se (a_n) é uma sequência convergente, então $\lim a_n/n = 0$.
- 5. Suponha que $\lim x_n = a$ e $\lim (y_n x_n) = 0$, mostre que $\lim y_n = a$
- 6. Se $\lim x_n = a$, $\lim z_n = a$ e existe $n_o \in \mathbb{N}$ tal que $x_n \leq y_n \leq z_n$, para todo $n \geq n_o$, então $\lim y_n = a$.
- 7. Seja (b_n) uma sequência convergente com limite $b \neq 0$. Prove que apenas um número finito de termos desta sequência podem ser nulos.
- 8. Sejam (a_n) e (b_n) sequências tais que $|a_n-a| < k|b_n|$, sendo $a,k \in \mathbb{R}$ e k>0. Mostre que se $b_n \to 0$ então $\lim x_n = a$.
- 9. Seja (a_n) uma sequência qualquer e (b_n) uma sequência que convergente. Prove que a sequência $(b_n \cos(a_n))$ é limitada.
- 10. Suponha que $\lim a_n = a$, $\lim b_n = b$ e que $|a_n b_n| \ge 1$, $\forall n \in \mathbb{N}$. Mostre que $|a-b| \geq 1$.