$1^{\underline{a}}$ Prova de Fundamentos de Análise - 04/09/2023

Essa prova é composta de duas partes:

- Parte 1: Entregue 4 questões resolvidas até às 17h30. Faça apenas duas questões de cada seção abaixo.
- Parte 2: Envie a resolução de todas as questões até às 24h de sexta-feira, 08/09, para o endereço: fundamentos.analise.ufpr@gmail.com

Números Naturais e Inteiros

- 1. Sejam $a, b, c, d \in \mathbb{N}$, tais que $a \leq b$ e $c \leq d$.
 - a. Mostre, por indução, que ac < bc;
 - b. Usando o resultado provado no item a., mostre que $ac \leq bd$.
- 2. Sejam $a, b \in \mathbb{N}$. Usando apenas os axiomas de Peano e as definições de adição e multiplicação de números naturais mostre que
 - a. Se a + b = 0, prove que a = 0 e b = 0.
 - b. Se $a \cdot b = 0$, prove que a = 0 ou b = 0;
- 3. Defina a relação de ordem " \leq " no conjunto $\mathbb Z$ dos números inteiros e use esta definição para provar que esta relação de ordem é compatível com a adição e a multiplicação usual de $\mathbb Z$. Ou seja, que se $m,n\in\mathbb Z$ e $m\leq n$ então
 - a. $m + p \le n + p$, para todo $p \in \mathbb{Z}$;
 - b. $mp \leq np$, para todo $p \in \mathbb{Z}_+$;

Números Racionais e Irracionais

- 4. Faça o que se pede:
 - a. Dados a=2,12310101010... e b=-1,67001001001..., escreva a representação decimal de a+b. Justifique todos os seus argumentos.
 - b. Defina número irracional e use sua definição para construir um número irracional α tal que $1,00001 < \alpha < 1,00002$;
- 5. Faça o que se pede:
 - a. Seja r um número racional cuja a representação decimal possui apenas uma quantidade finita de casas decimais. Prove que este número pode ser escrito na forma a/b, sendo b um número inteiro positivo cuja decomposição em fatores primos possui apenas os fatores 2 e 5.
 - b. Enuncie precisamente a recíproca do resultado acima e a demonstre.
- 6. Sejam $a, b, c, d \in \mathbb{Q}$. Mostre que:
 - a. $a + b\sqrt{2}$ é um número irracional:
 - b. $a + b\sqrt{2} = c + d\sqrt{2} \Leftrightarrow a = c \in b = d$
 - c. Defina uma adição e uma multiplicação no conjunto $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\}$ que torne este conjunto fechado em relação a estas duas operações.