prof. alexandre kirilov

departamento de matemática – ufpr

English Portuguese Spanish

pesquisa

Curriculum Lattes | Grupo de Pesquisa CNPq | arXiv

 

Publications
 

  1. A. Kirilov, Wagner de Moraes and Ricardo Paleari
    Global analytic hypoellipticity for a class of evolution operators on T1×S3.
    Avaiable on arXiv: arxiv.org/abs/2001.09965 2020.
     
  2. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Global properties of vector fields on compact Lie groups in Komatsu classes. II. Normal forms
    Avaiable on arXiv: arxiv.org/abs/1911.02486 2019.
     
  3. A. Kirilov and Bruno L. Victor
    Global and Partial Fourier Series for Denjoy-Carleman Classes on the Torus
    Avaiable on arXiv: arxiv.org/abs/1910.12605 2019.
     
  4. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Global Properties of Vector Fields on Compact Lie Groups in Komatsu classes
    Avaiable on arXiv: arxiv.org/abs/1910.01922 2019.
     
  5. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Global hypoellipticity and global solvability for vector fields on compact Lie groups
    Avaiable on arXiv: arxiv.org/abs/1910.00059 2019.
     
  6. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Partial Fourier series on compact Lie groups
    Bulletin des Sciences Mathématiques, Volume 160, 102853, 2020
    DOI: https://doi.org/10.1016/j.bulsci.2020.102853
    Also avaiable on arXiv: arxiv.org/abs/1909.12824.
     
  7. Wagner de Moraes and A. Kirilov
    Global Hypoellipticity for Strongly Invariant Operators
    Journal of Mathematical Analysis and Applications, Vol. 486, Issue 1, 123878, 2020.
    DOI: https://doi.org/10.1016/j.jmaa.2020.123878
    Also avaiable on arXiv: arxiv.org/abs/1902.08237
      
  8. Fernando de Ávila and A. Kirilov
    Perturbations of globally hypoelliptic operators on closed manifolds
    Journal of Spectral Theory, v. 9, p. 825-855, 2019.
    DOI: https://doi.org/10.4171/JST/264
    Also avaiable on arXiv: arxiv.org/abs/1710.06760
     
  9. Fernando de Ávila, Rafael Gonzalez, A. Kirilov and Cléber de Medeira
    Global hypoellipticity for a class of pseudo-differential operators on the torus
    Journal of Fourier Analysis and Applications, v. 25, p. 1717-1758, 2019.
    DOI: https://doi.org/10.1007/s00041-018-09645-x
    Also avaiable on arXiv: arxiv.org/abs/1612.02033
     
  10. Alexandre Árias Jr., A. Kirilov, and Cleber de Medeira
    Global Gevrey hypoellipticity on the torus for a class of systems of complex vector fields
    Journal of Mathematical Analysis and Applications, v. 474, p. 712-732, 2019.
    DOI: https://doi.org/10.1016/j.jmaa.2019.01.074
    Also avaiable on arXiv: arxiv.org/abs/1810.01906
     
  11. Fernando de Ávila, Todor Gramchev, and A. Kirilov
    Global Hypoellipticity for First-Order Operators on Closed Smooth Manifolds
    Journal d'Analyse Mathématique, v. 135, p. 527-573, 2018.
    DOI: https://doi.org/10.1007/s11854-018-0039-6
    Also avaiable on arXiv: arxiv.org/abs/1507.08880
     
  12. Adalberto Bergamasco, Cleber de Medeira, A. Kirilov, and Sérgio Zani
    On the global solvability of involutive systems
    Journal of Mathematical Analysis and Applications, v. 444, p. 527-549, 2016.
    DOI: https://doi.org/10.1016/j.jmaa.2016.06.045
     
  13. Adalberto Bergamasco, Paulo Dattori, Rafael Gonzalez and A. Kirilov
    Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus

     Journal of Pseudo-Differential Operators and Applications , v. 6, p. 341-360, 2015.
    DOI: doi.org/10.1007/s11868-015-0121-0
     
  14. Adalberto Bergamasco, A. Kirilov, Wagner Nunes and Sérgio Zani;
    Global solutions to involutive systems

    Proceedings of the American Mathematical Society, v. 143, p. 4851-4862, 2015.
    DOI: https://doi.org/10.1090/proc/12633
     
  15. Adalberto Bergamasco, A. Kirilov, Wagner Nunes and Sérgio Zani;
    On the global solvability for overdetermined systems
    .
    Transactions of the American Mathematical Society, v. 364, p. 4533-4549, 2012.
    DOI: https://doi.org/10.1090/S0002-9947-2012-05414-6
     
  16. Roberto DeLeo, Todor Gramchev and A. Kirilov;
    Global solvability in functional spaces for smooth nonsingular vector fields in the plane
    .
    Operator Theory: Advances and Applications, Vol. 214, 191–210, 2011.
    DOI: https://doi.org/10.1007/978-3-0348-0049-5_11
    Also avaiable on arXiv: arxiv.org/abs/1001.2121
     
  17. Wanderley Cerniauskas and A. Kirilov;
    Solvability Ck near of the characteristic set for a class of vector fields of infinite type,
    Matemática Contemporânea, v. 36, p. 91-106, 2009.
    Avaiable on http://mc.sbm.org.br/docs/mc/pdf/36/a8.pdf
     
  18. Adalberto Bergamasco and A. Kirilov;
    Global solvability for a class of overdetermined systems.
    Journal of Functional Analysis, v. 252/2, p. 603-629, 2007. (pdf file)
    DOI: https://doi.org/10.1016/j.jfa.2007.03.013
     

Preprints
 

  1. Wanderley Cerniauskas, Paulo Dattori e A. Kirilov
    C^k-Solvability near the characteristic set
     
  2. A. Kirilov, Cléber de Medeira and Wagner de Moraes;
    Global Hypoellipticity and normal forms on the torus
     
  3. Fernando de Ávila, A. Kirilov and Eduardo Fernandes;
    Perturbations of s-globally hypoelliptic differential operators on torus
     
  4. Fernando de Ávila, Rafael Gonzalez, A. Kirilov and Cleber de Medeira;
    Perturbations of global hypoelliptic operators on the torus