Para finalizar o capítulo, apresentamos a seguir um resultado importante, relacionando os estimadores de Bayes a uma estatística suficiente.

Teorema 4.4.2. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição da variável aleatória X com função de densidade (ou de probabilidade) $f(x|\theta)$. Seja $T = T(X_1, \ldots, X_n)$ uma estatística suficiente para θ . Consideremos para θ a função de densidade (ou de probabilidade) $\pi(\theta)$. Então, o estimador de Bayes de θ com relação à perda quadrática é função de T.

Prova. Vamos considerar a demostração apenas para o caso em que X e θ são variáveis aleatórias contínuas. Sendo T uma estatística suficiente para θ , usando o Critério da Fatoração, podemos escrever

$$f(\mathbf{x}|\theta) = h(\mathbf{x})g_{\theta}(t(\mathbf{x})),$$

ou seja, $g_{\theta}(t(\mathbf{x}))$ depende de \mathbf{x} somente por $t(\mathbf{x})$. Podemos, então, escrever a função de densidade (ou de probabilidade) a posteriori como

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)\pi(\theta)}{\int_{\Theta} f(\mathbf{x}|\theta)\pi\theta d\theta}$$

$$\frac{h(\mathbf{x})g_{\theta}(t(\mathbf{x}))\pi(\theta)}{\int_{\Theta}h(\mathbf{x})g_{\theta}(t(\mathbf{x}))\pi(\theta)d\theta} = \frac{g_{\theta}(t(\mathbf{x}))\pi(\theta)}{\int_{\Theta}g_{\theta}(t(\mathbf{x}))\pi(\theta)d\theta},$$

de modo que a função de densidade a posteriori depende de \mathbf{x} somente através de $T = T(\mathbf{x})$. Como o estimador de Bayes de θ com relação à perda quadrática é a média da posteriori, ele dependerá de \mathbf{X} somente através de T.

O resultado do Teorema 4.4.2 vale na verdade em situações mais gerais no que diz respeito à função de perda. Na verdade qualquer que seja a função de perda considerada, o estimador de Bayes só dependerá de \mathbf{X} através de $T = T(X_1, \ldots, X_n)$, pois qualquer que seja a função de perda, o estimador de Bayes é obtido utilizando a distribuição a posteriori $\pi(\theta|\mathbf{x})$.

4.5 Exercícios

- **4.1.** Seja X uma única observação da distribuição $N(\mu, 1)$, onde $-\infty < \mu < \infty$. Considere a perda quadrática.
- (i) Encontre o risco $R(\mu, d)$ para a classe $\mathcal{D} = \{d; d(x) = cX\}$.
- (ii) Encontre, na classe \mathcal{D} , o estimador minimax de μ .
- (iii) Encontre em \mathcal{D} o estimador de Bayes de μ com relação a priori $\pi(\mu)=1/2; -1 \leq \mu \leq 1.$
- **4.2.** Seja X uma única observação da variável aleatória X com função de probabilidade

$$f(x|\theta) = \frac{2!}{x!(2-x)!} \theta^x (1-\theta)^{2-x}, \quad x = 0, 1, 2,$$

onde $0 < \theta < 1$. Considere os estimadores $d_1(X) = X/2$ e $d_2(X) = (X+1)/4$ e função de perda quadrática.

- (i) Verifique se existe um estimador uniformemente melhor (melhor para todo
- $\theta),$ ou seja, verifique se um dos estimadores é inadmissível.
- (ii) Qual dos estimadores é minimax?
- **4.3.** Considere uma única observação da variável aleatória $X \sim Binomial(m, \theta)$. Seja $l(\theta, d) = (\theta d)^2$.
- (i) Encontre o risco de d(X) = X/m.
- (ii) Encontre o risco de Bayes de d(X) em (i), com relação a priori $\pi(\theta)=1, 0\leq \theta\leq 1.$
- **4.4.** Refaça o Exercício 4.3., considerando agora a perda $l(\theta,d)=(\theta-a)^2/\theta(1-\theta).$
- **4.5.** Seja uma única observação da distribuição $Poisson(\theta)$. Encontre o risco de Bayes do estimador d(X) = X, com relação à perda quadrática e a priori $Gama(\alpha, \beta)$.
- **4.6.** Considere o problema de se estimar $\theta \in \Theta = \{0, 1\}$, baseado em uma única observação da variável aleatória X, com densidade

$$f(x|\theta) = 2^{-(x+\theta)}, \quad x = 1 - \theta, 2 - \theta, 3 - \theta, \dots$$

Considere a perda 0-1, ou seja,

$$l(0,0) = l(1,1) = 0$$
 e $l(0,1) = l(1,0) = 1$.

Considere também os estimadores

$$d_1(X) = \begin{cases} 1, & X = 0, \\ 0, & X > 0, \end{cases} \quad e \quad d_2(X) = \begin{cases} 0, & X \le 1, \\ 1, & X > 1, \end{cases}$$

- (i) Encontre $R(\theta, d_i(X)), i = 1, 2$.
- (ii) Qual dos estimadores é minimax? Alguns dos estimadores é inadmissível?
- **4.7.** Seja X uma única observação da distribuição $U(0,\theta),$ onde θ é uma variável aleatória com densidade

$$\pi(\theta) = \theta e^{-\theta}, \quad \theta > 0.$$

- (i) Encontre a densidade a posteriori de θ .
- (ii) Encontre o estimador de Bayes de θ com respeito à perda quadrática.

4.8. Seja X o tempo de vida de uma lâmpada (em mil horas) fabricada por certa companhia. Considera-se que X é uma variável aleatória com densidade

$$f(x|\theta) = \theta e^{-\theta x}, \quad x > 0.$$

Considere para θ a priori

$$\pi(\theta) = 16\theta e^{-4\theta}, \quad \theta > 0.$$

- (i) Encontre a distribuição a posteriori de θ .
- (ii) Encontre o estimador de Bayes de E(X) e Var(X) com relação à perda quadrática.
- **4.9.** Em uma área de reflorestamento, o número de árvores de determinada espécie, por hectare, com certa doença tem uma distribuição $Poisson(\theta)$. A distribuição a priori de θ é exponencial com média igual a 1. Encontre o estimador de Bayes de $P_{\theta}(X=0)$ com relação à perda quadrática..
- **4.10.** Sejam X_1, \ldots, X_n uma amostra aleatória da distribuição $U(0, \theta)$. Suponhamos que θ seja uma variável aleatória com função de densidade de probabilidade (Pareto)

$$\pi(\theta) = \begin{cases} ba^b/\theta^{b+1}, & \theta \ge a, \\ 0, & \theta < a, \end{cases}$$

Encontre a distribuição a posteriori de θ e o estimador de Bayes de θ com relação à perda quadrática.

4.11. Sejam X_1, \ldots, X_n uma amostra aleatória da variável aleatória $X \sim Bernoulli(\theta)$. Considere para θ a priori

$$\pi(\theta) = \begin{cases} 2\theta, & 0 < \theta < 1, \\ 0, & \text{caso contrário,} \end{cases}$$

Encontre o estimador de Bayes de θ com relação à perda quadrática e seu risco de Bayes.

4.12. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da densidade

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

Vamos assumir para θ a priori gama

$$\pi(\theta) = \lambda^r \theta^{r-1} e^{-\theta \lambda} / \Gamma(r),$$

onde r e λ são conhecidos. Encontre a distribuição a posteriori de θ e o estimador de Bayes de θ com relação à perda quadrática.