
Chapter 5 

Random Processes 

5.1 INTRODUCTION 

In this chapter, we introduce the concept of a random (or stochastic) process. The theory of 
random processes was first developed in connection with the study of fluctuations and noise in physi- 
cal systems. A random process is the mathematical model of an empirical process whose development 
is governed by probability laws. Random processes provides useful models for the studies of such 
diverse fields as statistical physics, communication and control, time series analysis, population 
growth, and management sciences. 

5.2 RANDOM PROCESSES 

A1. Defintion: 

A random process is a family of r.v.'s (X(t), t E T)  defined on a given probability space, indexed 
by the parameter t, where t varies over an index set T. 

Recall that a random variable is a function defined on the sample space S (Sec. 2.2). Thus, a 
random process (X(t), t E T) is really a function of two arguments {X(t, c), t E T, 5 E S}. For a fixed 
t(=tk), X(tk, 5) = Xk(c) is a r.v. denoted by X(tk), as 5 varies over the sample space S. On the other 
hand, for a fixed sample point ci E S, X(t, ci) = Xi(t) is a single function of time t, called a sample 
function or a realization of the process. The totality of all sample functions is called an ensemble. 

Of course if both 5 and t are fixed, X(t,, ci) is simply a real number. In the following we use the 
notation X(t) to represent X(t, c).. 

B. Description of a Random Process: 

In a random process (X(t), t E T}, the index set T is called the parameter set of the random 
process. The values assumed by X(t) are called states, and the set of all possible values forms the state 
space E of the random process. If the index set T of a random process is discrete, then the process is 
called a discrete-parampter (or discrete-time) process. A discrete-parameter process is also called a 
random sequence and is denoted by {X,, n = 1, 2, . . .). If T is continuous, then we have a continuous- 
parameter (or continuous-time) process. If the state space E of a random process is discrete, then the 
process is called a discrete-state process, often referred to as a chain. In this case, the state space E is 
often assumed to be (0, 1, 2, . . .). If the state space E is continuous, then we have a continuous-state 
process. 

A complex random process X(t) is defined by 

where Xl(t) and X,(t) are (real) random processes and j = ,fq. Throughout this book, all random 
processes are real random processes unless specified otherwise. 

5.3 CHARACTERIZATION OF RANDOM PROCESSES 

A. Probabilistic Descriptions: 

Consider a random process X(t). For a fixed time t,, X(t,) = X ,  is a r.v., and its cdf F,(xl; t,) is 
defined as 
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F,(xl; t,) is known as the first-order distribution of X(t). Similarly, given t, and t,, X(t,) = X, and 
X(t2) = X, represent two r.v.3. Their joint distribution is known as the second-order distribution of 
X(t) and is given by 

In general, we define the nth-order distribution of X(t) by 

FX(x1, . . . , x,; ti, . . . , t,) = P{X(tl) I xl, . . . , X(t,) 2 x,) 

If X(t) is a discrete-time process, then X(t) is specified by a collection of pmf s: 

px(xl, . . . , Xn ; tl, . . . , t,) = P{X(tl) = XI, . . . , X(t,) = x,} (5.4) 

If X(t) is a continuous-time process, then X(t) is specified by a collection of pdf s: 

The complete characterization of X(t) requires knowledge of all the distributions as n + co. Fortu- 
nately, often much less is sufficient. 

B. Mean, Correlation, and Covariance Functions: 

As in the case of r.v.3, random processes are often described by using statistical averages. 
The mean of X(t) is defined by 

where X(t) is treated as a random variable for a fixed value of t. In general, p,(t) is a function of time, 
and it is often called the ensemble average of X(t). A measure of dependence among the r.v.'s of X(t) is 
provided by its autocorrelation function, defined by 

Rx(t, s) = ECX(t)X(s)l (5.7) 

Note that 

RX@, s) = Rx(s, t) (5.8) 

and Rx(~, t) = ECX2(t)l (5.9) 

The autocovariance function of X(t) is defined by 

KXV, s) = CovCX(t), X(s)l = E{CX(t) - px(t)lCX(s) - Px(s)l> 
= Rx(t, s) - Px(t)Px(s) (5.1 0) 

It is clear that if the mean of X(t) is zero, then Kx(t, s) = Rx(t, s). Note that the variance of X(t) is 
given by 

If X(t) is a complex random process, then its autocorrelation function Rx(t, s) and autocovariance 
function Kx(t, s) are defined, respectively, by 

5.4 CLASSIFICATION OF RANDOM PROCESSES 

If a random process X(t) possesses some special probabilistic structure, we can specify less to 
characterize X(t) completely. Some simple random processes are characterized completely by only the 
first- and second-order distributions. 
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A. Stationary Processes: 

A random process {X(t), t E T) is said to be stationary or strict-sense stationary if, for all n and 
for every set of time instants (t, E T, i = 1,2, . . . , n), 

for any 2. Hence, the distribution of a stationary process will be unaffected by a shift in the time 
origin, and X(t) and X(t + 2) will have the same distributions for any z. Thus, for the first-order 
distribution, 

FX(x; t) = FX(x; t + 2) = FAX) 

and fAx; t) = fx(x) 

Then Px(t) = ECX(t)l = P 

Var[X(t)J = a2 

where p and a2 are contants. Similarly, for the second-order distribution, 

F x h  x2; t1, t2) = Fx(x1, x2; t2 - t1) (5.1 9) 

and fx(% X2; tl, t2) = fx (~ l ,  ~ 2 ;  t2 - tl) (5.20) 

Nonstationary processes are characterized by distributions depending on the points t,, t, , . . . , tn . 

B. Wide-Sense Stationary Processes : 

If stationary condition (5.14) of a random process X(t) does not hold for all n but holds for n 5 k, 
then we say that the process X(t) is stationary to order k. If X(t) is stationary to order 2, then X(t) is 
said to be wide-sense stationary (WSS) or weak stationary. If X(t) is a WSS random process, then we 
have 

1. E[X(t)] = p (constant) 

2. Rx(t, S) = E[X(t)X(s)] = Rx( ( s - t 1 ) 
Note that a strict-sense stationary process is also a WSS process, but, in general, the converse is not 
true. 

C. Independent Processes: 

In a random process X(t), if X(ti) for i = 1,2, . . . , n are independent r.v.'s, so that for n = 2,3, . . . , 
n 

FJX~,  . . . , xn; t,, . . . , t,) = n F~(X,;  ti) 
i =  1 

then we call X(t) an independent random process. Thus, a first-order distribution is sufficient to charac- 
terize an independent random process X(t). 

D. Processes with Stationary Independent Increments: 

A random process {X(t), t 2 0) is said to have independent increments if whenever 0 < t, < t, < 
... < t,, 

X(O), X(t1) - X(O), X(t2) - X(tl), . . X(tn) - X(tn- 1) 
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are independent. If {X(t), t 2 0) has independent increments and X(t) - X(s) has the same distribu- 
tion as X(t + h) - X(s + h) for all s, t, h 2 0, s < t, then the process X(t) is said to have stationary 
independent increments. 

Let {X(t), t 2 0) be a random process with stationary independent increments and assume that 
X(0) = 0. Then (Probs. 5.21 and 5.22) 

where p, = E[X(l)] and 

where a12 = Var[X(l)]. 
From Eq. (5.24), we see that processes with stationary independent increments are nonstationary. 

Examples of processes with stationary independent increments are Poisson processes and Wiener 
processes, which are discussed in later sections. 

E. Markov Processes: 

A random process (X(t), t E 7') is said to be a Markov process if 

whenever t1 < t2 < < t, < t,,,. 
A discrete-state Markov process is called a Markov chain. For a discrete-parameter Markov 

chain {X,, n 2 0) (see Sec. 5.5), we have for every n 

P(X,+, = j ( X ,  = i,, Xi = i,, ..., Xn = i) = P(Xn+, = j lXn = i) (5.27) 

Equation (5.26) or Eq. (5.27) is referred to as the Markov property (which is also known as the 
memoryless property). This property of a Markov process states that the future state of the process 
depends only on the present state and not on the past history. Clearly, any process with independent 
increments is a Markov process. 

Using the Markov property, the nth-order distribution of a Markov process X(t) can be 
expressed as (Prob. 5.25) 

Thus, all finite-order distributions of a Markov process 
distributions. 

p{X(tk) 2 ~ k )  I X(tk - 1) = xk - I )  (5.28) 

can be expressed in terms of the second-order 

F. Normal Processes : 

A random process {X(t), t E T) is said to be a normal (or gaussian) process if for any integer n 
and any subset (t,, . . ., t,) of T, the n r.v.'s X(tl), ..., X(t,) are jointly normally distributed in the 
sense that their joint characteristic function is given by 

where w,, . .., on are any real numbers (see Probs. 5.59 and 5.60). Equation (5.29) shows that a 
normal process is completely characterized by the second-order distributions. Thus, if a normal 
process is wide-sense stationary, then it is also strictly stationary. 
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G. Ergodic Processes : 

Consider a random process {X(t), - co < t < co) with a typical sample function x(t). The time 
average of x(t) is defined as 

Similarly, the time autocorrelation function Rx(7) of x(t) is defined as 

A random process is said to be ergodic if it has the property that the time averages of sample 
functions of the process are equal to the corresponding statistical or ensemble averages. The subject 
of ergodicity is extremely complicated. However, in most physical applications, it is assumed that 
stationary processes are ergodic. 

5.5 DISCRETE-PARAMETER MARKOV CHAINS 

In this section we treat a discrete-parameter Markov chain {X,, n 2 0) with a discrete state 
space E = (0, 1, 2, . . .), where this set may be finite or infinite. If X, = i, then the Markov chain is 
said to be in state i at time n (or the nth step). A discrete-parameter Markov chain { X , ,  n 2 0) is 
characterized by [Eq. (5.2711 

P(Xn+l = j J X o  = io, Xi = i,, ..., X, = i) = P(X,+, = j JX ,  = i) (5.32) 

where P(x,+ , = j 1 X, = i) are known as one-step transition probabilities. If P{x, + , = j 1 X, = i} is 
independent of n, then the Markov chain is said to possess stationary transition probabilities and the 
process is referred to as a homogeneous Markov chain. Otherwise the process is known as a nonhomo- 
geneous Markov chain. Note that the concepts of a Markov chain's having stationary transition 
probabilities and being a stationary random process should not be confused. The Markov process, in 
general, is not stationary. We shall consider only homogeneous Markov chains in this section. 

A. Transition Probability Matrix : 

Let (X,, n 2 0) be a homogeneous Markov chain with a discrete infinite state space E = (0, 1, 
2, . . .). Then 

regardless of the value of n. A transition probability matrix of (X,, n 2 0) is defined by 

where the elements satisfy 
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In the case where the state space E is finite and equal to (1, 2, . . . , m), P is m x m dimensional; that is, 

where 

A square matrix whose elements satisfy Eq. (5.34) or (5.35) is called a Markov matrix or stochastic 
matrix. 

B. Higher-Order Transition Probabilities-Chapman-Kolmogorov Equation: 

Tractability of Markov chain models is based on the fact that the probability distribution of 
(X,, n 2 0) can be computed by matrix manipulations. 

Let P = pi,] be the transition probability matrix of a Markov chain {X,, n 2 0). Matrix powers 
of P are defined by 

with the (i, j)th element given by 

Note that when the state space E is infinite, the series above converges, since by Eq. (5.34), 

Similarly, p3 = P P ~  has the (i, j)th element 

and in general, Pn + = PPn has the (i, j)th element 

Finally, we define PO = I, where I is the identity matrix. 
The n-step transition probabilities for the homogeneous Markov chain (X,, n 2 0) are defined 

by 

Then we can show that (Prob. 5.70) 

We compute p i p 1  by taking matrix powers. 
The matrix identity 

when written in terms of elements 
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is known as the Chapman-Kolmogorou equation. It expresses the fact that a transition from i to j in 
n + m steps can be achieved by moving from i to an intermediate k in n steps (with probability pik(n)), 
and then proceeding to j from k in m steps (with probability p,]")). Furthermore, the events "go from i 
to k in n steps" and "go from k to j in m steps" are independent. Hence the probability of the 
transition from i to j in n + rn steps via i, k, j is pik(")pk]"). Finally, the probability of the transition 
from i to j is obtained by summing over the intermediate state k. 

C. The Probability Distribution of {X, , n 2 0) : 

Let pi(n) = P(X, = i) and 

Then pi(0) = P(Xo = i) are the initial-state probabilities, 

is called the initial-state probability vector, and p(n) is called the state probability vector after n tran- 
sitions or the probability distribution of X,. Now it can be shown that (Prob. 5.29) 

which indicates that the probability distribution of a homogeneous Markov chain is completely 
determined by the one-step transition probability matrix P and the initial-state probability vector 
HO). 

D. Classification of States: 

1. Accessible States : 

State j is said to be accessible from state i if for some n 2 0, pi,.('" z 0, and we write i -+ j. Two 
states i and j accessible to each other are said to communicate, and we write i-j. If all states commu- 
nicate with each other, then we say that the Markov chain is irreducible. 

2. Recurrent States: 

Let be the time (or the number of steps) of the first visit to state j after time zero, unless state j 
is never visited, in which case we set T j  = oo. Then IT;. is a discrete r.v. taking values in (1, 2, . . . , m}. 
Let 

f ; : ~ m ) = ~ ( T , = m l ~ , = i ) = ~ ( ~ , = j , ~ , # j , k = l , 2  ,..., m - l l X o = i )  (5.40) 

and&iO) = 0 since 7 j  2 1.  Then 

and 

The probability of visiting j in finite time, starting from i, is given by 

Now state j is said to be recurrent if 

f j j = P ( T , <  coIX,=j)= 1 
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That is, starting from j, the probability of eventual return to j is one. A recurrent state j is said to be 
positive recurrent if 

E ( q I X o  = j )  < co (5.45) 

and state j is said to be null recurrent if 

E ( q T ; . X o = j ) =  co 

Note that 

3. Transient States: 

State j is said to be transient (or nonrecurrent) if 

f j j = P ( q <  c o I X o = j ) <  1 

In this case there is positive probability of never returning t~ state j. 

4. Periodic and Aperiodic States : 

We define the period of state j to be 

where gcd stands for greatest common divisor. 
If d(j)  > 1, then state j is called periodic with period d(j). If d( j )  = 1, then state j is called aperiodic. 

Note that whenever pjj > 0, j is aperiodic. 

5. Absorbing States: 

State j is said to be an absorbing state if pjj = 1 ; that is, once state j is reached, it is never left. 

E. Absorption Probabilities: 

Consider a Markov chain X(n) = { X , ,  n 2 0) with finite state space E = (1, 2, . . . , N )  and tran- 
sition probability matrix P. Let A = (1, . . . , m) be the set of absorbing states and B = {m + 1, . . . , N )  
be a set of nonabsorbing states. Then the transition probability matrix P can be expressed as 

where I is an m x m identity matrix, 0 is an m x ( N  - m) zero matrix, and 

Note that the elements of R are the one-step transition probabilities from nonabsorbing to absorbing 
states, and the elements of Q are the one-step transition probabilities among the nonabsorbing states. 
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Let U = [ukj], where 

RANDOM PROCESSES 

ukj = P{X, = j ( ~  A) I X ,  = k ( ~  B)} 

It is seen that U is an (N - m) x m matrix and its elements are the absorption probabilities for the 
various absorbing states. Then it can be shown that (Prob. 5.40) 

U = (I - Q)-'R = (DR (5.50) 

The matrix (D = (I - Q)-' is known as the fundamental matrix of the Markov chain X(n). Let T, 
denote the total time units (or steps) to absorption from state k. Let 

Then it can be shown that (Prob. 5.74) 

where 4ki is the (k, i)th element of the fundamental matrix 0. 

F. Stationary Distributions: 

Let P be the transition probability matrix of a homogeneous Markov chain {X,, n 2 0). 
exists a probability vector p such that 

fiP = fi 

If there 

then p is called a stationary distribution for the Markov chain. Equation (5.52) indicates that a sta- 
tionary distribution p is a (left) eigenvector of P with eigenvalue 1. Note that any nonzero multiple of B 
is also an eigenvector of P. But the stationary distribution p is fixed by being a probability vector; 
that is, its components sum to unity. 

G. Limiting Distributions: 

A Markov chain is called regular if there is a finite positive integer m such that after m time-steps, 
every state has a nonzero chance of being occupied, no matter what the initial state. Let A > 0 
denote that every element aij of A satisfies the condition aij > 0. Then, for a regular Markov chain 
with transition probability matrix P, there exists an m > 0 such that Pm > 0. For a regular homoge- 
neous Markov chain we have the following theorem: 

THEOREM 5.5.1 

Let {X,, n 2 0) be a regular homogeneous finite-state Markov chain with transition matrix P. 
Then 

lim Pn = 
n+m 

where is a matrix whose rows are identical and equal to the stationary distribution p for the 
Markov chain defined by Eq. (5.52). 

5.6 POISSON PROCESSES 

A. Definitions: 

Let t represent a time variable. Suppose an experiment begins at t = 0. Events of a particular 
kind occur randomly, the first at TI, the second at T2, and so on. The r.v. IT;. denotes the time at which 
the ith event occurs, and the values ti of (i = 1,2, . . .) are called points of occurrence (Fig. 5-1). 
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0 5 5 ttl- 1 

Fig. 5-1 

Let Z, = T, - T,-, (5.54) 

and To = 0. Then Z, denotes the time between the (n - 1)st and the nth events (Fig. 5-1). The 
sequence of ordered r.v.'s { Z , ,  n 2 1) is sometimes called an interarrival process. If all r.v.'s Z, are 
independent and identically distributed, then {Z,, n 2 1) is called a renewal process or a recurrent 
process. From Eq. (5.54), we see that 

where T, denotes the time from the beginning until the occurrence of the nth event. Thus, (T,,  n 2 0) 
is sometimes called an arrival process. 

B. Counting Processes : 

A random process {X(t), t 2 0) is said to be a counting process if X(t) represents the total number 
of "events" that have occurred in the interval (0, t). From its definition, we see that for a counting 
process, X(t) must satisfy the following conditions: 

1. X(t) 2 0 and X(0) = 0. 
2. X(t) is integer valued. 
3. X(s) ~ X ( t ) i f s  < t. 
4. X(t) - X(s) equals the number of events that have occurred on the interval (s, t). 

A typical sample function (or realization) of X(t) is shown in Fig. 5-2. 
A counting process X(t) is said to possess independent increments if the numbers of events which 

occur in disjoint time intervals are independent. A counting process X(t) is said to possess stationary 
increments if the number of events in the interval (s + h, t + h)--that is, X(t + h) - X(s + h e h a s  the 
same distribution as the number of events in the interval (s, t)--that is, X(t) - X(s)--for all s < t and 
h > 0. 

Fig. 5-2 A sample function of a counting process. 

C. Poisson Processes: 

One of the most important types of counting processes is the Poisson process (or Poisson counting 
process), which is defined as follows: 
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DEFINITION 5.6.1 

A counting process X(t) is said to be a Poisson process with rate (or intensity) 1(> 0) if 

X(t) has independent increments. 
The number of events in any interval of length t is Poisson distributed with mean At; that is, for 
all s, t > 0, 

It follows from condition 3 of Def. 5.6.1 that a Poisson process has stationary increments and that 

E[X(t)] = At 

Then by Eq. (2.43) (Sec. 2.7C), we have 

Var[X(t)] = At 

Thus, the expected number of events in the unit interval (0, I), or any other interval of unit length, is 
just A (hence the name of the rate or intensity). 

An alternative definition of a Poisson process is given as follows : 

DEFINITION 5.6.2 

A counting process X(t) is said to be a Poisson process with rate (or intensity) A(>O) if 

1. X(0) = 0. 

2. X(t) has independent and stationary increments. 
3. P[X(t + At) - X(t) = 11 = A At + o(At) 

4. P[X(t + At) - X(t) 2 21 = o(At) 

where o(At) is a function of At which goes to zero faster than does At; that is, 

o m )  lim - - - 0 
at-o At 

Note : Since addition or multiplication by a scalar does not change the property of approaching zero, 
even when divided by At, o(At) satisfies useful identities such as o(At) + o(At) = o(At) and 
ao(At) = o(At) for all constant a. 

It can be shown that Def. 5.6.1 and Def. 5.6.2 are equivalent (Prob. 5.49). Note that from condi- 
tions 3 and 4 of Def. 5.6.2, we have (Prob. 5.50) 

P[X(t + At) - X(t) = 0] = 1 - 1 At + o(At) (5.59) 

Equation (5.59) states that the probability that no event occurs in any short interval approaches unity 
as the duration of the interval approaches zero. It can be shown that in the Poisson process, the 
intervals between successive events are independent and identically distributed exponential r.v.'s 
(Prob. 5.53). Thus, we also identify the Poisson process as a renewal process with exponentially 
distributed intervals. 

The autocorrelation function Rx(t, s) and the autocovariance function Kdt, s) of a Poisson 
process X(t) with rate 1 are given by (Prob. 5.52) 
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5.7 WIENER PROCESSES 

Another example of random processes with independent stationary increments is a Wiener process. 

DEFINITION 5.7.1 

A random process (X(t), t 2 0) is called a Wiener process if 

1. X(t) has stationary independent increments. 

2. The increment X(t) - X(s) (t > s) is normally distributed. 
3. E[X(t)J = O .  

4. X(0) = 0. 

The Wiener process is also known as the Brownian motion process, since it originates as a model for 
Brownian motion, the motion of particles suspended in a fluid. From Def. 5.7.1, we can verify that a 
Wiener process is a normal process (Prob. 5.61) and 

where a2 is a parameter of the Wiener process which must be determined from observations. When 
a2 = 1, X(t) is called a standard Wiener (or standard Brownian motion) process. 

The autocorrelation function Rx(t, s) and the autocovariance function K,(t, s) of a Wiener 
process X(t) are given by (see Prob. 5.23) 

DEFINITION 5.7.2 

A random process (X(t), t 2 0) is called a Wiener process with drift coeficient p if 

1. X(t) has stationary independent increments. 
2. X(t) is normally distributed with mean pt. 
3. X(0) = 0. 

From condition 2, the pdf of a standard Wiener process with drift coefficient p is given by 
4 

Solved Problems 

RANDOM PROCESSES 

5.1. Let XI, X,, . . . be independent Bernoulli r.v.'s (Sec. 2.7A) with P(X,  = 1) = p and P(X, = 0) = 
q = 1 - p for all n. The collection of r.v.'s (X,, n 2 1) is a random process, and it is called a 
Bernoulli process. 

(a) Describe the Bernoulli process. 

(b) Construct a typical sample sequence of the Bernoulli process. 

(a) The Bernoulli process {X,, n 2 1) is a discrete-parameter, discrete-state process. The state space is 
E = (0, I) ,  and the index set is T = {1,2, . . .). 
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(b) A sample sequence of the Bernoulli process can be obtained by tossing a coin consecutively. If a head 
appears, we assign 1, and if a tail appears, we assign 0. Thus, for instance, 

n 1 2 3 4 5 6 7 8 9 1 0 . - .  
Coin tossing H T T H H H T H H T . . . 

xn 1 0 0 1 1 1 0 1 1 0 ~ ~ ~  

The sample sequence {x,} obtained above is plotted in Fig. 5-3. 

5.2. Let Z,, Z , ,  . . . be independent identically distributed r.v.'s with P(Zn = 1) = p and 
P(Z,  = - 1) = q = 1 - p for all n. Let 

I -  

and X, = 0. The collection of r.v.'s {X,, n > 0 )  is a random process, and it is called the simple 
random walk X(n) in one dimension. 

0  0 . .  0 .  

(a) Describe the simple random walk X(n). 
(b) Construct a typical sample sequence (or realization) of X(n). 

I A I I A I I )  - 
0 2 4 6 8 10 n 

Fig. 5-3 A sample function of a Bernoulli process. 

(a) The simple random walk X(n) is a discrete-parameter (or time), discrete-state random process. The 
state space is E = (. . . , -2, - 1,0, 1, 2,. . .), and the index parameter set is T = (0, 1,2, . . .). 

(b) A sample sequence x(n) of a simple random walk X(n) can be produced by tossing a coin every second 
and letting x(n) increase by unity if a head appears and decrease by unity if a tail appears. Thus, for 
instance, 

n 0 1 2  3 4 5 6 7 8 9 10 
Coin tossing H T T H H H T H H T - m e  

x(n) 0 1 0 - 1 0 1 2 1 2 3 2 - a .  

The sample sequence x(n) obtained above is plotted in Fig. 5-4. The simple random walk X(n) specified 
in this problem is said to be unrestricted because there are no bounds on the possible values of X, . 
The simple random walk process is often used in the following primitive gambling model: 

Toss a coin. If a head appears, you win one dollar; if a tail appears, you lose one dollar (see 
Prob. 5.38). 

5.3. Let (x,, n 2 0) be a simple random walk of Prob. 5.2. Now let the random process X(t) be 
defined by 

X( t )=Xn n < t < n + l  

(a) Describe X(t). 

(b) Construct a typical sample function of X(t). 

(a) The random process X(t) is a continuous-parameter (or time), discrete-state random process. The state 
space is E = {. . . , -2, - 1,0, 1,2,. . .}, and the index parameter set is T = (t, t 2 0). 

(b) A sample function x(t) of X(t) corresponding to Fig. 5-4 is shown in Fig. 5-5. 
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Fig. 5-4 A sample function of a random walk. 

Fig. 5-5 

Consider a random process X(t) defined by 

X(t) = Y cos o t  t 2 0 

where o is a constant and Y is a uniform r.v. over (0, 1). 

(a) Describe X(t). 

(b) Sketch a few typical sample functions of X(t). 

(a) The random process X(t) is a continuous-parameter (or time), continuous-state random process. The 
state space is E = {x: - 1 < x < 1) and the index parameter set is T = {t: t 2 0). 

(b) Three sample functions of X(t) are sketched in Fig. 5-6. 

Consider patients coming to a doctor's office at random points in time. Let X, denote the time 
(in hours) that the nth patient has to wait in the office before being admitted to see the doctor. 

(a) Describe the random process X(n) = {X,, n 2 1). 

(b) Construct a typical sample function of X(n). 

(a) The random process X(n) is a discrete-parameter, continuous-state random process. The state space is 
E = {x: x 2 0)' and the index parameter set is T = (1'2, . . .). 

(b) A sample function x(n) of X(n) is shown in Fig. 5-7. 

CHARACTERIZATION OF RANDOM PROCESSES 

5.6. Consider the Bernoulli process of Prob. 5.1. Determine the probability of occurrence of the 
sample sequence obtained in part (b) of Prob. 5.1. 
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Fig. 5-6 

Since X,'s are independent, we have 

P(X1 = xl, X2 = x,, . . . , X, = x,) = P(Xl = x,)P(X, = x,) . . P(X, = x,) (5.67) 

Thus, for the sample sequence of Fig. 5-3, 

P(xl  = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 0, xs = 1, x9 = 1, Xl0 = 0) = p6q4 

2 4 6 8 

Fig. 5-7 
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5.7. Consider the random process X( t )  of Prob. 5.4. Determine the pdf s of X(t )  at t = 0, n/4w, 4 2 w ,  
n/w. 

For t = 0, X(0) = Y cos 0  = Y. Thus, 

For t = rr/4o, X(n/4o) = Y cos n/4 = 1/$ Y. Thus, 

O < x < l / J Z  
otherwise 

For t = 4 2 0 ,  X(zl2o) = Y cos n/2 = 0; that is, X(n/20) = 0  irrespective of the value of Y. Thus, the 
pmf of X(o/2o) is 

1 - l < x < O  
0  otherwise 

5.8. Derive the first-order probability distribution of the simple random walk X(n) of Prob. 5.2. 

The first-order probability distribution of the simple random walk X(n) is given by 

where k is an integer. Note that P ( X o  = 0) = 1. We note that p,(k) = 0 if n < 1 k 1 because the simple random 
walk cannot get to level k in less than I k I steps. Thus, n 2 1 k I. 

Let Nnf and N,- be the r.v.'s denoting the numbers of + 1s and - Is, respectively, in the first n steps. 
Then 

Adding Eqs. (5.68) and (5.69), we get 

N n t  = $(n + X,) (5.70) 

Thus, X, = k if and only if N,+ = i ( n  + k). From Eq. (5.70), we note that 2N,+ = n + X, must be even. 
Thus, X, must be even if n is even, and X, must be odd if n is odd. We note that N,+ is a binomial r.v. with 
parameters (n, p). Thus, by Eq. (2.36), we obtain 

where n 2 ( k 1, and n and k are either both even or both odd. 

5.9. Consider the simple random walk X(n)  of Prob. 5.2. 

(a)  Find the probability that X(n)  = - 2 after four steps. 

(b) Verify the result of part (a)  by enumerating all possible sample sequences that lead to the 
value X(n)  = - 2 after four steps. 

(a) Setting k = -2 and n = 4 in Eq. (5.71), we obtain 
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Fig. 5-8 

(b) All possible sample functions that lead to the value X, = -2 after 4 steps are shown in Fig. 5-8. For 
each sample sequence, P(X, = -2) = pq3. There are only four sample functions that lead to the value 
X, = -- 2 after four steps. Thus P(X, = - 2) = 4pq3. 

5.10 Find the mean and variance of the simple random walk X(n) of Prob. 5.2. 

From Eq. (5.66), we have 

and X, = 0 and 2, (n = 1,2, . . .) are independent and identically distributed (iid) r.v.'s with 

From Eq. (5.72), we observe that 

Then, because the 2, are iid r.v.3 and Xo = 0, by Eqs. (4.108) and (4.1 12), we have 

Var(X,) = Var 1 Z, = n Var(Z,) ) 
Now 

Thus 

Hence. 

Note that if p = q = i, then 

5.11. Find the autocorrelation function R,(n, rn) of the simple random walk X(n)  of Prob. 5.2. 
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From Eq. (5.73), we can express X,  as 

where Z, = X ,  = 0 and Zi ( i  2 1 )  are iid r.v.3 with 

P(Zi = + 1 )  = p P(Z,= - l ) = q =  l - p  

i + k 

Using Eqs. (5.74) and (5.75), we obtain 

R,(n, m) = min(n, m) + [nm - min(n, m)](p - q)2 

m+(nm-m)(p-q)2 m < n  
Rx(n, m) = n + (nm - nKp - q)2 n < m 

Note that i f p  = q = 3, then 

Rx(n, m) = min(n, m) n, m > 0 

5.12. Consider the random process X( t )  of Prob. 5.4; that is, 

X ( t ) = Y c o s o t  t 2 O  

where cu is a constant and Y is a uniform r.v. over (0, 1). 

(a)  Find E[X(t )] .  

(b)  Find the autocorrelation function R,(t, s) of X(t). 

(c)  Find the autocovariance function Kx(t, s) of X(t). 

(a) From Eqs. (2.46) and (2.91), we have E(Y) = 4 and E(y2)  = 4. Thus 

E[X(t)] = E(Y cos o t )  = E(Y) cos a t  = 4 cos o t  

(b)  By Eq. (5.7), we have 

R,(t, s) = E[X(t)X(s)] = E(Y2 cos wt cos U S )  

= E ( Y ~ )  cos wt cos U S  = 3 cos o t  cos U S  

(c) By Eq. @.lo), we have 

Kx(t, s) = Rdt,  s) - ECX(t)lECX(s)l 
= 4 COS Ot COS U S  - 3 cos o t  cos o s  
= COS Ot COS U S  

5.13. Consider a discrete-parameter random process X(n) = { X , ,  n 2 1 )  where the X i s  are iid r.v.'s 
with common cdf F,(x), mean p, and variance a2. 

(a) Find the joint cdf of X(n). 

(b)  Find the mean of X(n). 

(c)  Find the autocorrelation function R d n ,  m) of X(n). 

( d )  Find the autocovariance function Kx(n, m) of X(n). 
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(a) Since the X,'s are iid r.v.'s with common cdf FX(x), the joint cdf of X(n) is given by 

(b) The mean of X(n) is 

px(n) = E(Xn) = p for all n 

(c) If n # m, by Eqs. (5.7) and (5.90), 

Rx(n, m) = E(Xn X,) = E(X,)E(X,) = p2 

If n = m, then by Eq. (2.31), 

Hence, 

(4 BY Eq. ( 5 . m  

CLASSIFICATION OF RANDOM PROCESSES 

5.14. Show that a random process which is stationary to order n is also stationary to all orders lower 
than n. 

Assume that Eq. (5.14) holds for some particular n;  that is, 

for any z. Letting x, -, a, we have [see Eq. (3.63)] 

and the process is stationary to order n - 1. Continuing the same procedure, we see that the process is 
stationary to all orders lower than n. 

5.15. Show that if {X(t), t E T )  is a strict-sense stationary random process, then it is also WSS. 

Since X(t) is strict-sense stationary, the first- and second-order distributions are invariant through time 
translation for all T E T. Then we have 

px(t) = E[X(t)] = E[X(t + T)] = px(t + t )  

and hence the mean function pdt) must be constant; that is, 

Similarly, we have 

E[X(t)] = p (constant) 

E[X(s)X(t)] = E[X(s + z)X(t + T)] 

so that the autocorrelation function would depend on the time points s and t only through the difference 
( t - s 1 .  Thus, X(t) is WSS. 

5.16. Let (x,, n 2 0) be a sequence of iid r.v.'s with mean 0 and variance 1. Show that (X,, n 2 O} is 
a WSS process. 

By Eq. (5.90), 

E(Xn) = 0 (constant) for all n 
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which depends only on k. Thus, (X,} is a WSS process. 

5.17. Show that if a random process X( t )  is WSS, then it must also be covariance stationary. 

If X(t) is WSS, then 

E[X(t)] = p (constant) for all t 

Rx(t, t + r)] = Rx(7) for all t 

NOW Kx(t, t + T) = Cov[X(t)X(t + T)] = Rx(t, t + z) - E[X(t)]E[X(t + z)] 
= R,(z) - p2 

which indicates that Kx(t, t + z) depends only on z; thus, X(t) is covariance stationary. 

5.18. Consider a random process X(t )  defined by 

X ( t ) =  U cos cot + V sin cot -a < t  < KI 

where ~ r >  is constant and U and V are r.v.'s. 

(a) Show that the condition 

E(U) = E(V) = 0 

is necessary for X(t )  to be stationary. 

(b) Show that X( t )  is WSS if and only if U and V are uncorrelated with equal variance; that is, 

E(UV) = o E ( u ~ )  = E ( v ~ )  = c2 (5.95) 

(a) Now 

px(t) = E[X(t)] = E(U) cos wt + E(V) sin cot 

must be independent of t for X(t) to be stationary. This is possible only if px(t) = 0, that is, 
E(U) = E(V) = 0. 

(6) If X(t) is WSS, then 

But X(0) = U and X(n/2w) = V; thus 

E(U2) = E(V2) = ax2 = a2 

Using the above result, we obtain 

Rx(t, t + 7) = E[X(t)X(t + T)] 
= E((U cos wt + V sin ot)[U cos o(t + z) + V sin o(t  + z)]} 
= o2 cos oz + E(UV) sin(2wt + wz) (5.96) 

which will be a function of z only if E(UV) = 0. Conversely, if E(UV) = 0 and E(U2) = E(V2) = 02, 

then from the result of part (a) and Eq. (5.96), we have 

Hence, X(t) is WSS. 
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5.19. Consider a random process X(t )  defined by 

X(t )  = U cos t + V sin t  - m < t  < 

where U and V are independent r.v.'s, each of which assumes the values -2 and 1 with the 
probabilities 4 and 3, respectively. Show that X(t )  is WSS but not strict-sense stationary. 

We have 

Since U and V are independent, 

Thus, by the results of Prob. 5.18, X(t) is WSS. To see if X(t) is strict-sense stationary, we consider E[x3(t)]. 

E[X3(t)] = E[(U cos t + V sin t)3] 
= E(U3) cos3 t + 3E(U2V) cos2 t sin t + 3E(UV2) cos t sin2 t + E(V3) sin3 t 

Now 

Thus E[X3(t)J = --2(cos3 t + sin3 t) 

which is a function of t. From Eq, (5.16), we see that all the moments of a strict-sense stationary process 
must be independent of time. Thus X(t) is not strict-sense stationary. 

5.20. Consider a random process X(t )  defined by 

X(t )  = A cos(wt + 0) - co < t  < co 

where A and w are constants and 0 is a uniform r.v. over (-71, n). Show that X(t )  is WSS. 

From Eq. (2.44), we have 

(0 otherwise 

Then cos(wt + 0) dB = 0 

Setting s = t + .t in Eq. (5.7), we have 

= A' !. [cos wr + cos(2wt + 28 + wr)] d8 
27c -, 2 

=- 
2 

cos wz 

Since the mean of X(t) is a constant and the autocorrelation of X(t) is a function of time difference only, we 
conclude that X(t) is WSS. 

5.21. Let (X( t ) ,  t  2 0 )  be a random process with stationary independent increments, and assume that 
X(0) = 0. Show that 
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where p,  = E[X(l)]. 
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Then, for any t and s and using Eq. (4.108) and the property of the stationary independent increments, we 
have 

The only solution to the above functional equation is f(t) = ct, where c is a constant. Since c = f(1) = 
E[X(l)], we obtain 

5.22. Let {X(t), t 2 0) be a random process with stationary independent increments, and assume that 
X(0) = 0. Show that 

(4 Var[X(t)] = aI2t (5.1 01) 

(4 Var[X(t) - X(s)] = a, 2(t - s) t > s (5.1 02) 

where a12 = Var[X(l)]. 

(a) Let g(t) = Var[X(t)] = Var[X(t) - X(O)] 

Then, for any t and s and using Eq. (4.1 12) and the property of the stationary independent increments, 
we get 

which is the same functional equation as Eq. (5.100). Thus, g(t) = kt, where k is a constant. Since 
k = g(1) = Var[X(l)], we obtain 

(b) Let t > s. Then 

Thus, using Eq. (5.1 Ol), we obtain 

5.23. Let {X(t), t 2 0) be a random process with stationary independent increments, and assume that 
X(0) = 0. Show that 

where a I2  = Var[X(l)]. 
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By definition (2.28), 

Thus, Cov[X(t), X(s)] = +{Var[X(t)] + var[X(s)] - Var[X(t) - X(s)l) 

Using Eqs. (3.1 01) and (5.1 02), we obtain 

$a12[t + s - (t - s)] = a12s t > s 
KX(4 s) = $a12[t + s - (S - t)] = a12t s > t 

or 

where aI2 = Var[X(l)]. 

5.24. (a) Show that a simple random walk X(n) of Prob. 5.2 is a Markov chain. 

(b) Find its one-step transition probabilities. 

(a) From Eq. (5.73) (Prob. 5.10), X(n) = {X,, n 2 0) can be expressed as 

where Z, (n = 1,2, . . .) are iid r.v.'s with 

P (Z ,=k)=ak  ( 1  - 1  and a , = p  a - , = q = l - p  

Then X(n) = {X,, n 2 0) is a Markov chain, since 

P ( X , + l = i , + l ~ X , = O , X l = i  ,,..., X,=i,) 
= P(Z,+, + in = in+,  lXo = 0, X, = i,, ..., X, = in) 
= P(Z,+l = in+, - i n )  = ain+i-in = P(X,+, = in+, IX, = in) 

since Z,+ , is independent of X,, X,, . . . , X,. 

(b) The one-step transition probabilities are given by 

k = j + l  
pjk=P(X,=klX,-I  = j ) =  1 - p  k = j - 1  

otherwise 

which do not depend on n. Thus, a simple random walk X(n) is a homogeneous Markov chain. 

5.25. Show that for a Markov process X(t), the second-order distribution is suficient to characterize 

Let X(t) be a Markov process with the nth-order distribution 

Then, using the Markov property (5.26), we have 

Applying the above relation repeatedly for lower-order distribution, we can write 
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Hence, all finite-order distributions of a Markov process can be completely determined by the second-order 
distribution. 

5.26. Show that if a normal process is WSS, then it is also strict-sense stationary. 

By Eq. (5.29), a normal random process X(t) is completely characterized by the specification of the 
mean E[X(t)] and the covariance function Kx(t, s) of the process. Suppose that X(t) is WSS. Then, by Eqs. 
(5.21) and (5.22), Eq. (5.29) becomes 

Now we translate all of the time instants t,, t,, . . . , t, by the same amount z. The joint characteristic 
function of the new r.v.'s X(ti + z), i = 1, 2, . . . , n, is then 

which indicates that the joint characteristic function (and hence the corresponding joint pdf) is unaffected by 
a shift in the. time origin. Since this result holds for any n and any set of time instants (ti E T, i = 1,2, . . . , n), 
it follows that if a normal process is WSS, then it is also strict-sense stationary. 

5.27. Let (X(t), - oo < t < oo} be a zero-mean, stationary, normal process with the autocorrelation 
function 

(0 otherwise 
Let {X( t i ) ,  i = 1,2, . . . , n) be a sequence of n samples of the process taken at the time instants 

Find the mean and the variance of the sample mean 

Since X(t) is zero-mean and stationary, we have 

and Rx(ti, tk) = E[X(ti)X(tk)] = RX(tk - ti) = Rx 

Thus 
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By Eq. (5.107), 

Thus 
1 1 

Var(&) = - [n( l )  + 2(n - l ) (3)  + 03 = - (2n - 1 )  
n2 n 

DISCRETE-PARAMETER MARKOV CHAINS 

5.28. Show that if P is a Markov matrix, then Pn is also a Markov matrix for any positive integer n. 

Let 

Then by the property of a Markov matrix [Eq. (5.391,  we can write 

where a T = [ l  1 11 

Premultiplying both sides of Eq. (5.1 11) by P, we obtain 

P2a = Pa = a  

which indicates that P2 is also a Markov matrix. Repeated premultiplication by P yields 

which shows that P" is also a Markov matrix. 

5.29. Verify Eq. (5.39); that is, 

We verify Eq. (5.39) by induction. If the state of X, is i ,  state XI  will be j only if a transition is made 
from i to j. The events {X, = i, i = 1 ,  2, . . .} are mutually exclusive, and one of them must occur. Hence, by 
the law of total probability [Eq.  (1.44)], 

In terms of vectors and matrices, Eq. (5.1 12) can be expressed as 

~ ( 1 )  = P(0)P 

Thus, Eq. (5.39) is true for n = 1. Assume now that Eq. (5.39) is true for n = k;  that is, 

PW = p W k  
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Again, by the law of total probability, 

In terms of vectors and matrices, Eq. (5.1 14) can be expressed as 

which indicates that Eq. (5.39) is true for k + 1. Hence, we conclude that Eq. (5.39) is true for all n 2 1. 

5.30. Consider a two-state Markov chain with the transition probability matrix 

(a) Show that the n-step transition probability matrix Pn is given by 

(b)  Find Pn when n -, a. 

(a) From matrix analysis, the characteristic equation of P is 

Thus, the eigenvalues of P are 1, = 1 and A, = 1 - a - b. Then, using the spectral decomposition 
method, Pn can be expressed as 

Pn = AlnE, + A2"E2 (5.1 18) 

where El and E, are constituent matrices of P, given by 

1 1 
El =- [ p  - 1211 E, =- [f'  - 1111 (5.1 19) 

1 1  - 1 2  1 2  - A 1  

Substituting 1, = 1 and 1, = 1 - a - b in the above expressions, we obtain 

Thus, by Eq. (5.1 18), we obtain 

(b) I f O < a < l , O < b < l , t h e n O <  1 - a <  1 a n d I 1 - a - b I <  l.Solimn,,(l-a-b)"=Oand 

Note that a limiting matrix exists and has the same rows (see Prob. 5.47). 

5.31. An example of a two-state Markov chain is provided by a communication network consisting of 
the sequence (or cascade) of stages of binary communication channels shown in Fig. 5-9. Here X, 
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x,, - , = 0 I - a  x,, = 0 

Fig. 5-9 Binary communication network. 

denotes the digit leaving the nth stage of the channel and X ,  denotes the digit entering the first 
stage. The transition probability matrix of this communication network is often called the 
channel matrix and is given by Eq. (5.1 16); that is, 

Assume that a = 0.1 and b = 0.2, and the initial distribution is P(X, = 0) = P(X, = 1) = 0.5. 

(a) Find the distribution of X, . 
(b) Find the distribution of X, when n -, co. 

(a) The channel matrix of the communication network is 

and the initial distribution is 

By Eq. (5.39), the distribution of X ,  is given by 

Letting a = 0.1 and b = 0.2 in Eq. (5.1 17), we get 

Thus, the distribution of Xn is 
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2 (0.7)" 
P(X, = 0) = - - - 1 (0.7)" 

and P(X, = 1) = - + - 
3 6 3 6 

(b) Since lim,,,(0.7)" = 0, the distribution of X ,  when n -, oo is 

P(X, = 0) = 3 and P(X, = 1) = 3 

Verify the transitivity property of the Markov chain ; that is, if i -+ j and j -+ k, then i -+ k. 

By definition, the relations i + j and j -, k imply that there exist integers n and m such that pip) > 0 
and pi:") > 0. Then, by the Chapman-Kolmogorov equation (5.38), we have 

= 1 pir*)prk(") 2 pij(n)pjk(m) > 0 (5.1 22) 
r 

Therefore i -, k. 

Verify Eq. (5.42). 

If the Markov chain (X,} goes from state i to state j in m steps, the first step must take the chain from i 
to some state k, where k # j. Now after that first step to k, we have m - 1 steps left, and the chain must get 
to state j, from state k, on the last of those steps. That is, the first visit to state j must occur on the (m - 1)st 
step, starting now in state k. Thus we must have 

Show that in a finite-state Markov chain, not all states can be transient. 

Suppose that the states are 0, 1, . . . , m, and suppose that they are all transient. Then by definition, after 
a finite amount of time (say To), state 0 will never be visited; after a finite amount of time (say TI), state 1 
will never be visited; and so on. Thus, after a finite time T = max{T,, TI, . . . , T,), no state will be visited. 
But as the process must be in some state after time T, we have a contradiction. Thus, we conclude that not 
all states can be transient and at least one of the states must be recurrent. 

A state transition diagram of a finite-state Markov chain is a line diagram with a vertex corre- 
sponding to each state and a directed line between two vertices i and j if pij  > 0. In such a 
diagram, if one can move from i and j by a path following the arrows, then i + j. The diagram is 
useful to determine whether a finite-state Markov chain is irreducible or not, or to check for 
periodicities. Draw the state transition diagrams and classify the states of the Markov chains 
with the following transition probability matrices: 

(a) P = 0.5 1 

[:5 I., "1 
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Fig. 5-10 State transition diagram. 

(a)  The state transition diagram of the Markov chain with P of part (a)  is shown in Fig. 5 - lqa ) .  From Fig. 
5-10(a), it is seen that the Markov chain is irreducible and aperiodic. For instance, one can get back to 
state 0 in two steps by going from 0 to 1 to 0 .  However, one can also get back to state 0 in three steps 
by going from 0 to 1 to 2 to 0 .  Hence 0 is aperiodic. Similarly, we can see that states 1 and 2 are also 
aperiodic. 

(b)  The state transition diagram of the Markov chain with P of part (b) is shown in Fig. 5-10(b). From Fig. 
5-10(b), it is seen that the Markov chain is irreducible and periodic with period 3. 

(c)  The state transition diagram of the Markov chain with P of part (c )  is shown in Fig. 5-10(c). From Fig. 
5-10(c), it is seen that the Markov chain is not irreducible, since states 0 and 4 do not communicate, 
and state 1 is absorbing. 

5.36. Consider a Markov chain with state space (0, 1)  and transition probability matrix 

(a) Show that state 0 is recurrent. 
(b) Show that state 1 is transient. 

(a)  By Eqs. (5.41) and (5.42), we have 

Then, by Eqs. (5.43), 

Thus, by definition (5.44), state 0 is recurrent. 

(b)  Similarly, we have 

00 

and f l l = P ( T l  <mIXo=l)= f l 1 ( " ) = i + O + O + - . - = ~ < 1  

Thus, by definition (5.48), state 1 is transient. 
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5.37. Consider a Markov chain with state space (0, 1,2) and transition probability matrix 

Show that state 0 is periodic with period 2. 

The characteristic equation of P is given by 

Thus, by the Cayley-Hamilton theorem (in matrix analysis), we have P3 = P. Thus, for n 2 1, 

Therefore d(0) = gcd{n 2 1 : poo(") > 0) = gcd(2, 5, 6, . . .) = 2 

Thus, state 0 is periodic with period 2. 
Note that the state transition diagram corresponding to the given P is shown in Fig. 5-11. From Fig. 

5-11, it is clear that state 0 is periodic with period 2. 

Fig. 5-11 

5.38. Let two gamblers, A and B, initially have k dollars and m dollars, respectively. Suppose that at 
each round of their game, A wins one dollar from B with probability p and loses one dollar to B 
with probability q = 1 - p. Assume that A and B play until one of them has no money left. (This 
is known as the Gambler's Ruin problem.) Let X, be A's capital after round n, where n = 0, 1, 
2, . . . and X ,  = k. 

(a) Show that X(n) = (X,, n 2 0) is a Markov chain with absorbing states. 

(b) Find its transition probability matrix P. 
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(a) The total capital of the two players at all times is 

k + m = N  

Let Z, (n 2 1) be independent r.v.3 with P(Z, = 1) = p and P(Z, = - 1 )  = q = 1 - p for all n. 
Then 

X , = X , - ,  + Z ,  n =  1,2  ,... 

and X ,  = k. The game ends when X ,  = 0  or X ,  = N. Thus, by Probs. 5.2 and 5.24, X(n) = (X,, n 2 0 )  
is a Markov chain with state space E = (0, 1, 2, ..., N), where states 0  and N are absorbing states. The 
Markov chain X(n) is also known as a simple random walk with absorbing barriers. 

(b) Since 

p,,, = P ( X , + ,  = O J X ,  = 0)= 1 
pN.,, = P(X,+I = NIX, = N) = 1 

the transition probability matrix P is 

For example, when p = q = 3 and N = 4, 

5.39. Conside :r a hom ogen .eous Markov chain X(n) = { X , ,  n 2 0 )  with a finite state spa ce E = (0, 1, 
..., N } ,  of which A = (0 ,  1 ,  ..., m), m 2 1, is a set of absorbing states and B = {rn + 1 ,  ..., N }  is 
a set of nonabsorbing states. It is assumed that at least one of the absorbing states in A is 
accessible from any nonabsorbing states in B. Show that a.bsorption of X(n) in one or another of 
the absorbing states is certain. 

If X, E A, then there is nothing to prove, since X(n) is already absorbed. Let X, E B. By assumption, 
there is at least one state in A which is accessible from any state in B. Now assume that state k E A is 
accessible from j G B. Let njk (< co) be the smallest number n such that > 0 .  For a given state j, let nj 
be the largest of njk as k varies and n' be the largest of nj as j varies. After n' steps, no matter what the initial 
state of X(n), there is a probability p > 0  that X(n) is in an absorbing state. Therefore 

and 0  < 1 - p < 1. It follows by homogeneity and the Markov property that 
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Now since lirn,, ,(l - p), = 0, we have 

lim P { X n  E B)  = 0 or lim P { X n  E B = A )  = 1 
n+ co n+ a, 

which shows that absorption of X(n) in one or another of the absorption states is certain. 

5.40. Verify Eq. (5.50). 

Let X(n) = {X, , n 2 0 )  be a homogeneous Markov chain with a finite state space E = (0 ,  1 ,  . . . , N } ,  of 
which A  = (0 ,  1 ,  . . . , m),  m 2 1 ,  is a set of absorbing states and B  = {m + 1 ,  . . . , N )  is a set of nonabsorbing 
states. Let state k E B  at the first step go to i E E with probability p,, . Then 

ukj = P{Xn = j ( ~  A) I X, = k ( ~  B)) 

Now 

Then Eq. (5.1 24) becomes 

But pk j ,  k = m + 1, ..., N ;  j = 1 ,  ..., m, are the elements of R, whereaspki, k = m + 1, ..., N ;  i = rn + 1 ,  ..., 
N  are the elements of Q [see Eq. (5.49a)I. Hence, in matrix notation, Eq. (5.125) can be expressed as 

U = R + Q U  or ( I - Q ) U = R  (5.126) 

Premultiplying both sides of the second equation of Eq. (5.126) with ( I  - Q)-' ,  we obtain 

u = ( I - Q ) - ' R = @ R  

5.41. Consider a simple random walk X(n) with absorbing barriers at state 0 and state N = 3 (see 
Prob. 5.38). 

(a) Find the transition probability matrix P. 

(b)  Find the probabilities of absorption into states 0 and 3. 

(a) The transition probability matrix P is [Eq. (5.1 23)] 

(b) Rearranging the transition probability matrix P as [Eq. (5.49a)], 
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and by Eq. (5.49b), the matrices Q and R are given by 

Then 

and 

By Eq. (5.50), 

Thus, the probabilities of absorption into state 0 from states 1 and 2 are given, respectively, by 

U I O  = - q2 and u2,=- 
1 - P9 1 - P 9  

and the probabilities of absorption into state 3 from states 1 and 2 are given, respectively, by 

p2 U I 3  = - P and u,, = - 
1 - P 9  1 - P9 

Note that 

which confirm the proposition of Prob. 5.39. 

5.42. Consider the simple random walk X(n) with absorbing barriers at 0 and 3 (Prob. 5.41). Find the 
expected time (or steps) to absorption when X ,  = 1 and when X ,  = 2. 

The fundamental matrix @ of X(n) is [Eq. (5.1 27)] 

Let be the time to absorption when X, = i. Then by Eq. (5.51), we get 

5.43. Consider the gambler's game described in Prob. 5.38. What is the probability of A's losing all his 
money? 

Let P(k), k = 0, 1, 2, . . . , N, denote the probability that A loses all his money when his initial capital is 
k dollars. Equivalently, P(k) is the probability of absorption at state 0 when X, = k in the simple random 
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walk X(n) with absorbing barriers at states 0 and N. Now if 0 < k < N, then 

P(k)=pP(k+ l )+qP(k -  1) k = 1, 2, ..., N - 1 

where pP(k + 1) is the probability that A wins the first round and subsequently loses all his money and 
qP(k - 1) is the probability that A loses the first round and subsequently loses all his money. Rewriting Eq. 
(5.130), we have 

which is a second-order homogeneous linear constant-coefficient difference equation. Next, we have 

P(0) = 1 and P(N) = 0 (5.1 32) 

since if k = 0, absorption at 0 is a sure event, and if k = N, absorption at N has occurred and absorption at 
0 is impossible. Thus, finding P(k) reduces to solving Eq. (5.131) subject to the boundary conditions given 
by Eq. (5.132). Let P(k) = r". Then Eq. (5.131) becomes 

Setting k = 1 (and noting that p + q = I), we get 

from which we get r = 1 and r = q/p. Thus, 

where c ,  and c, are arbitrary constants. Now, by Eq. (5.132), 

Solving for c, and c, , we obtain 

Hence 

Note that if N 9 k, 

Setting r = q / p  in Eq. (5.134), we have 

Thus, whenp = q = 3, 

5.44. Show that Eq. (5.1 34) is consistent with Eq. (5.1 28). 
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Substituting k = 1 and N = 3 in Eq. (5.134), and noting that p + q = 1, we have 

Now from Eq. (5.1 28), we have 

5.45. Consider the simple random walk X(n) with state space E = (0, 1, 2, . . . , N), where 0 and N are 
absorbing states (Prob. 5.38). Let r.v. T, denote the time (or number of steps) to absorption of 
X(n) when X ,  = k, k = 0, 1 ,  . . . , N. Find E(T,). 

Let Y(k) = E(G). Clearly, if k = 0 or k = N, then absorption is immediate, and we have 

Y(0) = Y(N) = 0 

Let the probability that absorption takes m steps when X, = k be defined by 

P(k, m) = P(T, = m) m = 1, 2, . . . 

Then, we have (Fig. 5-12) 

a, Q) Q) 

and Y(k) = E(T,) = 2 mP(k, m) = p x mP(k + 1, m - 1) + q C mP(k - 1, m - 1) 
m =  1 m =  1 m= 1 

Setting m - 1 = i, we get 
al 

0 1 2 3  k n 

Fig. 5-12 Simple random walk with absorbing barriers. 
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Now by the result of Prob. 5.39, we see that absorption is certain; therefore ' 

Thus Y ( k )  = pY(k + 1 )  + qY(k - 1 )  + p + q 

Rewriting Eq. (5.1 do), we have 

Thus, finding P(k) reduces to solving Eq. (5.141) subject to the boundary conditions given by Eq. (5.137). 
Let the general solution of Eq. (5.141) be 

where &(k) is the homogeneous solution satisfying 

and Y,(k) is the particular solution satisfying 

1 4 1 
Yp(k + 1 )  - - Yp(k) + - Y,(k - 1 )  = - - 

P P P 

Let Y,(k) = ak, where a is a constant. Then Eq. (5.143) becomes 

1 4  1 (k  + 1)a - - ka + - (k  - 1)a = - - 
P P  P 

from which we get a = l / (q  - p) and 

k 
Y,(k) = - 

4 - P  
P Z 4 

Since Eq. (5.142) is the same as Eq. (5.131), by Eq. (5.133), we obtain 

where c, and c2 are arbitrary constants. Hence, the general solution of Eq. (5.141) is 

Now, by Eq. (5.137), 

Y(0)  = 0 - q  + c, = o  

Solving for c ,  and c,, we obtain 

Substituting these values in Eq. (5.146), we obtain (for p # q) 

When p = q = 4, we have 

Y ( k )  = E(T,)  = k(N - k )  p = q  = 4 
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5.46. Consider a Markov chain with two states and transition probability matrix 

(a) Find the stationary distribution fi of the chain. 
(b) Find limn,, Pn. 

(a) By definition (5.52), 

p P  = p 

which yields p, = p,. Since p ,  + p,  = 1, we obtain 

P = c3 41 

(b)  NOW pn = 

and lim,, , Pn does not exist. 

5.47. Consider a Markov chain with two states and transition probability matrix 

(a) Find the stationary distribution fi of the chain. 
(b) Find limn,, Pn. 

(c) Find limn,, Pn by first evaluating Pn. 

(a) By definition (5.52); we have 

p P  = p 

or 

which yields 

 PI f 3 ~ 2  = PI 

$ P I  + 4 ~ 2  = P 2  

Each of these equations is equivalent to p ,  = 2 p 2 .  Since p ,  + p,  = 1, we obtain 

(b)  Since the Markov chain is regular, by Eq. (5.53), we obtain 
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(c) Setting a = a and b = in Eq. (5.120) (Prob. 5.30), we get 

Since limn,, (b)" = 0 ,  we obtain 

lim Pn = lim 
n-co  

POISSON PROCESSES 

5.48. Let T, denote the arrival time of the nth customer at a service station. Let 2, denote the time 
interval between the arrival of the nth customer and the (n - 1)st customer; that is, 

Z,=T,-T,-,  n r l  (5.149) 

and To = 0. Let (X(t), t 2 0) be the counting process associated with {T, ,  n 2 0). Show that if 
X(t)  has stationary increments, then Z ,  , n = 1,2, . . . , are identically distributed r.v.3. 

We have 

By Eq.  (5.149), P ( Z , > z ) =  P ( T , -  T,-,  > z ) =  P ( T , >  T,-, + z )  

Suppose that the observed value of T,-,  is t,- ,. The event (T, > T,-, + z ( T,-, = tn-  ,) occurs if and only if 
X ( t )  does not change count during the time interval ( tn-  ,, t n - ,  + z) (Fig. 5-13). Thus, 

Since X ( t )  has stationary increments, the probability on the right-hand side of Eq. (5.150) is a function only 
of the time difference z .  Thus 

which shows that the conditional distribution function on the left-hand side of Eq. (5.1 51) is independent of 
the particular value of n  in this case, and hence we have 

F,,(z) = P(Zn < Z )  = 1 - P [ X ( Z )  = 01 (5.1 52) 

which shows that the cdf of Zn is independent of n. Thus we conclude that the 2,'s are identically distrib- 
uted r.v.'s. 

0 l (2 5- 1 5 t 

Fig. 5-13 

5.49. Show that Definition 5.6.2 implies Definition 5.6.1. 

Let pn(t) = P [ X ( t )  = n] .  Then, by condition 2 of Definition 5.6.2, we have 

p,(t + At) = P [ X ( t  + At) = 01 = P [ X ( t )  = 0 ,  X ( t  + At) - X(0)  = 01 
= P [ X ( t )  = 01 P [ X ( t  + At) - X ( t )  = 01 
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Now, by Eq. (5.59), we have 

Thus, 

P[X(t + At) - X(t) = 01 = 1 - r3. At + o(At) 

po(t + At) = po(t)[l - I At + o(At)] 

Letting At + 0, and by Eq. (5.58), we obtain 

~ b ( t )  = - IP&) 

Solving the above differential equation, we get 

po(t) = ke-" 

where k is an integration constant. Since po(0) = P[X(O) = 01 = 1 ,  we obtain 

po(t) = e - At 

Similarly, for n > 0, 

pn(t + At) = P[X(t + At) = n] 
= P[X(t)  = n, X(t + At) - X(0) = 01 

n 

+ P[X(t) = n - 1,  X(t + At) - X(0) = 1) + P[X(t) = n - k, X(t + A t )  - X(0) = k]  
k = 2  

Now, by condition 4 of Definition 5.6.2, the last term in the above expression is o(At). Thus, by conditions 2 
and 3 of Definition 5.6.2, we have 

p,(t + At) = pn(t)[l - 1 At + o(At)] + p,- ,(t)[I At + o(At)] + @t) 

Thus 

and letting At -, 0 yields 

P X ~ )  + I P , ~  = Lpn - 1 ( t )  

Multiplying both sides by e", we get 

Hence 
d 
- [eapn(t)] = IeAtpn - ,(t) 
dt  

Then by Eq. (5.154), we have 

or pl(t) = (At + ~ ) e - ' ~  

where c is an integration constant. Since p,(O) = P[X(O) = 1) = 0, we obtain 

p,(t) = Ate-*' 

To show that 

we use mathematical induction. Assume that it is true for n - 1 ; that is, 
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Substituting the above expression into Eq. (5.156), we have 

Integrating, we get 

Since pn(0) = 0, c, = 0,  and we obtain 

which is Eq. (5.55) of Definition 5.6.1. Thus we conclude that Definition 5.6.2 implies Definition 5.6.1. 

5.50. Verify Eq. (5.59). 

We note first that X(t)  can assume only nonnegative integer values; therefore, the same is true for the 
counting increment X( t  + At) - X(t). Thus, summing over all possible values of the increment, we get 

00 

1 P[X( t  + At) - X( t )  = k]  = P[X( t  + At) - X( t )  = 01 
k = 0 

+ P[X( t  + At) - X(t)  = 11 + P[X( t  + At) - X( t )  2 21 
= 1 

Substituting conditions 3 and 4 of Definition 5.6.2 into the above equation, we obtain 

P[X(t  + At) - X(t)  = 0 )  = 1 - A At + o(At) 

5.51. (a) Using the Poison probability distribution in Eq. (5.158), obtain an analytical expression for 
the correction term o(At) in the expression (condition 3 of Definition 5.6.2) 

P[X(t + At) - X(t) = 11 = A At + o(At) (5.1 59) 

(b) Show that this correction term does have the property of Eq. (5.58); that is, 

o(At) lim - - - 0 
at-o At 

(a) Since the Poisson process X(t)  has stationary increments, Eq. (5.159) can be rewritten as 

P[X(At)  = 11 = p,(At) = A At + o(At) (5.1 60) 

Using Eq. (5.1 58) [or Eq. (5.1 57)], we have 

pl(At) = L At e-at  = A At(1 + - 1) 
= L At + A At(eVAAt - 1 )  

Equating the above expression with Eq. (5.160), we get 

from which we obtain 

o(At) = A At(e-"t - 1) 

(b) From Eq. (5.161), we have 

- lim lim - - A A W U t  - 1) = lim * ( ( ? - a t  - 1) = 0 
At-0 At At-0 At At-0 

5.52. Find the autocorrelation function R,(t, s) and the autocovariance function K,(t, s) of a Poisson 
process X(t) with rate 1. 
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From Eqs. (5.56) and (5.57), 

E [X(t)] = I t  Var [X(t)] = I t  

Now, the Poisson process X(t) is a random process with stationary independent increments and X(0) = 0. 
Thus, by Eq. (5.103) (Prob. 5.23), we obtain 

Kx(t, s) = o12 min(t, s) = I min(t, s) (5.1 62) 

since a12 = Var[X(l)] = I .  Next, since E[X(t)]E[X(s)] = A2ts, by Eq. (5.10), we obtain 

Rx(t, s) = I min(t, s) + 12ts (5.1 63) 

Show that the time intervals between successive events (or interarrival times) in a Poisson 
process X(t)  with rate 1 are independent and identically distributed exponential r.v.'s with 
parameter A. 

Let Z,, Z,, . . . be the r.v.'s representing the lengths of interarrival times in the Poisson process X(t). 
First, notice that { Z ,  > t )  takes place if and only if no event of the Poisson process occur in the interval 
(0, t), and thus by Eq. (5.154), 

Hence Z, is an exponential r.v. with parameter I [Eq. (2.49)]. Let f,(t) be the pdf of Z,. Then we have 

which indicates that Z, is also an exponential r.v. with parameter I and is independent of Z,. Repeating the 
same argument, we conclude that Z,, Z,, . . . are iid exponential r.v.'s with parameter I. 

Let T,, denote the time of the nth event of a Poisson process X(t) with rate A. Show that T, is a 
gamma r.v. with parameters (n, 1). 

Clearly, 

where Z,, n = 1, 2, . . . , are the interarrival times defined by Eq. (5.149). From Prob. 5.53, we know that Z, 
are iid exponential r.v.'s with parameter I .  Now, using the result of Prob. 4.33, we see that T, is a gamma 
r.v. with parameters (n, A), and its pdf is given by [Eq. (2.76)] : 

The random process {T,, n 2 1) is often called an arrival process. 

Suppose t is not a point at which an event occurs in a Poisson process X(t) with rate A. Let W(t) 
be the r.v. representing the time until the next occurrence of an event. Show that the distribution 
of W(t) is independent of t and W(t) is an exponential r.v. with parameter A. 

Let s (0 2 s < t) be the point at which the last event [say the (n - 1)st event] occurred (Fig. 5-14). The 
event (W(t) > 2) is equivalent to the event 
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0 t l  5 Y c 
II 

t,t 
t 

cll-l 
H-- W(t) -I 

Fig. 5-14 

Thus, using Eq. (5.1 64), we have 

P [ W ( t ) > z ] = P ( Z , > t - s + z I Z , > t - s )  

- - P ( Z n > t - s + z )  - e-a(t-s+r) - e-Lr 
- 

P ( Z n > t - s )  e-a(t-s) - 

and P[W(t) 2 z] = 1 - ear (5.1 66) 

which indicates that W(t) is an exponential r.v. with parameter I and is independent oft.  Note that W(t) is 
often called a waiting time. 

5.56. Patients arrive at the doctor's office according to a Poisson process with rate 1 = & minute. The 
doctor will not see a patient until at least three patients are in the waiting room. 

Find the expected waiting time until the first patient is admitted to see the doctor. 
What is the probability that nobody is admitted to see the doctor in the first hour? 

Let T, denote the arrival time of the nth patient at the doctor's office. Then 

T , = Z 1  +z, +-+zn 
where Z,, n = 1,2, . . . , are iid exponential r.v.'s with parameter I = &. By Eqs. (4.108) and (2.50), 

The expected waiting time until the first patient is admitted to see the doctor is 

E(T,) = 3(10) = 30 minutes 

Let X(t) be the Poisson process with parameter I = &. The probability that nobody is admitted to see 
the doctor in the first hour is the same as the probability that at most two patients arrive in the first 60 
minutes. Thus, by Eq. (5.53, 

P[X(60) - X(0) I 21 = P[X(60) - X(0) = 01 + P[X(60) - X(0) = 11 + P[X(60) - X(0) = 21 
- - e-60/10 + e - 6 0 / ~ o  (rn) 60 + e-60/10+(g)2 

= e-6(1 + 6 + 18) x 0.062 

T, denote the time of the nth event of a Poisson process X( t )  with rate A. Suppose that one 
event has occurred in the interval (0, t).  Show that the conditional distribution of arrival time T, 
is uniform over (0, t). 

For z I t, 

which indicates that T,  is uniform over (0, t) [see Eq. (2.45)]. 
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5.58. Consider a Poisson process X(t) with rate A, and suppose that each time an event occurs, it is 
classified as either a type 1 or a type 2 event. Suppose further that the event is classified as a type 
1 event with probability p and a type 2 event with probability 1 - p. Let X,(t) and X,(t) denote 
the number of type 1 and type 2 events, respectively, occurring in (0, t). Show that (X, ( t ) ,  t 2 0) 
and {X,(t), t 2 0) are both Poisson processes with rates Ap and A(1 - p), respectively. Further- 
more, the two processes are independent. 

We have 

First we calculate the joint probability PIXl(t) = k, X2(t) = m]. 

Note that 

P[X,(t) = k, X2(t) = m 1 X(t) = n] = 0 when n # k + m 
Thus, using Eq. (5.1 58), we obtain 

Now, given that k + m events occurred, since each event has probability p of being a type 1 event and 
probability 1 - p of being a type 2 event, it follows that 

Thus, 

Then 

which indicates that X,(t) is a Poisson process with rate Ap. Similarly, we can obtain 

and so X2(t) is a Poisson process with rate A(l - p). Finally, from Eqs. (5.170), (5.171), and (5.169), we see 
that 

Hence, Xl(t) and X2(t) are independent. 
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WIENER PROCESSES 

5.59. Let X,, . . . , X, be jointly normal r.v.'s. Show that the joint characteristic function of XI, . . . , X, 
is given by 

1 
Y,, ... xn(ol, . . . , on) = exp wi pi - - oi a, o, 

i =  1 2 i = l  k = l  

where pi = E(Xi) and aik = Cov(Xi, X,). 

Let Y = a l X ,  + a2X2 + - a .  + anXn 

By definition (4.50), the characteristic function of Y is 

Now, by the results of Prob. 4.55, we see that Y is a normal r.v. with mean and variance given by [Eqs. 
(4.108) and (4.1 1 I ) ]  

Thus, by Eq. (4.125), 

Equating Eqs. (5.176) and (5.1 73)  and setting o = 1, we get 

By replacing a,'s with mi's, we obtain Eq. (5.1 72); that is, 

1 "  " 
YXI ... X,(ol, . . . , an) = exp mi pi - - C C ai cok cik 

i =  1 2 i = l  ,'=I 

Let 

Then we can write 

and Eq. (5.1 72) can be expressed more compactly as 

5.60. Let XI, . . . , X ,  be jointly normal r.v.'s Let 

where aik (i = 1, . . ., m; j = 1, . . . , n) are constants. Show that Y,, . . ., Y, are also jointly normal 
r.v.'s. 
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Let X = 

Then Eq. (5.1 78) can be expressed as 

Y = A X  

Then the characteristic function for Y can be written as 

Since X is a normal random vector, by Eq. (5.1 77) we can write 

Thus 

Yx(ATm) = e ~ p [ j ( A ~ m ) ~ p ~  - 3(AT~)TKX(ATw)] 
= exp[ joTAp, - $wTAKx A T 4  

Yda , ,  . . . , a,) = exp(jwTpy - $mTKy a )  

where = K~ = A K ~  

Comparing Eqs. (5.1 77) and (5.180), we see that Eq. (5.180) is the characteristic function of a random vector 
Y. Hence, we conclude that Y,, . . . , Ym are also jointly normal r.v.'s 

Note that on the basis of the above result, we can say that a random process {X(t), t E T) is a normal 
process if every finite linear combination of the r.v.'s X(ti), ti E T is normally distributed. 

5.61. Show that a Wiener process X(t)  is a normal process. 

Consider an arbitrary linear combination 

where 0 5 t, < - - - < tn and ai are real constants. Now we write 
n 

aiX(ti) = (a, + . . . + a,)[X(tl) - X(O)] + (a, + . + a,)[X(t,) - X(tl)] 
i =  1 

Now from conditions 1 and 2 of Definition 5.7.1, the right-hand side of Eq. (5.183) is a linear combination 
of independent normal r.v.3. Thus, based on the result of Prob. 5.60, the left-hand side of Eq. (5.183) is also 
a normal r.v.; that is, every finite linear combination of the r.v.'s X(ti) is a normal r.v. Thus we conclude that 
the Wiener process X(t) is a normal process. 

5.62. A random process {X( t ) ,  t E T )  is .said to be continuous in probability if for every 8 > 0 and t E T ,  

lim P( ( X(t + h) - X(t)  I > E )  = 0 
h+O 

Show that a Wiener process X(t)  is continuous in probability. 

From Chebyshev inequality (2.97), we have 

Var[X(t + h) - X(t)] 
P( I X(t + h) - X(t) I > E }  I E > 0 

&2 
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Since X(t) has stationary increments, we have 

Var[X(t + h) - X(t)] = Var[X(h)] = a2h 

in view of Eq. (5.63). Hence, 

a2h 
lim P{ I X(t + h) - X(t) I > E )  = lim - = 0 
h - 0  h - r O  gZ 

Thus the Wiener process X(t) is continuous in probability. 

Supplementary Problems 

5.63. Consider a random process X(n) = {X,, n 2 l) ,  where 

x,=z, +z2 + -+z, 
and Z, are iid r.v.'s with zero mean and variance a2. Is X(n) stationary? 

Ans. No. 

5.64. Consider a random process X(t) defined by 

X ( t )  = Y cos(ot + 0 )  

where Y and 0 are independent r.v.3 and are uniformly distributed over (-A, A) and (- K, K), respectively. 

(a) Find the mean of X(t). 

(b) Find the autocorrelation function Rx(t, s) of X(t). 

Ans. (a) E[X(t)] = 0; (b) Rx(t, s) = i~~ cos O(t - S) 

5.65. Suppose that a random process X(t) is wide-sense stationary with autocorrelation 

R,(t, t + z) = e-1'112 

(a) Find the second moment of the r.v. X(5). 

(b) Find the second moment of the r.v. X(5) - X(3). 

Ans. (a) E [ X ~ ( ~ ) ]  = 1 ; (b) E{[X(5) - x(3)I2) = 2(1 - e -  ') 

5.66. Consider a random process X(t) defined by 

X(t) = U cos t + (V + 1) sin t - co < t < cx, 

where U and V are independent r.v.'s for which 

E(U) = E(V) = 0 E(UZ) = E(V2) = 1 

(a) Find the autocovariance function Kx(t, s) of X(t). 
(b) Is X(t) WSS? 

Ans. (a) Kx(t, s) = cos(s - t); (b) No. 

5.67. Consider the random processes 

where A,, A,, a,, and w, are constants, and r.v.3 0 and 0 are independent and uniformly distributed over 
( - w, 4. 
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(a)  Find the cross-correlation function of Rxy(t ,  t + z) of X( t )  and Y(t) .  
(b) Repeat (a) if 63 = 4. 
Ans. (a) Rxy(t, t + z)] = 0 

A 0 4  
(b) Rxy(t ,  t + 2) =- 

2 
cos[(ol - u,) t  + o,z] 

Given a Markov chain { X ,  , n 2 01, find the joint pmf 

P(X ,  = i , ,  X1 = i , ,  ..., X ,  = in) 

Hint: Use Eq. (5.32). 

Let {X,, n 2 0 )  be a homogeneous Markov chain. Show that 

P ( X n + , = k l  ,..., X , + , = k , I X , = i  ,,..., X , = i ) = P ( X ,  = k ,  ,..., X , = k , I X , = i )  

Hint: Use the Markov property (5.27) and the homogeneity property. 

Verify Eq. (5.37). 

Hint: Write Eq.  (5.39) in terms of components. 

Find Pn for the following transition probability matrices: 

A certain product is made by two companies, A and B, that control the entire market. Currently, A and B 
have 60 percent and 40 percent, respectively, of the total market. Each year, A loses 5 of its market share to 
By while B loses 3 of its share to A. Find the relative proportion of the market that each hold after 2 years. 

Ans. A has 43.3 percent and B has 56.7 percent. 

Consider a Markov chain with state (0 ,  1, 2) and transition probability matrix 

Is state 0 periodic? 

Hint: Draw the state transition diagram. 

Ans. No. 

5.74. Verify Eq. (5.51). 
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Hint: Let = [ N j k ] ,  where Njk  is the number of times the state k ( ~  B) is occupied until absorption takes 
place when X(n) starts in state j ( ~  B). Then 7;. = ~ ~ = , + ,  N j k ;  calculate E(Njk). 

5.75. Consider a Markov chain with transition probability matrix 

Find the steady-state probabilities. 

Ans. p = [$ $ $1 

5.76. Let X ( t )  be a Poisson process with rate A. Find E [ X 2 ( t ) ] .  

Ans. At + A2t2 

5.77. Let X ( t )  be a Poisson process with rate 1 .  Find E ( [ X ( t )  - X(s)I2)  for t  > s. 

Hint: Use the independent stationary increments condition and the result of Prob. 5.76. 

Ans. A(t - s)  + A2(t - s ) ~  

5.78. Let X ( t )  be a Poisson process with rate A. Find 

P [ X ( t  - d ) =  k I X ( t ) = j ]  d > O  

j !  ( t i d ) k ( : $ - k  
Ans. 

k ! ( j  - k ) !  

5.79. Let T, denote the time of the nth event of a Poisson process with rate A. Find the variance of T,. 

Ans. n/A2 

5.80. Assume that customers arrive at a bank in accordance with a Poisson process with rate 1  = 6 per hour, and 
suppose that each customer is a man with probability 4 and a woman with probability 5.  Now suppose 
that 10 men arrived in the first 2 hours. How many woman would you expect to have arrived in the first 2 
hours? 

Ans. 4 

5.81. Let X,, . . . , X, be jointly normal r.v.'s. Let 

5 = X i  + ci i = 1 ,  ..., n  

where ci are constants. Show that Y,, . . . , Y,, are also jointly normal r.v.'s. 

Hint: See Prob. 5.60. 

5.82. Derive Eq. (5.63). 

Hint: Use condition ( 1 )  of a Wiener process and Eq. (5.1 02) of Prob. 5.22. 




