

Tobias Bleninger

Professor no

Departamento de Engenharia Ambiental (DEA) Programa de Pós-Graduação em Engenharia Ambiental (PPGEA) Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental (PPGERHA)

Universidade Federal do Paraná (UFPR)

Marine Outfall Systems

EMISSÁRIOS SUBMARINOS NO BRASIL

Novos emissários recém construídos e previstos no RJ (Barra da Tijuca, Icaraí, Paquetá), no ES (Vitória, Guarapari), etc

Píer do emissário da Barra da Tijuca – 5 km de extensão para uma vazão final de 5,3 m³/s

Novo SDO Icaraí em Niterói – emissário de 3.300 m dentro da Baía de Guanabara para uma vazão de 0,95 m³/s de esgoto

PRINCIPAIS EMISSÁRIOS DE ESGOTO DOMÉSTICO

l	Item	Local	Diâmetro (m)	Extensão total (m)	Profundidade descarga (m)	Vazão de projeto (m ³ /s)	Material	Início da operação
	1	Belém - PA	0,80	320	5	0,60	Concreto	*
100	2	Fortaleza – CE	1,50	3.200	12	4,80	Aço, revestido c/ concreto	1979
	3	Salvador – BA	1,75	2.350	28	6,80	Concreto Armado	1975
	4	Aracruz – ES	1,00	1.100	*	2,00	Polipropileno	*
	5	Ipanema – RJ	2,40	4.325	26	12,00	Concreto Protendido	1975
	6	Poá - Porto Alegre – RS	1,26	733	12	2,70	Aço	*
2	7	Manaus – AM	1,00	3.600	*	2,20	PEAD	*
9	8	Boa Vista – RR	0,35	1.250	*	*	PEAD	*
	9	Maceió – Casal - AL	1,34	3.100	15	4,20	Aço, revestido c/ concreto	*
	10	Santos – José Menino – SP	1,75	4.000	10	7,26	Aço, revestido c/ concreto	1979
	11	Guarujá – Enseada – SP	0,90	4.500	14	1,447	PEAD	1998
	12	Praia Grande – Praia do Forte – SP	1,00	3.300	12,5	1,041	PEAD	1993
	13	Praia Grande – Vila Tupi – SP	1,00	3.415	13	1,361	PEAD	1993
	14	São Sebastião – Praia das Cigarras – SP	0,16	1.068	8,5	0,0116	PEAD	*
	15	São Sebastião – Araçá – SP	0,40	1.061	8	0,140	PEAD	*
	16	Ilhabela – Saco da Capela – SP	0,25	220	24	0,030	PEAD	*
	17	Ubatuba – Enseada – SP	0,20	300	*	*	PFAD	Previsão
								r

Fonte: Brambilla, SABESP e Trevisan et al.

2

Emissários da Baixada Santista

Fonte: Brambilla, SABESP, 2006

Impactos ambientais

Impactos locais (devido a um lançamento individual)

- -> "altas" concentrações de substancias
 - dependendo do tratamento e local de descarga
- Impactos regionais
 - -> "altas" cargas de substancias

efeitos de acumulação dependendo do corpo receptor

Grandes diferenças de escalas e processos associados

Legislação de descargas

- Directivas internacionais
- Directivas nacionais

Poluente	Concentração limite do efluente CLE	Concentração limite no ambiente CLA	CLE/CLA
DBO 5	Geralmente definido so para rios (esgoto bruto: 300mgl/l)	3 mg/l (Cartagena)	100
Temperatura	10°C acima ambiente (Worldbank)	3°C acima ambiente (Worldbank)	3
Cadmio	0.5 mg/l (83/513 EEC)	1µg/l (76/464 EEC)	500
Tricloretano	0.1 mg/l (AbwV, DE) 10 μg/l (76/464/EEC)		10

Î Efeitos letais

Efeitos cronicos

diluição necessaria 2 a 500

Toxicidade de cobre

Diluição e tratamento

Diluição =) para uto	o após nto	ío após o imento indário	o após nto	
concentração efluente		uição :ária to bri	uiçãc ária a amei máric		uiçãc ária (amei ciáric	
concentração (limite) no ambiente		Dil necess esgo	Dil necess o trat pri	Diluiçâ trata secu	Dil necess o trat ter	
	DBO [mg.L ⁻¹]	10	8	2	1	
	Nitrogênio tot. [mg.L ⁻¹]	5	4	4	0	
	Fósforo tot. [mg.L ⁻¹]	4	3	3	0	
	Sólidos susp. Tot. [mg.L ⁻¹]	22	9	3	1	
	Coliformes tot. [MPN.(100 mL) ⁻¹]	10 ⁴ a 10 ⁸	10 ³ a 10 ⁷	10 ³ - 10 ⁷	500 - 10 ⁶	

Fonte: Mayra Ishikawa, 2016

Consequencias e medidas de mitigação

e.g. esgoto: nutrientes (DBO, P), coliformes,...

Coliformes fecais:

 $10^6 - 10^8 e.coli/100ml$ Esgoto bruto Media: 10⁷ Fator de Tecnologias de tratamento \rightarrow CLE redução de coliformes Reduz tratamento primario (mecanico) nutrientes 1.5 - 3primario avancado (floculacao quimica) (lodo!) 10 - 100secundario (biologico) 100 - 1000terciaro (quimico) 1000 - 10.000Tecnologias de mistura Fator de diluição Descarga superficial na costa 2 - 10 Descarga submersa de um orificio 5 - 50 Descarga submersa de varios orificios (difusor) 10 - 500 EC Conc. limite balneabilidade 500e.coli/100ml Diluição : 20.000

Sistema de emissário

9

- Combinação e complementação de tratamento e emissário
- Critérios de desenho: favorecer critérios de qualidade da água (balneabilidade, potabilidade, classes), e do sedimento e critérios biológicos em vez de critérios baseado exclusivamente em tecnologias

Nivel de tratamento necessario

Mitigation measures

- contaminant reduction at source:
- substitution of contaminants
 - e.g. using "green" chemicals with less toxicity and higher biodegradability
- install treatment technologies
 - e.g. using higher level treatment
- improve discharge technology
 - balanced with water body usage and natural assimilation processes (e.g. multiport diffuser)

Impact evaluation – methods

= predictions about expected effects, based on:

Field experiments

 rhodamine dye tests (Perth SWRO)

Laboratory experiments

 effluent toxicity tests (Carlsbad)

Analogies & judgement

 similar desalination projects

Computer models

 hydrodynamic modelling

Picture: Western Australian, (Crisp et. Al 2007)

12

Picture: Voutchkov & Dietrich 2007

Example

- Desalination Plant Outfall System
- = multi component waste discharge
- = typical example of industrial discharge

Effluent characteristics for Reverse Osmosis (RO)

Effluent characteristics for thermal desalination (e.g. MSF)

15

Outfalls

- Shoreline surface discharge
- Offshore submerged single port discharge
- Offshore submerged multiport diffusor discharge

Shoreline surface discharge TRADITIONAL!

- Example 1: RO-plant discharge, negative buoyancy
- density current of high stability develops, flowing down the seabed
- density effects strongly influence mixing characteristics

RO plant in Ashkelon (Israel)

Photo: Rani Amir, Israel Ministry of the Environment presented by Iris Safrai at the EDS Conference 2007

Shoreline surface discharge

TRADITIONAL!

• Example 2: Combined MSF-plant+ cooling water discharge, positive buoyancy

usually mixing is slow in surface plume

Gulf)

MED Taweelah (UAE)

Em

MSF Plant Taweelah, Arabian Gulf, 1.12 mio m³/d, Source: Lattemann and Höpner, 2008

Mixing processes

Source: I. Wood, Univ. of Canterbury

Mixing processes

Source: Thermal discharge, Cormix Homepage

Outfall geometry

Shoreline surface discharge

TRADITIONAL, LOW COST HIGH VISIBILITY LOW MIXING → SHOULD BE AVOIDED!

MODERN EFFICIENT MIXING DEVICES →FLEXIBLE LOCATION (DEPTH) →HIGH MIXING RATES

- Offshore submerged single port discharge
- Offshore submerged multiport diffusor discharge

Offshore submerged discharges: efficient mixing devices

- optimized siting of outfalls allows for improved operational conditions and better environmental protection
- optimized mixing device (e.g. submerged multiport diffuser) high mixing rates reduce local impacts considerably

Mixing devices

Construction details

(a)

(b)

(c)

Typical construction details for multiport diffusers in water bodies: (a) Diffuser pipe on bottom with port holes, (b) diffuser pipe buried in trench with short risers, (c) deep tunnel construction with long risers

Mixing devices

³¹Towing of supply pipe to installation location (Guarujá 1998, Sao Paulo, Brazil, Source: E. Brambilla)

Long outfall pipes

Rio de Janeiro, Brazil, 4 km, concrete

Antalya, Turkey, 2.6 km, HDPE

Boston, USA, 16 km, tunnel

Valdelentisco SWRO (200,000 m³/d)

- submerged outfall
 - water depth: -22 m

diffuser system

Schematic of Boston Harbor Wastewater Project

Boston Harbor Wastewater Project

Inside the Outfall Tunnel

How Many Risers?

Boston Outfall Riser Cap

How Many Risers?

HERRENKNECHT AG | UTILITY TUNNELLING | TRAFFIC TUNNELLING

HERRENKNECHT AG.

Recovery of Microtunnelling Machines in the Sea without Shaft at Intakes and Sea Outfalls

Lutz zur Linde

Sea Outfall SANTOS Brasil

HERRENKNECHT AG | UTILITY TUNNELLING | TRAFFIC TUNNELLING

SANTOS Brasil, recovery without shaft

Multiport diffusers

Multiport diffusers

Mixing devices

Mixing devices

Mixing devices

Duckbill Valves (Source: Red Valve Company)

Source: Cormix Homepage

A thermal image of the cooling water multiport diffuser discharge from the Brown's Ferry Nuclear reactor. Source: Cormix Homepage

Source: C. Lamparelli, CETESB, Sao Paulo, Brazil

Manifold: internal flows (CorHyd model) Intermediate-field: boundary interaction, buoyant spreading (CORMIX submodels)

> *Far-field*: ambient diffusion, advection, degradation inactivation (Delft3D)

Near-field: jet diffusion (CorJet model)

Laboratory visualization: Dense jet with crossflow (side view)

Laboratory visualization: Dense jet with crossflow (top view)

Laboratory visualization: Dense jet with crossflow

Side view

45°

60°

Scale and process differences

Active dispersal through induced turbulence

Momentum flux $M_o = U_o^2 a_o$ $a_o = D^2 \pi/4$ $Q_o = U_o a_o$ Fully turbulent if $Re = \frac{U_0 D}{v} \ge 2000$

- Active dispersal through induced turbulence
 - Pure plume

Active dispersal through induced turbulence

Ambient density

Active dispersal through induced turbulence

Ambient crossflow

Mixing Example

Turbulent buoyant jets and plumes

Active dispersal through induced turbulence

Mixing Example

Mixing Example

3D Laser-Induced Fluorescence Experiments

Courtesy: Phil Roberts, Georgia Tech

Flow Animations

Results

Courtesy: Phil Roberts, Georgia Tech

Animation of Lateral Profiles

Courtesy: Phil Roberts, Georgia Tech

Results

Courtesy: Phil Roberts, Georgia Tech

Animation of Lateral Profiles

Courtesy: Phil Roberts, Georgia Tech

Vertical Dense Jet in Crossflow

Flow characteristics for various values of u_r F

Courtesy: Phil Roberts, Georgia Tech

Quantitative Results

Courtesy: Phil Roberts, Georgia Tech

Turbulent buoyant jets and plumes

Fundamentals: "FREE TURBULENCE" (Prandtl, Tollmien, Taylor ...)

87

Turbulent buoyant jets and plumes

$$u_{c} = g(x, M_{o}, a_{o}, v...) \qquad M_{o} = \begin{bmatrix} \frac{L^{4}}{T^{2}} \end{bmatrix}$$

$$\frac{b}{x} = \text{const.}, \qquad \frac{u_{c}x}{\sqrt{M_{o}}} = \text{const.}, \qquad \rightarrow$$
Experiment: $b = 0.10 \text{ x}, \qquad u_{c}/U_{o} = 7.1 / (x / D)$

Dimensional analysis

Simple Jet

Passive properties:

$$\begin{aligned} Q_{C_{0}} &= c_{o}U_{o}a_{o} \cong c_{c}u_{c}b^{2} \\ \frac{c_{c}}{c_{o}} \sim \frac{U_{o}a_{o}}{u_{c}b^{2}} = \frac{1}{\overline{K}}\frac{\sqrt{a_{o}}}{x} \end{aligned}$$

$$\begin{aligned} & \text{Dilution} \\ & \text{S} &= \frac{c_{o}}{c_{c}} = \overline{K}\frac{x}{\sqrt{a_{o}}}! \\ & \text{Experiment:} \\ & \frac{c_{c}}{c_{o}} = \frac{7.1}{\frac{x}{D}}, \\ & \text{S}_{c} = 0.14\frac{x}{D} \end{aligned}$$

$$\begin{aligned} & \text{centerline dilution} \end{aligned}$$

Dimensional analysis

Simple Plume

 (J_o, z) b ~ z, $u_c ~ z^{-1/2}$, $S_c ~ z^{5/3}$

Buoyant jets

Dimensional analysis:

Any buoyant jet property e.g. $x = f(z, M_o, J_o, q_o, D...)$

Normalized property

$$= f\left(\frac{z}{L_M}\right)$$

$$L_{M} = \frac{M_{o}^{3/4}}{J_{o}^{1/2}}$$
 =momentum length scale

Thus:
$$DF_o = \left(\frac{4}{\pi}\right)^{1/4} L_M$$
 correct scaling! $L_M \sim DF_0$

Buoyant jets transitions

Horizontal buoyant jet in stagnant ambient: Normalized vertical trajectory as a function of L_M

Dilution equations – single port

 Stagnant water, horizontal discharge: centerline dilution

$$S_{c} = 0.54F_{o} \left(0.38 \frac{z}{DF_{o}} + 0.66 \right)^{5/3}$$
 for $\frac{z}{D} \ge 0.5F_{o}$

Ambient stratification:

 $z_{max} = 3.98 J_o^{1/4} \varepsilon^{-3/8}$ terminal level $S_c = 0.071 \frac{J_o^{1/3} z_{max}^{5/3}}{Q_o}$

Ambient crossflow:

weak deflection $\frac{Hu_a^3}{J_o} < 5$: $S_m = 0.31 \frac{J_o^{1/3} H^{5/3}}{Q_o}$ minimum dilution at surfacestrong deflection $\frac{Hu_a^3}{J_o} > 5$: $S_m = 0.32 \frac{u_a H^2}{Q_o}$

POSITIVELY BUOYANT !

Design example: Sewage discharge

- Water depth H = 15m
- Port diameter D = 0.15m
- Discharge velocity U0 = 1m/s
 - → Flowrate Q0 = U0 D² $\pi/4$ = 0.018m³/s
- $\Delta \rho / \rho = 0.025$ (fresh/salt)
 - \rightarrow F0 = U0/($\Delta \rho / \rho \ gD$)^(1/2) = 5.2
- \rightarrow Fluxes:
 - M0 = Q0U0 = 0.018m^4/s²
 - $J0 = Q0 \Delta \rho / \rho g = 0.044 m^{4/s^{3}}$
- → Length Scales
 - LQ = Q0/M0^(1/2) = 0.13m ~ D
 - LM = M0^(3/4) / J0^(1/2) = 0.74 ~ DF0
- Centerline dilution (stagnant water) $S_c = 0.54F_o \left(0.38 \frac{z}{DF_o} + 0.66 \right)^{5/2}$ for $\frac{z}{D} \ge 0.5F_o$ • $\rightarrow Sc = 76$ (@ z = 0.9H)

Design example: Sewage discharge

- Weak current (ua = 0.05m/s)
 - Lm = M0^(1/2)/ua = 2.68m
 - $Lb = J0/ua^3 = 35.2m$

• Sm = 261

weak deflection $\frac{Hu_a^3}{J_o} < 5$: $S_m = 0.31 \frac{J_o^{1/3} H^{5/3}}{Q_o}$ minimum dilution at surface

- Strong current (ua = 0.3m/s)
 - Lm = 0.45m
 - Lb = 0.16m strong deflection $\frac{Hu_a^3}{J} > 5$: $S_m = 0.32 \frac{u_a H^2}{Q_o}$
 - Sm = 1220

Formal solution methods

:
$$r \rightarrow \infty$$
: $u \rightarrow 0, c \rightarrow 0,$
: $u'v' \rightarrow 0, v'c' \rightarrow 0$
s=0: $u=U_0, c=C_0, v=0$

Formal solution methods

Solutions:

Similarity methods with simple turbulence closure

$$\overline{u'v'} = \epsilon \frac{\partial u}{\partial r}$$

 \Rightarrow classical, simple geometries

- Numerical integration (P.D.E.) with advanced turbulence closure e.g. k-ε, LES
 - \Rightarrow more general geometries
- Integral methods (conversion to O.D.E.)

Definition sketch for three-dimensional buoyant jet discharge into ambient flow with global and local coordinate system, respectively

ambient stratification ambient current

Gaussian profiles

 $\begin{array}{ll} \rho_{a}\left(z\right) & \text{ non-linear density / temp. / salinity} \\ u_{a}\left(z\right) & \text{ with skew angle }\tau_{a}\left(z\right) \rightarrow \text{Ekman profile} \end{array}$

jet width b (e⁻¹ – width) dispersion ratio λ

Integral method for buoyant jet analysis

1. Profile Specification:

$$\frac{u}{u_c} = e^{-r^2/b^2} \qquad b = "\frac{1}{e} - Width" \quad (37\%)$$

$$\frac{g'}{g'_c} = \frac{c}{c_c} = e^{-\frac{r^2}{(\lambda b)^2}} \qquad \lambda > 1 \quad "Dispersion ratio" (turbulent Schmidt number)$$

2. Definition of integral quantities:

Volume flux
$$Q = 2\pi \int_{0}^{\infty} ur dr = 2\pi u_c b^2 \int_{0}^{\infty} \left(\frac{r}{b}\right) e^{-\left(\frac{r}{b}\right)^2} d\left(\frac{r}{b}\right) = \pi u_c b^2$$
Momentum flux $M = \frac{\pi}{2} u_c^2 b^2$ Buoyancy flux $J = \frac{\lambda^2}{1 + \lambda^2} \pi u_c g'_c b^2$ Scalar flux $Q_c = \frac{\lambda^2}{1 + \lambda^2} \pi u_c c_c b^2$ ("tracer, pollutant")

Integral quantities

 $Q = 2\pi \int_{a}^{R} urdr = \pi b^{2} \left(u_{c} + 2u_{a} \cos \theta \cos \sigma \right)$ Volume flux (discharge) $M = 2\pi \int_0^R u^2 r dr = \frac{1}{2}\pi b^2 \left(u_c + 2u_a \cos\theta \cos\sigma \right)^2$ Momentum flux $J = 2\pi \int_{0}^{R} ug' r dr = \pi b^{2} \left(u_{c} \frac{\lambda^{2}}{1 + \lambda^{2}} + \lambda^{2} u_{a} \cos \theta \cos \sigma \right) g'_{c}$ **Buoyancy flux** $Q_{c} = 2\pi \int_{0}^{R} u c r dr = \pi b^{2} \left(u_{c} \frac{\lambda^{2}}{1 + \lambda^{2}} + \lambda^{2} u_{a} \cos \theta \cos \sigma \right) c_{c}$ Tracer mass flux

→Length scales

Jet/plume transition length scale $L_M = M_0^{3/4} / J_0^{1/2}$ Jet/crossflow length scale Plume/crossflow length scale Jet/stratification length scale Plume/stratification length scale

 $L_m = M_0^{1/2} / u_a$ $L_{\rm h} = J_{\rm o} / u_{\rm a}^{\rm 3}$ $L'_{m} = M_{0}^{1/4} / \varepsilon^{1/4}$ $L_{b}' = J_{0}^{1/4} / \varepsilon^{3/8}$

$$\frac{dQ_c}{ds} = 0$$

$$\frac{dx}{ds} = \cos\theta\cos\sigma, \quad \frac{dy}{ds} = \cos\theta\sin\sigma, \quad \frac{dz}{ds} = \sin\theta$$

Turbulence closure

Entrainment

$$E = 2\pi b u_c \left(\alpha_1 + \alpha_2 \frac{\sin\theta}{F_1^2} + \alpha_3 \frac{u_a \cos\theta \cos\sigma}{u_c + u_a} \right) + 2\pi b u_a \sqrt{1 - \cos^2\theta \cos^2\sigma} \alpha_4 \left| \cos\theta \cos\sigma \right|$$

Drag force

$$F_D = c_D 2\sqrt{2}b \frac{u_a^2 (1 - \cos^2\theta \cos^2\sigma)}{2}$$

Universal coefficients:

 $\alpha_1 = 0.055, \quad \alpha_2 = 0.6, \quad \alpha_3 = 0.055, \quad \alpha_4 = 0.5$ $\lambda = 1.20, \quad c_D = 1.3$

Initial conditions: Zone of Flow Establishment ZOFE

$$L_{e} = 5.0D(1 - 3.22\sin\gamma_{o}/R)(1 - e^{-2.0F_{o}/F_{1p}}) \quad with \quad R = \frac{U_{o}}{u_{a}}, \quad F_{o} = \frac{U_{o}}{\sqrt{g_{o}'D}}$$

 $Q_e = \sqrt{2} Q_o, \quad M_e = M_o, \quad J_e = J_o, \quad Q_{ce} = Q_{co}$

Amplifications of the integral method

Buoyant jet in crossflow with stratification

Vertical buoyant jet into stratified crossflow: Comparison of integral model predictions with laboratory data by Hunter (1993) under weak crossflow conditions:

a) vertical trajectory, z/D versus x/D, b) centerline centerline density anomaly $\Delta \rho_c / \rho_a$ as function of downstream distance x/D

Buoyant jet in stagnant linearly stratified environment: Comparison of integral model predictions with experimental data by Fan (1967) for the two-dimensional trajectory: a) inclined moderately buoyant jet, b) horizontal weakly buoyant jet. For symbols see Fig. 17

Modeling of brine discharges →engineering design

Brine discharge design

Brine discharge design

Jet properties at maximum level of rise.

Comparison of CorJet model with experimental data.

- (a) Geometric properties,
- (b) Minimum centreline dilution, both as a function of discharge angle θ_o .

Brine discharge design

Jet properties at impingement point for zero offshore slope ($\theta_{B} = 0^{\circ}$).

(a) Location x_i/L_M , (b) Dilution levels, as a function of discharge angle θ_0 .

Brine discharge design: DESIGN RECOMMENDATIONS:

- 1) Choose high discharge Froude number $F_o > 10$, best 20 to 25
- 2) Choose discharge angle 30° to 45°, depending on bottom slope and port height
- 3) Given bottom slope and port height (0.5 to 1 m), choose location at a depth H, so that maximum upper jet boundary Z_{max} is below 0.75 H in oder to avoid dynamic interference with water surface
- 4) Large discharge flow may require distributing the flow over several ports → multiport diffuser design!

√2 b

X,

Density

Discharge

Define and optimize discharge conditions, Jirka (JHydrEng, 2008)

Brine discharge design: DESIGN EXAMPLE:

- Desalination plant serving 100.000 people
- \rightarrow 200 l/person, day \rightarrow 20.000 m³/d, i.e. approx. 0.2 m³/s
- RO-Plant with 50% recovery rate \rightarrow discharge Q_o = 0.2 m³/s
- $g'_o = 0.025*9.81 = 0.25 \text{ m/s}^2 \rightarrow \text{buoyancy flux } J_o = 0.05 \text{ m}^4/\text{s}^3$

¥g

ρa

Discharge

Maximum

Density current

√2 ь

• Choose: Densimetric Froude number $F_0 = 20$

/5

$$\mathbf{D} = \left[\left(4/\pi \right) \mathbf{Q}_{\mathrm{o}} / \left(\mathbf{F}_{\mathrm{o}} \left| \mathbf{g}_{\mathrm{o}}' \right|^{1/2} \right) \right]^{2}$$

- \rightarrow D = 0.23 m
- $\rightarrow U_o = Q_o/(D^2\pi/4) = 4.84 \text{ m/s}$
- → momentum flux $M_o = 0.96 \text{ m}^{4/s^2}$
- $\rightarrow L_{\rm M} = M_{\rm o}^{3/4}/J_{\rm o}^{1/2} = 4.34 \text{ m}$
- Choose: discharge angle $\theta_0 = 30^\circ$ and port height $h_0 = 1$ me
- ► $\rightarrow Z_{max} = 1.1 L_M = 4.8 m$, Dilution at impingement = 28
- → Required ambient depth H = $Z_{max}/0.75 + h_o = 6.4 + 1 = 7.4$ m
- Compare: would need H = 10.7 m for $\theta_0 = 60^\circ !!!$

Larger flows may require multiport diffusor!

PLANE BUOYANT JETS

In practice : Multiple jet interaction from mulitport diffuser

Regular merging processes for a unidirectional diffuser design. (a) Schematic side view and (b) top view under stagnant ambient conditions, (c) photograph of merging under co-flowing ambient conditions (courtesy of I.R. Wood)

Plane Plume concentration distribution formation

PLANE BUOYANT JETS

Idealized: From slot (width B) of finite length L_D

Definition diagram for plane buoyant jet geometry formed from a finite length slot discharge into unbounded ambient stratified flow with global and local coordinate systems. Slot lies in a horizontal plane at an elevation with alignment relative to *x*-axis

Dilution equations – multiport diffuser line plume

Stagnant water:

$$S_{c} = 0.38 \frac{j_{o}^{1/3}z}{q_{o}}$$

centerline dilution Rouse (1952)

Ambient stratification:

$$\begin{split} z_{max} &= 2.84 \, j_o^{1/3} \, \varepsilon^{-1/2} = 2.84 \ell_b' & \text{terminal level} \\ S_c &= 0.31 \frac{j_o^{1/3} z_{max}}{q_o} & \epsilon = -\frac{g}{\rho_a} \frac{d\rho_a}{dz} \end{split}$$

• Ambient crossflow:

weak deflection $F = \frac{u_a^3}{j_o} < 1$ $S_m = 0.27 \frac{j_o^{1/3}H}{q_o}$ minimum dilution at surfacestrong deflectionF > 1 $S_m = 0.6 \frac{u_a H}{q_o}$ $\gamma = 90^\circ$, perpendicular alignment

POSITIVELY BUOYANT !

117

Surface buoyant jet

Source: I. Wood, Univ. of Canterbury

b) Cross-Sections

Definition diagram for buoyant surface jet discharging into crossflow without bottom interaction (deep conditions) and a wide channel. (a) Perspective view, and (b) cross-sectional profile, showing the transition from initially jet-like to final plume-like flow conditions. f_u and f_s are the normalized distribution functions for excess velocity and scalars, respectively

Reference:

Jirka, G.H., 2005, "Buoyant Surface Discharges into Water Bodies. II: Jet Integral Model", J. Hydraulic Engineering

Deep water conditions

Discharge fluxes of volume Q_o , momentum M_o and buoyancy J_o (in kinematic units)

$$\boldsymbol{Q}_{o}=\boldsymbol{U}_{o}\boldsymbol{a}_{o},\,\boldsymbol{M}_{o}=\boldsymbol{U}_{o}^{2}\boldsymbol{a}_{o},\;\;\boldsymbol{J}_{o}=\boldsymbol{U}_{o}\boldsymbol{g}_{o}^{\prime}\boldsymbol{a}_{o}$$

Scales: discharge length scale $L_{\rm Q}$, jet-to-plume length scale $L_{\rm M}$, jet-to-crossflow length scale $L_{\rm m}$ and plume-to-crossflow length scale $L_{\rm b}$

$$L_{Q} = Q_{o}/M_{o}^{1/2}, \ L_{M} = M_{o}^{3/4}/J_{o}^{1/2}, \ L_{m} = M_{o}^{1/2}/u_{a}, \ L_{b} = J_{o}/u_{a}^{3}$$

Source Froude number Fr_o and crossflow parameter R

$$\begin{aligned} Fr_{o} &= U_{o} / (g_{o}' a_{o}^{1/2})^{1/2}, \quad R = U_{o} / u_{a} \end{aligned}$$
 where $Fr_{o} &= L_{M} / L_{Q}$ and $R = L_{m} / L_{Q}$

Deep water conditions

Integration over normalized distribution functions

$$u = u_c f_u(\eta_h, \eta_v) + u_a \cos \sigma \cos \theta, \quad g' = g'_c f_s(\eta_h, \eta_v), \quad c = c_c f_s(\eta_h, \eta_v)$$

Integral quantities (bulk variables): total volume flux within turbulent zone Q, axial momentum flux M, buoyancy flux J, and tracer mass flux Q_c ,

 $Q = 2b_h b_v \left(a_{Q1} u_c + a_{Q2} u_a \cos \sigma \right)$ $M = 2b_h b_v \left(a_{M1} u_c + a_{M2} u_a \cos \sigma \right)^2$ $J = 2b_h b_v \left(a_{S1} u_c + a_{S2} u_a \cos \sigma \right) g'_c$ $Q_c = 2b_h b_v \left(a_{S1} u_c + a_{S2} u_a \cos \sigma \right) c_c$

Model Validation II: Non-Equilibrium Cases Stagnant Ambient: "Jet Collapse"

Surface buoyant jet in stagnant ambient. Comparison of laboratory experimental data with predictions of integral model CorSurf (with aspect ratio A = 0.5). Normalized centerline velocity $(u_c / U_a) E c$ enterline concentration $^{131}(c_c / c_o) Fr_o$, or centerline buoyancy $(g'_c / g'_o) E c_o$ a function of offshore distance y / L_M

Ambient crossflow:

Free surface buoyant jets in ambient crossflow (flow class FJ1 and Fj2). Comparison of laboratory data with predictions of integral model CorSurf (with aspect ratio A = 0.5). Normalized jet centerline trajectories $y/(\sqrt{2}L_m)$ as a function of longshore distance $x/(\sqrt{2}L_m)$. Data and model predictions show dependence on ratio $Fr_o/R = L_M/L_m$

132

Referencias

IAHR / IWA Committee on Marine Outfall Systems: www.outfalls.bleninger.info

Modelos:

- CORMIX, <u>www.cormix.info</u>
- Delft3D, <u>www.deltares.nl</u>

Contato:

bleninger@ufpr.br www.tobias.bleninger.info

