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Abstract. The mechanics of buoyant jet flows issuing with a general three-dimensional geometry
into an unbounded ambient environment with uniform density or stable density stratification and
under stagnant or steady sheared current conditions is investigated. An integral model is formulated
for the conservation of mass, momentum, buoyancy and scalar quantities in the turbulent jet flow.
The model employs an entrainment closure approach that distinguishes between the separate contri-
butions of transverse shear (leading to jet, plume, or wake internal flow dynamics) and of azimuthal
shear mechanisms (leading to advected momentum puff or thermal flow dynamics), respectively.
Furthermore, it contains a quadratic law turbulent drag force mechanism as suggested by a number
of recent detailed experimental investigations on the dynamics of transverse jets into crossflow.
The model is validated in several stages: First, comparison with basic experimental data for the
five asymptotic, self-similar stages of buoyant jet flows, i.e., the pure jet, the pure plume, the pure
wake, the advected line puff, and the advected line thermal, support the choice and magnitude of
the turbulent closure coefficients contained in the entrainment formulation. Second, comparison with
many types of non-equilibrium flows support the proposed transition function within the entrainment
relationship, and also the role of the drag force in the jet deflection dynamics. Third, a number
of spatial limits of applicability have been proposed beyond which the integral model necessarily
becomes invalid due to its parabolic formulation. These conditions, often related to the breakdown of
the boundary layer nature of the flow, describe features such as terminal layer formation in stratific-
ation, upstream penetration in jets opposing a current, or transition to passive diffusion in a turbulent
ambient shear flow. Based on all these comparisons, that include parameters such as trajectories,
centerline velocities, concentrations and dilutions, the model appears to provide an accurate and
reliable representation of buoyant jet physics under highly general flow conditions.

1. Introduction and Historical Perspective

A buoyant jet is the fluid motion caused by the sustained injection of fluid mo-
mentum and buoyancy through an orifice into an ambient receiving fluid body and
gradually evolving along a trajectory within that receiving fluid. The buoyant jet
flow is fully turbulent whenever its efflux Reynolds number, based on efflux velo-
city, orifice dimension and fluid kinematic viscosity, is sufficiently large (greater
than about 103).
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Buoyant jet motions (sometimes called forced plumes) are prevalent in the nat-
ural environment and in engineering applications. They are most spectacular in
volcanic gas eruptions, they occur as hydrothermal vent flows in the deep ocean
or as fresh groundwater plumes in the coastal zone. They are a key feature in
society’s fluid waste disposal methods, be it in the form of gaseous emissions into
the atmosphere from industrial and domestic smokestacks, from mobile exhausts
and from cooling towers, or of liquid releases into water bodies from industrial,
municipal and agricultural sources or mining and oil extraction operations. They
are an integral part of building ventilation and air conditioning systems. And they
play a central role as mixing and injection devices in chemical reactors, waste and
sewage treatment plants, desalination plants, combustion chambers, jet engines, or
heat exchangers as well as stratification control and oxygenation devices in lakes
or reservoirs.

Depending on the source and ambient flow interaction in the above instances
many complexities and a rich variety of flow phenomena can take place in buoyant
jet flows. This is reflected in the vast and diverse amount of literature that exists on
this topic.

The source fluxes can be steady or time variable in form of starting or of
pulsating flows. The momentum flux may have a simple forward component, or a
swirling motion may be superposed. The buoyancy agent in the source flow relative
to the ambient may be caused by a variety of effects: The inflow may differ in its
heat content or due to in-phase admixtures or solutions (such as other gases for
atmospheric emissions, dissolved solids or other miscible liquids for aqueous re-
leases) or due to out-of-phase admixtures (such as solid particles, liquid droplets in
gases, gas bubbles or immiscible fluids in liquids). Finally, the efflux geometry can
be a simple round pipe, port or nozzle, or orifices of more general cross-sections
(including the two-dimensional plane or slot jet) or multiple orifices (multiport
diffusers) with many different alignment and orientation possibilities.

As for the receiving fluid body, it is characterized by its density field, its velocity
field and its overall geometry. The ambient may be of uniform density, it may
contain a stable density stratification – a decreasing density (or potential density for
compressible fluids) with increasing elevation – or may exhibit internally unstable
stratification conditions – with an areally distributed buoyancy flux. The ambient
velocity field may range from stagnant conditions, to a uniform laminar flow, to a
sheared flow, usually with superimposed turbulent fluctuations. In the mean, that
velocity field can be steady or time variable, such as under oscillating wave-like or
tidal conditions. And the ambient geometry can vary between practically ‘unboun-
ded’ conditions – in which the spatial scale of the buoyant jet motion is much less
than the ambient dimension – as one extreme, to strongly confined conditions as
the other. In the latter case, distinctly different phenomena can result, such as jet
induced circulations or stratified exchange flows.

In the following attention is restricted to turbulent buoyant jet flows, steady-
state in the mean, issuing into an unbounded ambient environment with uniform
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density or stable density stratification and under stagnant or steady sheared current
conditions. The major area of application for this situation is in the analysis and
design of emissions into the environment, both atmosphere and water bodies, for
which reliable predictive techniques for purposes of pollution control and mitiga-
tion are needed. The assumption of an unbounded environment is a critical one and
has to be carefully assessed in each instance as is further stressed below.

While buoyant jets have been a subject of observation and comment throughout
the history of science, detailed experimental measurements accompanied by ana-
lytical interpretation were commenced by L. Prandtl and disciples in the 1920s. In
these works the new framework of boundary layer theory was applied to jet flows as
one instance of free turbulent flows that exhibit self-similarity in their gradual evol-
ution along a trajectory. Following measurements on the round [1] and the plane [2]
non-buoyant jet, respectively, similarity solutions for the jet evolution (spreading
and velocity decay) and for the internal velocity distributions were developed by
Tollmien [3], Görtler [4] and Reichardt [5] who used different forms of Prandtl’s
turbulent mixing length hypothesis for relating the shear stresses to the mean flow.
This approach was first extended by Schmidt [6] to the study of the pure vertically
rising plume from a round or plane source.

The pioneering work of Reichardt [5, 7] laid the groundwork for the jet integral
theory by establishing the Gaussian profile as a satisfactory first-order approx-
imation to jet cross-sectional properties (such as forward velocity or transported
scalars) and demonstrating that overall properties of jet behavior can be derived
with this a priori assumption. Highly refined measurements whose results formed
the basis of much of the ensuing integral jet model development and applications
were carried out by H. Rouse and co-workers for the pure jet [8] and the pure
plume [9] in both round and plane geometries. They also elucidated the details of
the initial zone of flow establishment in which a non-self-similar transition occurs
from the efflux condition (more or less top-hat) to the self-similar main region.

Whereas all of the preceding work had viewed jets and plumes as exhibiting
‘jet diffusion’ whereby fluid momentum, vorticity and scalars are spread by turbu-
lent diffusion, a radically different viewpoint was established in the seminal paper
by Morton, Taylor and Turner [10] who applied G.I. Taylor’s turbulent entrain-
ment concept to jet and plume flows establishing the ‘jet entrainment’ hypothesis
whereby outside irrotational non-turbulent fluid is entrained, or sucked into, the
turbulent jet zone at its edge with a mean velocity that is proportional to the mean
centerline velocity. This viewpoint – although the two approaches are quite col-
lorary – offered great advantages in the further adaptation of integral models for
buoyant jet configurations of increasing complexities, such as forced plumes in
stratified environments [11] and other geophysical flows [12].

The first detailed studies on pure jets discharging into a crossflowing current
are due to Jordinson [13] and Keffer and Baines [14] while pure plumes were
investigated in the laboratory by Bryant and Cowdrey [15] in addition to the first
field observations on smokestack plumes. Scorer [16] and Csanady [17] were the
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first to use simple physical reasoning and dimensional arguments to determine the
trajectory and growth laws for these cases of source flux/environment interactions
as well as associated ‘length scales’ that delineate regions of influence, such as the
transition between weak and strong deflection. The parallel work of Turner [18]
and Richards [19] showed that the jet or plume motion in the strongly deflected
phase is akin to that in cylindrical line puffs or thermals, i.e., fluid elements that
are rising in the ambient due to their initial impulse or buoyancy release. These
motions are characterized by an internal double vortex structure that significantly
affects velocity and scalar distributions.

The development of reasonably general jet integral models including different
source and ambient conditions was started by Abraham [20] still based on the
jet diffusion approach and by Fan [21] utilizing the jet entrainment closure. A
consistent length scale based categorization of the different buoyant jet regimes
in the presence of crossflow and/or stratification was carried out by Wright [22;
see also 23]. In subsequent years up to date a large number (several dozens) of
buoyant jet models have appeared in the literature. These models, most based on
the jet integral formulation, represent many variations on the theme, such as closure
assumptions, the use of a Eulerian or a Lagrangian formulation, more or lesser
generality of ambient conditions, and the like. No comprehensive review of these
diverse modeling efforts is possible here; critical comments, however, pertaining to
these models are made in the model formulation that is presented in the following.

In recent years the study of buoyant jets has been greatly enhanced by novel
experimental techniques, especially field-based methods such as particle-image ve-
locimetry (PIV) and laser-induced fluorescence (LIF), that provide valuable struc-
tural insight into the buoyant jet mixing and entrainment processes as well as more
reliable data for model testing and evaluation. Some of these studies will be cited
in the model validation section further below.

The purpose of this paper is threefold: First, it sets forth the principles for the
integral modeling technique as applied to buoyant jet problems and the minimum
conditions that the model formulation must meet and be tested for. Second, it for-
mulates a reasonably rigorous and general jet integral model that has been tested
under a wide range of conditions and verified with available high-quality data.
Third, it provides limits of applicability for the use of such jet integral models
considering the transition to other non-jet like flow processes. The present Part I
considers the single buoyant jet issuing from a round orifice, while Part II deals
with multiple buoyant jets issuing from multiport diffusers.

2. Fundamental Mechanisms and Integral Modeling Principles

A definition diagram for a buoyant jet in unbounded stratified ambient crossflow is
given in Figure 1 in a global Cartesian coordinate system x, y, z in which x points
downcurrent and z upward against gravity −→

g . The ambient has a stable density
distributionρa (z). ρa may given directly, or it may depend on one or more state
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Figure 1. Definition sketch for three-dimensional buoyant jet discharge into ambient flow with
global and local coordinate system, respectively.

parameters Xi that are distributed in the vertical, Xia (z), via an equation of state,
ρ = ρ (Xi). Typically, Xi would be represented by ambient temperature Ta and
salinity Sa for water bodies and by temperature Ta for the atmosphere in which
case the potential density concept would be employed, but many other possibilities
exist. The ambient also has a sheared velocity profile ua (z). (Appendix A considers
the yet more general case of a skewed velocity profile with an angle τa (z) between
the ambient velocity vector at any level and the x axis.)

The jet efflux with diameter D is located at (0, 0, ho) where ho is the height
above the x-y plane. It is oriented with a vertical angle θo above horizontal and a ho-
rizontal angle σo defined as the angle between the vertical projection of the jet axis
and the x axis. The buoyant jet has a nominally unsheared (top-hat) efflux velocity
Uo, an efflux density ρo – alternatively given by the discharge state parameters,ρo =
ρ (Xio) –, and a concentration co representing the tracer or pollutant mass of in-
terest. Thus, the buoyant jet is forced by its initial fluxes of momentum Mo and of
buoyancy Jo (both in kinematic units)

Mo = U 2
o ao, Jo = Uog

′
oao (1)

in which ao = D2π/4 is the discharge cross-sectional area and g′
o = (ρa (ho)−

ρo) g/ρref the initial buoyant acceleration where ρref is a constant reference density
consistent with the Boussinesq approximation. Since Mo is a vector quantity it is
useful, alternatively, to define – by means of the discharge angles θo and σo – the
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Figure 2. Illustration of the two shear mechanisms leading to entrainment across the lam-
inar-turbulent interface of buoyant jets: (a) Transverse shear due to centerline excess velocity
uc , (b) azimuthal shear due to the transverse propagation velocity ua(1 − cos2 θo cos2 σo)

1/2.

transverse momentum flux Mot and the excess longitudinal momentum flux Moe

Mot = Mo(1 − cos2θocos2σo)
1/2, Moe = Qo (Uo cos θo cos σo − ua) (2)

for the momentum forcings away from and along the x-direction, respectively. The
initial mass flux

Qco = Uocoao (3)

is a passive quantity without dynamic influence. The initial discharge (volume flux)
Qo = Uoao used in Equation (2) is a quantity that has limited dynamic influence
in the discharge vicinity only, in the so-called zone of flow establishment (ZOFE).

Figure 1 sketches the spatial evolution of the buoyant jet along a trajectory
s. Relative to the outside laminar (or weakly turbulent) flow, several free turbu-
lence shearing mechanisms lead to strong turbulent fluctuations within the jet and
a gradual growth of its characteristic width b. The primary condition for a fully
turbulent jet flow is a sufficiently high value of the exit Reynolds number

Reo = UoD/ν (4)

in which νis the kinematic viscosity. Under these conditions the jet behavior, not-
ably its dominating large-scale fluctuation, mixing and entrainment aspects, be-
comes independent of viscosity. For a simple jet into a stagnant ambient a generally
accepted critical value for Reo is about 2000 [23]. When more forcing factors, such
as buoyancy or crossflow, come into play the critical value is yet lower (e.g., about
1000 for the pure plume; Ungate, 1974).

A local cylindrical coordinate system (Figure 1) with axial distance s, radial
distance r and azimuthal angle φ is defined along the trajectory, and inclined
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with the local horizontal angle θ and horizontal angle σ . Two types of shear-
ing mechanisms (see Figure 2) can be distinguished in this coordinate system:
(1) Streamwise shear τrz in which the velocity excess above the ambient com-
ponent ua cos θo cos σo causes primary instabilities in form of axisymmetric ring
vortices that with superimposed secondary instabilities ultimately break down into
three-dimensional turbulence. Mean entrainment occurs uniformly at the jet peri-
phery. (2) Azimuthal shear τrφ in which the ambient flow with normal component
ua(1 − cos2 θo cos2 σo)

1/2 passes around, and interacts with, the cylindrical jet
element. The shear at the element flanks leads to instabilities, causes cumulat-
ive entrainment predominantly in the lee and sets up an internal double vortex
circulation.

The objective of any jet analysis is the determination of the jet trajectory x(s),
y(s), z(s), the geometrical factors θ (s), σ (s), along with the distributions f (r, φ)

for the local axial velocity u, density ρ (or alternatively, state parametersXi ) and
concentration c. In the case of the jet integral method, the distribution functions
f (r, φ) are specified a priori and cease to be object of analysis. This approach
is obviously inspired by the tenets of self-similarity for simple free turbulence
motions (e.g., jets, wakes), but can only be approximate for the general buoyant
jet that is not in equilibrium, but rather in transition among five possible states of
self-similarity, as is shown below. With this restriction the following distribution
functions

u = uce
−r2/b2 + ua cos σ cos θ, g′ = g′

ce
−r2/(λb)2

,

Xi = Xice
−r2/(λb)2 + Xia (z) , c = cce

−r2/(λb)2 (5)

based on Gaussian profiles are the most reasonable, in which ucis the excess axial
velocity, g′

c = (ρa (z) − ρc) g/ρref the buoyancy, ρc the density, Xic the excess
value of the state parameters, and ccthe concentration, all on the centerline. b is a
measure of the jet width where the excess velocity is e−1 = 37% of the centerline
value, λ > 1is a dispersion ratio as the observed width of the scalar distribution is
larger than for the velocity (turbulent Schmidt number). These fully axisymmetric
profiles, functionsf (r) only, are an excellent representation to all free turbulent
flows with streamwise shear as evidenced by numerous comparisons with experi-
mental data for jets, plumes or wakes. They are obviously less satisfactory for the
double peaked distributions of axial velocity and scalars in the crossflow dominated
buoyant jet phases that show an internal vortex pair (Figure 2b), but still serve as a
useful first approximation.

The jet integral method proceeds by making use of the boundary-layer nature
of the flow and by integrating all terms ( ) of the governing turbulent Reynolds
equations of motion (not stated herein) across the cross-sectional plane,

∫
( ) dA

in which dA = r dφ dr. A system of ordinary differential equations is the res-
ult and major advantage of this procedure. For the given axisymmetric profiles
the integration amounts to 2π

∫ Rj

0 ( ) dr. The ‘jet radius’ Rj is understood in
boundary-layer parlance as the ‘edge of the jet’ at which boundary conditions can
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be clearly specified or, alternatively, beyond which no further contributions to the
integration should arise. This is a crucial point in some of the integrals as will be
explained below. Also, a number of ‘turbulence closure coefficients’ arise in the
course of the integration process.

The following principles must be met for a reasonably accurate application of
the jet integral method:

Principle 1: The integral method is strictly valid only for the five asymptotic
conditions in which a fully self-similar flow with a constant internal force balance
and invariant turbulence properties are maintained.

In an environment with constant velocity ua and a constant gradient of buoyancy
ε = −(g/ρa)(dρa/dz) and beyond the initial ZOFE, the buoyant jet behavior is
controlled by the interplay of the parameters ua, ε, Jo,Mo, θo, σo (or Mot and Moe,
Equation (2), in place for the latter three). Five regimes with self-similar turbulent
flow characteristics can be defined as special cases of these forcing functions:
(i) Pure jet: ua = 0, ε = 0, Jo = 0; source of Mo only. The jet proceeds in the
direction prescribed by θo and σo.
(ii) Pure plume: ua = 0, ε = 0, σo = 90◦; source of Jo only. The plume rises
vertically.
(iii) Pure wake: ε = 0, Jo = 0, θo = 0, σo = 0, Mot = 0; source of Moe only
(whereby Moe � Mo; i.e. a weak momentum excess only) in ua . The wake motion
develops in the ambient flow.
(iv) Advected line puff: ε = 0, Jo = 0, Moe = 0; source of Mot only. The transverse
momentum injected into the flow sets up a cylindrical line puff that propagates
transversely into the flow while being advected.
(v) Advected line thermal: ε = 0, Moe = 0, Mot = 0 (i.e., σo = 0, θo = 0); source
of Jo only in ua . The buoyancy flux causes a vertically rising cylindrical thermal
while being advected.

Of these regimes, the first three are dominated by streamwise shear and the
last two by azimuthal shear. In actual discharge situations one or more of the five
regimes can occur as asymptotic regimes. The jet regime (i) is often the initial
regime (whenever Uo � ua) and the advected thermal regime (v) is usually – but
not always – the concluding regime.

Exact theoretical formulations and a good experimental data base that allows
the specification of the closure coefficients exist for these five regimes. Thus, any
general jet model formulation must – as a minimum test – be shown to be consistent
with these regimes!

Principle 2: The formulation of the transitions between these regimes, e.g., the
variability of coefficient values, is arbitrary. Transition functions cannot be derived
from first principles. Their formulation should primarily be guided by pragmat-
ism and a good overall data fit when testing the model under general transition
conditions. Fortunately, jet integral models behave quite acceptably in this regard
provided all the other principles are maintained.
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Principle 3: Jet integral models cannot be expected to hold for flow situations
in which boundary layer behavior is no longer maintained. The boundary layer
approximation implies a pressure within the jet equal to that in the outside am-
bient. This is violated whenever the jet undergoes strong spreading or exhibits
strong curvature. Examples for the first are the terminal layer transition in ambient
stratification, for the second jets into an opposing ambient current. In this context,
note also that none of the self-similar asymptotic regimes outlined above include
ambient density stratification, ε �= 0. In that case, axial pressure forces influence
and finally destroy the boundary-layer evolution of the flow and lead to strong
horizontal spreading, the so-called collapse motion during the terminal layer phase
of a buoyant jet in stratified surroundings. The flow is no longer jet-like. This makes
futile past attempts to extend jet model predictions into the terminal layer phase.

Principle 4: The initial zone of flow establishment (ZOFE) is another transition
region that lacks self-similarity as the initial unsheared profiles undergo changes in
form of peripherally growing axisymmetric mixing layers until the final jet profiles
are reached. This transition is quite complex, in particular for ambient crossflow,
on one hand, and reasonably rapid, up to a distance of about (5 to 10)D, on the
other. Give the overall jet region of interest an empirical formulation based on
experimental observations is therefore most appropriate for the ZOFE.

Principle 5: The jet integral equations should be formulated in terms of flux
quantities rather than local variables (such as b, uc, etc.). The flux quantities are
mostly conservative (i.e., strictly constant or gradually changing) while local vari-
ables can undergo strong changes or contain singularities (e.g., at the point of
maximum rise for a vertical negatively buoyant jet in stagnant ambient) which
affects solution accuracy. This principle cannot be always maintained as is shown
below but should be aimed for.

Principle 6: All jet integral model formulations must be accompanied by limits
of applicability in form of spatial restrictions. When carried beyond these limits
the models predict unrealistic or nonsensical behavior. For example, the turbulent
entrainment for a jet in crossflow will at some distance be dominated by turbu-
lent mixing in the existing ambient flow, or models applied to buoyant jets in
stratified crossflows predict a final stage with persistent oscillations around the
terminal level which are unrealistic as the jet is laterally collapsing in that stage.
This issue becomes critical when integral models are applied to finite receiving
domains in which jet boundary interactions either terminate or significantly alter
the jet motion.

3. Integral Model Formulation

3.1. MODELING STRATEGY

Irrespective of their formulation integral models are approximate. A series of
choices need to made in the formulation. These should be dictated by convenience
and simplicity but should satisfy the principles set forth in the preceding section.
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First, since the flow field is steady in the mean a Eulerian formulation for the
evolution along the trajectory is straightforward and preferable. In contrast, a num-
ber of integral models have been written in a Lagrangian framework in which a
jet element is assumed to be advected with a some average local velocity along the
trajectory [24, 25]. During that advection the element is assumed to be transformed
through various entrainment and force mechanisms. This approach is quite appeal-
ing for the limiting final stages of strong advection, but in the initial jet stages it
seems awkward in comparison to a simple Eulerian formulation.

Secondly, the governing equations of motion and turbulent transport (Reynolds
equations) need to be integrated in the local coordinate system using the profile
specifications, Equation (5). This yields a system of conservation equations for
different flux quantities. A simpler alternative that will be pursued herein is to first
define such flux quantities in a fashion that describes the total transport of volume,
momentum and scalar mass in the turbulent jet zone and then state conservation
principles for these quantities. Even though the latter alternative can be shown [26]
to contain some inaccuracies because of the reversal of integration and differenti-
ation (for which Leibnitz’s rule needs to be applied) it appeals as a simple and direct
approach. The inaccuracies are minor relative to other modeling assumptions and
irrelevant if the full model formulation satisfies the five asymptotic regimes.

Thirdly, the gradual growth of the turbulent zone can be described through
a spreading equation [27] or through an entrainment model. In the asymptotic
cases, both approaches can be shown to be linked. In the general case, however, an
entrainment model appeals physically due to its direct linkage between turbulent
growth and forcing functions, i.e., the diverse shear mechanisms.

The following model formulation expands on the approach first taken by Jirka
and Fong [28].

3.2. INTEGRAL QUANTITIES

Through cross-sectional integration the following bulk variables for total volume
flux Q, axial momentum flux M, buoyancy flux J, flux of excess state parameter
QXi and tracer mass flux Qc, respectively, are obtained

Q = 2π

∫ Rj

0
urdr = πb2 (uc + 2ua cos θ cos σ) , (6)

M = 2π

∫ Rj

0
u2rdr = 1

2
πb2 (uc + 2ua cos θ cos σ )2 , (7)

J = 2π

∫ Rj

0
ug′rdr = πb2

(
uc

λ2

1 + λ2
+ λ2ua cos θ cos σ

)
g′

c, (8)

QXi = 2π

∫ Rj

0
u (Xi − Xia) rdr = πb2

(
uc

λ2

1 + λ2
+ λ2ua cos θ cos σ

)
Xic, (9)
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Qc = 2π

∫ Rj

0
ucrdr = πb2

(
uc

λ2

1 + λ2
+ λ2ua cos θ cos σ

)
cc. (10)

When evaluating the individual terms in these flux quantities the integration limit
Rj is usually taken as Rj → ∞ as the definite integrals over the jet profiles,
Equation (5), yield bounded values. There are two exceptions in the crossflow con-
tributions (second terms under the parenthesis) for Q and M, respectively, in which
Rj = √

2b. Recent detailed measurements by Chu [29] using the LIF method for a
co-flowing jet support this choice of the jet radius with the purpose of defining the
turbulent jet flow region in which the actual transport and mixing process occurs.
On the basis of Equation (5), Rj = √

2b defines a local velocity excess of 14%
and scalar value of 25% (with a typical λ = 1.20) of the centerline values. The
latter value describes the location of the instantaneous laminar/turbulent interface
of the jet as is shown in Figure 3 by virtue of the intermittency distribution, the
distribution of maximum and minimum concentration profiles, and a comparison
of an instantaneous cross-section and the 0.25ccvalue of the average cross-section.
Incidentally, this definition of Rj agrees with a long tradition in the visual analysis
of atmospheric plumes and happens to be consistent in a flux sense with the much
cruder top-hat profile assumption [30].

3.3. CONSERVATION EQUATIONS

Conservation equations for the flux quantities defined by Equations (6) to (10) are
formulated for a jet element of length ds centered on the trajectory. The following
assumptions are made: (1) Pressure deviations from hydrostatic within the jet are
neglected consistent with the boundary layer nature of the flow; (2) acceleration
effects due to jet curvature are neglected; (3) turbulent momentum and scalar fluxes
are neglected relative to the mean fluxes of momentum and scalars. Typically these
terms amount to some 10% of the mean values [31, 32], but more importantly they
are proportional to the mean values so there is no need for a separate representation.

The conservation principles for volume (continuity), momentum components
in the global directions x, y and z, state parameters, and scalar mass lead to the
following equations

dQ

ds
= E, (11)

d

ds
(M cos θ cos σ ) = Eua + FD

√
1 − cos2 θ cos2 σ , (12)

d

ds
(M cos θ sin σ ) = −FD

cos2 θ sin σ cos σ√
1 − cos2 θ cos2 σ

, (13)

d

ds
(M sin θ) = πλ2b2g′

c − FD

sin θ cos θ cos σ√
1 − cos2 θ cos2 σ

, (14)
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Figure 3. Definition of jet radius Rj = √
2b as the integration limit for the flux quantities

in the advected buoyant jet stages marking the width of the turbulent transport zone. Data by
Chu [29] for the co-flowing jet. (a) Concentration intermittency γ , (b) maximum/minimum
concentration values, cmax/cc, cmin/cc, both as function of radial distance, r/(λb), where
λ = 1.20, (c) LIF images of instantaneous and (d) averaged concentration values in a jet
cross-section.
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dQXi

ds
= −Q

dXia

dz
sin θ, (15)

dQc

ds
= 0. (16)

Furthermore, the geometry of the trajectory is defined by

dx

ds
= cos θ cos σ,

dy

ds
= cos θ sin σ,

dz

ds
= sin θ (17)

and the centerline density ρc contained in the definition of centerline buoyancy g′
c

in Equation (14) is given by the equation of state

ρc = ρc (Xic) . (18)

Appendix A lists two specific examples for equation of states in temperature- and
salinity-stratified water bodies and the stratified atmosphere, respectively. Whenever
a simple linearized equation of state applies then an equation for the conservation
of buoyancy can be used in lieu of Equations (15) and (18)

dJ

ds
= Q

g

ρref

dρa

dz
sin θ. (19)

The terms E and FD in the equations above represent the entrainment rate and an
ambient drag force acting on the jet element. The specification of these turbulent
processes constitutes the ‘turbulence closure problem’ in the integral formulation.
The force term Eua in Equation (12) is the entrainment of ambient momentum into
the jet and the term πλ2b2g′

c in Equation (14) the buoyancy force. The right hand
terms in Equations (15) and (19), respectively, represent the dilution effect as the
jet moves through the stratified environment.

The entrainment rate E is specified as the additive contributions of the different
streamwise and azimuthal shear mechanisms that lead to entrainment of ambient
fluid into the turbulent jet proper

E = 2πbuc

(
α1 + α2

sin θ

F 2
�

+ α3
ua cos θ cos σ

uc + ua

)
+

+ 2πbua

√
1 − cos2 θ cos2 σ α4 |cos θ cos σ | . (20)

Following a long-standing convention the entrainment velocity is prescribed at a
distance equal to the e−1 width b (rather than the radius Rj = √

2b that would be
more appropriate for the entrainment process) and this arbitrary choice is reflected
in the numerical value of the entrainment coefficients α1 to α4. The streamwise
entrainment terms are proportional to the centerline velocity uc and are given
by coefficient values for the pure jet α1, and the added effect of the pure plume
α2 and the pure wake α3, respectively. The pure plume contribution is inversely
proportional to the square of the local densimetric Froude number F� = uc/

√
g′

cb
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and depends on the vertical angle θ . Such a functional transition can be derived
by means of a mean kinetic energy equation as first suggested by Fox [33]. The
pure wake enhancement is proportional to the wake parameter ua/(uc + ua). The
azimuthal entrainment scales with the ambient velocity component transverse to
the jet ua

√
1 − cos2 θ cos2 σ and the coefficient α4 represents both line puff and

thermal. In the latter two terms, the projection term |cos θ cos σ | accounts for the
deviation of the jet element axis from the direction of the crossflow.

The jet drag FD is parameterized as a quadratic law force mechanism

FD = cD2
√

2b
u2

a(1 − cos2 θ cos2 σ )

2
, (21)

in which ua

√
1 − cos2 θ cos2 σ is the transverse velocity component, 2

√
2b the jet

diameter, and cD the drag coefficient. Equation (21) specifies a drag effect in obvi-
ous analogy to the flow around a cylindrical solid body for which boundary layer
separation leads to a pressure reduction in the lee of the body and a turbulent wake
that is distinguished by a momentum deficit flux and a vorticity field consisting of
unsteady counterrotating vortices.

Since an entraining jet is quite dissimilar in character there has been much
controversy in the literature as to the existence and precise nature of a turbulent
jet drag force FD and whether it is of any importance in Equation (21) relative to
the entrainment of ambient momentum Eua (often called the entrainment force).
Fric and Roshko [34] have shown that up to four vortex types may exist for a jet in a
crossflow, in particular when it is issuing out of a bounding wall. Of major interest
for the present argument is here the existence of a wake vortex structure down-
stream of the jet. Fric and Roshko have clearly demonstrated these wake vortices
for the case of strong crossflow with a jet that is issuing flush from the bounding
wall. They attribute its existence partly to an interaction with the wall boundary
layer. However, other studies have shown that the wake vortices exist also for very
weak crossflows and far from the wall [35] and for jets issuing from an elevated
source [36–38]. The study by Moussa et al. [36] in particular, clearly demonstrates
the vortex-shedding system in the wake of the jet for well elevated effluxes. Eiff
and Keffer [37] show that a lock-in between the elevated stack wake and the jet
wake occurs over a wide parameter range. Detailed pressure measurements for the
situation in which the jet issues from a bounding wall show that a drag coefficient
evaluated from the pressure distribution at the jet periphery and at the bounding
wall (efflux plane) varies between about 0.8 for weak to about 3.0 for strong
crossflows [39]. These coefficients seem to include, however, the contributions due
to the pressure due to the pressure field of the entraining sink flow. Additional
pressure measurements are summarized by Margason [40]. Measurements in a line
directly downstream of the jet by Fric and Roshko [34] give further support of a
reduced pressure zone. The data of Smith and Mungal [35] as well as those of
Davidson and Pun [38] show in addition that some jet fluid is actually carried into
the trailing vortex zone. All these evidences point to the fact that beyond the mere
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entrainment force there is another jet/crossflow interaction mechanism that can in
first order be parameterized as a quadratic law drag force. Clearly, more work needs
to be done to further elucidate the precise mechanism and the order of magnitude
of this effect. The extreme assertion of Morton and Ibbetson [41] that a turbulent
wake with rotational effects and vortex lines parallel to the z-axis simply cannot
exist because such vorticity is not generated due to absence of a solid boundary is
clearly not upheld by the experimental evidence. Furthermore, that assertion seems
invalid in any case as the vortex stretching effect due to the velocity field imposed
by the jet inflow leads to a re-orientation of the initial vorticity that lies embedded
in the ring-like shear-layer vortices at the influx jet periphery: Of course, there
cannot be any net vorticity with a z-component, but there can be individual vortex
elements, in particular turbulent fluctuations, in the wake zone as observed in the
above mentioned studies. This view is further corroborated by the detailed vortex
visualization studies of Kelso et al. [42] and the large-eddy simulations of Yuan
et al. [43].

3.4. INITIAL CONDITIONS: ZONE OF FLOW ESTABLISHMENT (ZOFE)

The nine governing equations for flux conservation and jet geometry, Equations
(11) to (17), – together with the supplemental equations of state, Equation (18), for
entrainment, Equation (20), and the drag force, Equation (21) – describe the evolu-
tion of the nine jet variables, Q, M, QXi(alternatively J ), Qc, θ , σ , x, y and z. The
numerical solution of the equation system is carried out with a fourth-order Runge–
Kutta algorithm. The formulation given above uses essentially a flux-conservative
formulation (following Principle 5) that minimizes the effect of potential singular-
ities. The use of some of the local variables, b, uc, g′

c and Xic, cannot be avoided
altogether. Supplemental relationships for these variables can be derived from the
flux definitions. These are summarized in Appendix B.

Initial conditions need to be specified at the jet efflux. As noted in Section 2, the
actual jet discharge conditions occur at some location (0, 0, ho) where nominally
unsheared efflux conditions occur, or in practice, the jet exit velocity profile may
contain peripheral boundary layers characteristic of a nozzle flow or of a longer
preceding pipe flow section. These conditions are described by the initial values of
the flux variables, Mo, Jo (see Equation (1)) and Qco (Equation (3)) and the initial
angles θo and σo. Two non-dimensional measures, a crossflow parameter R and a
densimetric Froude number Fo

R = Uo

ua

, Fo = Uo√
g′

oD
(22)

characterize the crossflow and buoyancy interaction of the discharge, respectively.
The transition from that more or less uniform efflux section to a fully established

jet flow that can be characterized by the approximately self-similar distribution
functions given by Equation (5) takes place in the ZOFE. There have been many
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attempts to construct detailed models of the ZOFE mechanics with the developing
shear layer at the jet periphery. However, all these are limited to special conditions,
e.g. for the pure jet in stagnant ambient by Abramovich [44], or for the vertically
rising pure plume by Lee and Jirka [45]. The transition process for general condi-
tions of crossflows under arbitrary discharge angles and with discharge buoyancy
is highly complex. Thus, a detailed treatment seems both futile and unnecessary
(see Principle 4) in view of the limited extent of the ZOFE.

The following approximate model of the ZOFE proceeds from the case of a pure
jet in stagnant ambient for which momentum conservation, Me = Mo, shows that
Qe = √

2 Qo by virtue of Equations (6) and (7). Subscript e denotes conditions
at the end of the ZOFE. The ZOFE length Le is found from a linear spread of
the shear layer to be about 6.2 D based on velocity profiles or about 5.0 D based
on scalar profiles, due to the typical dispersion ratio, λ > 1. This basic result is
extended to general conditions using the empirical approach of Schatzmann [26]
for crossflow effects and the model formulation of Lee and Jirka [45] for buoyancy
effects. Supplementary discharge angles are defined as

γo = sin−1(

√
1 − cos2 θo sin2 σo, δo = tan−1(tan θo/ sin σo) (23)

in which γo is the transverse discharge angle relative to the ambient current direc-
tion and δo its projection onto the x-y plane. The modified ZOFE length Le and its
final transverse angle γe are

Le = 5.0D (1 − 3.22 sin γo/R) (1 − e−2.0Fo/F�p), (24)

γe = tan−1(
sin γo

cos γo − (
√

2 − 1)/R
), (25)

in which F�p is the asymptotic value of the local densimetric Froude number (defined
in Equation (20)) of a pure plume (see next section). Hence the initial conditions
for the solution of the jet equation system can be stated, for the geometry

θe = sin−1(sin γe sin δo), σe = tan−1(sin γe cos δo/ cos γe), (26)

xe = Le cos θave cos σave, ye = Le cos θave sin σave, ze = ho+Le sin σave (27)

in which θave = (θo + θe)/2 and σave = (σo + σe)/2, and for the fluxes

Qe = √
2 Qo, Me = Mo, QXie = QXio (or Je = Jo), Qce = Qco, (28)

respectively.
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4. Model Evaluation and Data Comparison

The equation system and solution procedure outlined in the preceding Section
has been coded with input and graphical output routines into the Fortran program
CorJet. The following coefficients are used in CorJet:

α1 = 0.055, α2 = 0.6, α3 = 0.055, α4 = 0.5
λ = 1.20, cD = 1.3 .

(29)

In essence, these parameters constitute ‘turbulence closure’ coefficients for the
complex turbulent mixing process. Six values are needed to guarantee precise pre-
dictions for all of the asymptotic self-similar regimes with their different mixing
dynamics. The choice of these parameter values will be commented upon further
below.

Different scalings will be used to display model predictions and to compare
to experimental data. In some instances, lengths will be scaled by the diameter D
and dynamic conditions indicated by the parameters, R and Fo, Equation (22). In
most cases, however, dynamic length scales are the preferred choice for displaying
buoyant jet characteristics [22, 46]:

Jet/plume transition length scale LM = M
3/4
o /J

1/2
o

Jet/crossflow length scale Lm = M
1/2
o /ua

Plume/crossflow length scale Lb = Jo/u
3
a

Jet/stratification length scale L′
m = M

1/4
o /ε1/4

Plume/stratification length scale L′
b = J

1/4
o /ε3/8.

(30)

The jet mixing characteristics are measured by two dilution values, the centerline
dilution Sc = co/cc (referring to a conservative substance) and the bulk dilution
S̄ = Q/Qo, respectively. By virtue of the definitions, Equations (6) and (10), and
since Qc = Qco, these dilutions are related as

S̄

Sc

= uc + 2 ua cos θ cos σ

uc λ2/(1 + λ2) + λ2ua cos θ cos σ
. (31)

Hence, for strong jet- or plume-like flows, uc � ua , S̄ ∼= 1.7 Sc, while for strongly
advected flows ua � uc, S̄ ∼= 1.4 Sc . These expected ratios are consistent with the
detailed measurements of Chu et al. [47].

4.1. THE FIVE ASYMPTOTIC REGIMES

For the cases of the pure jet, plume and wake, respectively, all with the controlling
transverse shear mechanism, the entrainment velocity ue at the nominal jet width b
is proportional to the centerline velocity, ue ∼ uc.

The pure jet is parameterized by an entrainment coefficient αjet = α1 = 0.055
for the Gaussian jet profile so that ue = αjetuc. This value, as well as the dispersion
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Figure 4. Pure jet: Comparison of experimental data for the decay of centerline velocity
uc/Uo as function of axial distancex/D with integral model predictions.

ratio λ = 1.20 are derived from the extensive data surveys of Chen and Rodi [48]
and List [31], but also agree with more recent work using PIV and LIF techniques
[32]. Differences in observed values between various experimenters are typically
±5%. Figure 4 shows the decay of centerline velocity uc/Uo and Figure 5 the
bulk dilution S̄, both as a function of axial distance x/D, with data from different
experimental sources. The CorJet model does not resolve the details within the
ZOFE, but captures the behavior in the self-similar zone.

The internal force balance in the pure plume motion is characterized by the
asymptotic value F�p of the densimetric Froude number F� = uc/

√
g′

cb. This sets
the plume coefficient αplume = 0.055 + 0.6/F 2

�p for the entrainment velocity ue =
αplume uc. The value F�p can be found from the condition

dF 2
�

ds
= 0 that derives

from the conservation equations for volume, vertical momentum and buoyancy
flux, Equations (11), (14) and (19), respectively. This approach (see [49]) leads to

F 2
�p = 5

4

λ2

αplume
. (32)

Inserting the definition for αplume into this equation yields the asymptotic values
αplume = 0.083 and F�p = 4.67. Again, these values are in general agreement with
the available data sources. The dispersion value of λ = 1.20 for the pure jet is
also adequate for the pure plume [31], even though more recent studies appear to
suggest an about 10% lower value [32, 92].

Available experimental studies are never limited to the pure plume regime, but
for experimental reasons usually include the transition from a more jet-like initial
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Figure 5. Pure jet: Bulk dilution S̄ as function of axial distance x/D.

Figure 6. Vertical buoyant jet in stagnant ambient: Normalized centerline dilution Sc/Fo as a
function of vertical distance z/LM . The slopes indicate the asymptotic stages, Sc ∼ z1 for the
jet and Sc ∼ z5/3 for the plume.
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Figure 7. Vertical buoyant jet transition in stagnant ambient: Normalized inverse centerline

velocity M
1/2
o /(uc z) as a function of vertical distance z/LM . The slopes are uc ∼ z−1 for

the jet and uc ∼ z−1/3 for the plume.

regime to the final plume motion. Figure 6 shows the normalized centerline dilution
Sc/Fo as a function of vertical distance z/LM . The transition from a dependence
Sc ∼ z1 for the jet to for the plume is evident. The transition region is given by the
range 1 < z/LM < 5 [92]. The CorJet predictions agree well with the experimental
data by various investigators that represent for one part direct measurements of
centerline concentrations cc and for the other part conversions via Equation (31)
from volume flux measurements Q. Figure 7 gives the comparison for the nor-
malized centerline velocity inverse M

1/2
o /(uc z) as a function of z/LM . Again, the

transition from the jet uc ∼ z−1 to the plume uc ∼ z−1/3 is evident. The CorJet
predictions for the plume regime agree in trend, but the predicted uc values lie
some 30% above the two experimental sources, which is surprising since the bulk
volume flux (see Figure 6) agrees well. This may be related to strong initial source
effects (low Fo) that appear to dominate the experimental range with high z/LM in
which the flow may be away from similarity as remarked by Wang and Law [32].

For the co-flowing pure wake (with uc � ua , θ = 0◦ and σ = 0◦) the
entrainment coefficient in Equation (20) becomes αwake = α1 + α3 = 0.110 so
that the wake entrainment velocity ue = αwake uc is twice as large as for the jet.
The pure wake has the following evolutionary laws b ∼ x1/3 and uc ∼ x−2/3

that can be obtained from the governing equations, Equation (11) and (12). Due to
experimental limitations it is quite difficult to observe the pure wake regime of a jet
efflux. Also high quality experimental data on the jet/wake transition have not been
available until the recent study of Nickels and Perry [50] in which special precau-
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tions were taken to eliminate the negative wake effect of the discharge nozzle.
Figure 8a shows their data for the decay of the normalized centerline velocity
uc/ua as a function of downstream distance x/Lme in which Lme = M1/2

oe /ua is
the modified jet/crossflow length scale based on the excess momentum flux Moe

(see Equation (2)). The growth of the width b/Lme is displayed in Figure 8b. The
flow transition between these two asymptotic regimes is well represented by the
CorJet predictions. Figure 8b also includes recent data by Wang [51] on concen-
tration measurements in the jet/wake transition covering a wide range of the pure
wake. The Gaussian concentration width measurements bc are plotted as bc/λ (with
λ = 1.20). These data agree well in trend, but seem to show in the pure wake
range that – relative to the velocity data by Nickels and Perry [50] and the CorJet
predictions – λ > 1.20 by some 20%, a fact that may be related to weakly turbulent,
almost laminar conditions in the experiments in that range. Unfortunately, no sim-
ultaneous measurements on velocity and concentration distributions are available
to date to reconcile this aspect.

For the cases of the advected line puff and thermal, respectively, the azimuthal
shear mechanism is dominant and the average entrainment velocity ue at the nom-
inal jet width b is proportional to the transverse propagation velocity, ue ∼ up, in
which up = ua(1 − cos2 θo cos2 σo)

1/2.
For the advected line puff, ue = αpuff up with the puff entrainment coefficient

αpuff = α4 = 0.5 consistent with the basic work of Richards [52]. The asymptotic
behavior for the advected puff case with a vertical transverse momentum compon-
ent is given by the vertical rise z ∼ x1/3 and the dilution Sc ∼ z3. Data on advected
line puffs can be found in the recent study of Chu [29] in which a special injection
device was used to assure a discharge with zero excess longitudinal momentum
Moe but only vertical (i.e., σ = 0◦) transverse momentum flux Mot, see Equa-
tion (2), that defines the length scale Lmt = M

1/2
ot /ua . Figure 9a shows the data

on the normalized vertical trajectory z/Lmt and Figure 9b the normalized center-
line dilution ScQo/(uaL

2
mt) as a function of downstream distance x/Lmt together

with CorJet predictions. Despite considerable data scatter because of the strongly
fluctuating flow character the agreement is good. Furthermore, the experimental
determination of centerline dilutions is somewhat tenuous due to the internal vortex
structure leading to lower concentrations – and hence higher dilutions – along the
centerline.

The advected line thermal has an average entrainment velocity ue = αthermal up

for which the thermal entrainment coefficient αthermal = α4 = 0.5 is approximately
equal to the puff values, again based on Richards’ work that suggests roughly
similar entrainment mechanisms for these flows. The asymptotic solutions are for
by the vertical rise z ∼ x3/4 and the dilution Sc ∼ z2, respectively. Figure 10
shows the comparison with the advected thermal data of Fai [53]. Here lengths are
normalized with Lb, see Equation (30), and the centerline dilution as ScQo/(uaL

2
b).

Again, despite the data scatter the agreement with model predictions is satisfactory
both in trend and in magnitude.
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Figure 8. Jet/wake transition in ambient co-flow: Comparison of experimental data by Nickels
and Perry [50] and Wang [51] with integral model predictions: (a) Decay of centerline velocity
uc/ua , and (b) increase of jet width b/Lme, both as function of normalized axial distance
x/Lme. Slopes indicate asymptotic behavior.
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Figure 9. Advected line puff: Comparison of experimental data by Chu [29] with in-
tegral model predictions: (a) Vertical rise z/Lmt , and (b) normalized centerline dilution
ScQo/(uaL2

mt ), both as a function of downstream distance x/Lmt . Slopes indicate asymptotic
behavior. Slopes indicate asymptotic behavior.
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Figure 10. Advected line thermal: Comparison of experimental data by Fai [53] with in-
tegral model predictions: (a) Vertical rise z/Lb, and (b) normalized centerline dilution
ScQo/(uaL2

b), both as a function of downstream distance x/Lb. Slopes indicate asymptotic
behavior.
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In summary, the above comparisons of the integral model with data for the
five asymptotic cases show that the basic model assumptions and formulation are
adequate for these limits and validate the set of model coefficients, Equation (29)
(with the exception of cD that will be addressed in the following). Of particular
interest is the constant value of λ = 1.20 that seems to represent a good average
over the complete range (with possibly slightly lower values for the plume and
slightly higher values for the strongly advected cases). In any case, a model for-
mulation that would include some variability of λ [32] seems hardly warranted in
view of the data uncertainty on one hand and the good predictions of the present
model on the other. The representation of the vortex pair structure for the advected
line puff and thermal regimes by means of a Gaussian profile assumption also
seems supported by the model predictions, in particular for such overall features as
trajectories, widths and dilutions (see Figures 9 and 10).

Table I summarizes the analytical expressions for the five self-similar asymp-
totic regimes, based on the basic coefficients that have resulted from the above
model validation.

In that context it is quite remarkable to note the differences between the pure
wake with its transverse and the advected line puff with its azimuthal shear mech-
anism, respectively. The latter with its internal vortex structure seems about 75%
more efficient in leading to entrainment and mixing. Thus, the crossflow compon-
ent of the initial momentum flux plays a role not only in the discharge vicinity but
continues to exert some influence also at larger distances in the strongly advected
stages.

4.2. NON-EQUILIBRIUM BUOYANT JET FLOWS

General buoyant jet flows, often with complex three-dimensional trajectories, with
variable ambient stratification and/or with crossflows, are in a non-equilibrium
state lacking local self-similarity. As has been stated in Principle 2, the formulation
of the transition functions for these non-equilibrium conditions cannot be derived
from first principles. Thus, the adequacy of the present formulation for turbulent
entrainment, Equation (20), and for the drag force, Equation (21), has to be guided
largely by satisfactory data comparisons under a variety of transitional flow condi-
tions. This is done in the following. Also, several limits of applicability (Principle
6) for the integral formulation are provided.

4.2.1. Buoyancy-Induced Transitions in Stagnant Environment

The horizontal buoyant jet (θo = 0◦) is one of the most common applications
for aquatic discharges. Figure 11 shows the normalized vertical trajectory z/LM as
a function of x/LM for a variety of experimental conditions with different Froude
number Fo and in comparison the CorJet model predictions. The data scatter is typ-
ical for these experiments in which visual observations are used for the trajectory
determination. The normalized centerline dilution Sc/Fo as a function of elevation
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Figure 11. Horizontal buoyant jet in stagnant ambient: Normalized vertical trajectory z/LM

as a function of x/LM .

z/LM is displayed in Figure 12. For large z/LM the approach to the pure plume
behavior Sc ∼ z5/3 (see Figure 6) is evident. The integral model seems to provide
a satisfactory transition behavior as can be seen from both figures.

The vertical negatively buoyant jet (θo = 90◦, g′
o < 0) represents a strongly

anomalous flow situation. During the initial stages before reversal (i.e., the max-
imum rise) has been reached the flow direction (generally given by the component
sin θ) is opposite to the direction of buoyant acceleration, so that the parameter
combination F 2

� / sin θ < 0. Given Equation (20) this means that the entrainment
rate falls below that of the jet because work is being done against gravity consistent
with the earlier mentioned models of Fox [33] and Jirka and Harleman [49]. As the
jet decelerates and approaches reversal, then stagnates (i.e., F 2

� / sin θ = 0) and
finally undergoes downward acceleration until it reaches asymptotically the pure
plume stage, the entrainment transitions are largely unresolved. A linear transition
between the decelarating and accelerating stages of the jet motion is assumed in
the integral model formulation. The complete entrainment functionality is shown in
Figure 13. The range of the positively buoyant jet/plume transition is well validated
by the direct measurements of Wang and Law [32] that have been discussed in the
preceding Subsection. A detailed testing of this proposed relationship for the neg-
atively buoyant range is impossible as precise data along the jet path have not been
measured to date. Furthermore, the reversing jet is re-entraining to some degree its
own mixed fluid, leading to a strong fluctuations during the fountain-like reversal
[54]. Various investigators have measured the height of rise Zmax of the decelerating
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Figure 12. Horizontal buoyant jet in stagnant ambient: Normalized centerline dilution Sc/Fo

as a function of elevation z/LM .

buoyant jet, usually interpreted as the maximum visual level. Recent data by Zhang
and Baddour [55] are shown in Figure 14 in normalized form Zmax/D as a function
of discharge Froude number Fo (in which the absolute value of g′

o is used). For
comparison the CorJet predictions are given in which Zmax is taken as the sum of
trajectory elevation zmax and visual boundary

√
2b, i.e., Zmax = zmax + √

2b. The
CorJet predictions are in good agreement with the data and given by the functional
relation

Zmax = 2.2LM (33)

Other experimental studies [54, 56] have led to similar values for the constant in
this equation, ranging from 1.7 to 3.2 [55] and reflecting some judgement in the
interpretation of Zmax. CorJet also predicts a normalized minimum dilution at the
reversal level

Sm/Fo = 0.24 (34)

that is in excellent agreement with the data (constant 0.23) by Abraham [56]. On
the other hand, the CorJet model fails to predict the data trend observed by Zhang
and Baddour for low Fo < 5 that show a substantial a substantial decrease of
Zmax (up to 50% as Fo � 1). Clearly, that is related to the re-entrainment after
reversal of strongly negatively buoyant fluid for these weakly mixing situations,
see Equation (34), that is not recognized in the model formulation.

Overall, the vertical negatively buoyant jet represents one extreme case of jet
behavior that stretches in the reversal stage the underlying boundary layer assump-
tion (Principle 3). Nevertheless, a reasonably satisfactory model performance for
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Figure 13. Behavior of the buoyant jet entrainment function in stagnant ambient conditions
covering the complete transition range of local negative and positive buoyancy, respectively.

Figure 14. Vertical negatively buoyant jet in stagnant ambient: Comparison of integral model
predictions with experimental data by Zhang and Baddour [55] for the normalized vertical rise
form Zmax/D as a function of discharge Froude number Fo.
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Figure 15. Inclined negatively buoyant jet in stagnant ambient: Comparison of integral
model predictions with experimental data by Hutter and Hofer [58] for the two-dimensional
trajectory, z/D versus x/D.

this situation is an important basis for other such near-extreme situations such as
strongly inclined negatively buoyant jets (a frequent application is the disposal of
brines from desalination plants). For example, the case of θo = 60◦ has been stud-
ied by Roberts and Toms [57]. They report a maximum jet elevation Zmax = 2.2LM

while CorJet predicts Zmax = 1.9LM , both values not substantially different from
the vertical case , Equation (33), keeping in mind the typical variability. The min-
imum dilution at that level is measured as Sm/Fo = 0.38 compared to the CorJet
prediction Sm/Fo = 0.29, these higher values relative to Equation (34) arise be-
cause of the longer jet path. No detailed data for the jet trajectory have been
reported by Roberts and Toms [57]; however, the comparatively similar case of
θo = 55◦ has been measured by Hutter and Hofer [58], and the model comparison
is given in Figure 15 showing good agreement for jet trajectory and visual width√

2b.
Momentum sources in form of pure jets in linearly stratified environments

(Jo = 0, ε > 0) provide an important case for the transition of jet flows to buoyant
collapse motion as internal density currents. Horizontal momentum injections
(θo = 0◦) have been studied by Roberts et al. [59] who observed the variation of
normalized centerline dilution ScLQ/L′

m as function of distance x/L′
m as plotted in

Figure 16. The data show an essentially linear increase of dilution corresponding
to the equation for a simple jet Sc = 0.162 x/LQ (see Table 1) in an initial region
x/L′

m � 5 and an essentially constant dilution level ScLQ/L′
m 
 0.8 beyond that

distance. This lack of further mixing indicates a suppression of jet entrainment
and also coincides with strong lateral spreading (see also visual observations by
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Figure 16. Horizontal momentum sources in stagnant linearly stratified environment: Com-
parison of integral model predictions with experimental data by Roberts et al. [59] for
normalized centerline dilution ScLQ/L′

m as function of distance x/L′
m.

Roberts and Matthews [60]. In sum, the jet undergoes a collapse in the stratified
environment. An estimate for the collapse transition at which the integral jet model
cease to be valid can be derived: Following Akar and Jirka [61] the lateral spreading
front velocity uf of a mixed region of vertical half-height h in a linear stratification
with buoyancy frequency N = √

ε is given

uf =
(

2

3CD

)1/2

Nh (35)

in which CD is a frontal drag coefficient in the inertial spreading stage [62] with a
value CD 
 1.2 for internal density currents, so that uf 
 0.75Nh. The horizontal
buoyant jet that is advancing with a mean velocity proportional to its centerline
velocity uc will undergo increasing lateral collapse whenever uf ≈ cuc where c is
a fraction expected to be less than unity. Defining a local Froude number FN [63]
for the jet in continuous stratification

FN = uc

Nb
, (36)

the condition for jet collapse becomes

FN 
 FNcrit (37)

in which the local scales h ≈ b. Data comparisons (see the following figures)
suggest the fractional value c ≈ 0.25 so that FNcrit ≈ 3.0. The comparison in
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Figure 16 of the CorJet model predictions with the data of Roberts et al. support
the adequacy of the transition estimate, Equation (37).

Non-horizontal momentum injections (|θo| > 0◦) as well as buoyant jet
sources (|Jo| > 0) in stagnant stratification create yet more complex transition
conditions in which the jet motion first experiences some upward or downward
motion until it reaches – after some overshoot to a maximum or minimum height –
a terminal level where the centerline density is equal to the ambient density and the
lateral collapse in form of an internal density current commences. An integral jet
model formulation will – in the absence of an adequate transition cutoff – predict
an infinite number of oscillations of the round jet about the terminal level as has
been noted in earlier studies. This is unrealistic as the models do not recognize the
jet collapse physics. Evaluation of the detailed experimental data of several invest-
igators and attendant model comparisons suggest the following rules for terminal
layer transition and hence end of the jet region:
(1) Transition occurs at the second buoyancy reversal (i.e., change of sign of the
local centerline buoyancy as defined in Equation (5)) of the buoyant jet motion. For
strong momentum sources this rule, typically, also satisfies the collapse condition,
Equation (37).
(2) Transition can already occur (i) at the first buoyancy reversal if for strongly
buoyant flows a more restrictive collapse condition, FN � 0.25FNcrit, is met, or (ii)
at the maximum or minimum rise level if the collapse condition, Equation (37),
is met there, or (iii) at the first buoyancy reversal if the jet motion has already
undergone through a maximum or minimum rise level and then meets a more
relaxed condition, FN � 2FNcrit.

In Figure 17, the data by Fan [21] for a strongly buoyant flow,Fo = 9.1, T = 48,
θo = 45◦, in which T is a stratification parameter T = g′

o/(εD), are compared with
the CorJet model. The data in form of tracings of photographic plume observations
clearly show the unsteady behavior of the jet collapse and internal density current
formation. In the initial phase the buoyant jet overshoots to the maximum height
and then falls back to the terminal level. This behavior is well predicted in traject-
ory and visual width

√
2b by the integral model that indicates the two buoyancy

reversals and the final value FN = 3.1. At later stages in the experiment, however,
the blocking and feedback effect that is typical for internal density currents [63]
makes itself evident: Because of the reduced mixing the observed terminal level
rises somewhat and the layer increases in thickness over time. Clearly, these effects
are beyond the jet regime. These aspects are further illustrated in Figures 18 for
(a) moderately buoyant jet (Fo = 21, T = 107, θo = 43.6◦), and (b) horizontal
weakly buoyant jet (Fo = 60, T = 510, θo = 0◦). Generally, the terminal layer
that is observed for sufficiently long times lies in the region between the maximum
rise and the predicted terminal level. This unsteady effect is, of course, a special
characteristic of the stagnant stratified blocking effect. It is less severe for cases
of stratification with crossflow as discussed further below. The terminal level rules
proposed above seem adequate even in this extreme situation. Data by different
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Figure 17. Buoyant jet in stagnant linearly stratified environment: Comparison of integral
model predictions with experimental data by Fan [21] for the two-dimensional trajectory. The
two tracings of plume outlines indicate the early and later stages of terminal layer formation.
The CorJet predictions include the visual plume width

√
2b, locations of buoyancy reversal

(BR), and values of the local Froude number FN , respectively.

investigators [58] given in Figure 19 actually show a slightly different trend as
the observed terminal layer lies somewhat below the prediction (Figure 19a). This
may be due to inaccuracies in determining the weak ambient stratification. The
predicted mixing in this momentum dominated case (Fo = 34, T = 920, θo = 0◦)
is well predicted, however (Figure 19b).

Lastly, the CorJet predictions can be compared with data for vertical jet and
plume motions (θo = 90◦), respectively, that have been cited in the literature [31,
64] even though detailed observations are missing. For vertical pure jets in stratific-
ation, CorJet predicts a maximum rise level Zmax = zmax +√

2b as Zmax/L
′
m = 3.3

and a terminal level zt as zt/L
′
m = 1.5, respectively. The experimentally observed

levels are 3.8 to 4.0 and 2.6, respectively. For a plume in stratification the CorJet
predictions give Zmax/L

′
b = 4.1 and zt/L

′
b = 2.5, while the data indicate again

3.8 to 4.0 and 2.6, respectively. Again, given the usual fluctuations and unsteadi-
ness in the experiments this agreement is satisfactory which incidentally is another
evidence for the adequacy of the proposed entrainment formulation depicted in
Figure 13. The fact that the reported terminal levels under these stagnant conditions
are somewhat higher with the predictions is consistent with the earlier discussion
(see Figure 17).

4.2.2. Buoyant Jet Transitions in Flowing Unstratified Environment

The non-buoyant jet discharging into transverse crossflow is a classical well-
studied case of the interaction of a momentum source with an ambient flow. In the
following all results are displayed in the vertical x-z plane (so that θo = 90◦) even
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Figure 18. Buoyant jet in stagnant linearly stratified environment: Comparison of integral
model predictions with experimental data by Fan [21] for the two-dimensional trajectory: (a)
Inclined moderately buoyant jet, (b) horizontal weakly buoyant jet. For symbols see Figure 17.

though gravity is immaterial in these cases. Figure 20 shows the data for centerline
trajectories obtained from photographic observations by Pratte and Baines [65]
compared to integral model predictions. The agreement is satisfactory for a wide
range of discharge/crossflow velocity ratios R, Equation (22). A large number of
laboratory measurements for jet trajectories as well as dilutions were performed by
Fan [21] and Wright [22]. Their aggregate data covering a range of source effects,
LQ/Lm from 0.01 to 0.3, are shown in normalized form in Figure 21 for traject-
ories z/Lm and in Figure 22 for centerline dilution ScLQ/Lm, respectively. The
corresponding CorJet predictions are given simply for a small source condition,
LQ/Lm → 0. Some of the data scatter is clearly related to the source effect, a
larger degree of variability relates, however, to ambiguities in the determination of



INTEGRAL MODEL FOR TURBULENT BUOYANT JETS. PART I 35

Figure 19. Buoyant jet in stagnant linearly stratified environment: Comparison of integral
model predictions with experimental data by Hutter and Hofer [58] for a horizontal weakly
buoyant jet: a) two-dimensional trajectory, b) decay of normalized centerline concentration
cc/co. For symbols see Figure 17.

the centerline trajectory as well as minimum dilutions. The trajectories in Figure 21
were obtained from maximum concentration measurements on the centerplane,
which typically lie some 20% above the photographic data (as was used by Pratte
and Baines [65], see Figure 20). The measured minimum dilutions on the center-
plane SCP are typically a factor of 1.7 higher than the minimum dilutions in the
vortex cores SVC [66] which are represented by the value Sc in the integral model
formulation. With these aspects in mind the comparisons in these two figures in-
dicate satisfactory model performance, including the correct asymptotic behavior
for dilution, Sc ∼ z2 (from Table I).

It can be noted in the logarithmic plot of Figure 21 that the trajectory behavior
in the strongly deflected puff stage deviates below a slope of 1/3 (see Table I). This
is due to the drag force effect that diminishes the vertical rise from what might be
expected from simple dimensional reasoning. This deviation was already evident
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Figure 20. Non-buoyant jets in transverse crossflow: Comparison of integral model predic-
tions with experimental data by Pratte and Baines [65] for two-dimensional trajectories with
different discharge/crossflow velocity ratios R.

Figure 21. Non-buoyant jets in transverse crossflow: Normalized two-dimensional trajector-
ies, z/Lm versus x/Lm. Slopes indicate exponents for power laws from dimensional analysis
in the weakly and strongly deflected stages, respectively.
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Figure 22. Non-buoyant jets in transverse crossflow: Normalized centerline dilution
ScLQ/Lm as a function of transverse distance z/Lm. Measured dilutions represent minimum
values on the jet centerplane SCP. Slopes indicate exponents for power laws from dimensional
analysis in the weakly and strongly deflected stages, respectively.

in Figure 9a. The weakly deflected jet phase agrees well with dimensional analysis,
z ∼ x1/2 [22]. Typically the transition from the weak to the strong deflection
regime occurs at a transverse distance z ∼ Lm. At that stage the integral model
indicates a maximum local ratio of drag force FD (Equation (21)) to entrainment
force Eua of about 0.5. While this ratio is smaller in the initial and final stages of
deflection, respectively, it indicates the relative important contribution of the drag
force mechanism toward overall jet behavior. The necessity and sensitivity of the
drag force term is further tested by assigning variable values of cD in the model
and evaluating the effect on the trajectory in the bent-over stage, (x/LM > 1 (see
Figure 21): Omitting the drag force (cD = 0) predicts a trajectory that is elevated
by a factor of 1.2 in the entire bent-over stage, while doubling its contribution
(cD = 2 × 1.3) provides a trajectory a factor 0.88 lower. These results confirm that
the drag force mechanism must be necessary part of an integral model formulation
for jets in crossflow, a fact that is suggested more fundamentally by the recent
detailed data on the deflection dynamics (see Section 3.3).

Jets discharging at oblique angles into crossflow have been studied by Mar-
gason [67] and Chu [66] among others. Figure 23 gives data for a 60◦ transverse
angle θo discharging along (σo = 0◦) or against (σo = 180◦) the ambient flow
at different velocity ratios R. The data, though limited to the discharge vicinity,
support the model predictions. The opposing jet (θo = 0◦,σo = 180◦) provides an
extreme test of the model formulation as the jet loses near the point of maximum
upstream penetration −xp its boundary layer character. Figure 24 compares the
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Figure 23. Non-buoyant jets discharging at oblique angles into or against ambient flow: Com-
parison of integral model predictions with experimental data by Margason [67] for normalized
two-dimensional trajectories, z/D versus x/D.

model predictions with the data of Chan and Lam [68] for R = 15 who measured
the decay of absolute centerline velocity (uc −ua)/Uo and of visual width

√
2b/D

as a function of upstream distance −x/D. The data indicate centerline velocity
stagnation at −xp/D 
 38.5 while CorJet predicts a value of about 40. Scaled by
the jet/crossflow length scale Lm the penetration distance is

−xp

Lm

= 3.0, (38)

which is in close agreement with additional work by Yoda and Fiedler [69] that
suggests a constant of 3.1. The data as well as the predictions of visual width show
a non-linear growth up to a distance of about 2/3 of the penetration distance. After
that the model predictions diverge as the jet enters into the stagnation region and
ceases its boundary layer nature.

The vertical buoyant jet into crossflow (Jo > 0, θo = 90◦) is a very common
environmental occurrence as chimney or stack emissions into the atmosphere. A
typical laboratory study [21] with a laminar crossflow – the source being towed
in these instance – is shown in Figure 25 as the visual plume outline as an in-
dicator for the two-dimensional trajectory (Figure 25a), and as measurements of
half-width b1/2/D (corresponding to 0.83b for the Gaussian profile) and minimum
dilution in the vortex cores of the bent-over stage SVC as a function of distance
along the buoyant jet path s/D, both as indicators of mixing (Figure 25b). The
agreement with the integral model is excellent for this case, supporting once more
the notion that the minimum dilution in the vortex cores SVC is well represented
by the centerline dilution Sc of the Gaussian profile integral model, as has been
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Figure 24. Opposing non-buoyant jets against ambient flow: Comparison of integral model
predictions with experimental data by Chan and Lam [68]: (a) Decay of absolute centerline
velocity (uc − ua)/Uo, (b) growth of visual jet width

√
2b/D, both as a function of upstream

distance −x/D.

noted above. The observed and predicted trajectories for a wider range of flow
conditions (Fo = 20, R = 4 to 16, or alternatively a range of the length scale ratio
Lm/Lb = (π/4)1/4F 2

o /R2 = 1.5 to 24) are displayed in Figure 26. The internal
transition in flow regimes from initial momentum dominated to final buoyancy-
dominated regimes is not evident in these summary displays. This is better seen in
the double-logarithmic representation of Figure 27 that shows data from Fan [21]
and Wright [22] for the buoyancy-dominated regimes, analogous to Figure 21 for
the momentum-dominated regimes. The data indicate a transition from a weakly-
bent, z ∼ x3/4, to a strongly-bent region, z ∼ x2/3 (see Table I), as obtained from
dimensional analysis. The integral model represents this transition well, but once
again shows a slightly increased bending (or diminished rise) in the latter phase
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Figure 25. Vertical buoyant jet into crossflow: Comparison of integral model predictions with
laboratory data by Fan [21]: (a) Vertical trajectory, z/D versus x/D, including visual plume
width, (b) decay of normalized centerline concentration cc/co and half-velocity width b1/2/D

as function of distance along the buoyant jet path s/D.

due to the drag force effects as discussed above. The accompanying results for
the normalized dilution ScLQLm/L2

b as function of vertical rise z/Lb are shown
in Figure 28 using the data of Cheung [70]. The agreement is excellent in the
weakly-bent stage with Gaussian cross-section for which dimensional analysis [22]
yields for the dilution, Sc ∼ z5/3. For the strongly-bent stage with the double-vortex
structure the model agrees in trend, Sc ∼ z2, but the data lie a certain factor (about
2) higher which is to be expected as the measurements give the minimum dilution
on the centerplane SCP as has been explained above.

The model results for a co-flowing buoyant jet (Jo > 0, θo = 0◦, σo = 0◦) are
compared in Figure 29 with the data of Ayoub [71] indicating both the trajectory
rise as well as the concentration decay. The measurements by Davidson et al. [72]
on the detailed entrainment patterns for this buoyant jet configuration in a weak
crossflow are also of interest here: they clearly support the additive effects in the
entrainment flow fields as specified in the entrainment formulation, Equation 20.
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Figure 26. Vertical buoyant jets into crossflow: Comparison of integral model predictions
with experimental data by Fan [21] for two-dimensional trajectories with a discharge Froude
number Fo = 20 and variable discharge/crossflow velocity ratios R = 4 to 16.

Figure 27. Vertical buoyant jets into crossflow: Normalized two-dimensional trajectories,
z/Lb versus x/Lb . Slopes indicate exponents for power laws from dimensional analysis in
the weakly and strongly deflected stages, respectively.
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Figure 28. Vertical buoyant jets into crossflow: Normalized centerline dilution ScLQLm/L2
b

as function of vertical rise z/Lb. Measurements values in the strongly deflected stage are
minimum dilutions in the centerplane SCP. Slopes indicate exponents for power laws from
dimensional analysis in the weakly and strongly deflected stages, respectively.

Lastly, data for several cases of negatively buoyant jets into crossflow (Jo < 0,
θo > 0◦, σo = 0◦) are considered in Figures 30 and 31. The detailed measurements
in Figure 30 of Anderson et al. [73] for the θo = 60◦ case for trajectory, dilution
SCP and the visual width

√
2b are all well predicted by the model, keeping in mind

the typical mismatch between the SCP and Sc values. A range of conditions for
a vertical discharge θo = 90◦ was studied by Chu [74]. Some of the trajectory
observations are compared in Figure 31 and illustrate the interplay of the discharge
and ambient conditions that is well captured by the integral model.

A final point relates to the range of applicability of the turbulent buoyant jet
dynamics in the ambient crossflow. The integral model, as well as the majority of
the experimental data with a towed-source setup, assume a laminar crossflow. In
actual applications the ambient unstratified flow is practically always some sort of
turbulent shear flow that will incrementally interact with the turbulent flow and
lead ultimately to additional erosion and break-up of the bent-over jet motion.
Ultimately, a state of passive turbulent mixing plume in the ambient flow will be
attained. Estimates for the end of the bent-over jet-like motions can be obtained by
the equivalency of the transverse jet induced turbulent fluctuations v′ to the ambient
vertical fluctuation intensity w′

a ,

v′ 
 w′
a. (39)
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Figure 29. Horizontal buoyant jet in co-flow: Comparison of integral model predictions
with laboratory data by Ayoub [71]: (a) Vertical trajectory, z/D versus x/D, (b) decay of
normalized centerline concentration cc/co as function of distance x/D.

An estimate for the first is given by v′ 
 k1ve in which ve is the entrainment
velocity, that for the advected regimes is simply ve = ua

db
dx

. Detailed measurements
[32] suggest values of 4 to 6 for the proportionality k1. If the ambient flow is forced
by the shear stress τo = ρau

2∗ at its lower boundary, then a fluctuation intensity
w′

a 
 k2u∗ characterizes the bulk of the flow where k2 is of order of 0.5 to 2 [75].
The shear velocity relates to the ambient velocity, u∗ = √

cf /2 ua with typical
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Figure 30. Negatively buoyant jet into crossflow: Comparison of integral model predictions
with laboratory data by Anderson et al. [73]: (a) Vertical trajectory, z/D versus x/D, (b)
centerline dilution Sc and half-velocity width b1/2/D as function of distance along the
buoyant jet path s/D.

magnitudes for the friction coefficient cf from 0.005 to 0.03. Upon use of these
expressions Equation (39) becomes

k1
db

dx

 k2

√
cf

2
. (40)

Evaluating the growth expressions db/dx from the equations in Table I and using
average coefficients k1 = 5, k2 = 1 and cf = 0.01 leads to the these estimates for
the limiting distance for momentum-induced sources

xlim

Lme

 25,

xlim

Lmt


 40 (41)



INTEGRAL MODEL FOR TURBULENT BUOYANT JETS. PART I 45

Figure 31. Negatively buoyant jets into crossflow: Comparison of integral model predictions
with laboratory data by Chu [74] for two-dimensional trajectories with variable values of
discharge Froude number Fo and discharge/crossflow velocity ratio R.

for the wake and advected puff regimes, respectively. The uncertainty factor for
the above coefficients is about 3. The analogous estimate for the advected thermal
regime yields

xlim

Lb


 600 (42)

with an uncertainty of about 10. Coincidentally, these estimates about cover the
range of data reported from the towed source experiments, Figures 21 and 27,
respectively. Equation (42) shows that the buoyancy-induced dynamics are consid-
erably more efficient in maintaining a coherent turbulent plume motion in presence
of ambient turbulence. This is also consistent with the fact that advected mo-
mentum sources will ultimately laminarize, as Rec ∼ x−1/3, while for buoyancy
sources the turbulence will be maintained, Rec ∼ x1/3, in which Rec is the local
Reynolds number for the jet motion, based on width b and centerline velocity uc or
vertical rise velocity uadb/dx, respectively.

4.2.3. General Cases

More general buoyant jet cases with three-dimensional discharge conditions or
interactions with stratified crossflow involve multiple parameters and defy attempts
at universal scaling.

The buoyant jet discharging horizontally transverse into crossflow (|Jo| >

0, θo = 0◦, σo = 90◦) represents in the bending process a highly interesting case
of internal vortex dynamics induced by the horizontally transverse puff motion as
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Figure 32. Buoyant jet discharging horizontally transverse into crossflow: Comparison of
integral model predictions with laboratory data by Ayoub [76]: (a) Three-dimensional tra-
jectory, y/D and z/D versus x/D, (b) centerline dilution Sc and half-velocity width b1/2/D

as function of distance along the buoyant jet path s/D.

well as the vertically acting thermal. Measurements by Ayoub [76] for a negatively
buoyant discharge (Jo < 0) are shown in Figure 32 covering the three-dimensional
trajectory, the half-velocity width b1/2 and minimum dilutions. Overall, the data,
covering several test repetitions, are well predicted by the CorJet model. Some of
the scatter in the dilution data is undoubtedly caused by uncertainties in sampling
concentration within the variable double-vortex structure of the flow.
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Figure 33. Vertical buoyant jet into stratified crossflow: Comparison of integral model pre-
dictions with laboratory data by Hunter [78] under weak crossflow conditions: (a) Vertical
trajectory, z/D versus x/D, (b) centerline centerline density anomaly �ρc/ρa as function of
downstream distance x/D. For symbols see Figure 17.

The experimental studies by Wright [77], Hunter [78] and Huq [79] were all
concerned with the discharges of vertical buoyant jets into stratified crossflow.
A multiplicity of flow conditions can occur, given the interplay of the scales listed
in Equation (30) that are all relevant in this instance. In Figures 33 and 34 the
integral model predictions are compared to the rather detailed measurements of
Hunter that cover both the two-dimensional trajectory and the centerline density
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deviation �ρc/ρa. In both cases the initial momentum effects are limited, i.e.,
small values of LM , so that the discharge buoyancy dominates. Furthermore, the
cases differ as to the role of stratification relative to crossflow, as measured by the
ratio L′

b/Lb. Figure 33 is a weak crossflow case (small value of L′
b/Lb = 0.31)

in which the plume rises steeply, overshoots to a maximum trajectory height zmax

and then settles to the equilibrium terminal level zt . This process and the associ-
ated internal density change are well predicted. The model prediction stops at the
second buoyancy reversal (transition rule 1 as proposed above) as this indicates the
collapse and transition to the internal density current. The measurements by Huq
for quite similar cases indicate that indeed the bulk dilution does no longer increase
beyond that point. In Figure 34, on the other hand, the crossflow is much stronger
(large value of L′

b/Lb = 3.3) leading to more rapid deflection. There is practically
no overshoot and the plume finds its terminal level almost directly. In this case
transition rule 2(ii) becomes effective and the plume transition is assumed at the
maximum height level with a very small value of the local Froude number FN .
Practically there is a very small difference between zmax and zt in this instance and
the mismatch in the centerline density anomaly is also negligible. This transition
assumption is necessary, however, as it limits the horizontal path of the jet along
which more mixing would be predicted unrealistically. Clearly, there can be consid-
erable complexities in the terminal layer formation process. But the transition rules
outlined above seem to capture these reasonably well. Huq’s data also indicate that
the transition process seems to be complete for these buoyancy-dominated regimes
at a downstream distance x 
 5La where La = N/ua is an ambient stratified flow
length scale (see Wright [77]; note also La = L

′ 4/3
b /L

1/3
b ). This condition is also

indicated in Figures 33 and 34 and seems consistent with the integral model results.

Briggs [80] first proposed an equation for the terminal level zt of buoyancy-
dominated jets in stratified crossflows from dimensional analysis that reads

zt = c L
1/3
b /L 2/3

a = c L
1/9
b /L

′ 8/9
b (43)

in the present length scale notation. Wright’s evaluation for a large number of
experiments indicate a coefficient c = 1.85, while analysis of Huq’s and Hunter’s
data give a range 1.8 to 2.3. The integral model prediction cover a range 2.0 to
2.1 which include the different modes of jet collapse and transition to the internal
density current.

5. Conclusions

Integral models for the analysis and prediction of turbulent buoyant jet effluxes into
an ambient fluid environment are widely used in many fields of geophysical, en-
vironmental and engineering applications. The particular case of buoyant jet flows
issuing into an unbounded ambient environment with uniform density or stable
density stratification and under stagnant or steady sheared current conditions was
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Figure 34. Vertical buoyant jet into stratified crossflow: Comparison of integral model pre-
dictions with laboratory data by Hunter [78] under strong crossflow conditions: (a) Vertical
trajectory, z/D versus x/D, (b) centerline centerline density anomaly �ρc/ρa as function of
downstream distance x/D. For symbols see Figure 17.

considered in this paper. The major area of application for this situation is in the
analysis and design of emissions into the environment, both atmosphere and water
bodies, for which reliable predictive techniques for purposes of pollution control
and mitigation are needed.

The present integral model formulation for the conservation of mass, momentum,
buoyancy and scalar quantities in the turbulent jet flow contains a number of im-
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portant features that in aggregate make it much more general, reliable and accurate
in predictive ability than earlier formulations. The model uses a three-dimensional
flux-conservative formulation that minimizes singularities in the numerical integra-
tion. It defines flux quantities based on Gaussian profiles for the transverse distribu-
tion of velocity and scalars. While this profile assumption neglects the details of the
distributions typical for the double-vortex structure in the final strongly bent-over
stage of the buoyant jet motion, the gross features such as trajectory and minimum
dilution are consistently well predicted. The model employs an entrainment closure
approach that distinguishes between the five separate contributions of transverse
shear (leading to jet, plume, or wake internal flow dynamics) and of azimuthal
shear mechanisms (leading to advected momentum puff or thermal flow dynamics),
respectively. Furthermore, the model contains a quadratic law turbulent drag force
mechanism as suggested by a number of recent detailed experimental evidence on
the dynamics of transverse jets into crossflow. The initial zone of flow establish-
ment is specified with explicit account for the effects of discharge buoyancy and of
crossflow on this region.

The model has been validated in several stages. First, comparison with experi-
mental data for the five asymptotic, self-similar stages of buoyant jet flows, i.e., the
pure jet, the pure plume, the pure wake, the advected line puff, and the advected line
thermal, support the choice of the turbulent closure coefficients contained in the
entrainment formulation. Second, comparison with many types of non-equilibrium
flows support the proposed functional form of the entrainment relationship, that
can be partly derived from the supplementary energy equation, but is otherwise
arbitrary, and also the role of the drag force in the jet deflection dynamics. Thirdly,
the range of applicability of the integral model has been carefully evaluated and a
number of spatial limitations have been proposed beyond which the integral model
necessarily becomes invalid. These conditions, often related to the breakdown of
the boundary layer nature of the flow, describe features such as terminal layer form-
ation in stratification, upstream penetration in jets opposing a current, or transition
to passive diffusion in a turbulent ambient shear flow.

Based on the sum of these comparisons, that have focussed on parameters such
as trajectories, centerline velocities, concentrations and dilutions, the model ap-
pears to provide an accurate and reliable representation of buoyant jet physics
under highly general flow conditions. As such, the integral model is an convenient
and efficient tool for buoyant jet analysis. Given the parabolic type of the governing
differential equations, however, its major restriction lies in the assumed unboun-
dedness of the receiving environment. Whenever, horizontal or lateral boundaries
exist in the flow domain, e.g., the free surface or bottom of a water body, com-
plex flow interactions may occur. Such resulting phenomena as jet impingement,
attachment, internal hydraulic jumps, instabilities and recirculation are of course
beyond the predictive powers of integral models, so that additional techniques for
flow classification [46] and prediction [81] need to be considered.
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Appendix A: General Formulation of the CorJet Integral Model

The integral model CorJet contains additional features beyond those described
in the main text. While the jet definition diagram Figure 1 and the momentum
equations, Equations (12) to (14), consider a sheared ambient velocity field ua(z),
CorJet allows additionally for a skewed velocity field (e.g., Ekman spiral-type
of flows) in which the ambient velocity at any level z can have a variable angle
τa(z)between the velocity vector and the x axis.

Figure A1 summarizes the local geometry. The unit vectors for the ambient
current are denoted by ia = (cos τa, sin τa, 0) and for the centerline velocity by
ic = (cos θ cos σ, cos θ sin σ, cos θ), respectively. Thus, ia specifies directly the
action of the entrainment force with components Eua(cos τa, sin τa, 0). The drag
force acts normal to the trajectory and in the uc −uaplane. Its magnitude is |FD| =
cD2

√
2b

u2
a sin2 γ

2 and its direction is given by the unit vector (ix, iy, iz) = (ic ×
(ia × ic))/ sin γ . Hence, the three momentum equations for the general skewed
conditions are

d

ds
(M cos θ cos σ ) = Eua cos τa + |FD| ix, (A1)

d

ds
(M cos θ sin σ ) = Eua sin τa + |FD| iy, (A2)

d

ds
(M sin θ) = πλ2b2g′

c + |FD| iz. (A3)

CorJet also recognizes a non-conservative substance c undergoing a first-order
reaction with rate constant kd . For decay kd > 0, for growth kd < 0. In this case,
the tracer or pollutant mass transport equation, Equation (16), modifies to

dQc

ds
= −kdλ

2 Qc

uave
(A4)

in which uave = ucλ
2/(1 + λ2) + uaλ

2 cos θ cos(σ − τa) is the tracer weighted
average jet velocity (see also Appendix B).

Two types of equation of state, Equation (18), corresponding to different ambi-
ent fluids and scalar stratifying agents Xi , can be employed when using CorJet:
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Figure A1. Local geometric relations for three-dimensional jet trajectory in skewed ambient
shear flow.

(1) For temperature- and/or salinity-stratified water bodies, thus Ta(z) and/or Sa(z),
the UNESCO (1981) equation of state is used. The fresh water density ρa(Ta, 0) in
kg/m3 as a function of temperature Ta in ◦C is given by

ρa(Ta, 0) = 999.842594 + 6.793952 × 10−2Ta − 9.095290 × 10−3T 2
a

+ 1.001685 × 10−4T 3
a − 1.120083 × 10−6T 4

a

+ 6.536332 × 10−9T 5
a . (A5)

The additional effect of ambient salinity Sa in ppt (mass of dissolved solids per
mass of solution times 1000) is given by

ρa(Ta, Sa) = ρa(Ta, 0) + (8.24493 × 10−1 − 4.0899 × 10−3Ta

+ 7.6438 × 10−5T 2
a − 8.2467 × 10−7T 3

a

+ 5.3875 × 10−9T 4
a )Sa + (−5.72466 × 10−3

+ 1.0227 × 10−4Ta − 1.6546 × 10−6T 2
a )S3/2

a

+ 4.8314 × 10−4S2
a . (A6)

(2) The potential density concept [95] is used for the stratified atmosphere with
ambient density distribution Ta(z). The potential density ρa(Ta) in kg/m3 of the air
mass as a function of air temperature Ta in ◦C is

ρa(Ta) = 353.1278/(Ta + 273.15). (A7)

The same relationships are used to calculate other density values, such as discharge
density ρo or centerline densities ρc.
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Appendix B: Supplemental Expressions for Local Jet Variables

Relationships for the local jet variables can be obtained from the integral (bulk)
variables, Equations (6) to (10):

uc = 2M/Q − 2ua cos θ cos σ (B1)

b = Q/
√

2πM (B2)

g′
c = J/Qscalar (B3)

Xic = QXi/Qscalar (B4)

cc = Qc/Qscalar (B5)

in which Qscalar = πb2
(
uc λ2/(1 + λ2) + λ2ua cos θ cos σ

) = πb2uave is the
scalar weighted volume flux.
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