FÁBIO KAZU INOUE

MODELAGEM MATEMÁTICA EM OBRAS HIDRÁULICAS

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre, pelo Curso de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental – Área Mecânica dos Fluidos Computacional, do Setor de Ciências Tecnológicas da Universidade Federal do Paraná.

Orientador: Prof. Dr. José Junji Ota Co-Orientador: Prof. André Tonso Fabiani

CURITIBA 2005

TERMO DE APROVAÇÃO

FÁBIO KAZU INOUE

MODELAGEM MATEMÁTICA EM OBRAS HIDRÁULICAS

Dissertação aprovada como requisito parcial à obtenção do grau de Mestre no Curso de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental – Área de Mecânica dos Fluidos Computacional, Setor de Tecnologia da Universidade Federal do Paraná, pela seguinte banca examinadora

Orientador:

Prof. Dr. José Junji Ota Departamento de Hidráulica e Saneamento, UFPR

Co-orientador:

Prof. André Luiz Tonso Fabiani Departamento de Hidráulica e Saneamento, UFPR

Prof. Dr. Eduardo Enéas de Figueiredo Departamento de Engenharia Civil, UFCG

Prof. Dr. Marcos José Tozzi Departamento de Hidráulica e Saneamento, UFPR

Prof. Laertes Munhoz da Cunha Departamento de Hidráulica e Saneamento, UFPR

Curitiba, 21 de Dezembro de 2005

AGRADECIMENTOS

Agradeço ao professor e orientador José Junji Ota e ao co-orientador André Luiz Tonso Fabiani pelo acompanhamento e revisão deste estudo.

Ao Departamento de Hidráulica do CEHPAR pela disponibilização dos recursos e o auxílio financeiro para a realização do trabalho. Aos engenheiros Márcio F. Friedrich, Fernando Terabe, Paulo Povh e Edie Taniguchi pela amizade e auxílio no estudo.

Ao LACTEC-LEME, principalmente ao Emerson Morais, que disponibilizaram uma licença do modelo computacional CFX e auxiliaram na aprendizagem do mesmo.

Meu especial agradecimento aos meus Pais, minha Irmã e aos meus amigos André Nagalli e César Jhojy Yoshizawa que incentivaram e auxiliaram de diversas formas para a realização deste estudo.

E a todos que, direta ou indiretamente, contribuíram para a realização e divulgação deste trabalho.

Dedico este trabalho aos meus Pais e Irmã.

L	ISTA	DE ILUSTRAÇÕES	V		
L	LISTA DE TABELAS				
L	LISTA DE SIGLAS				
L	LISTA DE SÍMBOLOS				
R	RESUN	10	XIII		
A	BSTR	ACT	XIV		
1	IN	TRODUÇÃO	1		
2	EQ	QUAÇÕES GOVERNANTES			
	2.1	EQUAÇÃO DA CONTINUIDADE			
	2.2	EQUAÇÃO DO MOMENTO	4		
	2.3	EQUAÇÃO DA CONSERVAÇÃO DE ENERGIA	5		
	2.4	COMENTÁRIOS SOBRE AS EQUAÇÕES GOVERNANTES	6		
	2.5	CONDIÇÕES DE CONTORNO			
3	Τ	IRBULÊNCIA	9		
	3.1	ORIGEM DA TURBULÊNCIA	10		
	3.2	MODELOS DE TURBULÊNCIA			
	3.2.	1 Modelos de Turbulência Estatísticos e Problema de Fechamento	11		
4	M	ÉTODO DOS ELEMENTOS DE CONTORNO			
	4.1	INTRODUÇÃO			
	4.2	A FUNÇÃO POTENCIAL DE VELOCIDADE φ Ε Α FUNÇÃO DE CORRENTE Ψ			
	(BIDI	MENSIONAL)			
	4.3	CONDIÇÕES DE CONTORNO ASSOCIADAS AO PROBLEMA			
	4.4	CONDIÇÃO DE CONTORNO DA SUPERFÍCIE LIVRE			
5	0	MODELO COMPUTACIONAL CFX (V.5.7)			
	5.1	DINÂMICA DOS FLUIDOS COMPUTACIONAL (CFD)			
	5.1.	1 As Etapas da Dinâmica dos Fluidos Computacional (CFD)			
	5.2	DISCRETIZAÇÃO NUMÉRICA			
	5.2.	1 Malha Numérica			
	5.3	CONDIÇÕES DE CONTORNO			

SUMÁRIO

6.1	CASO 01: ESCOAMENTO LAMINAR	
6.	1.1 Modelo Computacional CFX	
6.	1.2 Comparação de Resultados	
6.2	CASO 02: ESCOAMENTO TURBULENTO	4
6.	2.1 Modelo Computacional CFX	
6.	2.2 Comparação dos Resultados	
6.	2.3 Conclusões dos Estudos em Tubo	
6.3	CASO 03: ANALISE DA TENSAO TANGENCIAL NO LEITO DE UM CONDUTO (CIRCULAR
COM	ESCOAMENTO A SEÇAO PARCIAL	4
6.	3.1 Modelo Computacional CFX	
6.4	CASO 04: ESCOAMENTO NA TOMADA DE AGUA DA USINA HIDRELETRICA	DE ITAIPU5
6.	4.1 Modelo Experimental	5
6.	4.2 Modelo Computacional – CFX	5
6.	4.3 Comparação de Resultados	6
6.	4.4 Conclusões da Simulação do Escoamento na Tomada de Agua	6
6.5	CASO 05: ESCOAMENTO COM SUPERFÍCIE LIVRE SOBRE UM VERTEDOURO	DE OGIVA
BAI	ζΑ	6
6.	5.1 Instalação Experimental e Resultados do Modelo Físico	6
6.	5.2 Método dos Elementos de Contorno (BEM)	6
6.	5.3 Modelo Computacional CFX	6
6.	5.4 Condições de Contorno	
6.	5.5 Confronto entre os Resultados Numéricos (CFX e BEM) e os Resultados Experimen	ıtais
(A	10DELO FÍSICO)	
6.	5.6 Observações Finais sobre a Simulação de Escoamento sobre Crista de Vertedouros	57
C C	ONCLUSÕES E RECOMENDACÕES	7
	·	
REFE	RÊNCIAS	8
APÊN	DICES	8
APÊ	NDICE 1	
APÊ	NDICE 2	
٨DÊ	NDICE 3	9

LISTA DE ILUSTRAÇÕES

Figura 3.1 - Regiões na camada limite de turbulência para escoamento incompressível sobre
uma placa lisa
Figura 4.1 – Comparação entre uma malha de elementos finitos e uma malha de elementos de
contorno com o mesmo número de nós no contorno (GRUBE, 2001)21
Figura 4.2 – Condições de contorno para a equação de Laplace23
Figura 6.1 – Malha numérica extrudada e com refino próximo a parede
Figura 6.2 – Domínio e condições de contorno
Figura 6.3a – Desenvolvimento do perfil de distribuição de velocidades – escoamento laminar
Figura 6.3b - Desenvolvimento do perfil de distribuição de velocidades - escoamento
laminar
Figura 6.3c - Desenvolvimento do perfil de distribuição de velocidades - escoamento
laminar
Figura 6.4 - Perfis de distribuição de velocidades, escoamento em desenvolvimento - CFX x
Analítico
Figura 6.5 – Perfil de distribuição de velocidades desenvolvido – escoamento laminar39
Figura 6.6 - Perfis de distribuição de velocidades, escoamento desenvolvido - CFX x
Analítico
Figura 6.7 – Coeficiente de resistência (f) – obtido analiticamente e com o modelo CFX40
Figura 6.8a – Desenvolvimento do perfil de velocidade – escoamento turbulento42
Figura 6.8b – Desenvolvimento do perfil de velocidade – escoamento turbulento
Figura 6.9 - Desenvolvimento do perfil de distribuição de velocidade - escoamento
turbulento
Figura 6.10 – Nível de água para uma malha numérica com elementos grandes47
Figura 6.11 – Influência do nível de água na variação das tensões tangenciais
Figura 6.12 – Domínio e condições de contorno para escoamento impondo o NA49
Figura 6.13 - Comparação entre modelo experimental (OTA & NALLURI, 1985) e modelo
CFX
Figura 6.14 – Influência da profundidade na variação da tensão tangencial – Q=3,5 l/s50
Figura 6.15 – Influência da profundidade na variação da tensão tangencial – Q=12 l/s51

Figura $6.16 - Variação da tensão tangencial no leito - Q = 35 l/s$	51
Figura 6.17 – Variação da tensão tangencial no leito – $Q = 24 l/s$	52
Figura 6.18 – Variação da tensão tangencial no leito – $Q = 12 l/s$	52
Figura 6.19 – Variação da tensão tangencial no leito – $Q = 9 l/s$	53
Figura $6.20 - Variação da tensão tangencial no leito - Q = 3,5 l/s$	53
Figura 6.21a – Piezômetros na Tomada de Água	55
Figura 6.21b – Piezômetros na Transição.	55
Figura 6.21c – Piezômetros na Curva Superior	56
Figura 6.21d – Piezômetros na Curva Inferior.	56
Figura 6.22 - Tomada de água e conduto forçado da UHE Itaipu simulado no pr	resente
estudo	57
Figura 6.23 – Modelo físico da UHE Itaipu – tomada de água	57
Figura 6.24 – Modelo físico da UHE Itaipu – transição, curva superior e conduto forçad	o58
Figura 6.25 – Modelo físico da UHE Itaipu – curva inferior.	58
Figura 6.26 – Malha numérica do modelo computacional – não considerando a simetria.	59
Figura 6.27 – Domínio do modelo computacional e as condições de contorno	60
Figura 6.28 – Comparação das pressões nos piezômetros do eixo (E01 a E20)	61
Figura 6.29 – Comparação das pressões nos piezômetros inferiores (I01 a I24)	61
Figura 6.30 – Comparação das pressões nos piezômetros superiores (S01 a S17)	62
Figura 6.31 – Vetores de velocidade traçados sobre um plano longitudinal	62
Figura 6.32 - Visualização do desenvolvimento do escoamento ao longo do conduto a	ıtravés
de seções transversais em diferentes tempos	63
Figura 6.33 - Vetores de velocidade traçados sobre um plano horizontal - escoame	nto ao
redor dos pilares.	63
Figura 6.34 - Domínio do modelo computacional e as condições de contorno, conside	erando
simetria	64
Figuras 6.35a - Comparação entre domínio considerando simetria e sem sime	tria –
piezômetros do eixo	64
Figuras 6.35b - Comparação entre domínio considerando simetria e sem sime	tria –
piezômetros inferior	65
Figuras 6.35c - Comparação entre domínio considerando simetria e sem sime	tria –
piezômetros superior	65
Figura 6.36 – Modelo físico utilizado pelo CEHPAR	68

Figura 6.37 – Modelo numérico do método dos elementos de contorno
Figura 6.38 – Domínio do modelo computacional CFX
Figura 6.39 – Malha numérica do modelo computacional CFX
Figura 6.40 – Superfícies livres da água obtidas pelo modelo físico e pelo modelo CFX para a
vazão de 160 m ³ /s72
Figura 6.41 – Superfícies livres da água obtidas pelo modelo físico e pelo modelo CFX para a
vazão de 460 m ³ /s
Figura 6.42 - Visualização do nível de água obtido pelo modelo CFX para a vazão de 160
m³/s
Figura 6.43 - Visualização do nível de água obtido pelo modelo CFX para a vazão de 460
m³/s
Figura 6.44 – Confronto das pressões obtidas nos modelos utilizados - vazão de 160 m³/s74
Figura 6.45 – Gráfico com as pressões obtidas pelos 3 modelos para a vazão de 460 m ³ /s75
Figura 6.46 – Visualização dos vetores velocidade para a vazão de 160 m ³ /s75
Figura 6.47 – Visualização dos vetores velocidade para a vazão de 460 m ³ /s76
Figura A1 – Inclinação do conduto utilizado na simulação de análise da tensão tangencial no
leito de um canal – seção longitudinal (plano Y-Z)

LISTA DE TABELAS

Tabela 6.1 – Testes para a análise da tensão tangencial no leito	45
Tabela 6.2 – Resumo dos testes efetuados no modelo físico.	54
Tabela A.1a – Variação da tensão tangencial no leito – $Q = 3,5 $ l/s	
Tabela A.1b – Variação da tensão tangencial no leito – $Q = 9 l/s$	
Tabela A.1c – Variação da tensão tangencial no leito – $Q = 12 l/s$	
Tabela A.1d – Variação da tensão tangencial no leito – $Q = 24 l/s$	
Tabela A.1e – Variação da tensão tangencial no leito – $Q = 35 l/s$	
Tabela A.2a – Resultados das pressões da simulação na Usina de Itaipu – piezôm	etros do eixo
(E01 – E20)	90
Tabela A.2b - Resultados das pressões da simulação na Usina de Itaipu -	piezômetros
inferiores (I01 – I24)	91
Tabela A.2c - Resultados das pressões da simulação na Usina de Itaipu -	piezômetros
superiores (S01 – S17)	92
Tabela A.3a – Nível de água – Q = 160 m ³ /s	94
Tabela A.3b – Nível de água – Q = 460 m ³ /s	95
Tabela A.3c – Variação de pressão ao longo do fundo – $Q = 160 \text{ m}^3/\text{s}$	96
Tabela A.3d – Variação de pressão ao longo do fundo – $Q = 460 \text{ m}^3/\text{s}$	

LISTA DE SIGLAS

ABRH - Associação Brasileira de Recursos Hídricos

BEM - do inglês, Boundary Element Method. Método dos Elementos de Contorno

CEHPAR – Centro de Hidráulica e Hidrologia Parigot de Souza – Instituição LACTEC vinculada à UFPR

CFD - do inglês, Computational Fluid Dynamics. Dinâmica dos Fluidos Computacional

DNS - do inglês, Direct Numerical Simulation. Simulação Numérica Direta

FD - do inglês, Finite Diference. Diferença Finita

FE – do inglês, Finite Element. Elemento Finito

FV - do inglês, Finite Volume. Volume Finito

LEME - Laboratório de Emissões Veiculares

LACTEC - Instituto de Tecnologia para o Desenvolvimento

LES - do inglês, Large Eddy Simulation. Simulação de Grandes Vórtices

mca. - metro de coluna de água

N.A.R. - nível de água no reservatório

PPGERHA – Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental

RANS – do inglês, *Reynolds Average Navier-Stokes* Equation. Equações de Navier-Stokes na

forma de Reynolds

UHE – Usina Hidrelétrica

- FG Forças Gravitacionais
- FS Forças Superficiais (Forças normais e tangenciais)

LISTA DE SÍMBOLOS

- A+ constante de amortecimento de van Driest
- a_i aceleração do elemento na direção i (i = x, y, z)
- C_D coeficiente de dissipação

c_v – calor específico

- D diâmetro do conduto
- dx, dy, dz dimensões do elemento infinitesimal
- E_t energia total por unidade de massa (que neste estudo, $E_t = e + V^2/2$)
- e energia interna por unidade de massa, número neperiano
- F_i Somatório das forças na direção *i* (*i* = *x*, *y*, *z*) atuantes no elemento
- FG_i Somatório das forças gravitacionais na direção i (i = x, y, z) atuantes no elemento
- FS_i Somatório das forças superficiais na direção *i* (*i* = *x*, *y*, *z*) atuantes no elemento
- f coeficiente de resistência
- f_i força gravitacional por unidade de massa atuante na direção i (i = x, y, z)
- g aceleração da gravidade
- H-cota piezométrica
- h profundidade do escoamento
- h_p perda de carga
- *I* intensidade de turbulência, $I = \frac{u'}{\overline{I}}$
- k, k_T energia cinética de turbulêcia
- k_a rugosidade relativa de areia
- L comprimento do conduto
- l_E comprimento de desenvolvimento do escoamento
- l_T escala de comprimento de turbulência
- m massa do elemento
- Pr número de Prandtl
- p pressão
- Q vazão
- q quantidade de energia por unidade de massa, vazão específica

$$\dot{q}_i$$
 – perda de energia por condução, $\dot{q}_i = \lambda \frac{\partial T}{\partial i}$ $(i = x, y, z)$

R – constante dos gases, raio do conduto

$$Re - número de Reynolds (Re = \frac{U.D}{v})$$

Recrit - número de Reynolds crítico

S – fonte ou origem do escalar ϕ

$$S_{ij}$$
 – taxa do tensor deformação, $S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} + \frac{\partial u_j}{\partial i} \right)$ onde $(i, j = x, y, z)$

So-inclinação do conduto

T-temperatura

t – tempo

U, V, W – vetores velocidade na direção x, y e z,respectivamente

 u^* – velocidade de arraste (cisalhamento ou corte), $u^* = \sqrt{\frac{\tau_w}{\rho}}$

u+ – velocidade adimensional utilizada em modelos de turbulência

- u', v', w' flutuações da velocidade U, $V \in W$, respectivamente
- \overline{U} , \overline{V} , \overline{W} velocidades médias nas direções x, y e z, respectivamente

$$U$$
 - vetor velocidade ($U = U.i + V.j + W.k$)

Vmax – velocidade máxima

- v_T escala de velocidade de turbulência
- x, y, z eixos das coordenadas cartesianas

y+ – distância adimensional utilizada em modelos de turbulência, y+ = $\frac{y.u^*}{v}$

 $\alpha, \beta_0, \beta_0^*$ – constantes do modelo *k*- ω de Wilcox

 β , β^* – coeficientes de dissipação do modelo k- ω de Wilcox

$$\nabla - \text{divergente}, \ \nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$$
$$\delta - \text{matriz identidade}, \ \delta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ e espessura da camada limite}$$

 $\varepsilon-$ taxa de dissipação de turbulência

$$\psi$$
 – função corrente (BEM)

- ϕ escalar, função potencial (BEM)
- κ constante de von Kárman
- λ condutividade térmica
- μ viscosidade dinâmica
- μ_T viscosidade de torvelinho (de turbulência)

 μ_{eff} - viscosidade efetiva ($\mu_{eff} = \mu + \mu_T$)

 ρ – massa específica

 Γ – coeficiente de difusividade, contorno do domínio Ω (BEM)

 Γ_T – coeficiente de difusividade de turbulência

- Γ_{eff} coeficiente de difusividade efetiva ($\Gamma_{eff} = \Gamma + \Gamma_T$)
- τ_{ij} tensão superficial (tensão normal para *i*=*j* e tensão tangencial para *i*≠*j*)
- v viscosidade cinemática
- \varOmega domínio do BEM

$$\Omega_{ij}$$
 – taxa de rotação, $\Omega_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} - \frac{\partial u_j}{\partial i} \right)$

 ω – freqüência de turbulência (ômega)

$$\frac{\partial}{\partial t}$$
 - variação temporal

$$\rho \frac{D}{Dt}$$
 - derivada substantiva (ou total), $\rho \frac{D\phi}{Dt} = \frac{\partial \rho \phi}{\partial t} + \vec{U} \nabla \phi$

RESUMO

Este trabalho verifica o uso do modelo computacional CFX em obras hidráulicas. Começando pela aprendizagem do modelo computacional, este estudo foi planejado de modo que se obtenha uma boa conclusão da eficiência e das limitações do modelo computacional. Os dados experimentais do Centro de Hidráulica e Hidrologia Parigot de Souza – CEHPAR foram utilizados para a validação do modelo CFX.

No estudo em condutos retilíneos (diâmetros de 0,305 m) foi estudado o desenvolvimento da camada limite (escoamento laminar e turbulento). Utilizou-se, também, o modelo CFX para a análise da variação da tensão tangencial no leito de um canal circular.

Outro estudo foi simulado conforme a tomada de água e conduto forçado da Usina Hidrelétrica de Itaipu. Os resultados computacionais provaram ser semelhantes aos resultados experimentais, obtidos em um modelo reduzido na escala 1:50.

O uso do modelo CFX para simular escoamento sobre um vertedouro de ogiva baixa conduziu à conclusão de que é possível obter o perfil da superfície livre de um escoamento bifásico (água-ar) no domínio. Os campos de pressões e velocidades foram bem simulados pelo modelo CFX. Essa parte do estudo foi publicada no XVI Simpósio Brasileiro de Recursos Hídricos 2005 (João Pessoa) e esse artigo foi selecionado (18 artigos foram selecionados) para o Prêmio Jovem Pesquisador – 2005, organizado pela Associação Brasileira de Recursos Hídricos.

O modelo CFX provou ser uma ferramenta promissora para futuros estudos de escoamentos em obras hidráulicas.

ABSTRACT

This research program verifies the validity of use of CFX computational model for hydraulic structures. Beginning by the learning of computational modeling, this research was planned for obtaining a solid conclusion about the efficiency and limitations of computational modeling. Experimental data from Centro de Hidráulica e Hidrologia Parigot de Souza – CEHPAR were used for the validation of CFX model.

Straight pipe flow (diameter of 0,305 m) was studied for boundary layer development (laminar and turbulent boundary layer). CFX model was also used for the calculation of bed shear stress in pipe channel flow.

A confined flow was analyzed based on the flow condition in water intake/penstock of Itaipu hydroelectric plant. The computational results proved to be very close to the experimental results obtained in a 1:50 reduced scale model.

The use of CFX model for flow over a low ogee crest spillway led to the conclusion that it is possible to obtain the free surface profile by considering two phase flow (water-air) in the domain. The pressure and velocity fields over the spillway were well simulated by CFX model. This part of the research was published in the XVI Brazilian Symposium of Water Resources, 2005 (João Pessoa) and this paper was selected (18 papers were selected) for the contest of Young Researcher Prize – 2005, organized by the Brazilian Water Resources Association.

CFX model proved to be a very promising device for future use for simulation of flow over hydraulic structures.

1 INTRODUÇÃO

Simulações computacionais de escoamentos são feitas em diferentes áreas de conhecimento e nota-se uma intensificação dessa prática nos últimos anos. Como um exemplo de simulações computacionais na medicina, pode-se citar o trabalho de CEBRAL et al. (2002), que estudaram o escoamento de sangue em artérias. Na engenharia, GAO & CHOW (2005) estudaram o escoamento ao redor de um cubo, GHANI et al. (2001) simularam escoamento ao redor de um automóvel, SORENSEN & VOIGT (2003) estudaram o escoamento e transferência de calor ao redor de uma pessoa sentada e KIM & BOYSAN (1999) simularam o escoamento ao redor de estruturas urbanas. NOWAKOSKI et al. (2004) estudaram o escoamento em hidrociclones, enquanto que AZPITARTE & BUSCAGLIA (2003) e BOZZINI et al. (2003) enfocaram escoamentos multifásicos. A maioria dos trabalhos mencionados se refere à simulação da turbulência, cuja dificuldade está justamente na sua não-linearidade.

Existem vários métodos para simulação do escoamento de fluidos: modelos experimentais, modelos analíticos e modelos matemáticos.

São clássicos os ensaios em modelos experimentais (modelos reduzidos) nos estudos de obras hidráulicas. Uma das grandes vantagens é a visualização física do escoamento. Entretanto, possuem alto custo construtivo e operacional e necessitam de grandes espaços e instalações especiais.

Outro método utilizado é o método analítico, mas esse é restrito aos escoamentos ideais e casos em que as simplificações teóricas são aceitáveis.

Com o desenvolvimento tecnológico dos recursos computacionais, os modelos matemáticos têm se apresentado como uma alternativa cada vez mais atraente para a simulação de diversos fenômenos físicos envolvendo fluidos. Muitos métodos numéricos só puderam ser devidamente aplicados com a popularização de computadores com grande capacidade de processamento e armazenamento, iniciada no final da década de 80 (TANNEHILL et al., 1997 e ANDERSON, 1995).

O estudo matemático de sistemas envolvendo escoamentos de fluidos e fenômenos relacionados é conhecido como dinâmica dos fluidos computacional (*Computational Fluid Dynamics* – CFD^1) e é uma das áreas que vem crescendo, tanto no ensino (HUNG et al.,

¹do inglês *Computacional Fluid Dynamics*.

2005) como na engenharia. Para isso é necessário que o usuário tenha bons conhecimentos em Mecânica dos Fluidos e em Análise Numérica para que o fenômeno físico seja corretamente representado. Em muitos casos, os programas que envolvem CFD são utilizados para aprimorar projetos em desenvolvimento ou para corrigir projetos já concluídos. JOHNSON et al. (2005) utilizaram a CFD na construção de aviões. STOPFORD (2002) mostrou a aplicação da CFD em projetos de geração de energia por combustão. BEHERA et al. (2005) otimizaram vórtices em tubos, enquanto que LEHNHÄUSER & SCHÄFER (2005) otimizaram o formato do contorno sólido e HUGGINS et al. (2005) otimizaram uma escada de peixes.

Conforme os trabalhos de BENAY et al. (2003) e ROMKES et al. (2003), é necessária a validação ou verificação da simulação numérica com outros métodos, como por exemplo, a comparação com modelos físicos.

Face à constante crítica de que o modelo físico apresenta custo demasiado, o CEHPAR procura investir no domínio da tecnologia computacional para uma possível redução de custos nos estudos hidráulicos.

O presente estudo visa verificar a aplicabilidade do modelo computacional CFX em estudos já feitos pelo CEHPAR, possibilitando, portanto, fazer confrontos entre os modelos matemático e físico fazendo valer a vasta experiência do CEHPAR em estudos hidráulicos.

2 EQUAÇÕES GOVERNANTES

A dinâmica dos fluidos computacional (CFD) se baseia nas equações fundamentais da dinâmica dos fluidos: equação da continuidade, energia e momento. Estas equações representam três princípios fundamentais da física em que todos os fluidos estão baseados:

- Conservação da massa;
- Conservação da quantidade de movimento (Segunda Lei de Newton);
- Conservação da energia (Primeira Lei da Termodinâmica).

Esta seção se baseia em CFX (2004), DAILY & HARLEMAN (1986), TANNEHILL et al. (1997) e ANDERSON (1995).

2.1 EQUAÇÃO DA CONTINUIDADE

Aplicando a conservação da massa a um escoamento passando em um volume de controle infinitesimal, obtém-se a equação da continuidade. O princípio físico relata que a quantidade de massa é constante, ou seja, a variação temporal da quantidade de massa no elemento é igual à resultante do fluxo de massa saindo através das fronteiras do mesmo.

$$\frac{\partial \rho}{\partial t} + \nabla \left(\rho \vec{U} \right) = 0 \tag{2.1}$$

A primeira parcela é a variação de massa no volume de controle e a segunda parcela é o fluxo de massa saindo do volume de controle.

Em um sistema de coordenadas cartesianas, o vetor velocidade (\vec{U}) é representado pelos vetores U, V, W, nas direções x, y, z e a equação (2.1) passa a ser:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho U) + \frac{\partial}{\partial y} (\rho V) + \frac{\partial}{\partial z} (\rho W) = 0$$
(2.2)

A equação (2.2) está na forma conservativa e é assim utilizada no sistema de operação do programa computacional

No caso de um fluido incompressível, em que a sua massa específica é constante, a equação (2.2) passa ser somente:

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0$$
(2.3)

3

2.2 EQUAÇÃO DO MOMENTO

Aplicando a Segunda Lei de Newton em um volume de controle infinitesimal obtemse a equação de momento. Considerando somente a direção x,

$$F_x = m.a_x$$

onde, F_x é a soma das forças atuantes no elemento (forças gravitacionais e de superfície), *m* é massa e a_x é a aceleração do elemento.

As forças gravitacionais atuando no elemento podem ser representadas pelo produto da massa específica (ρ), forças gravitacionais por unidade de massa (f) e o volume do elemento (dx dy dz). As tensões tangenciais e normais são representadas pelo produto da tensão (tangencial ou normal) e a área em que atua.

$$FG_{x} = \rho f_{x} \left(dx \, dy \, dz \right)$$

$$FS_{x} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{zx}}{\partial x} \right) dx \, dy \, dz$$
(2.4)

A massa do elemento pode ser representada pelo produto da massa específica e o volume do elemento. Pode-se representar a aceleração do elemento em função da variação temporal da velocidade:

$$m = \rho \, dx \, dy \, dz$$

$$a_x = \frac{DU}{Dt}$$
(2.5)

Combinando estas equações e utilizando o conceito de derivada substantiva² obtémse a equação da quantidade de movimento na direção x (2.6a). Do mesmo modo podem ser obtidas as equações nas direções y (2.6b) e z (2.6c).

$$\frac{\partial(\rho U)}{\partial t} + \nabla \cdot \left(\rho U \vec{U}\right) = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_x$$
(2.6a)

$$\frac{\partial(\rho V)}{\partial t} + \nabla \cdot \left(\rho V \vec{U}\right) = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \rho f_y$$
(2.6b)

$$\frac{\partial(\rho W)}{\partial t} + \nabla \cdot \left(\rho W \vec{U}\right) = -\frac{\partial p}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} + \rho f_z \qquad (2.6c)$$

² ou derivada total: $\rho \frac{D\phi}{Dt} = \frac{\partial \rho \phi}{\partial t} + \rho \vec{U} \cdot \nabla \phi$

4

A primeira parcela, do primeiro membro, representa a variação da quantidade de movimento no volume de controle. A segunda representa a perda por convecção através da superfície de controle.

Pode-se representar as equações 2.6 $(a, b \in c)$ pela equação 2.7.

$$\frac{\partial \left(\rho \vec{U}\right)}{\partial t} + \nabla \left(\rho \vec{U} \times \vec{U}\right) = \rho f + \nabla \left(-p\delta + \tau_{ij}\right)$$
(2.7)

onde, δ representa a matriz identidade.

A equação da quantidade de movimento é conhecida como as equações de Navier-Stokes.

2.3 EQUAÇÃO DA CONSERVAÇÃO DE ENERGIA

Aplicando a Primeira Lei da Termodinâmica para o mesmo volume de controle infinitesimal obtém-se a equação da conservação de energia. Como o próprio nome já diz, este princípio da física diz que a quantidade de energia é constante, ou seja, a variação de energia no elemento é igual à soma da quantidade de calor inserida ao elemento mais o trabalho realizado por ele por causa das forças gravitacionais e tangenciais.

A parcela de trabalho realizado devido às forças gravitacionais e tensões superficiais pode ser obtida através do produto da força pelo vetor velocidade, com a mesma direção da força.

$$Trabalho FG = \rho f \cdot \overrightarrow{U} \left(dx \, dy \, dz \right)$$
$$Trabalho FS_{\chi} = \left[-\frac{\partial \left(Up \right)}{\partial x} + \frac{\partial \left(U\tau_{xx} \right)}{\partial x} + \frac{\partial \left(U\tau_{yx} \right)}{\partial y} + \frac{\partial \left(U\tau_{zx} \right)}{\partial z} \right] dx \, dy \, dz$$
(2.8)

O trabalho referente às tensões superficiais da equação 2.8 é somente para a direção x. Do mesmo modo obtém-se as equações para as demais direções (y e z).

A parcela que envolve a quantidade de calor inserida ao elemento é composta por uma parcela de absorção ou emissão de radiação e outra por condução térmica.

Quantidade Calor Inserida =
$$\left[\rho q - \left(\frac{\partial \dot{q}_x}{\partial x} + \frac{\partial \dot{q}_y}{\partial y} + \frac{\partial \dot{q}_z}{\partial z} \right) \right] dx \, dy \, dz$$
 (2.9)

onde, $\dot{q}_i = \lambda \frac{\partial T}{\partial i}$ (i = x, y, z) e λ é a condutividade térmica

Finalmente o último termo para obter a equação de energia. Este demonstra a variação temporal de energia total (E_t), energia interna (e) mais a energia cinética ($\frac{\vec{U}^2}{2}$) por unidade de massa, do elemento.

$$Var Energia = \rho \frac{D}{Dt} (E_t) dx dy dz$$
(2.10)

Agrupando as equações 2.8, 2.9 e 2.10, conforme o princípio físico de conservação de energia, obtemos a equação da energia:

$$\frac{\partial}{\partial t}\rho E_{t} + \nabla \left(\rho E_{t}.\overrightarrow{U}\right) = \rho q - \frac{\partial \dot{q}_{x}}{\partial x} - \frac{\partial \dot{q}_{y}}{\partial y} - \frac{\partial \dot{q}_{z}}{\partial z} + \rho f.\overrightarrow{U} - \frac{\partial (up)}{\partial x} - \frac{\partial (vp)}{\partial y} - \frac{\partial (wp)}{\partial z} + \frac{\partial (wp)}{\partial z} + \frac{\partial (u\tau_{xx})}{\partial x} + \frac{\partial (u\tau_{xy})}{\partial y} + \frac{\partial (v\tau_{xy})}{\partial z} + \frac{\partial (v\tau_{xy})}{\partial y} + \frac{\partial (v\tau_{yy})}{\partial z} + \frac{\partial (v\tau_{yy})}{\partial z}$$

$$+ \frac{\partial (w\tau_{xz})}{\partial x} + \frac{\partial (w\tau_{yz})}{\partial y} + \frac{\partial (w\tau_{zz})}{\partial z}$$

$$(2.11)$$

Em alguns casos, utiliza-se a equação de conservação de energia desprezando o termo responsável pelas variações temporais da energia mecânica e obter uma equação somente para a energia interna (*e*).

Simplificando a equação 2.11, obtém-se:

$$\frac{\partial}{\partial t}\rho E_{t} + \nabla \left(\rho E_{t}.\overrightarrow{U}\right) = \rho q - \nabla \dot{q} + \overrightarrow{U}.\left[\nabla \left(-p\delta + \tau_{ij}\right)\right] + \rho f \overrightarrow{U}$$
(2.12)

2.4 COMENTÁRIOS SOBRE AS EQUAÇÕES GOVERNANTES

Visto as equações governantes acima, pode-se notar que todas são equações diferenciais parciais e não podem ser resolvidas analiticamente. Todas as equações estão na forma conservativa, ou seja, considerou-se volume de controle infinitesimal fixo no espaço.

As tensões tangenciais nas equações 2.4, 2.6 (a, b e c), 2.8 e 2.11 são proporcionais aos gradientes de velocidades, dadas pelas equações abaixo (2.13a até 2.13f).

$$\tau_{xx} = -\frac{2}{3}\mu \left(\nabla \vec{U}\right) + 2\mu \frac{\partial U}{\partial x}$$
(2.13a)

$$\tau_{yy} = -\frac{2}{3}\mu \left(\nabla \vec{U}\right) + 2\mu \frac{\partial V}{\partial y}$$
(2.13b)

$$\tau_{zz} = -\frac{2}{3}\mu \left(\nabla \vec{U}\right) + 2\mu \frac{\partial W}{\partial z}$$
(2.13c)

6

$$\tau_{yx} = \tau_{xy} = \mu \left(\frac{\partial V}{\partial x} + \frac{\partial U}{\partial y} \right)$$
(2.13d)

$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial x} \right)$$
(2.13e)

$$\tau_{zy} = \tau_{yz} = \mu \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y} \right)$$
(2.13f)

Observando as equações governantes, nota-se cinco equações (2.2, 2.6a a 2.6c e 2.11) e seis incógnitas (p, ρ , U, V, W, e). Para que o sistema possa ser resolvido é necessária mais uma equação, conhecida como equação de estado. Ela é fornecida pela Termodinâmica e relaciona a variável de pressão (p) com as variáveis de estado³ (temperatura T e massa específica ρ).

$$p = p(\rho, T) \tag{2.14}$$

no caso dos gases, considera-se a equação de um gás ideal:

$$p = \rho RT \tag{2.15}$$

onde R é a constante dos gases. Junto com a sexta equação surge uma nova variável (sétima variável), a temperatura T. Para o fechamento do sistema, necessita-se de uma sétima equação para que o sistema possa ser resolvido. Esta também é obtida da termodinâmica e relaciona variáveis de estado:

$$e = e(T, p) \tag{2.16}$$

$$e = c_v T \tag{2.17}$$

onde, $c_v \acute{e}$ o calor específico com volume constante.

Com isso obtemos um sistema de sete incógnitas e sete equações, que pode ser resolvido.

A equação 2.12 também pode ser considerada como equação de transporte da energia total do elemento (E_t). Considerando um escalar qualquer, pode-se re-escrever a equação 2.12 como:

$$\frac{\partial \rho \phi}{\partial t} + \nabla \left(\rho \phi. \vec{U} \right) = \Gamma \nabla \phi + S \tag{2.18}$$

onde, $\phi \notin o$ escalar, $\Gamma \notin o$ coeficiente de difusividade e $S \notin a$ fonte (ou origem) do escalar.

Na dinâmica dos fluidos as equações de Navier-Stokes se referem somente para a equação da quantidade de movimento, conforme comentada no item 2.2. Na literatura de CFD

³ grandezas independentes que definem o estado termodinâmico do sistema.

considera-se que as equações de Navier-Stokes abranjam todas as equações do sistema, ou seja: equação da continuidade, equação de quantidade de movimento e equação de energia (ANDERSON, 1995 e FORTUNA, 2000).

2.5 CONDIÇÕES DE CONTORNO

As equações governantes para uma simulação de escoamento de fluidos são sempre as mesmas, mas podem apresentar resultados diferentes conforme as condições de contorno e as condições iniciais que são diferentes para cada simulação.

Dois exemplos típicos são a velocidade nula do fluido em contato com uma parede fixa e a temperatura do fluido igual à superfície sólida em contato com o fluido. As outras variáveis, como a pressão, fazem parte da solução do problema.

Como será comentado mais tarde, é importante o conhecimento físico do escoamento a ser simulado. As condições de contorno e as condições iniciais são decisivas no resultado final da simulação.

3 TURBULÊNCIA

A turbulência é uma das três peças-chave da dinâmica dos fluidos computacional. As outras duas foram criadas com base em teorias matemáticas e são a discretização do domínio com a malha numérica e o desenvolvimento do algoritmo.

Algo em comum na maioria dos modelos de turbulência é a combinação da simplicidade e do discernimento físico. WILCOX (1998) define isso como sendo o modelo de turbulência ideal, em que o modelo deve ser o mais simples possível, mas que capture a essência relevante do fenômeno físico.

A turbulência é encontrada na maioria dos escoamentos de fluidos e a sua adequada simulação é um dos grandes desafios. Ela é caracterizada pelas seguintes propriedades:

- escoamento instável, cuja variação da velocidade é caótica;
- tri-dimensional por causa das flutuações;
- número de Reynolds elevado (maior que o *Re_{crítico}*), ou seja, as forças de inércia se tornam significativas comparadas com as forças viscosas;
- as flutuações da turbulência variam conforme a temperatura e densidade, ocasionando um processo de difusão;
- as ações viscosas fazem com que haja perda de energia, tornando o escoamento dissipativo;
- há uma variedade de escalas de tempo e comprimento.

Essas características, principalmente a não linearidade e a variedade de escalas de tempo e comprimento, fazem da turbulência um estudo muito complexo.

Em escoamentos com misturas químicas e transferência de calor, a turbulência não é um problema como na engenharia hidráulica, por exemplo, em que o aumento da turbulência acarreta no aumento das forças de atrito e aumento do consumo de energia de uma bomba. Assim sendo, é necessário que se prevejam estes fenômenos para que se otimize o projeto (de obras hidráulicas, de misturas químicas) a ser desenvolvido.

Os efeitos causados pela turbulência são como se a viscosidade do fluido fosse multiplicada por fatores da ordem de cem, dez mil ou mais. Em escoamentos com números de Reynolds elevados existe uma transferência contínua de energia do movimento principal para os vórtices de maior tamanho que se quebram em tamanhos sucessivamente menores (SCHLICHTING, 1968). Embora exista dissipação de energia em todo o processo, a maior

parcela de energia é dissipada quando os vórtices atingem uma dimensão suficientemente pequena para que a viscosidade do fluido possa abater as flutuações de velocidade.

3.1 ORIGEM DA TURBULÊNCIA

Segundo DAILY & HARLEMAN (1966), o estado de turbulência é ocasionado a partir da quebra de um fluxo ordenado em torvelinhos (vórtices) que contaminam certa região com flutuações irregulares de quantidade de movimento. A turbulência depende do meio em que se encontra para que se possa auto-sustentar.

Uma das fontes de turbulência é encontrada na diferenças de velocidades entre camadas adjacentes de fluidos, causadas, por exemplo, por contornos sólidos irregulares. Há uma certa tendência à formação de ondulações que tendem a ser instáveis e a aumentar a sua amplitude. Ao aplicar a equação de Bernoulli nessas linhas de corrente, conclui-se que há uma região de alta pressão no lado côncavo e uma região de baixa pressão no lado convexo. Como conseqüência, a superfície ondulada é instável e tende a aumentar a turbulência, criando vórtices que se quebram em outros menores.

Outras fontes de turbulência são flutuações ocasionadas por variação da temperatura ou densidade, e em escoamento em camadas (escoamento com presença de tensões tangenciais).

3.2 MODELOS DE TURBULÊNCIA

Um modelo de turbulência é um procedimento computacional para solucionar o sistema com as equações governantes para abranger a maioria dos problemas de fluidos. Para a maioria dos problemas de turbulência, o estudo detalhado das flutuações não é necessário e sim os seus efeitos. Para que um modelo de turbulência seja útil é necessário que ele seja abrangente, preciso, simples e com baixo custo operacional. Todos os modelos existentes são restritos e é imprescindível a validação desses modelos utilizando métodos experimentais.

A maioria dos modelos de turbulência são estatísticos, com exceção dos modelos de simulação de grandes vórtices (LES⁴).

⁴ do inglês *Large Eddy Simulation*.

3.2.1 Modelos de Turbulência Estatísticos e Problema de Fechamento

Ao analisar as escalas de tempo muito maiores que as escalas das flutuações de turbulência, pode-se dizer que o escoamento turbulento é composto por uma característica média e uma outra variável no tempo.

Os modelos de turbulência procuram substituir as equações de Navier-Stokes por uma quantidade média e outra variável no tempo, conhecidas como equações de Navier-Stokes na forma de Reynolds (RANS⁵). Estas equações representam somente as quantidades médias do escoamento, enquanto modelam a turbulência sem a necessidade de resolver as flutuações de turbulência. Todas as escalas de turbulência são modeladas, mas o são através de processos estatísticos. Isso faz com que o esforço computacional seja menor comparando com as simulações numérica diretas (DNS⁶), mas novos termos contendo o produto das flutuações são introduzidos no sistema de equações como variáveis, sendo consideradas como tensões no escoamento. Assim, é necessário que novas equações sejam obtidas para que se resolva o sistema de equações utilizadas para o fechamento do sistema definem o tipo de modelo de turbulência.

3.2.1.1 Equações de Transporte (Navier-Stokes) na forma de Reynolds (RANS)

Como já mencionado, o modelo de turbulência procura resolver um sistema de equações de transporte introduzindo um componente médio e outro variável. Um exemplo é a velocidade, que pode ser composta pela velocidade média \overline{U} e pela flutuação da velocidade u'.

$$U = \overline{U} + u' \tag{3.1}$$

$$\overline{U} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} U dt$$
(3.2)

onde, Δt é a escala de tempo que é grande comparada com as flutuações da turbulência, mas pequena ao se comparar com a escala de tempo com que o sistema será resolvido.

Substituindo as quantidades médias nas equações governantes (equações 2.1, 2.7, 2.12 e 2.18), obtemos as seguintes equações:

⁵ do ingles *Reynolds Average Navier – Stokes*.

⁶ do inglês *Direct Numerical Simulation*.

$$\frac{\partial \rho}{\partial t} + \nabla \left(\rho \vec{U} \right) = 0 \tag{3.3}$$

$$\frac{\partial \rho \overline{U}}{\partial t} + \nabla \left(\rho \overline{U} \times \overline{U} \right) = \nabla \left(\tau_{ij} - \rho \overline{u' \times u'} \right) + \rho f - \nabla p \delta$$
(3.4)

$$\frac{\partial \rho E_{t}}{\partial t} + \nabla \left(\rho \vec{U} \cdot E_{t} \right) = -\nabla \dot{q} + \nabla \left(\tau_{ij} \vec{U} - \rho \overline{E_{t} u'} \right) + \rho q - \nabla \left(p \delta \cdot \vec{U} \right)$$
(3.5)

$$\frac{\partial \rho \phi}{\partial t} + \nabla \left(\rho \vec{U} \cdot \phi \right) = \Gamma \nabla \phi - \nabla \left(\rho u' \cdot \phi \right) + S$$
(3.6)

Como se pode perceber, a equação da quantidade de movimento e a equação da energia (ou de transporte) possuem termos de turbulência adicionais à difusividade molecular: tensão $(\rho u' \times u')$ e fluxo $(\rho u' E_t)$ ou $(\rho u' \phi)$ de Reynolds. Esses termos retratam o fato de que o transporte por convecção, devido às flutuações, irá aumentar a capacidade de mistura do que aquela causada pela variação térmica.

Substituindo a quantidade média da velocidade na energia total (E_t) tem-se:

$$E_t = e + \frac{U^2}{2} + k_T$$

Como se pode observar na equação acima, há um termo adicional, k_T , referente a energia cinética de turbulência que é dado por:

$$k_T = \frac{1}{2}u'^2$$
 (3.7)

3.2.1.2 Modelos de Viscosidade de Torvelinho

Uma questão importante no escoamento turbulento consiste no fato de que as flutuações de velocidade (u', v' e w') influenciam no movimento médio ($\overline{U}, \overline{V} \in \overline{W}$) de uma forma tal que este exibe um aparente aumento na resistência à deformação, ou seja, há um aumento na viscosidade do fluido (SCHLICHTING, 1968). Esse aumento da viscosidade é causado pela viscosidade de torvelinho (viscosidade de turbulência) que é uma característica do escoamento e não uma característica intrínseca do fluido.

BOUSSINESQ⁷ sugeriu que a tensão tangencial aparente de turbulência pode estar relacionada à viscosidade de torvelinho, ou seja, proporcional ao gradiente de velocidades. A tensão de Reynolds (Reynolds stress tensor), segundo Boussinesq, é dada como:

$$-\overline{\rho u' \times u'} = 2\mu_T S_{ij} - \frac{2}{3}\delta_{ij} \left(\mu_T \nabla u' + \rho k_T\right)$$
(3.8)

onde, μ_T é a viscosidade de torvelinho, k_T é a energia cinética de turbulência, e $S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} + \frac{\partial u_j}{\partial i} \right)$ é a taxa do tensor de deformação.

Por analogia a essa hipótese, a difusividade de torvelinho relaciona o fluxo de Reynolds com o gradiente escalar:

$$-\rho \overline{u'\phi} = \Gamma_T \nabla \phi \tag{3.9}$$

 $\Gamma_{\rm T}$ é a difusividade de torvelinho e é dada pela relação da viscosidade de torvelinho (μ_T) e o número de Prandtl/Schimidt (*Pr* – ver a seguir).

Já que o transporte da quantidade de movimento e transferência de calor e massa se dão do mesmo modo (mistura), estima-se que o número de Prandtl/Schimidt seja próximo a um. Experimentos com vários tipos de escoamentos comprovaram esta estimação e muitos utilizam um valor de 0,9, igual ao modelo CFX (TANNEHILL et al., 1997 e VERSTEEG & MALALASEKERA, 1995).

As equações acima só conseguirão simular as flutuações de turbulência caso a viscosidade absoluta turbulenta (μ_T) seja conhecida.

Substituindo as equações 3.8 e 3.9 nas equações 3.4 e 2.18, respectivamente, tem-se:

$$\frac{\partial \rho \overline{U}}{\partial t} + \nabla \left(\rho \overline{U} \times \overline{U} \right) = \rho f - \nabla \left(p \delta - \frac{2}{3} \delta \rho k_T - \frac{2}{3} \delta \mu_{eff} \nabla u' \right) + \mu_{eff} \left(\nabla U + \left[\nabla U \right]^T \right)$$
(3.10)

$$\frac{\partial \rho \phi}{\partial t} + \nabla \left(\rho U \phi \right) = \Gamma_{eff} \nabla \phi + S \tag{3.11}$$

$$\mu_{eff} = \mu + \mu_T \tag{3.12}$$

$$\Gamma_{eff} = \Gamma + \Gamma_T \tag{3.13}$$

onde, $\mu_{\rm eff}$ é a viscosidade efetiva e $\Gamma_{\rm eff}$ é difusividade efetiva.

Por analogia à teoria cinética, cuja viscosidade dos gases pode ser avaliada com certa precisão, a viscosidade de torvelinho pode ser modelada como:

⁷ BOUSSINESQ, J. 1877. Essai Sur La Théorie Des Eaux Courantes, Mem. Presentes Acad. Sci. vol.23, Paris. p.46.

$$u_T = \rho v_T l_T \tag{3.14}$$

onde, v_T e l_T são as escalas de velocidade e de comprimento de turbulência, respectivamente. O problema está justamente em encontrar um valor médio ideal para estas variáveis.

1

Os modelos de turbulência para o fechamento das equações de Reynolds podem ser classificados em duas categorias: modelos que empregam e não empregam a suposição de Boussinesq:

Modelos que aceitam a suposição de Boussinesq:

Modelos de primeira ordem ou modelos que consideram a viscosidade de torvelinho

- modelos algébricos: modelo de comprimento de mistura de Prandlt;
- modelos de μ_T com uma equação diferencial;
- modelos de μ_T com duas equações diferenciais: modelo k- ϵ ; modelo k- ω ; outros.
- Modelos de segunda ordem ou modelos de tensões de Reynolds
 - modelos algébricos
 - modelos com equações diferenciais

Modelos que não aceitam a suposição de Boussinesq:

• Modelos de simulação de grandes vórtices (LES)

Modelos Algébricos

Os modelos algébricos, ou do inglês *zero equation model*, são os mais simples e calculam um valor global de μ_T através das escalas de velocidade e comprimento. Esses modelos calculam a contribuição da viscosidade na formação dos torvelinhos.

Um dos modelos utilizados é o sugerido por Prandtl, em 1925, em que o comprimento de mistura (l_T) é a distância em que partículas mantém a quantidade de movimento inicial e a velocidade de turbulência (v_T) é o produto $l \left| \frac{\partial u}{\partial y} \right|$. A velocidade u é na direção do fluxo e o y é a distância perpendicular ao fluxo principal.

$$\mu_T = \rho l^2 \left| \frac{\partial u}{\partial y} \right| \Longrightarrow 2D \tag{3.15a}$$

14

$$\mu_T = \rho l^2 \left| \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} \right)^2 \right|^{\frac{1}{2}} \Rightarrow 3D$$
(3.15b)

O comprimento de mistura varia conforme o tipo de escoamento modelado: jato de água, camada limite, escoamento em canais ou condutos e outros. Bons resultados foram obtidos em escoamentos ao longo de superfícies sólidas com as seguintes equações:

$$l_i = \kappa y \left(1 - e^{-y + A_+} \right) \tag{3.16}$$

para regiões próxima a parede, e para regiões mais afastadas da parede (equação 3.17):

$$l_0 = C_1 . \delta \tag{3.17}$$

onde a constante C_l tem o valor de 0,089 e δ é a espessura da camada limite. Na equação (3.16), κ é a constante de von Kármán e geralmente adota-se o valor de 0,41. A+ é a constante de amortecimento de van Driest, tomando 26 como seu valor usual. O termo entre parênteses é a função de amortecimento de van Driest e é a expressão mais utilizada para ligar a região completamente turbulenta (onde $l = \kappa y$) com a sub-camada laminar ($l \rightarrow 0$). O valor da distância adimensional de turbulência (y+) é obtido através da equação 3.18 e será discutido posteriormente.

$$y + = \frac{y u^*}{v} \tag{3.18}$$

Inúmeras análises foram feitas com o intuito de que a função exponencial abranja os efeitos da variação das propriedades, do gradiente de pressão e da rugosidade da superfície. A equação 3.16 simula a lei de parede (*inner law of the wall zone*), enquanto que a equação 3.17 simula a região fora dessa área (*outer region*), conforme a figura 3.1, abaixo.

Figura 3.1 - Regiões na camada limite de turbulência para escoamento incompressível sobre uma placa

A velocidade adimensional u⁺ é definida como a relação entre a velocidade e a velocidade de cisalhamento (ou de corte). Sob condições normais, a região da lei de parede representa 20% da camada limite. A camada logarítmica é a marca registrada da camada limite turbulenta, apesar da lei da parede variar conforme a variação dos números de Reynolds e Mach.

Nota-se que para baixos valores de Reynolds, ambas as regiões (*inner region* e *outer region*) tendem a zero dificultando a aplicação das equações 3.16 e 3.17. Ao tender a zero, faz com que haja a mudança da aplicação das equações 3.16 e 3.17, subestimando a tensão tangencial no leito. A solução para tal problema é estabelecer limites de *y*+ para aplicação de cada equação.

Modelos de μ_T com uma equação diferencial

Nestes modelos são incluídas as formulações em que um parâmetro característico da turbulência é determinado através de uma equação diferencial de transporte. Normalmente, utiliza-se a energia cinética turbulenta, pois caracteriza as flutuações da turbulência. Foi sugerido por Prandtl e Kolmogorov que a velocidade de escala fosse proporcional à raiz da energia cinética turbulenta (k_T).

$$\mu_T = C_k \rho l \sqrt{k_T} \tag{3.17}$$

onde C_k é uma constante relacionada com o coeficiente de dissipação $C_D(C_k = C_D^{1/3})$. Nessa equação, k_T é determinado por uma equação diferencial e *l*, algebricamente.

O modelo com uma equação foi aplicado em escoamentos compressíveis e apresentou uma boa melhora sobre os modelos algébricos. Os modelos com uma equação mais recentes possuem uma melhor concordância comparados com os modelos experimentais para alguns escoamentos com separações. De modo geral, o desempenho desse tipo de modelo não foi satisfatório. Nos casos em que foi aplicado, mostrou-se pouco melhor que os modelos algébricos e por isto são pouco utilizados.

Modelos de μ_T com duas equações diferenciais

Modelos de turbulência com duas equações diferenciais são um dos modelos mais utilizados, já que oferecem uma boa relação entre esforço numérico e precisão computacional. Esse tipo de modelo é muito mais sofisticado que o anterior, pois utiliza diferentes equações de transporte para a escala de velocidade e de tempo.

Os modelos k- ε e k- ω utilizam a hipótese do gradiente de difusão para relacionar as tensões de Reynolds com o gradiente de velocidade e com a viscosidade de torvelinho.

Nesses tipos de modelos a escala de velocidade é obtida através da solução da equação de transporte da energia cinética de turbulência.

Modelo k-ε

Nesse modelo, k_T representa a energia cinética turbulenta e é definida como a variação das flutuações da velocidade. ε é a taxa de dissipação turbulenta.

O modelo k- ε é um dos modelos mais empregados em simulações. Para a maioria dos casos ele oferece boa precisão e eficiência. Mas em certos casos, outros modelos são mais eficazes, como por exemplo, o modelo k- ω , para simulação de escoamento com separação de camada limite.

A viscosidade de turbulência é modelada conforme a seguinte equação (3.20):

$$\mu_T = \frac{C_\mu \rho k_T^2}{\varepsilon} \tag{3.20}$$

17

onde C_{μ} é uma constante, semelhante a C_k , que vale $C_{\mu} = C_D^{4/3} = 0,09$.

A equação de transporte da energia cinética (k) é:

$$\frac{\partial(\rho k)}{\partial t} + \nabla\left(\rho \vec{U}k\right) = \nabla\left[\left(\mu + \frac{\mu_T}{\Pr_k}\right)\nabla k\right] + \left(2\mu_T S_{ij} - \frac{2}{3}\rho k\delta\right)\nabla \vec{U} - \rho\varepsilon$$
(3.21)

A equação de transporte para ε é:

$$\frac{\partial(\rho\varepsilon)}{\partial t} + \nabla\left(\rho\vec{U}\varepsilon\right) = \nabla\left[\left(\mu + \frac{\mu_T}{\Pr_{\varepsilon}}\right)\nabla\varepsilon\right] + C_{\varepsilon^1}\frac{\varepsilon}{k}\left(2\mu_T S_{ij} - \frac{2}{3}\rho k\delta\right)\nabla\vec{U} - C_{\varepsilon^2}\rho\frac{\varepsilon^2}{k} \quad (3.22)$$

onde $C_{\varepsilon l}$ e $C_{\varepsilon 2}$ são constantes que valem 1,44 e 1,92, respectivamente. Pr é o número de Prandlt e vale 1,0 para a energia cinética (Pr_k) e 1,3 para a taxa de dissipação ε . Os termos do segundo membro das equações 3.21 e 3.22 são, respectivamente: taxa de difusão, taxa de produção e taxa de dissipação de k e ε , respectivamente. Na equação 3.21, nota-se que a energia cinética turbulenta e a taxa de dissipação turbulenta são dependentes e se contrabalanceiam.

Modelo k- ω

Kolmogorov foi o primeiro pesquisador a propor o primeiro modelo de turbulência com duas equações. Ele escolheu a energia cinética de turbulência (k) como um dos parâmetros e como Prandlt, modelou a equação diferencial que a governa. O segundo parâmetro escolhido foi a freqüência de turbulência (ω), que é a taxa de dissipação por unidade de energia cinética de turbulência.

Como já foi dito anteriormente, existem casos em que o modelo k- ε não é o ideal. Um exemplo é a simulação do escoamento próximo a contornos sólidos e com valores de Reynolds baixo. Esse modelo não abrange a complexa não-linearidade dos efeitos de parede como no modelo k- ε , sendo assim mais preciso e robusto. Em um modelo k- ε com baixo Reynolds seria necessário um refino próximo à parede de (y^+) menor que 0,2, enquanto que no modelo k- ω é necessário um refino menor que 2. Em muitas aplicações esse refino não é possível ser obtido e com isso um novo método para tratar do efeito de parede foi criado para os modelos k- ω .

O modelo k-ω modela a viscosidade de torvelinho conforme a equação 3.23.

$$\mu_T = \rho \frac{k}{\omega} \tag{3.23}$$

O modelo k- ω mais testado e desenvolvido é o modelo de Wilcox. Ele resolve uma equação de transporte para a energia cinética turbulenta (*k*) e outra para a freqüência de turbulência (ω). Em 1998, WILCOX (1998) modificou seu modelo k- ω alterando os valores dos coeficientes de dissipação $\beta \in \beta^*$.

$$\frac{\partial(\rho k)}{\partial t} + \nabla(\rho \vec{U} k) = \nabla \left[\left(\mu + \frac{\mu_T}{\Pr_k} \right) \Delta k \right] + \left(2\mu_T S_{ij} - \frac{2}{3}\rho k\delta \right) \nabla \vec{U} - \beta^* \rho k\omega$$
(3.24)

$$\frac{\partial(\rho\omega)}{\partial t} + \nabla\left(\rho\vec{U}\omega\right) = \nabla\left[\left(\mu + \frac{\mu_T}{\Pr_{\omega}}\right)\nabla\omega\right] + \alpha\frac{\omega}{k}\left(2\mu_T S_{ij} - \frac{2}{3}\rho k\delta\right)\nabla\vec{U} - \beta\rho\omega^2 \qquad (3.25)$$

cujos coeficientes de fechamento são (WILCOX, 1998):

$$\alpha = \frac{13}{25}; \ \beta = \beta_0 f_B; \ \beta^* = \beta_0^* f_B^*; \ \Pr_k = 2; \ \Pr_\omega = 2$$
$$\beta_0 = \frac{9}{125}; \ f_B = \frac{1+70\chi_\omega}{1+80\chi_\omega}; \ \chi_\omega \equiv \left|\frac{\Omega_{ij}\Omega_{jk}S_{ki}}{\left(\beta_0^*\omega\right)^3}\right|; \ \beta_0^* = 0,09$$
$$\chi_k = \frac{1}{\omega^3}\frac{\partial k}{\partial x_j}\frac{\partial \omega}{\partial x_j}; \ f_B^* = \begin{cases} 1, \ X_k \le 0\\ \frac{1+680\chi_\omega^2}{1+400\chi_\omega^2}, \ X_k > 0 \end{cases}$$

onde Ω_{ij} e S_{ij} são os taxa de rotação e tensão média, respectivamente.

$$\Omega_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} - \frac{\partial u_j}{\partial i} \right) \qquad \qquad S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} + \frac{\partial u_j}{\partial i} \right)$$

Como se pode notar, χ_{ω} é nulo para escoamentos bidimensionais. O valor de χ_{ω} , para a obtenção de β , é significativo para escoamentos com jatos de água.

As diferenças entre as duas versões do modelo de Wilcox, são os valores dos coeficientes de dissipação $\beta^* e \beta$ que influenciam na obtenção de resultados de escoamentos sem tensão tangencial. No modelo mais recente há uma superestimação da dissipação na camada-limite comparada com as medições experimentais. Ambos os modelos possuem uma boa concordância de resultados ao serem comparados com os modelos experimentais.

4 MÉTODO DOS ELEMENTOS DE CONTORNO

Este capítulo é uma simples revisão sobre o método dos elementos de contorno (*Boundary Elements Method* - BEM⁸), visto que este foi utilizado em um dos estudos de casos. Para mais detalhes, consultar BREBBIA et al. (1984), OTA (1985) e GRUBE (2001).

4.1 INTRODUÇÃO

Uma das primeiras aplicações do método dos elementos de contorno foi solucionar equações integrais através da discretização. Devido à dificuldade de se obter uma solução analítica, a utilização das equações integrais tem se limitado a investigações de existências teóricas e unicidade de soluções de problemas matemático-físicos.

Equações integrais para problemas lineares podem ser formuladas através da aplicação da 3ª Identidade de Green, que representa a função harmônica como uma superposição de uma ou duas camadas potenciais. Ao levar o campo de pontos para o contorno obtém-se uma equação integral relacionando somente os valores do contorno e derivadas normais das funções harmônicas. A correlação na elasticidade é a Identidade de Somigliana que deu origem ao método direto dos elementos de contorno. BREBBIA et al. (1984) demonstrou que a relação integral pode ser obtida através da consideração dos resíduos ponderados, fazendo com que seja mais fácil relacionar o método dos elementos de contorno com outros métodos (por exemplo, o método de elementos finitos) e estender sua aplicação a problemas com equações diferenciais parciais mais complexas, incluindo não-linearidades.

OTA (1985) utilizou o método de elementos de contorno no estudo do escoamento sobre o vertedouro da UHE Segredo. Nesse estudo, tanto a vazão como a configuração da superfície livre foram obtidas a partir de medições em modelo reduzido. Foi obtida boa concordância entre as pressões calculadas e as medidas em modelo reduzido.

O método dos elementos de contorno surgiu como uma alternativa para a solução de algumas equações diferenciais.

Suas melhores aplicações ocorreram nas soluções de problemas envolvendo difusão térmica, escoamentos de fluidos ideais, escoamentos de fluidos em meios porosos, eletrostática e outros problemas que podem ser descritos por uma função potencial e que as

⁸ do inglês Boundary Elements Method

equações governantes sejam as equações clássicas de Laplace ou Poisson (BREBBIA et al., 1984).

Este método consiste na transformação das equações diferenciais parciais, que descrevem o comportamento das variáveis no interior e no contorno do domínio (Ω), em equações integrais que relatam somente os valores do contorno e obtém a solução, através de aproximação numérica. Na necessidade de se obter um valor no interior do domínio, o mesmo é calculado através dos dados do contorno. Como a solução é obtida somente para o contorno do domínio, a dificuldade numérica de se resolver um problema por BEM é menor do que por outros métodos (diferenças finitas ou elementos finitos). A figura 4.1 mostra esta diferença.

Figura 4.1 – Comparação entre uma malha de elementos finitos e uma malha de elementos de contorno com o mesmo número de nós no contorno (GRUBE, 2001).

A aproximação numérica consiste nas seguintes etapas:

- O contorno Γ é discretizado a partir de uma série de elementos de modo que as derivadas potencial e normal variam conforme uma função de interpolação. A geometria desses elementos pode ser modelada através de linhas, arcos, parábolas, etc.;
- As equações discretizadas são aplicadas aos nós dos elementos de contorno, em que os valores das derivadas potencial e normal são associados;
- As integrais de cada elemento são resolvidas através de esquemas numéricos de quadratura⁹;
- Ao impor as condições dos elementos de contorno, obtém-se um sistema de equações algébricas linear, cuja resposta é a solução do problema modelado.

⁹ do inglês *numerical quadrature scheme*
No método dos elementos de contorno (OTA, 1985) considerou-se o domínio como de escoamento potencial (irrotacional) onde é válida a equação de Laplace para função corrente ψ e para a função potencial ϕ . A solução equivale à obtenção da rede de corrente no domínio do escoamento sobre a crista. Assim, obtiveram-se as velocidades em pontos do contorno inferior (sobre a ogiva) e as pressões foram calculadas através da equação de Bernoulli.

4.2 A FUNÇÃO POTENCIAL DE VELOCIDADE ϕ E A FUNÇÃO DE CORRENTE Ψ (BIDIMENSIONAL)

Utilizando a identidade do cálculo vetorial (equação 4.1) e comparando com a condição de irrotacionalidade (equação 4.2), conclui-se que existe uma função ϕ , denominada de velocidade potencial,

$$\nabla \times (\nabla \phi) = 0 \tag{4.1}$$

$$\nabla \times \overline{U} = 0 \tag{4.2}$$

tal que:

$$\vec{U} = -\nabla\phi \tag{4.3}$$

onde, \vec{U} é o vetor velocidade.

Da equação da continuidade para fluidos incompressíveis, tem-se que:

$$\nabla(-\nabla\phi) = 0 \Longrightarrow \nabla^2\phi = 0 \tag{4.4}$$

em todo o domínio Ω .

A equação 4.4 é conhecida como equação de Laplace (ou potencial), que descreve o escoamento irrotacional, incompressível e permanente de um fluido ideal.

A equação da linha de corrente bidimensional (ψ), em termos Eulerianos, pode ser dada por:

$$dt = \frac{dx}{u} = \frac{dy}{v} \Longrightarrow v.dx - u.dy = 0$$
(4.5)

Definido uma função de corrente (ψ) de modo que:

$$u = -\frac{\partial \psi}{\partial y} \qquad \qquad v = -\frac{\partial \psi}{\partial x} \tag{4.6}$$

22

nota-se que esta função obedece a equação da continuidade, além de ser constante ao longo de uma linha de corrente. Considerando a continuidade e a condição de irrotacionalidade (equação 4.2), obtém-se:

$$\nabla^2 \psi = 0 \tag{4.7}$$

em todo o domínio Ω .

4.3 CONDIÇÕES DE CONTORNO ASSOCIADAS AO PROBLEMA

As condições de contorno associadas a solução do Laplaciano são as do tipo Dirichlet (essenciais – equação 4.8), que prescrevem o valor da função ψ (ou ϕ), e do tipo Neumann (naturais – equação 4.9), que prescrevem a derivada normal ao contorno da função ψ (ou ϕ).

$$\psi = \psi^*, em \Gamma_1 \qquad \phi = \phi^*, em \Gamma_1 \qquad (4.8)$$

$$\psi = \frac{\partial \psi}{\partial n}, em \ \Gamma_2 \qquad \phi = \frac{\partial \phi}{\partial n}, em \ \Gamma_2$$
(4.9)

Nas duas equações acima (4.8 e 4.9), $\Gamma_1 e \Gamma_2$ representam os contornos do domínio Ω , sendo que $\Gamma = \Gamma_1 + \Gamma_2$, enquanto que a variável *n* representa a direção normal ao referido contorno. Estas condições podem ser adaptadas para escoamento sobre vertedouros, conforme a figura 4.2, abaixo.

Figura 4.2 – Condições de contorno para a equação de Laplace.

O problema será formulado em termos da função da linha de corrente ψ .

4.4 CONDIÇÃO DE CONTORNO DA SUPERFÍCIE LIVRE

Como o escoamento sobre vertedouros envolve escoamento com superfície livre (onde a pressão é nula), necessita-se que mais uma condição de contorno adicional, resultante da equação de Bernoulli, seja imposta de modo que se tenha:

$$\frac{v_j v_j}{2g} + h = H \quad \Rightarrow \qquad \frac{\partial \psi}{\partial n} = v_j = \sqrt{2g(H - h)} \tag{4.10}$$

A equação de Laplace (equação 4.7) mais as condições de contorno (equação 4.8 a 4.10) completam o sistema de equações para resolver o problema.

5 O MODELO COMPUTACIONAL CFX (v.5.7)

O programa utilizado nesta dissertação é o CFX-5.7 que foi desenvolvido pela AEA Technology – Engineering Software dos Estados Unidos.

Nos anos 70, a AEA Technology começou a desenvolver dinâmica dos fluidos computacional para uso particular. Em 1977, a CFX adquiriu uma companhia complementar de CFD, a ASC Ltd., que foi formada em 1985 a partir de uma ramificação da Universidade de Waterloo (Ontário, Canadá). Em 26 de Fevereiro de 2003, a CFX adquiriu a ANSYS Inc. (Canonsburg, Pennsylvania – EUA), que estava focada em desenvolver programas que capacitariam os usuários a analisar simulações no próprio computador.

Hoje, a CFX possui um dos mais robustos e eficazes programas de dinâmica dos fluidos computacional para soluções de problemas que envolvem escoamentos de fluidos. Ela inclui interface direta aos arquivos de CAD e geração de malha automática.

5.1 DINÂMICA DOS FLUIDOS COMPUTACIONAL (CFD)

Há vários programas que resolvem problemas de fluidos, mas não há um mercado tão vasto como para os programas estruturais. O motivo é a complexidade de se resolver os problemas em CFD, fazendo com que os usuários necessitem de um conhecimento mais avançado em mecânica dos fluidos e análise numérica, pois erros significativos já foram cometidos por falta de um ou ambos os requisitos. Além disso, com o conhecimento da mecânica dos fluidos o usuário pode tomar decisões de quais simplificações podem ser feitas para que se otimize a simulação e não afete a física do problema.

A dinâmica dos fluidos computacional é a análise de sistemas envolvendo escoamentos de fluidos, transferência de calor e de massa, inclusive reações químicas. Essa técnica é muito eficiente e é aplicável a várias áreas:

- aerodinâmica de aviões e veículos;
- hidrodinâmica de navios;
- turbomáquinas;
- engenharia elétrica esfriamento de equipamentos incluindo micro circuitos;
- engenharia de processos químicos mistura e separação, modelagem de polímeros;

- ambientes internos e externos de prédios ventilação, carga de vento;
- engenharia marítima carregamento em estruturas submersas;
- engenharia ambiental transporte de poluentes e efluentes;
- hidrologia e oceanografia escoamento em rios, estuários e oceanos;
- meteorologia previsão do tempo;
- engenharia biomédica escoamento de sangue em artérias e veias.

O custo por um programa de CFD é alto, mas não chega a ser maior que o custo de modelo experimental (mão de obra, construção do modelo). Além dessa vantagem há outras relacionadas à capacidade de modelagem:

- redução substancial no tempo e custo de novos projetos;
- realização de estudos cujos modelos experimentais são difíceis ou impossíveis de serem realizados;
- resultados com alto nível de detalhamento e em grandes quantidades sem custo adicional.

5.1.1 As Etapas da Dinâmica dos Fluidos Computacional (CFD)

A dinâmica dos fluidos computacional se baseia em algoritmos numéricos que lidam com escoamentos de fluidos. Com isso, todos os programas que a utilizam possuem uma interface com o usuário muito sofisticada, tanto para inserção dos parâmetros de entrada como para a análise de resultados.

Todos os programas de simulação numérica são compostos por basicamente 3 componentes: pré-processador, processador e pós-processador.

Pré-Processador (CFX Pre-Processor)

Para qualquer problema que for resolvido em CFD é preciso que se identifique a área de interesse (domínio), que é uma região onde se quer determinar as variáveis de interesse (velocidade, pressão, temperatura, tensão tangencial, etc.) e analisar o escoamento. A geometria e a malha dessa área são geradas através de um programa CAD (no caso o programa ICEM), que são importadas para o pré-processador para que sejam fornecidas outras condições de contorno, como por exemplo, o fenômeno a ser simulado (físico ou

químico), os fluidos envolvidos e suas propriedades físicas, características do escoamento (rugosidade, temperatura), características da simulação (transiente ou não-transiente, subsônico ou supersônico, multifásico ou monofásico, etc.) e as condições de contorno.

A solução do problema é obtida para cada centróide das células do domínio. A precisão dos resultados depende do refinamento da malha: quanto mais refinada a malha, mais precisos serão os resultados e maior o esforço computacional (trabalho do processador e duração).

Processador (CFX Solver Manager)

Todos os dados do pré-processador são transferidos para o processador que irá resolver o problema com base nas condições de contorno fornecidas. O processador pode resolver numericamente a partir de três métodos diferentes (que serão relatados mais tarde): elementos finitos, diferenças finitas e volumes finitos. Esses métodos envolvem basicamente três etapas:

- Aproximação das variáveis através de funções simples;
- Discretização;
- Solução das equações algébricas.

O método de volumes finitos é um dos métodos mais utilizados para resolver problemas com CFD, além de estar presente na maioria de outros modelos computacionais: PHOENICS, FLUENT, FLOW3D e STAR-CD. A integração dos volumes de controle diferencia o método de volumes finitos dos outros métodos. A relação dos resultados demonstra a conservação das variáveis de interesse para cada elemento. Por esse motivo, o método de volumes finitos é muito utilizado além de ser muito mais simples de compreender os resultados do que os métodos de elementos finitos e método espectral.

Pós-Processador (CFX Post-Processor)

Os dados gerados pelo processador são encaminhados ao pós-processador que pode ser descrito como sendo uma ferramenta de visualização gráfica. Com ele pode-se ter um bom entendimento e compreensão do fenômeno físico simulado, e assim, poder analisá-lo. As visualizações incluem: gráficos, superfícies, linhas e pontos com as variações das variáveis de

interesse, visualização da geometria e malha, vetores das variáveis de interesse, animações e superfícies 2D e 3D.

DISCRETIZAÇÃO NUMÉRICA 5.2

Existem vários métodos de discretização, mas os mais importantes são: método de diferenças finitas, método de elementos finitos e método de volumes finitos. O modelo computacional CFX utiliza o método de volumes finitos, conforme visto a seguir. Existem outros métodos, como métodos de elementos de contorno (BEM), mas são restritos a alguns tipos de problemas.

O método das diferenças finitas (FD¹⁰) é o mais antigo para soluções de equações diferenciais parciais. Foi introduzido por Euler no século XVIII e é o método mais fácil para geometria simples. Em malhas estruturadas o método FD é bem simples e efetivo. A desvantagem do método de diferenças finitas é a restrição a malhas simples. O método de elementos finitos (FE¹¹) é similar ao método de volumes finitos em vários aspectos. O domínio é dividido em elementos finitos que geralmente são não-estruturados. A diferença entre ambos é que no método FE, as equações são multiplicadas por uma função peso antes de serem integradas sobre o domínio. Uma importante vantagem deste método é sua aplicação a qualquer geometria, podendo a malha ser facilmente refinada. O método de elementos finitos pode ser facilmente analisado matematicamente e pode ser o ideal para certos tipos de equações. A principal desvantagem, comum em todos os métodos que utilizam malha nãoestruturadas, é que as matrizes das equações linearizadas não são bem estruturadas, como em malhas estruturadas, sendo mais difícil a obtenção de um método para solução.

O método utilizado pelo modelo CFX, o de volumes finitos (FV¹²), divide o domínio em volumes de controle e as equações de conservação são aplicadas a cada volume. O centróide de cada volume é o nó computacional onde cada variável é calculada. Como resultado, obtém-se uma equação algébrica para cada volume de controle, em função dos nós vizinhos. O método é ajustável a qualquer tipo de malha e assim não há restrições a geometrias complexas.

¹⁰do inglês *Finite Diference*.
¹¹do inglês *Finite Elements*.
¹²do inglês *Finite Volumes*.

5.2.1 Malha Numérica

Malha numérica é a discretização do domínio de interesse através de nós, onde serão calculadas as variáveis de interesse, para a simulação do escoamento. Ela pode ser: estruturada (regular), estruturada por blocos e não-estruturada.

A malha estruturada consiste de uma malha em que as linhas de uma mesma família não se interceptam e cruzam outras famílias somente uma vez. Essa estrutura de malha é a mais simples, já que é equivalente a uma malha cartesiana. Em uma malha bidimensional (2D), cada ponto possui quatro pontos vizinhos e em uma malha tridimensional (3D), seis pontos. Esta estrutura simplifica a programação e a matriz do sistema com as equações algébricas é bem estruturada. As desvantagens são sua aplicação somente em geometrias simples e a dificuldade de controle da distribuição dos pontos da malha bidimensional e, muito pior, para problemas tridimensionais.

Na malha estruturada por blocos, há uma subdivisão para a solução do domínio. Uma malha em que os elementos são relativamente grandes e outra em que os elementos são mais refinados.

Malhas não-estruturadas são utilizadas para configurações complexas. A princípio, ela pode ser usada com qualquer tipo de discretização numérica, mas é melhor com discretização por volumes ou elementos finitos. Ele pode ser gerado ortogonalmente, a taxa de variação dos elementos é bem controlada e a malha pode ser facilmente refinada em locais específicos. A vantagem da sua flexibilidade é contraposta pela irregularidade da estrutura de dados. A matriz deixa de ser bem estruturada, como na malha estruturada, e o processador para o sistema de equações é mais lento. Malhas não-estruturadas são discretizadas pelo método de elementos finitos ou volumes finitos.

O modelo computacional CFX do presente trabalho utilizou, na maioria dos casos, malhas estruturadas por blocos e não-estruturadas, conhecidas como malhas multi-grelha (do inglês *multigrid*).

5.3 CONDIÇÕES DE CONTORNO

As condições de contorno são as características do escoamento (velocidade, pressão, temperatura, etc.) atribuídas aos limites do domínio de interesse. Elas são peças essenciais para o fechamento do sistema de equações e para a obtenção dos resultados corretos.

Os tipos de condições de contorno a serem definidas dependem dos seus respectivos propósitos na simulação. Os tipos são:

- o condições de contorno para fluidos
 - entrada (inlet): fluido escoa somente para dentro do domínio
 - saída (outlet): fluido escoa somente para fora do domínio
 - aberto (*openning*): fluido pode escoar para fora ou para dentro do domínio, simultaneamente
 - parede (wall): contorno impenetrável pelo escoamento
 - plano de simetria (*symmetry plane*): plano de simetria tanto geométrica como do esocamento
- o condições de contorno para sólidos
 - parede (*wall*)
 - plano de simetria (*symmetry plane*)
- o interface sólido-fluido
- o interface sólido-sólido

Nesta sessão, serão mostradas as possíveis condições de contorno a serem especificadas numa simulação computacional do modelo CFX. As condições de contorno são: entrada (INLET), saída (OUTLET), aberta (OPENNING), parede (WALL) e plano de simetria (SYMP).

Para as condições de contorno de entrada, saída e aberta, é necessário especificar o fluxo de massa, turbulência e a transferência de calor (caso haja). Nas condições de contorno de entrada e saída o fluxo possui somente uma direção: entrando ou saindo do domínio, respectivamente. Na condição de contorno aberta, o fluxo é livre para entrar ou sair do domínio.

O fluxo de massa consiste em determinar a velocidade do fluido (ou dos fluidos para um escoamento multifásico) através de vetores cartesianos, vetores cilíndricos ou distribuição de velocidades. No caso de escoamentos multifásicos, necessita-se especificar ao modelo CFX as diferentes fases através do volume de fração (ver item 6.5.4).

As especificações das condições de contorno de turbulência variam conforme o modelo de turbulência utilizado (modelo k- ϵ , modelo k- ω , etc). O modelo mais utilizado neste estudo foi o modelo k- ϵ , por ser o mais eficaz. Para esse modelo de turbulência é necessário

definir a intensidade de turbulência ($I = \frac{u'}{\overline{U}}$), comprimento de escala ou valores para energia cinética de turbulência (k) e a taxa de dissipação de turbulência (ε).

Para simulações com transferência de calor, adiciona-se a temperatura como condição de contorno.

Para condição de contorno de parede determina-se a resistência da parede ao escoamento: parede lisa (sem resistência), parede rugosa-lisa (*rough smooth wall*) ou parede rugosa com uma rugosidade relativa de areia k_a .

A última condição de contorno, plano de simetria, pode ser utilizada quando se considera a hipótese de simetria do escoamento, simplificando a análise.

6 APLICAÇÃO DO MÉTODO COMPUTACIONAL A CASOS PRÁTICOS DE ENGENHARIA

Para uma boa simulação de qualquer escoamento de fluido, é desejável validar o modelo computacional. Uma boa maneira de se conseguir a validação é começar com casos simples e ir aumentando a sua dificuldade. Primeiramente, foi estudado um escoamento laminar em tubo, seguido de um escoamento turbulento. Como uma última aplicação em condutos retilíneos, foi feita uma análise da tensão tangencial no leito de um conduto circular com escoamento com seção parcial. Posteriormente, estudaram-se casos práticos, como a simulação de um escoamento em uma tomada de água e conduto forçado da Usina Hidrelétrica de Itaipu (PR). Com muito sucesso, estudou-se o escoamento sobre vertedouro com superfície livre.

Todos os casos foram resolvidos em um computador com dois processadores Xeon 3,06GHz com 2 GB de memória RAM.

6.1 CASO 01: ESCOAMENTO LAMINAR

Resolveu-se estudar um dos escoamentos simples que é o escoamento laminar em um conduto circular com seção plena. O conduto simulado possui 23m de comprimento (L), 30,5cm de diâmetro (D) e rugosidade relativa de areia (k_a) de 1mm.

Para que um escoamento seja considerado laminar, é necessário que o mesmo tenha um valor do número de Reynolds (Re) menor ou igual a 2000 e a rugosidade deixa de ser importante. Utilizando a equação 6.1, pode-se obter a velocidade média (U) do escoamento e utilizá-lo como condição de contorno.

$$Re = \frac{UD}{v}$$
(6.1)
$$2000 = \frac{U.0,305}{10^{-6}} U = 0,00656 \frac{m}{s}$$

6.1.1 Modelo Computacional CFX

A geometria e a malha para essa simulação foram criadas no programa ICEM. Considerou-se um escoamento simétrico para que se otimizasse sua resolução.

A malha possui 474.212 nós e 538.200 elementos, sendo eles prismáticos e hexaédricos (fig. 6.1). Ela foi criada pelo processo de extrusão dos elementos bidimensionais da face de montante (IN) ao longo do eixo longitudinal do conduto (eixo Y). Primeiramente criou-se uma malha tetraédrica com um refino na região próxima ao contorno sólido para um domínio com 1 m de comprimento. Em seguida, descartaram-se todos os elementos, com exceção dos elementos da face de montante (bidimensionais). A partir deles, gerou-se os elementos tridimensionais (prismáticos) ao longo do conduto, especificando a dimensão longitudinal e a quantidade de camadas a serem criadas. Esse processo faz com que a quantidade de nós e de elementos criados seja menor do que a malha tetraédrica.

Figura 6.1 – Malha numérica extrudada e com refino próximo a parede.

Na figura 6.1, observa-se a região de entrada do domínio e que há um refino da malha próxima ao contorno sólido (na seção transversal – plano X-Z). Observa-se, também,

que a malha que compõe a parede do conduto é estruturada (regular) por ter sido criada através da extrusão.

As condições de contorno utilizadas nessa simulação foram:

- Condição de contorno de entrada (IN): perfil de distribuição de velocidades uniforme com velocidade média de 0,006 m/s;
- Condição de contorno de saída (OUT): pressão de saída igual a atmosférica;
- Condição de contorno de parede (WALL): rugosidade relativa de areia de 1 mm;
- Condição de simetria (SYMMETRY).

A figura 6.2 mostra o domínio utilizado, considerando a simetria, e as condições de contorno (conforme descritas acima), nomeadas pelo usuário.

Figura 6.2 – Domínio e condições de contorno

6.1.2 Comparação de Resultados

Por ser um caso simples, a comparação de resultados foi feita diretamente com a teoria (cálculos analíticos): cálculo da perda de carga unitária $\binom{h_p}{L}$ e desenvolvimento do perfil de distribuição de velocidades.

Pode-se observar nas figuras 6.3a, 6.3b e 6.3c que há um desenvolvimento do perfil de distribuição de velocidades ao longo do conduto. As figuras 6.3a e 6.3b são as visualizações do programa CFX e a figura 6.3c mostra a evolução da distribuição das velocidades para as diferentes distâncias longitudinais (Y) a partir do início do conduto. Neste caso, a maior parte do conduto foi utilizada para que haja o desenvolvimento do escoamento, ou seja, dos 23m de comprimento analisado, somente alguns metros foram utilizados para verificar as variações de pressões e de velocidades. Segundo a equação de Boussinesq, citada em DAILY & HARLEMAN (1966), o comprimento de desenvolvimento (l_E) necessário para um escoamento laminar (Re = 2000) é de aproximadamente 130 diâmetros (D).

$$\frac{l_E}{D} = 0,065.\,\mathrm{Re}$$
 (6.2)

Como o perfil de distribuição de velocidades de escoamentos em condutos circulares a seção plena é conhecido, é possível inserí-lo como condição de contorno inicial (figura 6.2).

O perfil de distribuição de velocidades para o escoamento laminar completamente desenvolvido, pode ser representado pela equação 6.3.

$$f = \frac{64}{\text{Re}} = \frac{64}{1830} = 0,034973$$
$$\frac{h_p}{L} = f \frac{1}{D} \frac{U^2}{2g} = 2,1039 \times 10^{-7} \text{ m/m}$$
$$V_{\text{max}} = 2.U = 0,012 \text{ m/s}$$
$$U(r) = V_{\text{max}} \left[1 - \left(\frac{r}{R}\right)^2 \right] = 0,012 - 0,516r^2$$
(6.3)

Figura 6.3a - Desenvolvimento do perfil de distribuição de velocidades - escoamento laminar.

Figura 6.3b - Desenvolvimento do perfil de distribuição de velocidades - escoamento laminar.

Figura 6.3c - Desenvolvimento do perfil de distribuição de velocidades - escoamento laminar.

Pode-se observar nas figuras 6.4 e 6.6, a comparação entre o modelo computacional CFX e o cálculo analítico do perfil de distribuição de velocidades (equação 6.3). Na figura 6.4 nota-se uma diferença entre o modelo CFX e o calculado. Esta diferença se dá pelo fato de que o escoamento não está desenvolvido. Conforme foi dito anteriormente, seria necessário um longo trecho de 39,65 m (130 D) para que o escoamento se desenvolvesse por completo, ao invés de 23 m, como nessa simulação.

Figura 6.4 - Perfis de distribuição de velocidades, escoamento em desenvolvimento - CFX x Analítico.

Já na figura 6.5 pode-se notar que o perfil de distribuição de velocidades continua o mesmo ao longo do conduto. A figura 6.6 comprova, comparando o perfil fornecido pelo programa CFX (Y = 22,0 m) com o calculado analiticamente.

Na figura 6.6 observa-se uma diferença entre os perfis de distribuição de velocidades. Existe um "bico" no perfil do programa CFX causado por um problema de discretização da malha.

Figura 6.5 - Perfil de distribuição de velocidades desenvolvido - escoamento laminar.

Figura 6.6 – Perfis de distribuição de velocidades, escoamento desenvolvido – CFX x Analítico.

Na figura 6.7, observa-se a comparação dos valores do coeficiente de atrito (*f*) obtido pelo modelo CFX e obtido analiticamente ($f = \frac{64}{\text{Re}}$ – Diagrama de Moody).

Figura 6.7 – Coeficiente de resistência (f) – obtido analiticamente e com o modelo CFX

6.2 CASO 02: ESCOAMENTO TURBULENTO

A maioria dos escoamentos de interesse da engenharia envolve a turbulência. Ela é muito estudada e a sua simulação é complexa. Utilizando o mesmo conduto do caso anterior, alteraram-se as condições de contorno para simular um escoamento turbulento.

Nesse tipo de escoamento, os valores de *Re* passam a ser altos, ou seja, a velocidade média do escoamento aumenta. Considerou-se para análise uma velocidade média (U) de 0,736 m/s, *Re* igual a 224.480. O modelo de turbulência utilizado foi o modelo k- ϵ .

Segundo a equação 6.2 (DAILY & HARLEMAN, 1966), o comprimento de desenvolvimento para escoamentos turbulentos é menor, variando de 50 a 100 diâmetros. O coeficiente de resistência (f) e a perda de carga unitária ($\frac{h_p}{L}$) são obtidos através das fórmulas abaixo.

$$\frac{1}{\sqrt{f}} = -2\log\frac{k_a}{D} + 1,14 \Rightarrow f = 0,0268$$
$$\frac{h_p}{L} = f\frac{1}{D}\frac{U^2}{2g} = 0,002426 \frac{m}{m}$$

6.2.1 Modelo Computacional CFX

Semelhante ao estudo anterior (escoamento laminar), essa simulação utiliza a mesma geometria e malha mudando somente a velocidade média da distribuição uniforme de velocidades para 0,736 m/s, equivalente a um *Re* de 224.480.

6.2.2 Comparação dos Resultados

O escoamento, por ser turbulento, passou a ser mais complexo. A perda de carga ainda pode ser comparada com a calculada analiticamente. Já o perfil de distribuição de velocidades é diferente do laminar por possuir várias equações que o definem analiticamente.

Como já foi dito e pelo o que pode ser visto nas figuras 6.8a, 6.8b e 6.9, o escoamento turbulento não necessita de grandes distâncias, como o escoamento laminar, para se desenvolver por completo. No modelo CFX, o perfil de distribuição de velocidades permaneceu constante a partir dos 18m.

Figura 6.8a – Desenvolvimento do perfil de velocidade – escoamento turbulento.

Figura 6.8b - Desenvolvimento do perfil de velocidade - escoamento turbulento.

Figura 6.9 - Desenvolvimento do perfil de distribuição de velocidade - escoamento turbulento.

À direita da figura 6.7, apresenta-se a comparação dos valores do coeficiente de atrito obtido analiticamente (diagrama de Moody) e obtido a partir do modelo CFX para o escoamento turbulento.

6.2.3 Conclusões dos Estudos em Tubo

Com os resultados acima apresentados, tanto para o escoamento laminar como o escoamento turbulento, pode-se observar que o modelo computacional CFX é bem eficaz e preciso para casos com desenvolvimento da camada limite.

Por terem sido os primeiros casos a serem estudados, estes levaram certo tempo, pois certas dificuldades atrasaram a simulação, além da aprendizagem.

A criação da geometria não apresenta nenhuma dificuldade excepcional. As atenções devem se voltar principalmente à obtenção de uma geometria "limpa", ou seja, sem elementos duplicados ou sobrepostos (pontos, linhas, superfícies e volumes). Simplificações devem ser

feitas quando possíveis para reduzir o tempo de processamento. Nestes estudos de casos, a simetria foi considerada, reduzindo significativamente o seu tempo de processamento.

Quanto à malha, os cuidados devem ser tomados na definição dos tamanhos dos elementos, que controla o tempo computacional e a precisão. Uma análise com uma malha composta por elementos de maiores dimensões é de rápida solução, mas os resultados não são precisos. Por outro lado, em uma malha mais refinada os resultados serão mais precisos, mas demorará mais para ser resolvida. Portanto é preciso considerar uma malha "ideal" para que a análise seja a mais rápida e precisa possível. Outro fator importante no tamanho dos elementos da malha está relacionado com a escala do fenômeno físico. Nas duas primeiras análises, utilizou-se um refino da malha na região próxima à parede para que detalhasse melhor a distribuição de velocidades, que possui uma grande variação.

6.3 CASO 03: ANÁLISE DA TENSÃO TANGENCIAL NO LEITO DE UM CONDUTO CIRCULAR COM ESCOAMENTO A SEÇÃO PARCIAL

Embora o escoamento em tubos seja muito comum em soluções de engenharia, pouco se sabe sobre a variação da tensão tangencial em seu leito. Este estudo se baseia no estudo feito por OTA & NALLURI. (2003) em que o escoamento com superfície livre em um conduto circular com diâmetro (D) de 30,5cm, inclinação (S_0) de 0,002, comprimento (L) de 23m e rugosidade de areia (k_a) de 1mm, semelhante aos dois primeiros estudo de casos (escoamento laminar e turbulento).

A maioria das equações de transporte em canais de seção circular utiliza a tensão tangencial média para o cálculo da capacidade de transporte de sedimentos, ao invés de considerar a verdadeira tensão. OTA & NALLURI. (2003) fizeram estudos para diferentes vazões, conforme a tabela 6.1, e concluíram que a tensão no fundo do canal é máxima.

		-		U			
	Q=3,5 l/s	Q=6,0 l/s	Q=9,0 l/s	Q=12,0 l/s	Q=18,0 l/s	Q=24,0 l/s	Q=35,0 l/s
Profundidade Uniforme (cm)	5,5	7,1	8,8	10,2	12,6	14,9	18,9
Velocidade média (m/s)	0,390	0,465	0,515	0,560	0,632	0,677	0,736

Tabela 6.1 – Testes para a análise da tensão tangencial no leito.

Esta simulação computacional tem como objetivo simular o ensaio experimental de OTA & NALLURI. (2003) e comparar seus resultados.

6.3.1 Modelo Computacional CFX

6.3.1.1 Escoamento Bifásico – Água e Ar

Por ser uma geometria com seção constante (figura 6.2), criou-se uma malha através da extrusão dos elementos da seção de montante (ver item 6.1.1).

A malha para a maior vazão (Q = 35 l/s) ficou com 81.746 nós e 409.427 elementos, cuja dimensão era de 0,02 m. Como já foi dito, é necessário que diferentes malhas sejam criadas devido às diferentes profundidades.

As condições de contorno utilizadas foram:

- Condição de entrada (IN): pressão hidrostática, perfil de distribuição de velocidades uniforme e profundidade do escoamento à montante (tabela 6.1);
- Condição de saída (OUT): pressão hidrostática e nível de água de jusante (tabela 6.1). Nessa condição definiu-se que o fluxo predominante é para fora do domínio, mas pode haver entrada (principalmente, entrada de ar)*;
- Condição de parede (WALL): rugosidade de areia de 1mm;
- Condição de simetria (SYMMETRY);
- Modelo de turbulência: k-ε.

6.3.1.1.1 Apresentação dos Resultados e Dificuldades

Por problemas de capacidade computacional, não foi possível resolver esse estudo de caso, considerando o escoamento multifásico. O domínio é muito longo (L = 23 m) e estreito (D = 0,305 m). Como os elementos são proporcionais ao diâmetro do tubo, muitos elementos são criados, ultrapassando o limite computacional.

Como as primeiras simulações apresentaram resultados ruins (figuras 6.10 e 6.11), imaginou-se que o problema teria sido causado pela discretização do domínio. Como a mesma foi utilizada nos dois primeiros estudos de casos e bons resultados foram obtidos, essa hipótese foi descartada. Supôs-se, então, que o tamanho dos elementos da malha era muito grande. Uma alternativa para verificar o problema foi considerar um conduto com 5 m de comprimento com uma malha mais refinada. A solução obtida apresentou um nível de água constante, conforme o modelo experimental, mas o escoamento não estava completamente desenvolvido. Assim, foi necessário criar novas malhas, para um conduto de 23 m de comprimento, até que a simulação apresentasse um resultado aceitável.

As simulações para as vazões de 35 l/s e 18 l/s foram possíveis, mas apresentaram resultados errôneos. Na vazão de 35 l/s há uma inconsistência no nível de água no final do conduto. A figura 6.10 mostra essa inconsistência do nível de água. O escoamento flui para a direita e na região à jusante, o escoamento a seção parcial passa a ser seção plena.

^{*} conforme já mencionado no item 1.4.4.2.

Figura 6.10 – Nível de água para uma malha numérica com elementos grandes.

Na vazão de 18 l/s o nível de água oscila demais (figura 6.11), comparado com o modelo físico. Para as vazões menores que 18 l/s não foram possíveis obter as simulações desejadas, por necessitarem de malhas mais refinadas.

Outro problema é quanto ao nível de água a ser utilizado. Quanto mais baixo o nível de água, maior precisa ser o refino na região da seção transversal abaixo do nível de água, caso contrário problemas como malha muito grande ou a impossibilidade de se resolver o sistema podem ocorrer. Para as diferentes profundidades, diferentes malhas deverão ser criadas para que se obtenham bons resultados. O programa ICEM não possui a opção de criar uma malha cujos elementos sejam refinados conforme a profundidade.

Nota-se também, na figura 6.11, que a tensão tangencial é inversamente proporcional ao nível de água.

Nas simulações do escoamento água-ar, principalmente para as pequenas vazões, simula-se o escoamento de ar, que não é objeto de estudo. Ou seja, a maior parte do esforço computacional é utilizado para simular o escoamento de ar.

Figura 6.11 – Influência do nível de água na variação das tensões tangenciais.

6.3.1.2 Escoamento monofásico (água) – Imposição do Nível de Água (NA)

Uma alternativa para se resolver o problema é impor a superfície livre simulando somente o fluxo de água. A face superior seria fixa e não haveria resistência com o fluido. Apesar de reduzir a quantidade de elementos e nós no domínio, foi necessário que se criassem diferentes malhas para as diferentes vazões.

A figura 6.12 mostra vistas do domínio: domínio inteiro (lado esquerdo), detalhe da região à jusante (lado direito, em cima) e à montante (lado direito, embaixo).

As condições de contorno foram:

- Condição de entrada (IN): distribuição de velocidades uniforme, nível de água de montante (tabela 6.1) e pressão hidrostática;
- Condição de saída (OUT): pressão hidrostática e nível de água de jusante (tabela 6.1);
- Condição da face inferior (WALL): parede com rugosidade de areia de 1mm;
- Condição da face superior (WALL Free slip): parede sem resistência;
- Condição de simetria (SYMMETRY);

Modelo de turbulência: k-ε.

Figura 6.12 – Domínio e condições de contorno para escoamento impondo o NA.

6.3.1.2.1 Apresentação dos resultados e Dificuldades

Assim como na alternativa anterior, o refino da malha está restrito à capacidade computacional.

Os resultados obtidos foram comparados com os resultados de OTA & NALLURI (2003) e estão mostrados na figura 6.13. Á partir dos resultados apresentados no apêndice 1, criaram-se os dados necessários (profundidade relativa e relação da tensão tangencial com a tensão média) para o gráfico da figura 6.13.

Figura 6.13 – Comparação entre modelo experimental (OTA & NALLURI, 1985) e modelo CFX.

Verificou-se também a influência da profundidade na variação da tensão no leito. A figuras 6.14 e 6.15 mostram a sensibilidade do escoamento ao variar a profundidade do escoamento em um milímetro. A variação da tensão tangencial, em relação às profundidades das respectivas vazões (Q = 3,5 l/s e 12 l/s), é muito maior quando se eleva a profundidade do que quando se reduz.

Figura 6.14 – Influência da profundidade na variação da tensão tangencial – Q=3,5 l/s.

Figura 6.15 – Influência da profundidade na variação da tensão tangencial – Q=12 l/s.

As figuras seguintes (figuras 6.16 a 6.20) mostram a variação da tensão tangencial no leito para as vazões simuladas e distribuição de velocidades na seção transversal (plano X Z). Pode-se observar que a tensão tangencial é máxima no fundo do canal e zero próxima do nível de água.

Figura 6.16 - Variação da tensão tangencial no leito - Q = 35 l/s

Figura 6.17 – Variação da tensão tangencial no leito – Q = 24 l/s

Figura 6.18 - Variação da tensão tangencial no leito - Q = 12 l/s

Figura 6.19 – Variação da tensão tangencial no leito – Q = 9 l/s

6.4 CASO 04: ESCOAMENTO NA TOMADA DE ÁGUA DA USINA HIDRELÉTRICA DE ITAIPU

Com base no projeto HL-46 (BOBKO et al., 1977), fez-se a simulação do escoamento na tomada de água e do conduto forçado da Usina Hidrelétrica de Itaipu.

Localizada no rio Paraná (PR), em trecho binacional (Brasil e Paraguai), esta usina possui barragens de concreto, terra e enrocamento, com altura máxima de 196 m e comprimento de 7.744 m; vertedouro com 390 m de largura, comprimento da calha mais a crista de 483 m, 14 comportas e capacidade máxima de descarga de 62.200 m³/s; condutos forçados com 142 m de comprimento, diâmetro interno de 10,5 m e descarga nominal de 690 m³/s; e casa de força com 968 m de comprimento, largura de 99 m e queda nominal de 118,4 m.

6.4.1 Modelo Experimental

O modelo físico parcial da tomada de água foi construído na escala 1:50, com o objetivo de observar suas condições de funcionamento: condições de aproximação à tomada de água, tendência à formação de vórtices, velocidades na curva inferior do conduto forçado e pressões ao longo de toda a estrutura. O resumo dos testes efetuados está na tabela 6.2. A distribuição de pressões foi estudada com o auxílio de 135 tomadas de pressão, instaladas conforme as figuras 6.21a a 6.21d.

Teste	Vazão Simulada (m³/s)	N.A.R. (m)	
01	600	223	
02		220	
03	330	200	
04		200	
05	660	223	
06		220	
08	610	Variável	

Tabela 6.2 – Resumo dos testes efetuados no modelo físico.

Figura 6.21b - Piezômetros na Transição.

Figura 6.21d – Piezômetros na Curva Inferior.

Figura 6.22 – Tomada de água e conduto forçado da UHE Itaipu simulado no presente estudo.

As figuras 23, 24 e 25 mostram o modelo experimental utilizado pelo CEHPAR.

Figura 6.23 – Modelo físico da UHE Itaipu – tomada de água.
Figura 6.24 – Modelo físico da UHE Itaipu – transição, curva superior e conduto forçado.

Figura 6.25 – Modelo físico da UHE Itaipu – curva inferior.

6.4.2 Modelo Computacional – CFX

A geometria e a malha foram criadas no programa ICEM. Algumas simplificações, como a desconsideração das ranhuras das comportas e uma simplificação da transição antes da curva superior tiveram de ser feitas, pois o programa ICEM não conseguia gerar a malha devido à grande diferença dimensional (30 cm da ranhura e 150 m do canal de aproximação). A malha possui 864.558 nós e 1.987.424 elementos (figura 6.26). Cada simulação levou aproximadamente 4 horas para ser resolvida.

Figura 6.26 – Malha numérica do modelo computacional – não considerando a simetria.

As condições de contorno (figuras 6.27 e 6.34) utilizadas no modelo computacional foram:

- Condição de entrada (IN): perfil de distribuição de velocidades constante igual a 0,34 m/s (vazão de 660 m³/s);
- Condição de saída (OUT): pressão de 218,15 mca (obtido do modelo físico);
- Condição de contorno da parede (WALL): parede lisa (smooth wall);
- Condição de simetria (SYMMETRY): válido somente para a segunda simulação;
- Modelo de turbulência k-ε.

Figura 6.27 – Domínio do modelo computacional e as condições de contorno.

Na primeira tentativa, a simulação foi completa como indicada no domínio da figura 6.27, onde os pilares também foram incluídos. Verificou-se nesta simulação que o escoamento é basicamente simétrico e a influência dos pilares é pequena. Isso foi comprovada na segunda simulação feita com a condição de simetria e eliminação dos pilares. A malha da segunda simulação possui 269.227 nós e 823.155 elementos e levou uma hora e meia para ser processada. A vantagem de se considerar simetria é poder refinar a malha de forma a obter resultados mais precisos, além de reduzir o tempo de simulação.

6.4.3 Comparação de Resultados

Os resultados das simulações matemáticas e físicas estão apresentados nas figuras 6.28 a 6.31 (tabela A2a a A2c, respectivamente – apêndice 2). Embora haja pequena diferença entre os resultados, as pressões tiveram comportamentos semelhantes ao longo do domínio. Essa diferença se dá pela simplificação da geometria (ranhuras), discretização da malha e pequena diferença nas posições dos pontos de medição de pressões.

Figura 6.28 - Comparação das pressões nos piezômetros do eixo (E01 a E20).

Figura 6.29 - Comparação das pressões nos piezômetros inferiores (I01 a I24).

Na seqüência, apresentam-se as figuras 6.31 a 6.34, fornecidas pelo CFX-Post, para que o usuário possa compreender o escoamento.

Figura 6.31 – Vetores de velocidade traçados sobre um plano longitudinal.

Figura 6.32 – Visualização do desenvolvimento do escoamento ao longo do conduto através de seções transversais em diferentes tempos.

Z X_Y

CFX

Figura 6.33 – Vetores de velocidade traçados sobre um plano horizontal – escoamento ao redor dos pilares.

Figura 6.34 – Domínio do modelo computacional e as condições de contorno, considerando simetria.

Observando os resultados (figuras 6.35a a 6.35c), pode-se notar que não há diferença apreciável entre a primeira simulação (com pilares e sem simetria) e a segunda (sem pilares e com simetria).

Figuras 6.35a - Comparação entre domínio considerando simetria e sem simetria - piezômetros do eixo.

Figuras 6.35b - Comparação entre domínio considerando simetria e sem simetria - piezômetros inferior.

Figuras 6.35c - Comparação entre domínio considerando simetria e sem simetria - piezômetros superior.

6.4.4 Conclusões da Simulação do Escoamento na Tomada de Água

Comparando esta análise computacional com os casos anteriores, pode-se perceber que a malha desta é mais complexa, devido ao caráter tridimensional. Mesmo assim, observando o confronto de resultados, pode-se dizer que o modelo computacional CFX é capaz de simular com eficácia o escoamento em condutos com seção plena e com geometria relativamente complexa.

Assim como nas demais simulações, alguns problemas ocorreram. O primeiro deles ocorreu na criação da geometria. Por ter muitos detalhes, como por exemplo, ranhuras das comportas (figuras 6.21a e 6.22), seção de transição e curva inferior com redução de diâmetro (figuras 6.21d e 6.25), a criação do domínio foi bastante demorada.

Feito isso, o segundo problema surgiu na criação da malha. A causa estava justamente na grande diferença entre as dimensões do domínio (ranhuras com 30cm e o canal de aproximação com 150m de altura). Por isso, resolveu-se desconsiderar os detalhes das ranhuras. Outro problema ocorreu na transição da seção retangular para uma seção circular, que necessitava de elementos extremamente pequenos. O programa não conseguiu criar tais elementos, criando uma malha com furos. Com isso, foi necessário modificar a transição de modo que não afetasse o escoamento e que o programa conseguisse criar automaticamente a malha. Observou-se que para uma boa simulação, é desejável que os elementos da malha sejam da mesma ordem de grandeza.

Concluiu-se que hoje, o teste feito pelo CEHPAR em modelo físico para a determinação da pressão ao longo da tomada de água e conduto forçado poderia ser dispensado, pois a solução pelo modelo CFX levaria a obtenção de bons resultados.

6.5 CASO 05: ESCOAMENTO COM SUPERFÍCIE LIVRE SOBRE UM VERTEDOURO DE OGIVA BAIXA

A análise das pressões em cristas de vertedouros é feita, tradicionalmente, em modelos físicos como foi feita pelo Corps of Engineering e U. S. Bureau of Reclamation. Inúmeras cristas também foram estudadas em modelos reduzidos pelo CEHPAR em Curitiba.

OTA (1985) procurou resolver o problema de forma numérica utilizando o método dos elementos de contorno. GRUBE (2001) efetuou um estudo mais profundo em sua dissertação. POVH et al. (2003) também utilizaram o mesmo modelo de elementos de contorno e mostraram a eficácia do modelo matemático no vertedouro da barragem do rio Aipim para a determinação das pressões.

Entretanto, observou-se que o grande problema desse modelo é a necessidade de impor como condição de contorno a superfície livre do fluxo, obtido somente pelo modelo físico.

O presente estudo utiliza o modelo computacional CFX para a solução do mesmo problema enfocado por POVH et al. (2003) sendo a maior novidade, o fato de não se impor como condição de contorno a superfície livre do escoamento. Sobre a crista do vertedouro do rio Aipim, o modelo CFX mostrou-se muito eficaz na obtenção das pressões. A superfície livre obtida automaticamente pelo modelo numérico foi praticamente igual à superfície livre resultante no modelo físico. O presente artigo cita as principais dificuldades da modelação, os bons resultados obtidos e recomendações para novas simulações de casos semelhantes.

6.5.1 Instalação Experimental e Resultados do Modelo Físico

O vertedouro no modelo físico é de ogiva baixa, com carga de projeto igual a 3,6 m (vazão de 146,74 m³/s). Devido a uma revisão dos estudos hidrológicos, passou a ser necessária considerar vazões significativamente superiores à de projeto (vazão de até 460 m³/s que conduz a uma carga de 7,9 m acima da crista do vertedouro). O modelo físico foi construído na escala geométrica 1:40 (figura 6.36) para estudar essencialmente os aspectos de estabilidade (verificação das pressões na ogiva) e capacidade de descarga, por ser uma condição anômala para os critérios de projeto usualmente adotados na Engenharia. Demais detalhes do estudo podem ser encontrados em POVH et al. (2003).

Figura 6.36 – Modelo físico utilizado pelo CEHPAR.

Os resultados experimentais (modelo físico) considerados são para as vazões de 160 m³/s e 460 m³/s. O escoamento comporta-se razoavelmente como escoamento potencial. A simulação da vazão de 160 m³/s mostrou que os resultados numéricos do método dos elementos de contorno são semelhantes aos valores das pressões obtidos no modelo físico. Conforme apontado por POVH et al. (2003), o escoamento com a vazão de 460 m³/s (operação com sobrecarga) apresentou uma separação do escoamento sobre a crista.

6.5.2 Método dos Elementos de Contorno (BEM)

Neste método é necessária a definição dos contornos (figura 6.37) e esta é a dificuldade de se realizar um estudo totalmente numérico. No estudo com o método dos elementos de contorno de OTA (1985) e POVH et al. (2003), a superfície livre foi obtida através do modelo experimental.

Figura 6.37 - Modelo numérico do método dos elementos de contorno.

Como as condições de contorno estavam bem definidas, o BEM apresentou bom resultado para a vazão de 160 m³/s. Na vazão de 460 m³/s apresentou resultado pouco diferente ao do modelo físico. O confronto entre os resultados numérico e experimental esclarecem sobre a separação sobre a crista. Uma pequena modificação no contorno inferior (junto à soleira), simulando a separação, melhorou consideravelmente o resultado do modelo matemático.

6.5.3 Modelo Computacional CFX

O modelo CFX resolveu as análises em aproximadamente cinco horas.

No presente estudo criou-se malhas com elementos tetraédricos (com dimensões de 0,3 m) refinados com elementos prismáticos na região próxima ao contorno sólido (parede), conforme a figura 6.39. A malha é composta por aproximadamente 47.967 nós e 239.835 elementos tetraédricos. Outra possibilidade é a criação de malhas extrudadas, fazendo com que a quantidade de elementos diminua. A qualidade dos resultados é proporcional ao refino da malha, ao tempo e ao esforço computacional.

Devido ao caráter bidimensional, simulou-se uma parte da estrutura com 1 m de largura e 33 m de comprimento (eixo longitudinal), conforme ilustra a figura 6.38.

Figura 6.39 – Malha numérica do modelo computacional CFX.

6.5.4 Condições de Contorno

Como é de fácil observação, o domínio com superfície livre engloba o escoamento de água e ar. O modelo CFX necessita de uma convenção de que, dentro do domínio, o elemento "água" é simbolizado por 1 (um) e fora dele o elemento "ar" por 0 (zero).

As condições de contorno fornecidas ao programa são:

- Condição de contorno de montante: fluxo somente entrando no domínio (*inlet*), distribuição uniforme de velocidades (v), nível de água de montante (H_m);
- Condição de contorno de jusante: fluxo pode sair e entrar no domínio (*openning*), pressão hidrostática (PresJ), nível de água de jusante (H_i);
- Condição de contorno das superfícies laterais: simetria (*symmetry*);
- Condição de contorno das superfícies inferior e superior: na face superior não há resistência fluido-sólido (*wall – free slip*) e na face inferior considera-se o efeito da resistência, parede lisa (*wall – smooth wall*).

A condição de contorno de jusante poderia ser especificada como escoamento (ar e água) somente saindo do domínio (*outlet*). Mas isso ocasiona problemas quanto à natureza da condição de contorno. Como o escoamento passa a ser torrencial, o ar próximo à superfície livre tende a acompanhar o fluxo de água. Para que a equação da continuidade seja obedecida e notando-se que o fluxo de ar a montante é restrito, é necessário que haja um fluxo de ar entrando pela condição de contorno de saída (figuras 6.46 e 6.47) para que a lei de conservação de massa seja obedecida. Esse problema é solucionado, alterando a condição de contorno de jusante de "saída" (*out*) para "ar livre" (*openning*), que admite entrada de ar.

6.5.5 Confronto entre os Resultados Numéricos (CFX e BEM) e os Resultados Experimentais (MODELO FÍSICO)

Observa-se nas figuras 6.40 e 6.41 (tabela A3a e A3b, respectivamente – apêndice 3) a excelente precisão da superfície livre obtida pelo CFX ao ser comparado com os pontos obtidos no modelo físico. As figuras 6.42 e 6.43 mostram como o modelo CFX distingue as duas fases do escoamento: ar (azul) e água (vermelho).

Figura 6.40 - Superfícies livres da água obtidas pelo modelo físico e pelo modelo CFX para a vazão de 160

Figura 6.41 – Superfícies livres da água obtidas pelo modelo físico e pelo modelo CFX para a vazão de 460 m³/s.

Figura 6.42 – Visualização do nível de água obtido pelo modelo CFX para a vazão de 160 m³/s.

Figura 6.43 – Visualização do nível de água obtido pelo modelo CFX para a vazão de 460 m3/s.

Nas figuras 6.44 e 6.45 (tabela A3c e A3d, respectivamente – apêndice 3) comparase os resultados experimentais e numéricos relativo às pressões ao longo da soleira do vertedouro. Isto é, as figuras mostram as linhas piezométricas para as duas simulações.

Nota-se na figura 6.44 (vazão de 160 m³/s) que as pressões (resultados computacionais) ao longo da ogiva foram bem similares às obtidas no modelo físico.

Figura 6.44 - Confronto das pressões obtidas nos modelos utilizados - vazão de 160 m3/s.

Já para a vazão de 460 m³/s (figura 6.45), os modelos computacional e numérico mostraram uma diferença de pressões no trecho a montante da curva côncava da soleira onde ocorreu a separação. Ambos os modelos matemáticos (BEM e CFX) não conseguiram simular adequadamente essa separação, para contornos originais.

Figura 6.45 – Gráfico com as pressões obtidas pelos 3 modelos para a vazão de 460 m³/s.

As figuras 6.46 e 6.47 ilustram os vetores velocidade. Nessas figuras pode-se visualizar a entrada de ar pela parte superior do contorno de jusante.

Figura 6.46 – Visualização dos vetores velocidade para a vazão de 160 m³/s.

Figura 6.47 - Visualização dos vetores velocidade para a vazão de 460 m³/s.

6.5.6 Observações Finais sobre a Simulação de Escoamento sobre Crista de Vertedouros

O modelo computacional CFX utilizado ainda não permite obter automaticamente a capacidade de descarga do vertedouro como no modelo físico, o que pode ser considerado um próximo desafio. São necessários os valores dos níveis de água nas seções de entrada e saída, o que pressupõe, a priori, o conhecimento do coeficiente de descarga para o vertedouro e um certo desenvolvimento da camada limite ao longo do contorno inferior. Apesar disso, o CFX mostrou-se capaz de obter a superfície livre e fornecer resultados semelhantes aos do modelo físico. É um melhor resultado em relação ao método dos elementos de contorno apresentado por POVH et al. (2003). A principal vantagem é o fato de não se impor o perfil da superfície livre como condição de contorno.

Escoamentos normais sobre o vertedouro, dentro da faixa usual de projeto são muito bem simulados no modelo CFX. O presente trabalho não enfoca o problema da separação apontado por POVH et al. (2003). Novos trabalhos devem ser desenvolvidos para estudar os aspectos da separação. O refinamento da malha na região da separação pode ser a chave do sucesso. As principais dificuldades ocorreram na criação da malha de elementos, principalmente na região próxima ao vertedouro. Dependendo do tamanho dos elementos da malha, o programa que cria a malha não consegue discretizar corretamente os contornos do domínio, principalmente os cantos e em regiões curvas.

Novamente o modelo computacional CFX mostrou-se capaz de contribuir efetivamente em estudos de obras hidráulicas.

7 CONCLUSÕES E RECOMENDAÇÕES

O presente estudo compreendeu desde o aprendizado do uso do modelo CFX, sua validação para casos simples a aplicações em casos reais de engenharia. A existência de resultados experimentais para confronto tornou este estudo interessante, pois o modelo computacional ficou exposto à prova quanto à sua eficiência.

Estudaram-se escoamentos em condutos retilíneos (regimes laminar e turbulento em escoamento com seção plena e escoamento turbulento em canal de seção circular), onde se observou que o modelo CFX é capaz de simular o desenvolvimento da camada limite, levando em conta a viscosidade do fluido e a turbulência. Ele é, portanto aplicável na simulação de escoamentos de fluidos reais e apresenta vantagens em relação às simulações feitas por OTA (1985) e POVH et al. (2003) com o Método dos Elementos de Contorno aplicado ao escoamento potencial.

O escoamento retilíneo, aparentemente fácil de se simular, apresentou dificuldades devido ao problema da construção da malha (detalhamento no contorno) e da capacidade do computador. Houve muitas dificuldades na simulação de escoamentos em canal circular, principalmente se considerado escoamento bifásico (água e ar). O conhecimento básico de Mecânica dos Fluidos é essencial para se evitar simulações irreais do escoamento.

Os campos de velocidades e de pressões no conjunto tomada de água/conduto da usina de Itaipu foram bem resolvidos com o modelo CFX. Os confrontos feitos com resultados experimentais garantem a validade do uso do modelo computacional. Assim, se na época do estudo em modelo reduzido (1977) o CEHPAR tivesse a ferramenta computacional, poder-se-ia optar por obter as pressões e velocidades a partir da modelação numérica. A imposição do contorno sólido e a construção da malha exigem uma certa habilidade e paciência do modelador, como no caso da modelação física.

O estudo das pressões sobre a ogiva do vertedouro de Aipim mostrou que o modelo CFX é bastante eficaz para transições curtas. A aplicação prática do modelo computacional indicou boa concordância com resultados experimentais. O modelo CFX conduziu à definição automática da superfície livre do escoamento sobre o vertedouro. As pressões foram muito bem reproduzidas. Portanto, conhecida a capacidade de descarga do vertedouro, seria possível definir as pressões necessárias ao cálculo da estabilidade do vertedouro.

Sempre que possível, é desejável a modelação física de escoamentos em obras hidráulicas. Em nenhum momento, este trabalho indica a superioridade do modelo

computacional sobre o modelo físico. Mas mostra que em determinados casos a modelação computacional, que pode ser muito mais econômica, é suficientemente eficaz para se simular escoamentos de fluidos reais, tridimensionais, envolvendo, inclusive, a definição da superfície livre.

Abre-se para a engenharia hidráulica um vasto campo para se aplicar o modelo CFX. Este estudo constitui um primeiro passo para o uso de uma ferramenta poderosa. Uma das principais etapas da simulação é a criação dos contornos e o detalhamento da malha. O tamanho dos elementos é definido conforme a escala do escoamento que se quer simular, ao esforço computacional para se ter uma qualidade pré-estabelecida nos resultados. As simplificações dos contornos sempre conduzem à diminuição do esforço computacional. Há, portanto, a necessidade de desenvolver a habilidade do usuário para se obter melhores resultados.

REFERÊNCIAS

AZPITARE, O.E. & BUSCAGLIA, G.C. 2003. Analytical and numerical evaluation of two fluid model solution for laminar fully developed bubbly two-phase flow. Chemical Engineering Science 58, p. 3765-3776.

ANDERSON, J.D. 1995. Computational Fluid Dynamics – The Basics with Aplications, McGraw Hill. Estados Unidos da América.

BEHERA, U.; PAUL, P.J.; KASTHURIRENGAN, S.; KARUNANUTHI, R.; RAM, S.N.; DINESH, K.; JACOB, S. 2005. *CFD analysis and experimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube*. International Journal of Heat and mass Transfer.

BENAY, R.; CHANETZ, B.; DÉLERY, J. 2003. Code verification/validation with respect to experimental data banks. Aerospace Science and Technology 7, p. 239-262.

BOBKO, G. & NEIDERT, S. H. 1977. Projeto HL-46 – Estudos em Modelo Reduzido do Aproveitamento Hidrelétrico do Rio Paraná, em Itaipu. Curitiba: CEHPAR, 1977. Relatório Técnico, Centro de Hidráulica Parigot de Souza.

BOZZINI, B.; RICOTTI, M.E.; BONIARDI, M.; MELE, C. 2003. Evaluation of erosioncorrosion in multiphase flow via CFD and experimental analysis. Wear 255, p. 237-245.

BREBBIA, C.A; TELLES, J.C.F e WROBEL, L.C. 1984. *Boundary Element Techniques – Theory and Application in Engineering*. Ed. Springer-Verlag. Berlin, Heidelberg – Alemanha.

CEBRAL, J.R.; YIM, P.J.; LÖHNER, R.; SOTO, O.; CHOYKE, P.L. 2002. Blood Flow Modelling in Carotid Arteries with Computational Fluid Dynamics and MR Imaging. Academic Radiology 11, vol.9 p. 1286-1299.

CFX. 2004. CFX-5.7 User Manual. ANSYS Canada Ltd. Waterloo, Ontario, Canada. 2004.

DAILY, J.W. & HARLEMAN, D.R.F. 1966. *Fluid Dynamics*. Addison-Wesley Publishing Company, Inc.Estados Unidos da América.

FERZIGER, J.H. & PERÍC, M. 2002. *Computational Methods for Fluid Dynamics*. 3rd ed. Springer-Verlag Berlin Heidelberg Nova York.

FORTUNA, A.O. 2000, Técnicas Computacionais em Dinâmicas dos Fluidos – Conceitos básicos e aplicações. Ed EDUSP. São Paulo.

GAO, Y. & CHOW, W.K. 2005. *Numerical studies on air flow around a cube*. Journal of Wind Engineering and Industrial Aerodynamics 93, p. 115-135.

GHANI, S.A.A.A.; AROUSSI, A.; RICE, E. 2001. *Simulation of road vehicle natural environment in a climatic wind tunnel*. Simulation Practice and Theory 8, p. 396-375.

GRUBE, R. 2001. *Modelo numérico aplicado a escoamentos sobre ogivas de vertedouros*. Tese de mestrado para o Curso de Pós-Graduação em Engenharia Hidráulica da Universidade Federal do Paraná. Curitiba, 30 março 2001.

HUGGINS, D.L.; PIEDRAHITA, R.H.; RUMSEY, T. 2005. Use of computational fluid dynamics (CFD) for aquaculture raceway design to increase settling effectiveness. Aquacultural Engineering.

HUNG, T.C.; WANG, S.K.; TAI, S.W.; HUNG. C.T. 2005. An innovative improvement of engineering learning system using computational fluid dynamics concept. Computer & Education.

JOHNSON, F.T.; TINOCO, E.N.; YU, N.J. 2005. *Thirty years of development and application of CFD at Boeing Commercial Airplanes*. Computers & Fluids.

KIM, S.E. & BOYSAN, F. 1999. *Application of CFD to environmental flows*. Journal of Wind Engineering and Industrial Aerodynamics 81, p. 145-158.

LEHNHÄUSER, T. & SCHÄFER, M. 2005. *A numerical approach for shape optimization of fluid flow domains*. Computer Methods in Applied Mechanics and Engineering.

NOWAKOSKI, A.F.; CULLIVAN, J.C.; WILLIAMS, R.A.; DYAKOWSKI, T. 2004. *Application of CFD modeling of the flow in hydrocyclones. Is this a realizable option or still a research challenge?* Minerals Engineering.

OTA, J.J. 1985. "Considerações sobre capacidade de descarga e pressões na região da crista de vertedouros de encosta." Anais do XII Congresso Latino Americano de Hidraulica, São Paulo, São Paulo. IAHR v.4, p. 142-148.

OTA, J.J. & NALLURI, C. 2003. *Tensões Tangenciais em Leitos de Canais de Seção Circular*. Anais do XV Simpósio Brasileiro de Recursos Hídricos. Curitiba, PR.

POVH, P.H.; OTA, J.J.; CAMARGO, A.S.G. 2003. "Verificação experimental e numérica das pressões obre um vertedouro de ogiva baixa para o cálculo de sua estabilidade" in CD do XV Simpósio Brasileiro de Recursos Hídricos, Curitiba.

ROMKES, S.J.P.; DAUTZENBERG, F.M.; VAN DEN BLEEK, C.M.; CALIS H.P.A. 2003. *CFD modeling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio.* Chemical Engineering Journal 96, p. 3-13.

SCHLICHTING, H. 1968. *Boundary Layer Theory*. 6th Ed. Mc-Graw-Hill, New-York. SORENSE, D.N. & VOIGT, L.K. 2003. *Modeling flow and heat transfer around a seated human body by computational fluid dynamics*. Building and Environment 38, p. 753-762.

STOPFORD, P.J. 2002. *Recent applications of CFD modeling in the power generation and combustion industries*. Applied mathematical Modelling 26, p. 351-374.

TANNEHILL, J.C., ANDERSON, D.A., PLETCHER, R.H. 1997. Computational Fluid Mechanics and Heat Transfer. 2nd Ed. Taylor & Fancis.

VERSTEEG, H.K. & MALALASEKERA, W. 1995. *An Introduction to Computational Fluid Dynamics – The finite volume method.* Prentice Hall, Longman Group Ltd.

WILCOX, D.C. 1998. *Turbulence Models for CFD*. 2nd Edition. DCW Industries, La Canada, California.

APÊNDICES

APÊNDICE 1

RESULTADOS DA SIMULAÇÃO DA ANÁLISE DA TENSÃO TANGENCIAL NO LEITO DE UM CONDUTO CIRCULAR COM SEÇÃO PARCIAL

O conduto utilizado nesta simulação numérica possui uma inclinação de 0,002, conforme a seção longitudinal (plano Y-Z) apresentada pela figura A1. Assim a seção transversal não é perpendicular ao eixo Y.

Figura A1 – Inclinação do conduto utilizado na simulação de análise da tensão tangencial no leito de um canal – seção longitudinal (plano Y-Z).

Tabela A.1a – Variação da tensão tangencial no leito – Q = 3,5 l/s

X[m]	Y[m]	Z[m]	WallShear[Pa]
0,0000	22,0000	0,0040	0,6248
-0,0066	22,0000	0,0041	0,7424
-0,0132	22,0000	0,0046	0,7285
-0,0194	22,0000	0,0052	0,7268
-0,0238	22,0000	0,0059	0,6430
-0,0292	22,0000	0,0068	0,7630
-0,0379	22,0000	0,0088	0,7259
-0,0455	22,0000	0,0110	0,7400
-0,0498	22,0000	0,0124	0,6187
-0,0540	22,0000	0,0139	0,7281
-0,0600	22,0000	0,0163	0,7026
-0,0647	22,0000	0,0184	0,6488
-0,0672	22,0000	0,0196	0,5352
-0,0702	22,0000	0,0211	0,7209
-0,0749	22,0000	0,0236	0,5267
-0,0791	22,0000	0,0261	0,6476
-0,0805	22,0000	0,0270	0,6879
-0,0884	22,0000	0,0322	0,5692
-0,0927	22,0000	0,0354	0,4744
-0,0976	22,0000	0,0393	0,5520
-0,1058	22,0000	0,0467	0,4344
-0,1117	22,0000	0,0527	0,3183
-0,1173	22,0000	0,0590	0,1908

X[m]	Y[m]	Z[m]	WallShear[Pa]
0,0000	22,0000	0,0040	1,1410
-0,0053	22,0000	0,0041	0,9001
-0,0106	22,0000	0,0044	1,0860
-0,0199	22,0000	0,0053	1,0903
-0,0320	22,0000	0,0074	1,0756
-0,0433	22,0000	0,0103	1,0693
-0,0512	22,0000	0,0128	1,0456
-0,0556	22,0000	0,0145	0,7708
-0,0612	22,0000	0,0168	1,1936
-0,0705	22,0000	0,0213	0,9929
-0,0751	22,0000	0,0238	0,8820
-0,0791	22,0000	0,0261	1,0692
-0,0791	22,0000	0,0261	1,0692
-0,0830	22,0000	0,0285	0,8826
-0,0874	22,0000	0,0315	1,0294
-0,0941	22,0000	0,0365	0,9856
-0,0987	22,0000	0,0403	0,8029
-0,1041	22,0000	0,0450	1,0700
-0,1083	22,0000	0,0492	0,6421
-0,1118	22,0000	0,0528	0,8218
-0,1187	22,0000	0,0607	0,9119
-0,1238	22,0000	0,0675	0,6129
-0,1285	22,0000	0,0744	0,8280
-0,1336	22,0000	0,0830	0,5446
-0,1382	22,0000	0,0920	0,4707

Tabela A.1b – Variação da tensão tangencial no leito – Q = 9 l/s

Tabela A.1c – Variação da tensão tangencial no leito – Q = 12 l/s

X[m]	Y[m]	Z[m]	WallShear[Pa]
-0,1435	23,0000	0,1010	0,6027
-0,1399	23,0000	0,0918	0,7863
-0,1357	23,0000	0,0829	0,8115
-0,1289	23,0000	0,0710	1,0080
-0,1199	23,0000	0,0583	1,0552
-0,1146	23,0000	0,0519	0,9515
-0,1099	23,0000	0,0468	1,0805
-0,1024	23,0000	0,0395	1,1168
-0,0908	23,0000	0,0300	1,2472
-0,0782	23,0000	0,0216	1,1903
-0,0679	23,0000	0,0159	1,2365
-0,0575	23,0000	0,0112	1,2260
-0,0437	23,0000	0,0064	1,3077
-0,0336	23,0000	0,0038	1,1105
-0,0261	23,0000	0,0022	1,2404
-0,0160	23,0000	0,0008	1,2438
-0,0056	23,0000	0,0001	1,2954
0,0012	23,0000	0,0000	1,1033

ļ	X[m]	Y[m]	Z[m]	WallShear[Pa]
ĺ	0,0000	14,0000	0,0200	1,7609
ĺ	-0,0042	14,0000	0,0201	1,4744
ĺ	-0,0084	14,0000	0,0202	1,6446
	-0,0135	14,0000	0,0206	1,6225
	-0,0180	14,0000	0,0211	1,6190
	-0,0203	14,0000	0,0214	1,2281
	-0,0219	14,0000	0,0216	1,2502
	-0,0254	14,0000	0,0221	1,8781
	-0,0335	14,0000	0,0237	1,5759
	-0,0394	14,0000	0,0252	1,7376
	-0,0427	14,0000	0,0261	1,4095
	-0,0459	14,0000	0,0271	1,7903
	-0,0484	14,0000	0,0279	1,3302
	-0,0505	14,0000	0,0286	1,5814
	-0,0538	14,0000	0,0298	1,5591
	-0,0565	14,0000	0,0309	1,2352
	-0,0603	14,0000	0,0324	1,9264
	-0,0643	14,0000	0,0343	1,7527
	-0,0673	14,0000	0,0356	1,6224
	-0,0709	14,0000	0,0375	1,5289
	-0,0722	14,0000	0,0382	1,3541
	-0,0736	14,0000	0,0389	1,5335
	-0,0752	14,0000	0,0398	1,4396
	-0,0779	14,0000	0,0414	1,8018
	-0,0832	14,0000	0,0447	1,6342
	-0,0885	14,0000	0,0483	1,7770
ļ	-0,0915	14,0000	0,0505	1,4530
ļ	-0,0943	14,0000	0,0526	1,7344
	-0,0975	14,0000	0,0552	1,6483
	-0,0993	14,0000	0,0568	1,3479
ſ	-0,1014	14,0000	0,0586	1,7165

Tabela A.1d – Variação da tensão tangencial no leito – Q = 24 l/s

X[m]	Y[m]	Z[m]	WallShear[Pa]
-0,1038	14,0000	0,0608	1,2821
-0,1067	14,0000	0,0636	1,8483
-0,1117	14,0000	0,0687	1,5798
-0,1158	14,0000	0,0732	1,7348
-0,1175	14,0000	0,0754	1,3336
-0,1189	14,0000	0,0770	1,5558
-0,1210	14,0000	0,0797	1,7275
-0,1227	14,0000	0,0820	1,4555
-0,1244	14,0000	0,0843	1,6618
-0,1269	14,0000	0,0880	1,7045
-0,1287	14,0000	0,0906	1,4416
-0,1306	14,0000	0,0937	1,6789
-0,1331	14,0000	0,0981	1,7275
-0,1346	14,0000	0,1008	1,4194
-0,1360	14,0000	0,1035	1,6779
-0,1379	14,0000	0,1073	1,6686
-0,1391	14,0000	0,1100	1,4248
-0,1403	14,0000	0,1127	1,6980
-0,1423	14,0000	0,1176	1,4849
-0,1445	14,0000	0,1239	1,7953
-0,1457	14,0000	0,1275	1,2114
-0,1466	14,0000	0,1304	1,5791
-0,1478	14,0000	0,1350	1,5696
-0,1488	14,0000	0,1391	1,3386
-0,1499	14,0000	0,1444	1,8499
-0,1507	14,0000	0,1493	1,2808
-0,1513	14,0000	0,1531	1,5175
-0,1518	14,0000	0,1584	1,4837
-0,1522	14,0000	0,1637	1,2397
-0,1525	14,0000	0,1690	1,5874

X[m]	Y[m]	Z[m]	WallShear[Pa]
0,0000	17,0000	0,0120	1,2271
-0,0032	17,0000	0,0120	1,4600
-0,0064	17,0000	0,0121	1,3236
-0,0116	17,0000	0,0125	1,7084
-0,0199	17,0000	0,0134	1,4765
-0,0258	17,0000	0,0143	1,6441
-0,0301	17,0000	0,0151	1,5124
-0,0335	17,0000	0,0159	1,5862
-0,0357	17,0000	0,0164	1,3879
-0,0380	17,0000	0,0171	1,5522
-0,0427	17,0000	0,0184	1,7492
-0,0454	17,0000	0,0193	1,2964
-0,0466	17,0000	0,0197	1,2846
-0,0486	17,0000	0,0204	1,6426
-0,0532	17,0000	0,0221	1,5709
-0,0583	17,0000	0,0242	1,6830
-0,0612	17,0000	0,0255	1,3882
-0,0639	17,0000	0,0268	1,5834
-0,0669	17,0000	0,0283	1,3225
-0,0715	17,0000	0,0308	1,7695
-0,0786	17,0000	0,0350	1,4830
-0,0837	17,0000	0,0385	1,6331
-0,0875	17,0000	0,0413	1,5650
-0,0899	17,0000	0,0431	1,3923
-0,0925	17,0000	0,0452	1,7037
-0,0969	17,0000	0,0490	1,6152
-0,1010	17,0000	0,0527	1,5946
-0,1034	17,0000	0,0551	1,4331
-0,1056	17,0000	0,0574	1,6274
-0,1087	17,0000	0,0608	1,5913
-0,1117	17,0000	0,0643	1,6761
-0,1136	17,0000	0,0666	1,4003
-0,1155	17,0000	0,0690	1,6813
-0,1184	17,000	0,0730	1,5879

Tabela A.1e – Variação da tensão tangencial no leito – Q = 35 l/s

X[m]	Y[m]	Z[m]	WallShear[Pa]
-0,1206	17,0000	0,0761	1,3463
-0,1231	17,0000	0,0799	1,8808
-0,1248	17,0000	0,0827	1,2213
-0,1261	17,0000	0,0849	1,5292
-0,1281	17,0000	0,0884	1,5518
-0,1305	17,0000	0,0931	1,5481
-0,1335	17,0000	0,0996	1,8563
-0,1348	17,0000	0,1028	1,1596
-0,1357	17,0000	0,1049	1,3296
-0,1365	17,0000	0,1071	1,3023
-0,1377	17,0000	0,1107	1,8705
-0,1391	17,0000	0,1148	1,3673
-0,1400	17,0000	0,1180	1,5851
-0,1412	17,0000	0,1923	2,2533
-0,1414	17,0000	0,1231	1,6470
-0,1419	17,0000	0,1898	1,6263
-0,1424	17,0000	0,1873	1,7897
-0,1426	17,0000	0,1288	1,7502
-0,1433	17,0000	0,1322	1,4143
-0,1435	17,0000	0,1815	1,8689
-0,1437	17,0000	0,1346	1,5645
-0,1440	17,0000	0,1370	1,2868
-0,1443	17,0000	0,1762	1,4627
-0,1445	17,0000	0,1402	1,8413
-0,1448	17,0000	0,1711	1,9955
-0,1450	17,0000	0,1460	1,6793
-0,1451	17,0000	0,1675	1,2963
-0,1452	17,0000	0,1490	1,4495
-0,1453	17,0000	0,1648	1,6030
-0,1454	17,0000	0,1518	1,7129
-0,1454	17,0000	0,1610	1,7251
-0,1455	17,0000	0,1558	1,7116
-0,1455	17,0000	0,1583	1,4692

APÊNDICE 2

RESULTADOS DA SIMULAÇÃO DA TOMADA DE ÁGUA DA UHE ITAIPU

			CF	X	Físico			
	X	Y	Z	Pressão (Pa)	Pressão (mca)	Leitura (m)	Cota (m)	Pressão (mca)
E01	-9,180	45,254	188,708	2.184.126,500	33,9349	222,9500	188,7080	34,2420
E02	-6,960	50,425	187,796	2.182.640,500	34,6954	222,7500	187,7970	34,9530
E03	-4,645	56,035	186,806	2.177.590,000	35,1706	220,3000	186,9050	33,3950
E04	-4,260	56,938	186,647	2.175.960,750	35,1635	221,3500	186,7460	34,6040
E05	-3,400	58,888	186,303	2.161.702,250	34,0540	221,2500	186,3120	34,9380
E06	-3,350	63,796	185,438	2.164.912,750	35,2463	220,9000	185,4390	35,4610
E07	-3,412	66,970	184,878	2.162.287,500	35,5387	220,5000	184,8780	35,6220
E08	-3,792	71,106	184,149	2.164.644,750	36,5080	220,4000	184,1490	36,2510
E09	-4,270	76,276	183,237	2.164.133,750	37,3679	220,6000	183,2370	37,3630
E10	-4,740	81,446	182,326	2.162.467,250	38,1090	220,6000	182,3260	38,2740
E11	-5,160	85,863	181,212	2.162.146,000	39,1902	220,6000	181,5330	39,0670
E12	-5,240	93,437	177,521	2.160.385,000	42,7017	220,3500	177,5210	42,8290
E13	-5,242	100,708	170,809	2.160.217,250	49,3966	220,3500	170,8090	49,5410
E14	-5,190	133,565	101,704	2.157.531,000	118,2278	220,0000	101,7020	118,2980
E15	-5,095	136,198	97,713	2.155.731,250	122,0355	219,7500	97,3100	122,0400
E16	-4,980	139,405	94,166	2.153.280,750	125,3328	219,3500	94,1630	125,1870
E17	-4,880	143,112	91,145	2.150.635,250	128,0840	219,1500	91,1420	128,0080
E18	-4,785	147,234	88,720	2.148.002,000	130,2404	218,8000	88,7170	130,0830
E19	-4,690	151,674	86,947	2.144.772,500	131,6843	218,3000	86,9440	131,3560
E20	-4,590	156,333	85,866	2.141.054,250	132,3858	218,1500	85,8630	132,2870

Tabela A.2a – Resultados das pressões da simulação na Usina de Itaipu – piezômetros do eixo (E01 – E20)

			CFX		Físico			
	X	Y	Z	Pressão (Pa)	Pressão (mca)	Leitura (m)	Cota (m)	Pressão (mca)
101	0,000	65,780	178,091	2.162.412,750	42,3384	220,7000	178,1680	42,5320
102	0,000	70,005	177,622	2.164.520,250	43,0223	220,6000	177,9060	42,6940
103	0,000	75,287	177,040	2.163.566,250	43,5070	220,4500	177,6240	42,8260
104	0,000	80,535	176,455	2.159.848,500	43,7130	219,5000	177,1560	42,3440
105	0,000	84,056	176,060	2.149.999,500	43,1041	219,5000	176,2210	43,2790
106	0,000	86,914	175,155	2.147.584,500	43,7629	219,5000	175,1660	44,3340
107	0,000	88,760	174,220	2.149.571,500	44,9004	219,3500	174,2300	45,1200
108	0,000	90,570	173,117	2.148.947,750	45,9399	219,4000	173,1510	46,2490
109	0,000	92,250	171,895	2.149.236,500	47,1913	219,4000	171,9370	47,4630
I10	0,000	93,750	170,608	2.149.659,500	48,5214	219,4000	170,5940	48,8060
111	0,000	95,250	169,115	2.149.953,000	50,0443	219,4500	169,1320	50,3180
112	-0,001	96,600	167,535	2.150.513,250	51,6814	219,5000	167,5590	51,9410
113	0,000	97,800	165,875	2.151.725,000	53,4650	219,5500	165,8840	53,6660
114	0,000	98,882	164,100	2.153.586,250	55,4297	219,7000	164,1200	55,5800
115	0,000	100,700	160,370	2.158.197,000	59,6297	220,0000	160,4580	59,5420
116	0,000	103,200	154,938	2.159.906,000	65,2359	220,2500	155,0070	65,2430
117	0,000	105,700	149,500	2.160.156,500	70,6994	220,2000	149,5560	70,6640
118	0,000	129,035	99,158	2.162.611,500	121,2917	220,3500	99,1640	121,1860
119	0,000	132,290	94,460	2.161.850,750	125,9121	220,4000	94,5760	125,8240
120	0,000	135,960	90,550	2.160.438,750	129,6782	220,0000	90,5300	129,4700
121	0,000	140,400	87,070	2.158.533,250	132,9640	219,8500	87,1170	132,7330
122	0,000	145,250	84,360	2.156.344,500	135,4509	219,6500	84,4110	135,2390
123	0,000	150,320	82,455	2.154.079,000	137,1249	219,3000	82,4700	136,8300
124	0,000	155,730	81,311	2.150.907,250	137,9456	218,9000	81,3340	137,5660

Tabela A.2b – Resultados das pressões da simulação na Usina de Itaipu – piezômetros inferiores (I01 – I24)

			CFX		Físico			
	X	Y	Z	Pressão (Pa)	Pressão (mca)	Leitura (m)	Cota (m)	Pressão (mca)
S01	0,000	52,019	196,820	2.181.985,500	25,6046	222,6500	197,0960	25,5540
S02	0,000	58,888	194,108	2.172.833,500	27,3837	221,4500	194,1100	27,3400
S03	0,000	63,776	192,700	2.166.543,750	28,1505	221,0000	192,6760	28,3240
S04	0,000	68,137	191,490	2.164.962,000	29,1993	220,7000	191,5000	29,2000
S05	0,000	72,208	190,360	2.165.162,000	30,3497	220,6000	190,3980	30,2020
S06	0,000	77,296	188,950	2.164.305,750	31,6724	220,6000	189,0200	31,5800
S07	0,000	82,384	187,540	2.163.097,000	32,9592	220,6500	187,6430	33,0070
S08	0,000	87,669	186,073	2.165.731,000	34,6947	220,9500	186,2610	34,6890
S09	0,000	96,340	181,885	2.167.529,250	39,0660	221,0000	181,8900	39,1100
S10	0,000	104,825	174,040	2.167.032,750	46,8604	220,8500	174,0600	46,7900
S11	0,000	138,125	104,200	2.147.634,250	114,7230	219,1500	104,2390	114,9110
S12	0,000	140,250	100,800	2.142.210,500	117,5701	218,6000	100,8440	117,7560
S13	0,000	142,830	97,790	2.138.724,500	120,2247	218,2500	97,7950	120,4550
S14	0,000	145,910	95,165	2.135.702,000	122,5416	217,6500	95,1670	122,4830
S15	0,000	149,310	93,050	2.132.773,500	124,3581	217,5000	93,0230	124,4770
S16	0,000	153,075	91,432	2.128.920,500	125,5833	217,2500	91,4170	125,8330
S17	0,000	157,028	90,400	2.126.313,500	126,3496	216,7000	90,3920	126,3080

Tabela A.2c – Resultados das pressões da simulação na Usina de Itaipu – piezômetros superiores (S01 – S17)

APÊNDICE 3

RESULTADOS DA SIMULAÇÃO DO ESCOAMENTO SOBRE VERTEDOURO DE OGIVA BAIXA
Х	Y	Z
1,0000	-10,0000	501,2171
1,0000	-8,0809	501,2597
1,0000	-6,0372	501,2401
1,0000	-4,0999	501,1903
1,0000	-2,0607	501,0811
1,0000	-1,0728	500,9437
1,0000	-0,4705	500,8324
1,0000	-0,4535	500,8261
1,0000	-0,4435	500,8254
1,0000	-0,2778	500,7809
1,0000	-0,2042	500,7665
1,0000	-0,0951	500,7449
1,0000	0,0281	500,7131
1,0000	0,0940	500,7047
1,0000	0,2615	500,6505
1,0000	0,2806	500,6481
1,0000	0,3270	500,6247
1,0000	0,4630	500,5629
1,0000	1,0158	500,3735
1,0000	2,0429	499,8757
1,0000	4,0593	498,5708
1,0000	6,0212	497,4667
1,0000	8,0272	496,7744
1,0000	10,0074	496,2850
1,0000	12,0538	495,8331
1,0000	14,2610	495,3612
1,0000	16,0553	494,9985
1,0000	18,0931	494,5573
1,0000	20,0497	494,1628
1,0000	22,0656	493,7606
1,0000	22,5178	493,6632
1,0000	23,0775	493,5584
1,0000	23,2394	493,5280

Tabela A.3a – Nível de água – Q = 160 m³/s

Х	Y	Z
1,0000	-10,0000	503,3000
1,0000	-8,0184	503,2890
1,0000	-6,0093	503,3280
1,0000	-3,9799	503,3730
1,0000	-2,0155	503,3410
1,0000	-0,7698	503,2280
1,0000	-0,5731	503,1990
1,0000	-0,5427	503,1950
1,0000	-0,3706	503,1690
1,0000	-0,2272	503,1600
1,0000	-0,1755	503,1560
1,0000	-0,1372	503,1510
1,0000	0,0625	503,1180
1,0000	0,1370	503,1140
1,0000	0,2778	503,0730
1,0000	0,3675	503,0540
1,0000	0,4369	503,0470
1,0000	0,5552	503,0260
1,0000	0,7504	502,9810
1,0000	0,7609	502,9820
1,0000	0,7800	502,9750
1,0000	1,0030	502,9190
1,0000	2,1492	502,6260
1,0000	3,9580	501,9680
1,0000	6,0842	501,0200
1,0000	8,0516	500,1120
1,0000	10,0046	499,3190
1,0000	12,0118	498,6080
1,0000	14,0845	497,9680
1,0000	16,0819	497,4240
1,0000	18,0074	496,9200
1,0000	20,0782	496,4270
1,0000	22,0707	495,9620
1,0000	22,6086	495,8500
1,0000	23,6259	495,6170

Tabela A.3b – Nível de água – Q = 460 m³/s

х	Y	Z	Pressão (Pa)	Cota Piez. (m)
0.5000	-10.0000	496.0000	50.834.0100	501.1819
0,5000	-5,1286	496,0000	51.192,0600	501,2184
0.5000	-0.6480	497.7570	21.293.8200	499.9276
0.5000	-0.6480	496.0000	54.906.0900	501.5970
0.5000	-0.6267	497.7777	17.653.4200	499.5772
0.5000	-0.5347	497.8676	-494.6664	497.8172
0.5000	-0.4178	497.9281	-11.176.8000	496,7888
0.5000	-0.4049	497.9347	-12.351.1000	496.6757
0.5000	-0.3864	497.9399	-12.359.1100	496.6801
0.5000	-0.2697	497.9735	-11.831.1300	496,7675
0.5000	-0,1794	497.9874	-9.910.9940	496.9771
0.5000	-0.1521	497.9917	-9.346.6710	497.0389
0.5000	-0.1249	497.9938	-8.915.3760	497.0850
0.5000	-0.0511	497.9992	-7.581.7540	497.2263
0.5000	0.0229	497.9995	-6.147.0990	497.3729
0.5000	0.0305	497.9993	-6.030.1130	497.3846
0.5000	0.1148	497.9940	-4.504.7380	497.5348
0.5000	0.2166	497.9823	-3.432.5720	497.6324
0.5000	0.2511	497.9783	-3.097.4150	497.6626
0.5000	0.2723	497.9753	-2.830.9800	497.6867
0.5000	0.4015	497.9548	-1.157.4630	497.8368
0.5000	0.4766	497.9400	-625,1917	497.8763
0.5000	0.5976	497.9103	-57.9237	497.9044
0.5000	0.7111	497.8774	515.0292	497,9299
0.5000	0.7727	497.8582	821,4774	497,9419
0.5000	0.8131	497.8439	1.086.3370	497.9546
0,5000	0,9272	497,8027	1.783,1450	497,9845
0,5000	0,9584	497,7905	1.969,8650	497,9913
0,5000	1,0441	497,7543	2.577,5780	498,0171
0,5000	1,0973	497,7321	2.937,2740	498,0315
0,5000	1,1172	497,7233	3.083,4620	498,0376
0,5000	1,2687	497,6509	4.398,6750	498,0993
0,5000	1,3236	497,6234	4.947,4580	498,1277
0,5000	1,4646	497,5460	6.588,7810	498,2176
0,5000	1,5247	497,5133	7.277,8470	498,2552
0,5000	1,5548	497,4948	7.696,5310	498,2794
0,5000	1,7017	497,4047	9.765,4970	498,4002
0,5000	1,8848	497,2850	12.798,6300	498,5897
0,5000	1,8877	497,2831	12.845,5200	498,5925
0,5000	1,8893	497,2820	12.871,6900	498,5941
0,5000	2,0716	497,1636	15.475,8500	498,7412
0,5000	2,0720	497,1633	15.481,6000	498,7414
0,5000	2,2083	497,0767	17.123,2700	498,8222
0,5000	2,3964	496,9596	18.752,6400	498,8712
0,5000	2,3973	496,9591	18.760,2300	498,8715
0,5000	2,3978	496,9587	18.764,3600	498,8715
0,5000	2,5922	496,8411	20.184,8000	498,8987
0,5000	2,5949	496,8395	20.205,4000	498,8992
0,5000	2,7453	496,7509	21.325,3100	498,9247
0,5000	2,9143	496,6539	22.340,8500	498,9313

Tabela A.3c – Variação de pressão ao longo do fundo – $Q = 160 \text{ m}^3/\text{s}$

		1		
Х	Y	Z	Pressão (Pa)	Cota Piez. (m)
0,5000	2,9263	496,6470	22.412,6600	498,9317
0,5000	2,9386	496,6401	22.469,7000	498,9306
0,5000	3,1123	496,5435	23.264,1800	498,9150
0,5000	3,2349	496,4775	23.814,2300	498,9050
0,5000	3,3140	496,4351	24.173,8700	498,8993
0,5000	3,4928	496,3425	25.054,2100	498,8964
0,5000	3,5088	496,3342	25.130,8100	498,8960
0,5000	3,5191	496,3291	25.172,4600	498,8951
0,5000	3,7024	496,2378	25.874,5300	498,8754
0,5000	3,8163	496,1831	26.261,7800	498,8601
0,5000	3,8868	496,1495	26.495,7800	498,8504
0,5000	4,0181	496,0891	26.963,9000	498,8377
0,5000	4,0621	496,0688	27.121,8100	498,8335
0,5000	4,0931	496,0551	27.195,0700	498,8273
0,5000	4,2642	495,9797	27.584,9900	498,7916
0,5000	4,3924	495,9260	27.868,1900	498,7668
0,5000	4,5126	495,8763	28.154,2700	498,7463
0,5000	4,6806	495,8100	28.532,6600	498,7185
0,5000	4,7530	495,7823	28.666,6000	498,7045
0,5000	4,9016	495,7272	28.910,5200	498,6742
0,5000	5,0255	495,6834	29.046,2100	498,6443
0,5000	6,0257	495,3878	28.509,1200	498,2939
0,5000	8,0887	494,9925	19.003,2900	496,9296
0,5000	10,0411	494,6313	15.866,4000	496,2487
0,5000	12,0289	494,2636	14.772,3900	495,7695
0,5000	14,0623	493,8874	14.105,4900	495,3253
0,5000	16,2237	493,4876	13.529,6500	494,8668
0,5000	18,0515	493,1494	13.218,0700	494,4968
0,5000	20,1054	492,7695	12.835,8300	494,0779
0,5000	22,1740	492,3868	12.935,9600	493,7055
0,5000	23,0000	492,2340	13.376,8100	493,5976

	-			
Х	Y	Z	Pressão (Pa)	Cota Piez (m)
0.5000	-10 0000	496 0000	73 820 6000	503 5250
0,5000	-5 1286	496 0000	76 596 5000	503 8080
0,5000	-0.6480	496,0000	91 825 3000	505,3604
0,5000	-0 4049	497 9350	-82 586 6000	489 5164
0,5000	-0 1249	497 9940	-58 915 3000	401 0884
0,5000	-0.0511	497 9990	-52 756 9000	492 6211
0,5000	0.0220	498,0000	-46 227 3000	402,0211
0,5000	0,0225	497 9990	-45 694 8000	493 3410
0,5000	0,0000	497,9930	-38 837 4000	494 0350
0,5000	0,1140	497 9820	-32 871 7000	494 6312
0,5000	0,2100	497 9780	-30 986 3000	494 8194
0,5000	0,2311	497,9700	-29 768 0000	494,0194
0,5000	0,2725	497,9750	-22 409 2000	495,9403
0,5000	0,4013	497,9550	10 565 8000	495,0707
0,5000	0,4700	497,9400	16 007 2000	495,9455
0,5000	0,3970	497,9100	12 773 6000	490,2703
0,5000	0,7111	497,8770	11 060 0000	490,5749
0,5000	0,7727	497,8580	-11.000,9000	490,7305
0,5000	0,0131	497,8440	<u>-9.740,0700</u> 6.296.9100	490,0011
0,5000	0,9272	497,8030	-0.200,0100	497,1021
0,5000	0,9564	497,7910	-5.399,7400	497,2400
0,5000	1,0441	497,7540	-2.760,3400	497,4099
0,5000	1,0973	497,7320	-1.194,4700	497,0102
0,5000	1,1172	497,7230	-002,0630	497,0010
0,5000	1,2087	497,6510	4.164,9800	498,0756
0,5000	1,3230	497,6230	5.953,9600	498,2299
0,5000	1,4040	497,5460	10.510,9000	498,0174
0,5000	1,5247	497,5130	12.433,8000	498,7805
0,5000	1,5548	497,4950	13.415,1000	498,8625
0,5000	1,7017	497,4050	18.239,6000	499,2643
0,5000	1,8848	497,2850	24.015,1000	499,7330
0,5000	1,8877	497,2830	24.105,8000	499,7403
0,5000	1,8893	497,2820	24.152,3000	499,7440
0,5000	2,0716	497,1640	28.825,4000	500,1024
0,5000	2,0720	497,1630	28.835,4000	500,1024
0,5000	2,2083	497,0770	31.637,7000	500,3020
0,5000	2,3964	496,9600	34.532,7000	500,4802
0,5000	2,3973	496,9590	34.546,3000	500,4805
0,5000	2,3978	496,9590	34.554,1000	500,4813
0,5000	2,5922	496,8410	37.262,7000	500,6394
0,5000	2,5949	496,8390	37.299,1000	500,6412
0,5000	2,7453	496,7510	39.272,0000	500,7543
0,5000	2,9143	496,6540	41.130,3000	500,8467
0,5000	2,9263	496,6470	41.263,0000	500,8532
0,5000	2,9386	496,6400	41.372,7000	500,8574
0,5000	3,1123	496,5440	42.929,7000	500,9201
0,5000	3,2349	496,4770	43.998,1000	500,9620
0,5000	3,3140	496,4350	44.709,7000	500,9926
0,5000	3,4928	496,3430	46.315,6000	501,0643
0,5000	3,5088	496,3340	46.457,9000	501,0698
0,5000	3,5191	496,3290	46.533,9000	501,0725

Tabela A.3d – Variação de pressão ao longo do fundo – $Q = 460 \text{ m}^3/\text{s}$

X	Y	Z	Pressão (Pa)	Cota Piez (m)
0,5000	3,7024	496,2380	47.830,4000	501,1137
0,5000	3,8163	496,1830	48.607,8000	501,1379
0,5000	3,8868	496,1500	49.082,0000	501,1533
0,5000	4,0181	496,0890	49.950,5000	501,1808
0,5000	4,0621	496,0690	50.242,5000	501,1906
0,5000	4,0931	496,0550	50.403,4000	501,1930
0,5000	4,2642	495,9800	51.284,5000	501,2078
0,5000	4,3924	495,9260	51.985,0000	501,2252
0,5000	4,5126	495,8760	52.656,1000	501,2436
0,5000	4,6806	495,8100	53.508,8000	501,2645
0,5000	4,7530	495,7820	53.858,8000	501,2722
0,5000	4,9016	495,7270	54.496,5000	501,2822
0,5000	5,0255	495,6830	54.952,3000	501,2847
0,5000	5,0891	495,6610	55.191,7000	501,2871
0,5000	6,0257	495,3880	57.125,6000	501,2112
0,5000	8,0887	494,9920	53.348,6000	500,4302
0,5000	10,0411	494,6310	48.872,0000	499,6129
0,5000	12,0289	494,2640	44.763,0000	498,8270
0,5000	14,0623	493,8870	41.202,0000	498,0870
0,5000	16,2237	493,4880	38.269,8000	497,3891
0,5000	18,0515	493,1490	36.644,0000	496,8844
0,5000	20,1054	492,7690	35.224,0000	496,3596
0,5000	22,1740	492,3870	34.481,0000	495,9019
0,5000	22,6014	492,3080	34.385,5000	495,8131
0,5000	23,0000	492,2340	34.082,8000	495,7083