CHAPTER 5

FORMULATION OF QUANTUM STATISTICS

THE scope of the ensemble theory developed in Chapters 24 is extremely general,
though the applications considered so far were confined either to classical systems
or to quantum-mechanical systems composed of distinguishable entities. When it
comes to quantum-mechanical systems composed of indistinguishable entities, as
most physical systems are, considerations of the preceding chapters have to be
applicd with care. One finds that in this case it is advisable to rewrite ensemble
theory in a language that is more natural to a quantum-mechanical treatment,
namely the language of the operators and the wave functions. Insofar as statistics
are concerned, this rewriting of the theory may not seem to introduce any new
physical ideas as such; nonetheless, it provides us with a tool which is highly suited
for studying typical quantum systems. And once we set out to study these systems
in detail, we encounter a stream of new, and altogether different, physical concepts.
In particular, we find that the behavior of even a non-interacting system, such as the
ideal gas, departs considerably from the pattern set by the classical treatment. In the
presence of interactions, the pattern becomes even more complicated. Of course,
in the limit of high temperatures and low densities, the behavior of all physical
systems tends asymptotically to what we expect on classical grounds. In the process
of demonstrating this point, we automatically obtain a criterion which tells us
whether a given physical system may or may not be‘: treated classically. At the
same time, we obtain rigorous evidence in support of the procedure, employed in
the previous chapters, for computing the number, I', of microstates (corresponding
to a given macrostate) of a given system from the volume, w, of the relevant region
of its phase space, viz. I' &~ w/h/, where f is the number of “degrees of freedom”
in the problem.

5.1. Quantum-mechanical ensemble theory: the density matrix

We consider an ensemble of . | identical systems, where . | > 1. These
systems are characterized by a (common) Hamiltonian, which may be denoted by
the operator /. At time ¢, the physical states of the various systems in the ensemble
will be characterized by the wave functions Yr(r:, t), where r; denote the position
coordinates relevant to the system under study. Let ¥*(r;, £) denote the (normal-
ized) wave function characterizing the physical state in which the kth system of the
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ensemble hap, .s to be at time #; naturally, k = 1,2, ..., . 1. The time variation
of the function y/*(t) will be determined by the Schrodinger equation!
Ay (1) = iy ). (1)

Introducing a complete set of orthonormal functions ¢,,, the wave functions Val ()]
may be written as

vy =) di(t)en, )
n
where \
a,() = [ gyt dr; (3)
here, ¢, denotes the complex conjugate of ¢, while ¢t denotes the volume element
of the coordinate space of the given system. Clearly, the physical state of the kth

system can be described equally well in terms of the coefficients af‘; (t). The time
variation of these coefficients will be given by

ihd (1) = ik [ ¢29* (1 dr = [ @By () dr

= [l { Zaﬁ,(r)qb,,,} dr

m

= Zﬁnmai,(f), -H
m
where .
Hnm = f¢;:H¢m dr. (5)

The physical significance of the coefficients o (¢) is evident from eqn. (2). They
are the probability amplitudes for the various systems of the ensemble to be in the
various states ¢,; to be practical, the number | (1)[* represents the probability
that 2 measurement at time ¢ finds the kth system of the ensemble to be in the
particular state ¢,. Clearly, we must have

Y ldMP =1 (for all k). (6)

We now introduce the density operator p(r), as defined by the matrix elements

. _1_ - k kx .
P (1) = —= g{“m(‘)"" )8 (7)

Clearly, the matrix element p,,(f) is the ensemble average of the quantity
ay(t)a, (t) which, as a rule, varies from member to member in the ensemble. In
particular, the diagonal element p,,, (1) is the ensemble average of the probability
la, ()12, the latter itself being a (quantum-mechanical) average. Thus, we encounter
here 2 double-averaging process—once due to the probabilistic aspect of the wave
functions and again due to the statistical aspect of the ensemble. The quantity
Pna(t) now represents the probability that a system, chosen at random from the
ensemble, at time ¢, is found to be in the state ¢r. In view of eqns (6) and (7).

ann = 1. (8)
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We shall now determine the equation of motion for the density matrix pmn ().
We obtain, with the help of the foregoing equations,

i ouan (£) = —1‘— 3 in{@,0a @) + g a0}
’ k=1

1 < , .
= > [{Z H,,,,af(:)} a* (1) - a* (1) {ZH:,a,‘*(z)H
k=1 ! I
= Z {Hml,oln (t) — Pmi (I)Hln}
!
= (’EI;) - ;)H )mn; (9)

here, use has been made of the fact that, in view of the Hermitian character of the
operator H, H}, = Hy,. Using the commutator notation, eqn. (9) may be written as

T
o1

1
I- (10)

ihp = [H,
Equation (10) is the quantum-mechanical analogue of the classical equation
(2.2.10) of Liouville. As expected in going from a classical equation of motion to
its quantum-mechanical counterpart, the Poisson bracket [p, H] has given place
to the commutator (PH — Hp)/in.

If the given system is known to be in a state of equilibrium, the corresponding
ensemble must be stationary, i.e. pn, = 0. Equations (9) and (10) then tell us that,
for this to be the case, (i) the density operator p must be an explicit function of the
Hamiltonian operator F (for then the two operators will necessarily commute) and

(ii) the Hamiltonian must not depend explicitly on time, i.e., we must have (i) p =

f)(ﬁ ) and (ii) H = 0. Now, if the basis functions ¢, were the eigenfunctions of
the Hamiltonian itself, then the matrices H and p would be diagonal:
n‘smm Pmn = pmx/nm- (11)2
The diagonal element p,, being a measure of the probability that a system, chosen
at random (and at any time) from the ensemble, is found'to be in the eigenstate ¢,
will naturally depend upon the corresponding eigenvalue E;; of the Hamiltonian;
the precise nature of this dependence is, however, determined by the “kind” of
ensemble we wish to construct.

In any other representation, the density matrix may or may not be diagonal.
However, quite generally, it will be symmetric:

Pmn = Pnm- (13)

The physical reason for this symmetry is that, in statistical equilibrium, the
tendency of a physical system to switch from one state (in the new representation)
to another must be counterbalanced by an equally strong tendency to switch
between the same states in the reverse direction. T' s condition of detailed
balancing is essential for the maintenance of an equ’  «wm distribution within
the ensemble.



Finally, we consider the expectation value of a physical quantity G, which is
dynamically represented by an operator G. This will be given by

-
1< kel k
(G) = _{Z/‘l’ Gy dr. (14)
k=1
In terms of the coefficients a¥,

(G) = L' Z [Z aﬁ*af;,Gnm] : (15)

k=1 Lm.n

where

Gum = f¢:é¢m dr. (16)

Introducing the density matrix p, eqn. (15) becomes

(G) = Z Pinn Gum = Z(bé)mm =Tr (.?)G) (17)

m.n

-~

Taking G = 1, where 1 is the unit operator, we have
Tr(p)=1. (18)

which is identical with (8). It should be noted here that if the original wave
functions ¥* were not normalized then the expectation value (G) would be given
by the formula
Tr (pG)
(G) = >
Tr(p)

instead. In view of the mathematical structure of the formulae (17) and (19), the
expectation value of any given physical quantity G is manifestly independent of
the choice of the basis {¢,}, as it indeed should be.

(19)

5.2. Statistics of the various ensembles
A. The microcanonical ensembie

The construction of the microcanonical ensemble is based on the premise that the
systems constituting the ensemble are characterized by a fixed number of particles
N, a fixed volume V and an energy lying within the interval (E — %A, E+ %A),
where A « E. The total number of distinct microstates accessible to a system
is then denoted by the symbol I'(N.V, E; A) and, by assumption, any one of
these microstates is as likely to occur as any other. This assumption enters into
our theory in the nature of a postulate, and is often referred to as the postulate
of equal a priori probabilities for the various accessible states. Accordingly, the
density matrix (which, in the energs representation, must be a diagonal matrix})
will be of the n

Pmn = pnamnv (1)
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with
(2)

n —

_ { 1/T"  for each of the accessible states,
0 for all other states;

the normalization condition (5.1.18) is clearly satisfied. As we already know, the
thermodynamics of the system is completely determined from the expression for
its entropy which, in turn, is given by

S=kInT. 3)

Since I, the total number of distinct, accessible states, is supposed to be computed
quantum-mechanically, taking due account of the indistinguishability of the parti-
cles right from the beginning, no paradox, such as Gibbs’, is now expected to arise.
Moreover, if the quantum state of the system turns out to be unique (I = 1), the
entropy of the system would identically vanish. This provides us with a sound
theoretical basis for the hitherto empirical theorem of Nernst (also known as the
third law of thermodynamics).

The situation corresponding to the case I' = 1 is usually referred to as a pure
case. In such a case, the construction of an ensemble is essentially superfluous,
because every system in the ensemble has got to be in one and the same state.
Accordingly, there is only one diagonal element p,, which is nonzero (actually
equal to unity). while all others are zero. The density matrix, therefore, satisfies

the condition

SRAn AaaRlaLA Al

P’ = p. )

In a different representation, the pure case will correspond to

i
1
kkx *
Pmn = _' Z a,a, =apa, (5)
* k=1

because all values of k are now literally equivalent. We then have

2 _ * *
Pmn = Z Pml Ptn = Z anpaya;a,
! {

.
= a,,a, (because Zafa, = 1)
i

= Prmn- (6)

Condition (4) thus holds in all representations.

A situation in which I' > 1 is usually referred to as a mixed case. The density
matrix, in the energy representation, is then given by eqns (1) and (2). If we now
change over to any other representation, the general form of the density matrix
should remain the same, namely (i) the off-diagonal elements should continue to be
zero, while (ii) the diagonal elements (over the allowed range) should continue to
be equal to one another. Now, had we constructed our ensemble on a representation
other than the energy representation right from the beginning, how could we have
possibly anticipated ab initio property (i) of the density matrix, though property (ii)
could have been easily invoked through a postulate of equal a priori probabilities?
To ensure that property (i), as well as property (ii), holds in every representation,
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we must inve:  yet another postulate, viz. the postulate of random a priori phases
for the probability amplitudes a%, which in turn implies that the wave function ¥k,
zor all k, is an incoherent superposition of the basis {¢n). As a consequence of
this postulate, coupled with the postulate of equal a priori probabilities, we would
have in any representation

(-

1 < 1 ok ok

=Y ddr=—> laf 605

Prmn = [ aman* = (" |a| e,( !
) k=1 T k=1

(/O

=C
= Cémn> (7)

as it should be for a microcanonical ensemble.

Thus, contrary to what might have been expected on customary thought, to
secure the physical situation corresponding to a microcanonical ensemble, we
require in general two postulates instead of one! The second postulate arises solely
from quantum-mechanics and is intended to ensure noninterference (and hence a
complete absence of correlations) among the member systems; this, in turn, enables
us to form a mental picture of each system, one at a time, completely disentangled
from other systems in the ensemble.

B. The canonical ensemble

In this ensemble the macrostate of a member system is defined through the
parameters N, V and T; the energy E is now a variable quantity. The probability
that a system, chosen at random from the ensemble, possesses an energy E, is
determined by the Boltzmann factor exp (—BE,), where g = 1/kT; see Secs 3.1
and 3.2. The density matrix in the energy representation is, therefore, taken as

Pmn = pnamrn (8)
with
pn=Cexp(—BE,); n=0.1,2,... (9
The constant C is determined by the normalization condition (5.1.18), whence
1 1

C= - ,
Z exp (—BE,)  Qn(B)

(10)

where Qy(pB) is the partition function of the system. In view of eqn. (5.1.12). see
Note 2 the density operator in this ensemble may be written as

- 1
P = Z [&n) e—ﬂEn ((pnl

QN(AB)

_ L e
o’ ;wmm
Y eh_ e

- - 11
onB° T Treh) (1)
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for the operator _, |¢,){¢x| is identically the unit operator. It is understood th
the operator exp (—pBH) in eqn. (11) stands for the sum

> =1y PHY. (12
j!

=0

The expectation value (G)x of a physical quantity G, which is represented by -
operator G, is now given by

(Gyy = Tr (pG) = Tr (Ge %)

1
On(p)
_ Tr (Ge‘ﬁﬁ ).

—; (13
Tr (e #H)

the suffix N here emphasizes the fact that the averaging is being done over
ensemble with N fixed.

C. The grand canonical ensemble

In this ensembie the density operator © operates on a Hilbert space with
indefinite number of particles. The density operator must therefore commute n
only with the Hamiltonian operator H but also with a number operator 72 who
eigenvalues are 0, 1,2, .... The precise form of the density operator can now be
obtained by a straightforward generalization of the preceding case, with the res

p e—ﬁﬁ—dﬁ = — 1 e—ﬁ(ﬁ—#ﬁ), (-
2w, V,T)

where
20V, Ty= Y e PErstd = Ty [ FE 4D (s

r.s

The ensemble average {G) is now given by

1 A ~ n
G)= ——Tr(Ge P ef"
@ = gy T (Ee)

Y GINenP)

_ N=D

S MowB)

N=0

, 1

where z (= € is the fugacity of the system while {G) is the canonical-ensem
average, as given by eqn. (13). The quantity Z(u,V,T) appearing in th
formulae is, clearly, the grand partition function of the system.
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5.3. Examples
A. An electron in a magnetic field

Let us consider, for illustration, the case of a single electron which possesses an
intrinsic spin %h& and a magnetic moment pg, Where ¢ is the Pauli spin operator
and ug = eh/2me. The spin of the electron can have two possible orientations,
or |, with respect to an applied magnetic field B. If the applied field is taken to
be in the direction of the z-axis, the configurational Hamiltonian of the spin takes

the form A
H = —pp(6-B) = —ppBo.. (1)

In the representation that makes &. diagonal, namely

- 01 “ 0 -—i R 1 0
= = = 2
the density matrix in the canonical ensemble would be
n (e_ﬁ’:i )
(P) = ——=—
Tr (e #H)
1 eﬁ“’-BB 0

= Gsh § g-PisB \ 0 e-ﬁysB) 3)

We thus obtain for the expectation value o;
_ oPupB _ pusB
(0:) = Tr(po;) = T tanh (BusB). 4)

in agreement with the findings of Secs 3.9 and 3.10.

B. A free particle in a box

We now consider the case of a free particle, of mass m, in a cubical box of side
L. The Hamiltonian of the particle is given by

If{— 2V2—— h2 P N 52 N 2 )
T 2m 2m\&x?  &? &)
while the eigenfunctions of the Hamiltonian, which satisfy periodic boundary
conditions
px+L,y,20)=¢x. y+L2)=¢k yz+L)
= ¢, ¥, 2 (6)
are given by

$E(r)

exp (ik - r), (7

1372

the corresponding eigenvalues E being

—
(o]
~—

E=—,
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with 5
4
k= (ke,ky k) = T(nx. ny.n.) )]
the quantum numbers n,, n, and n, must be integers (positive, negative or zero).
Symbolically, we may write for the wave vector k

2
k= TH"’ (10)

where n is a vector with integral components 0, +1, 42, .. ..

We now proceed to evaluate the density matrix (p) of this system in the
canonical ensemble; we shall do so in the coordinate representation. In view
of egn. (5.2.11), we have

rle™™1r'y = Y (rlE)e PEEF)
E
=Y e Foetr)gr(r). (11)
E
Substituting from (7) and making use of (8) and (10), we obtain
: 1 pr?
—BH |\ _ .2 .y ’
(rle |r)_E;exp[—:—z;;k +1k—(r—r)}

1 fr- ,
o5 ) fexp [—%kz +ik-(r—r )] &’k

m \? m
n2
= (211,8/'72) exp [— 2,8?12 Ir—r |'] ; (12)
see eqns (B.41, 42). It follows that

Tr (e7P7) = [trle #)r) d*r

m 3/2,
=V (271',6]12) (13)

Expression (13) is indeed the partition function, @, (), of a single particle confined
to a box of volume V; see eqn. (3.5.19). Combining (12) and (13), we obtain for
the density matrix in the coordinate representation

{riplry = i ex r—ilr — r'|21 (14)
PINT =3 P l 2612 J '

As expected, the matrix p,,s is symmetric between the states r and r’. More-
over, the diagonal element {r|p|r), which represents the probability density for
the particle to be in the neighborhood of the point r, is independent of r; this
means that, in the case of a single free particle, all positions within the box are
equally likely to obtain. A nondiagonat element (r|p|r’), on the other hand, is a
measure of the probability of “spontaneous transition” between the position coor-
dinates r and r’ and is therefore a measure of the relative “intensity” of the wave
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packet (assoc.  d with the particle) at a distance |r — r’| from the centre of the
packet. The spatial extent of the wave packet, which in turn is a measure of the
uncertainty involved in locating the position of the particle, is clearly of order
h /(ka)I/ 2. the latter is also a measure of the mean thermal wavelength of the
particle. The spatial spread found here is a purely quantum-mechanical effect;
quite expectedly, it tends to vanish at high temperatures. In fact, as g — 0, the
behavior of the matrix element (14) approaches that of a delta function, which
implies a return to the classical picture of a point particle.

Finally, we determine the expectation value of the Hamiltonian itself. From
eqns (5) and (14), we obtain

) = Te 15y = / VZexp |- |r—r'|2} &
I P17 PA™ 200 e

' [ m 5] [ m R )
= -2—,8_V./ i [3 — ﬁflz Ir — r']iJ exp [_2ﬁhllr — r'|“J }rzr’ &r
B % N %I‘T’ (15)

which was indeed expected. Otherwise, too,

1 o—BH) .
iy = THET 0 et (16)
Tr(e—#H) ap

which, on combination with (13). leads to the same result.

C. A linear harmonic oscillator

Next, we consider the case of a linear harmonic oscillator, whose Hamiltonian
is given by

'A hz 32 . 1 2 2 i R AY
H=—— —mw q-, 17
2m 3¢ Tl VY
with eigenvalues
E,,=(n+%)ha); n=012 ... (18)
and eigenfunctions
e+ H,(E) —a8
: = | — S EE——— -, (19
n(Q) (rrh) (2":1!)"36 )
where
mw\ 172
E= (r_z) g (20)
and

o d\"
= (—1)" S —&- 2
H, (&) =(-1)'e (d&') e . (21)
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The matrix elements of the operator exp (— BH) in the g-representation are given by

(gleP1q) =3~ e FErgn(@)dn(d)

n=0
s 7
_ (@)1/2 e_(llz)(gz.f-ga) z {e—ln+1/2)ﬁhWW} .22
h ~ 2"n!

The summation over r is somewhat difficult to evaluate; nevertheless, the fin
result is?

/2
—,BI:I ’ _ mow
(gle™™"1q) [Znh sinh (,Bhw)]
) 12103 BN
X exp [—’Z—: {(q + q’)2 tanh ('8—212) + (g — q’)2 coth (%L—D) }J , {23
whence

Tr (e P) = / tqle gy dg

me 2 7 mog” Pho
_[erhsinh(ﬁhm)] / eXp [_ p tanh(_z_ndq

1 e (1/2)phes

~ 2sinh (3 pho) T 1P

oy

~

Expression (24) is indeed the partition function of a linear harmonic oscillat
see eqn. (3.8.14). At the same time, we find that the probability density for
oscillator coordinate to be in the vicinity of the value g is given by

matanh (L) | g’ Bheo
2 exp | — 7 tanh ( ))] ; =
7th h 2

{qlplg) = [

we note that this is a Gaussian distribution in g, with mean value zero and rcs
mean-square deviation

l/L
— A (
Frms. = lZma) tanh (% Shew) ]

The probability distribution (25) was first derived by Bloch in 1932. In the ¢
sical limit (Bhew < 1), the distribution becomes purely thermal—free from quan

effects:
B} ~ riew” 2 mw2q2
(g\plg) = kT exp T |
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with dispersion (KT /mw?)!/2. At the other extreme (Bhw > 1), the distribution
becomes purely guantumn-mechanical —free from thermal effects:

-

R nwy 1/2 [ mog?
aipia) ~ (77) " exp | "L | (28)

h

with dispersion (fi/2mw)'/2. Note that the limiting distribution (28) is precisely the
one expected for an oscillator in its ground state (n = 0), viz. one with probability
density ¢3(q); see eqns (19-(21).

In view of the fact that the mean energy of the oscillator is given by

(H) = —5% InTr(e P9y = She coth (3 fho) (29)

we observe that the temperature dependence o
determined through the expectation value (H). Actually, we can write

(13 )_( me* )llze mo’q? 30)
qlplq) = 27 (H) Xp 2(H) &
with 2
Hy\ !
Grms. = (Ifla}-’) an

It is now straightforward to see that the mean value of the potential energy
(3mw’q?) of the oscillator is §(H); accordingly, the mean value of the kinetic

energy (p?/2m) must also be the same.

5.4. Systems composed of indistinguishable particles

We shall now formulate the quantum-mechanical description of a system of N
identical particles. To fix ideas, we consider a gas of non-interacting particles: the
findings of this study will be of considerable relevance to other systems as well.

Now, the Hamiltonian of a system of N non-interacting particles is simply a
sum of the individual single-particle Hamiltonians:

N
Hig.p)=Y_Hilg, p); (1)

i=1

here, (gi, p;) are the coordinates and momenta of the ith particle while H;
is its Hamiltonian.* Since the particles are identical, the Hamiltonians # (i =
1,2,... N} are formally the same; they only differ in the values of their argu-
ments. The time-independent Schrédinger equation for the system is

Hye(q) = Evetg), (2)

where E is an{ .value of the Hamiltonian and yg(q) the corresponding eigen-

function. In view of (1), we can write a straightforward solution of the Schrodinger
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equation, namely
N

ve(q) = [ | g0, 3)

i=1

with
N
E=)"¢g; 4)

the factor 1, (g;) in (3) is an eigenfunction of the single-particte Hamiltonian
ﬁ,—(q,—, pi), with eigenvalue &;:
Hitg, (47 = e, (7). (5)

Thus, a stationary state of the given system may be described in terms of the
single-particle states of the constituent particles. In general, we may do so by
specifying the set of numbers {#;} to represent a particular state of the system;
this would imply that there are #; particles in the eigenstate characterized by the
energy value ¢;. Clearly, the distribution set {#;} must conform to the conditions

Zn,— =N (6)

and

Z n;s; = E. ©)

Accordingly, the wave function of this state may be written as

"y ny+na
ve@ = [Jmem) [T wom.... (8)
m=1 m=n+1

where the symbol u; (m) stands for the single-particle wave function e, (G )-

Now, suppose we effect a permutation among, the coordinates appearing on the
right-hand side of (8); as a result, the coordinates (1,2,...,N) get replaced by
(P1,P2,...,PN), say. The resulting wave function, which we shall call Pyre(q),
will be

f nytny
PYe(g) = H uy (Pm) H wz(Pm). ... (%)
m=1 m=ny+1

In classical physics, where the particles of a given system, even though identical,
are regarded as mutually distinguishable, any permutation that brings about an
interchange of particles in two different single-particle states is recognized to have
led to a new, physically distinct microstate of the system. For example, classical
physics regards a microstate in which the so-called 5th particle is in the state u;
and the so-called 7th particle in the state u j(j # i) as distinct from a microstate
in which the 7th particle is in the state u; and the 5th in the state u ;- This leads to

N!
mlna!. .

(10)
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(supposedly di  ct) microstates of the system, corresponding to a given mode of
distribution {#;}. The number (10) would then be ascribed as a “statistical weight
factor” to the distribution set {n;}. Of course, the “correction” applied by Gibbs,
which has been discussed in Secs 1.5 and 1.6, reduces this weight factor to

Weln) = — . an
nytag!. ..
And the only way one could understand the physical basis of that “correction”
was in terms of the inherent indistinguishability of the particles.

According to quantum physics, however, the situation remains unsatisfactory
even after the Gibbs correction has been incorporated, for, strictly speaking, an
interchange among identical particles, even if they are in different single-particle
states, should not lead to a new microstate of the system! Thus, if we want to take
into account the indistinguishability of the particles properly, we must not regard
a microstate in which the “5Sth” particle is in the state u; and the “7th” in the state
u;j as distinct from a microstate in which the “7th” particle is in the state 1; and
the “5th™ in the state u; (even if i 5 7). for the labeling of the particles as No. 1,
No. 2, etc. (which one often resorts to) is at most a matter of convenience—it is not
a matter of reality. In other words, all that matters in the description of a particular
state of the given system is the set of numbers n; which tell us “how many particles
there are in the various single-particle states u;”; the question “which particle is in
which single-particle state” has no relevance at all. Accordingly, the microstates
resulting from any permutation P among the N particles (so long as the numbers
n; remain the same) must be regarded as one and the same microstate. For the
same reason, the weight factor associated with a distribution set {n;}, provided that
the set is not disallowed on some other physical grounds, should be identically
cqual to unity, whatever the values of the numbers n;:

Wylni) =1 (12)°

Indeed, if for some physical reason the set {n;} is disallowed, the weight factor
W, for that set should be identically equal to zero; see, for instance, eqn. (19).

At the same time, a wave function of the type (8), which we may call Bolrz-
mannian and denote by the symbol Yo, (q), is inappropriate for describing the
state of a system composed of indistinguishable particles because an interchange
of arguments among the factors u; and u j» where i # j, would lead to a wave func-
tion which is both mathematically and physically different from the one we started
with. Now, since a mere interchange of the particle coordinates must not lead to
4 new microstate of the system, the wave function Ye(g) must be constructed
in such a way that, for all practical purposes, it is insensitive to any interchange
among its arguments. The simplest way to do this is to set up a linear combina-
tion of all the N! functions of the type (9) which obtain from (8) by all possible
permutations among its arguments; of course, the combination must be such that
if a permutation of coordinates is carried out in it, then the wave functions Y and
Py must satisfy the property

1Py = |y (13)
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This leads to the following possibilities:
(i) Py =1 forall P, (14)

which means that the wave function is symmetric in all its arguments, or

+ if P is an even permutation,

il e D .
(&) —vy if P is an odd permutation,

which means that the wave function is antisymmetric in its arguments. We call
these wave functions ¥ and ¥, respectively; their mathematical structure is
given by

Vs(q) = const. Y Pypoa(q) (16)
P
and
Valg) = const. Y _ 8pPYpon(g). (17)
I)

where 8p in the expression for y4 is +1 or —1 according as the permutation P is
even or odd.

We note that the function ¥4(q) can be written in the form of a Slater deter-
minant:

(1)  u;(2) 1;(N)
ui (1) uj(2) uj(N)

Yalq) = const. , (18)
(1) w2 ... w(N)

where the leading diagonal is precisely the Boltzmannian wave function while
the other terms of the expansion are the various permutations thereof; positive
and negative signs in the combination (17) appear automatically as we expand
the determinant. On interchanging a pair of arguments (which amounts to inter-
changing the corresponding columns of the determinant), the wave function 4
merely changes its sign, as it indeed should. However, if two or more parti-
cles happen to be in the same single-particle state, then the corresponding rows
of the determinant become identical and the wave function vanishes.” Such a
state is physically impossible to realize. We therefore conclude that if a system
composed of indistinguishable particles is characterized by an antisymmetric wave
function, then the particles of the system must all be in different single-particle
states—a result equivalent to Panli's exclusion principle for electrons. Conversely,
a statistical system composed of particles obeying an exclusion principle must be
described by a wave function which is antisymmetric in its arguments. The statis-
tics governing the behavior of such particles is called Fermi—Dirac, or simply
Fermi, statistics and the constituent particles themsel:  are referred to as fermions.
The statistical weight factor Wg p {n;) for such a syy . is unity so long as the n;
in the distribution set are either 0 or 1; otherwise, it is zero:
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Wepini} = (19)8

0 if Zn%>N.

No such problems arise for systems characterized by symmetric wave functions;
particular, we have no restriction whatsoever on the values of the numbers #;.
he statistics governing the behavior of such systems is called Bose—Finstein, ot
amply Bose, statistics and the constituent particles themselves are referred to as
sons. The weight factor Wy {n;} is identically equal to 1, whatever the values

the numbers #;:
‘VB.E,{HE} =1, n;= 0.1,2..... (20)

It should be pointed out here that there exists an intimate connection between
e statistics governing a particular species of particles and the intrinsic spin of
particles. For instance, particles with an integral spin (in units of A, of course)
ey Bose—Einstein statistics, while particles with a half-odd integral spin obey
c-rmi—Dirac statistics. Examples in the first category are photons, phonons, 7-
—esons, gravitons, He*-atoms, etc., while those in the second category are elec-
~ons, nucleons (protons and neutrons), p-mesons, neutrinos, He’-atoms. etc.
Finally, it must be emphasized that, although we have derived our conclusions
re on the basis of a study of non-interacting systems, the basic results hold for
teracting systems as well. In general, the desired wave function y¥(g) will not
expressible in terms of the single-particle wave functions u;(gy,): nonetheless,
will have to be either of the kind v¥s(g), satisfying eqn. (14), or of the kind

1(q), satisfying eqn. (15).

5.5. The density matrix and the partition function of a system of free
particle59

Suppose that the given system, which is composed of N indistinguishable, non-
ieracting particles confined to a cubical box of volume V, is a member of a

sanonical ensemble characterized by the temperature parameter f. The density
trix of the system in the coordinate representation will be given by

~ r ’ 1 _ 3 1 !
(ry, ....rylplrgs o Iy} = m(rl, ....ryle ﬁlel, e Iy)s 1

—here On(B) is the partition function of the system:

—BH iy 3N
On(B)=Tr(e FHYy — f(rl, corniePH i, ey P (2)
~~r brevity, we denote the vector r; by the letter i and the primed vector #; by i’.
= _rther, let Ye(d, ..., V) denote the eigenfunctions of the Hamiltonian, the suffix

~ representing the corresponding eigenvalues. We then have

A, NP, Ny =S P (L Ny (LN )
E

here the summation goes over all possible values of E; cf. eqn. (5.3.11).
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Since the particles constituting the given systen .e non-interacting, we may
express the eigenfunctions Yg(1, ..., N) and the eigenvalues E in terms of the
single-particle wave functions u;(m) and the single-particle energies &;. Moreover,
we find it advisable to work with the wave vectors k; rather than the energies &;;

SO we write - )
K* h
E= =E(kf+k§+---+k,’;), 4)

2m

where the k; on the right-hand side are the wave vectors of the individual parti-
cles. Imposing periodic boundary conditions, the normalized single-particle wave

functions are
up(r) = V12 exp {i(k - r)}, (5)

with
k =27V, 6)

here, n stands for a three-dimensional vector whose components can have values
0,1, +£2,.... The wave function y of the total system would then be, see
eqns (5.4.16) and (5.4.17),

Yk(L, .., N) = (V)72 80P {ug (1) ..y (V) } (7
P

where the magnitudes of the individual k; are such that
(K + -+ k2) = K2, 8)

The number &p in the expression for Y is identically equal to +1 if the particles
are bosons. For fermions, it is +1 or —1 according as the permutation P is even
or odd. Thus, quite generally, we may write

8p = (£, (9)

where [P] denotes the order of the permutation; note that the upper sign in this
expression holds for bosons while the lower sign holds for fermions. The factor
(N!1)71/2 has been introduced here to secure the normalization of the total wave
function.

Now, it makes no difference to the wave function (7) whether the permu-
tations P are carried out on the coordinates 1,...,N or on the wave vectors
ky...., ky, because after all we are going to sum over all the N! permutations.
Denoting the permuted coordinates by P1, ..., PN and the permuted wave vectors

by Pk;. ..., Pky, eqn. (7) may be written as

V(L o N) = (V)T 7 8p {u, (P1) .. gy (PN)} (10a)
P

= (N2 " 8p {upiq (1) ... tpry(N)} . (10b)
P

Equations (10) may now be substituted into (3), with the result

(o NPT LN = (V)Y e
K
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X | D28 g (P (PN)} 3 85 {u, (1) iz, VO] )
P P

where P and P are any of the N! possible permutations. Now, since a permutation
among the k; changes the wave function v at most by a sign, the quantity [Yy™)
in (11) is insensitive to such a permutation; the same holds for the exponential
factor as well. The summation over K is, therefore, equivalent to (1 /N1) times a
summation over all the vectors k. ..., ky independently of one another. Next, in
view of the N-fold summation over the k;, all the permutations £ will make equal
contributions towards the sum (because they differ from one another only in the
ordering of the k;). Therefore, we may consider only one of these permutations,
say the one for which Pk, = ki, ..., Pky = ~ (and hence 63 = 1 for both kinds
of statistics), and include a factor of (N!) along. The net result is

(1, . NlePA, Ny = vy 3

e—ﬂh!(kf+...+k§)/2m [Z Sp {uk1 (Pl)u;;l (1')} - {“k‘v (PN)u;f.‘,V (N’)}} . (12)
P

Substituting from (5) and noting that, in view of the largeness of V, the summations
over the k; may be replaced by integrations, eqn. (12) becomes

{(,...,NlePH |1, .. N

1 2,2 0 )
_ —Bh=ks [2m-+iky «(P1-1") ;3
—NI(ZN)SNE:‘SP [fe ' o d°ky ...
: P

f o BIRKE [2miky (PN-N') 3 kN] (13)
1 m O\ W2
= (W) zpjsp[f(m —1)... f(PN —N')], (14)
where
F& = exp (— 2;;: 52) : (15)

Here, use has been made of the mathematical result (5.3.12), which is clearly a
special case of the present formula.
Introducing the mean thermal wavelength

PO AN (16)
QramkT)V/? m

and rewriting our coordinates as ry, ..., ry, the diagonal elements among (14)
take the form

1

—BH 3 =
(rl,...,rNIe 'rli'-"r}\)—N!)\3N

D eLfPri—r)... f(Pry —ry)],
’ (17)
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where
F(r) = exp(—nr?/2?). (18

To obtain the partition function of the system, we have to intcgrate (17) over
all the coordinates involved. However, before we do that, we would like to make
some observations on the summation 3 _p. First of all, we note that the leading
term in this summation, namely the one for which Pr; = r;, is identically cqual te
unity (because f(0) = 1). This is followed by a group of terms in which only ore
pair interchange (among the coordinates) has taken place; a typical term in this
group will be f(r; — ;) f (ri — r;) where i # j. This group of terms is followed
by other groups of terms in which more than one pair interchanges have taken
place. Thus, we may write

Z=1iZfijfﬁ+Zf:jfjkfkfi---. (19

P i<j i<j<k

where f;j = f(r; —r;); again note ihat the upper (lower) signs in this cxpansion
pertain to a system of bosons (fermions). Now, the function fi; vanishes rapidly
as the distance r;; becomes much larger than the mean thermal wavelength A. It
follows that if the mean interparticle distance, (V/N)'3, in the system is muck
larger than the mean thermal wavelength, i.e. if

nh
—— KL 200
(2mkT Y42 < (
where n is the particle density in the system, then the sum ) _p in (19) may b.
approximatcd by unity. Accordingly, the partition function of the system becomes
see eqn. (17).

N
On(v. Ty = Te(e Py~ / @) = = (K) @1
AN N3N RGN

This is precisely the result obtained carlier for the classical ideal gas; se.
eqn. (3.5.9). Thus, we have obtained from our quantum-mechanical (reatme
the precise classical limit for the partition function Qy(V, 7). Incidentally, w
have achieved something more. Firstly, we have automatically recovered here the
Gibbs correction factor (1/N') which was introduced into the classical treatmen
on an ad hoc, semi-empirical basis. We, of course, tried to understand its origi
in terms of the inberent ir "~ cuishability of the particles. Here, on the oth
hand, we see it coming in a very natural manner and its source indeed lies in the
symmetrization of the wave functions of the system (which is ultimately relate
to the indistinguishability of the particles); cf. Problem 5.4. Secondly, we fin
here a formal justification for computing the number of microstates of a syste—
corresponding to a given region of its phase space by dividing the volume
that region into cells of a “suitable” size and then counting instead the number
these cells. This correspondence becomes all the more transparent by noting th
formula (21) is exactly equivalent to the classical expression

3N IN.
On(V, T) = _1,_ /e—ﬁ(pf+---+p12v)/zm (d_qd_p -
’ N! - ,
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with wy = A*Y. Thirdly. in deriving the classical limit we have also evolved a
—iterion which enables us to determine whether a given physical system can be
~eated classically; mathematically, this criterion is given by condition (20). Now,
a statistical mechanical studies, a system which cannot be treated classncally is
id to be degenerate; the quantity (n2?) is, therefore, referred to as the degen-
acy discriminant. Accordingly, the condition that classical considerations may
- applicable to a given physical system is that “the value of the degeneracy
-iscriminant of the system be much less than unity”.
Next, we note that, in the classical limit, the diagonal elements of the density

matrix are given by

N
(r.. .nJplr, ooy = (%) , (23)
~hich is simply a product of N factors, each equal to (1/V). Recalling that for a
single particle in a box of volume V, (r|plr) = (1/V), see eqn. (5.3.16), we infer
hat in the classical limit there is no spatial correlation among the various particles
°f the system. In general, however. spatial correlations exist even if the particles
are supposedly non-interacting: thev arise from the symmetrization of the wave
-unctions and their magnitude is quite significant if the interparticle distances in
he system are comparable with the mean thermal wavelength of the particles. To
»¢€ this more clearly, we consider the simplest relevant case, namely the one with
V = 2. The sum 3, is now exactly equal to 1 = [ f(r12)]?. Accordingly,

(1. r2le P\ ) = [I:Eexp( 25r75 /3] (24)

~ 26

and hence

0.(V,T) = / f [1+exp(—2nr, /27 drid’ry

-

1 1.
5 (1_3) 1:b—/exp( 2mr /A2)4JTr dr
4 0

_1(V 2'1i1 23 -
=2 () 2= (7)] =

1/VY\~
zi(p) . (26)

Combining (24) and (26), we obtain

{r1, r2|plry. ry) —[1 + exp (—27ri, /27)]. (27)

Thus, if ry; is comparable to A, the probability density (27) may differ considerably
from the classical value (1/V)>. In particular, the probability density for a pair of

osons to be a distance r apart is larger than the classical, r-independent value
by a factor of [1 + exp (—27r?/1?)] which becomes as high as 2 as r — 0. The
corresponding result for a pair of fermions is smaller than the classical value by
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a factor of [1 —exp (—27r2/2%)] which becomes ~ iow as 0 as r — 0. Thus, we
obtain a positive spatial correlation among particles obeying Bose statistics and
a negative spatial correlation among particles obeying Fermi statistics; see also
Sec. 6.3.

1t‘ o » (r/2)

FiG. 5.1. The statistical potential v4(r) belween a pair of particles obeying Bose —Einsicin
statistics or Fermi-Dirac stalistics.

Another way of expressing correlations (among otherwise non-interacting parti-
cles) is by introducing a statistical interparticle potential vs(r) and then treating
the particles classically (Uhlenbeck and Gropper, 1932). The potential v,(r) must
be such that the Boltzmann factor exp (—Buvs) is precisely equal to the pair distri-
bution function [...] in (27), i.e.,

vs(r) = —kT In[1 L exp (—ZJ'rrz/Az)]. (28)

Figure 5.1 shows a plot of the statistical potential vs(r) for a pair of bosons
or fermions. In the Bose case, the potential is throughout attractive, thus giving
rise to a “statistical attraction” among bosons; in the Fermi case, it is throughout
repulsive, giving rise to a “statistical repulsion” among fermions. In either case,
the potential vanishes rapidly as r becomes larger than A; accordingly, its influence
becomes less important as the temperature of the system rises.

Problems

5.1. Evaluate the density matrix p., of an electron spin in the representation which makes Ox
diagonal. Nexi, show that the value of (g;), resulting from this representation, is precisely the same
as the one obtained in Sec. 5.3.

Hinr: The representation needed here follows from the one used in Sec. 5.3 by carrying out 2

transformation with the help of the unitary operator

= (e 1)

5.2, Prove thal
B, ~f( .9 ,
{gle™™ |g’) = exp | —BH —lh"—aq.q 8lg—q).
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where H(—ih8/3q, g) is the Hamillonian of the system, in the g-representation, which formally oper-
ates upon the Dirac delta function 8(q — ). Writing the é-function in a suitable form. apply this result
to (i) a free particle and (i) a linear harmonic oscillator.

5.3. Derive the density mairix p for (i} a free particle and (ii) a linear harmonic oscillator in the
momentum representation and study its main properties along the lines of Sec. 5.3.

5.4. Study the density matrix and the partition function of a system of free particles, using the
unsymmetrized wave function (5.4.3) instead of the symmerrized wave function (5.5.7). Show that,
following fhis procedure, one obtains neither the Gibbs™ correction factor (1/N?') nor a spatial corre-
lation among the particles.

5.5. Show that in the first approximation the partition function of a system of N non-interacting,
indisiinguishable particles is given by

1
ON(V. T) = ——ss ZN(V, T).

where

N, Ty = fexp {—ﬁz u,(r,-,-)} PeLy

i<j

v4(r) being the statistical potential (5.5.28). Hence evaluate the first-order cortection to the equation
of state of this system.

5.6. Determine the values of the degeneracy discriminant (nA3) for hydrogen, helium and oxygen
at N.T.P. Make an estimate of the respective temperature ranges where the magnitude of this quantity
becomes comparable to unity and hence quantum effects become important.

5.7. Show that the quantum-mechanical partition function of a system of N inmteracting particles
approaches the classical form

1

f
Ov(V.T) = ]ﬁ j e PE@P) (g3Ny g3
as the mean thermal wavelength A becomes much smaller than (i) the mean interparticle distance
(VN3 and (ii) a characteristic length rp of the interparticle potential 10

5.8. Prove the following theorem due to Peierls.!!

«If F is the hermitian Hamiltonian operator of a given physical system and {¢,} an arbitrary
orthoniormal sct of wave functions satisfying the symmetry requirements and the boundary conditions
of the problem, then the partition function of the system satisfics the following inequality:

0B = 3 exp {—BidnlHIdn} } 5

the equality holds when {¢,} is a complete orthonormal set of eigenfunctions of the Hamiltonian
itself.”

Notes

1 For simplicity of notation, we suppress the coordinates r; in the argument of the wave function ¥*.
2 It may be notcd that in this (so-called energy) representation the density operator p may be

written as
p=>_ |t} on(enl, (12)

for then

Pk = Z(d’kld’n)ﬂn {dnldr) = Zsknpnsnl = opdyr-

3 The mathematical details of this derivation can be found in Knbo (1965), pp. 175-7.

4 We are swdying here a single-component system composed of “spinless™ particles. Generalization
to a system composed of particles with spin and to a system composed of two or more components
is quite straightforward,

5 It may be mentioned here that as early as in 1905 Ehrenfest pointed out that to obtain Planck’s
formula for the black-body radiation one must assign equal a priori probabilities to the various
states |ni).
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6 An even (odd) permutation is one which can be arrived at from the original order by an even
(odd) number of “pair interchanges™ among the arguments. For example, of the six permutations

(1.2,3). (23, 1), (3.1.2). (1.32). (3.21) and (2,1,3),

of the arguments 1, 2 and 3, the first three are even permutations while the last three are odd. A single
interchange, among any two arguments, is clearly an odd permutation.

T This is directly related to the fact that if we effect an interchange of two particles in the same
single-particle state, then Py; will obviously be identical with 4. At the same time, if we also have;
Py's = —a, then Y4 must be identically zero.

8 Note that the condition Zi nl.2 = N necessarily implies that all n, are either 0 or 1. On the other
hand. if any of the n; are greater than 1, the sum ) .17 is necessasily greater than N.
Y For a gencral survey of the density matrix and its applications, see ter Haar (1961).

10 See Huang (1963), Sec. 10.2.
I R. E. Pcicrls (1938), Phys. Rev. 54, 918. See also Huang (1963), Sec. 10.3.



