

Universidade Federal do Paraná — UFPR Campus Avançado de Jandaia do Sul Licenciaturas

Disciplina: JCE001 — Matemática I — Professor: Carlos Galvão

Conjuntos

"Definição": Chamamos conjunto uma coleção de elementos (objetos) que estejam em uma lista ou que tenham alguma propriedade específica em comum como lei de formação do conjunto. Toda a Matemática atual está formulada na linguagem de conjuntos.

Ex.: $A = \{carro, moto, avião, foguete\}; B = \{2,4,6,8,10,...\} = \{naturais pares\}.$

Representação: Conjuntos são representados por letras *maiúsculas* do alfabeto latino, podendo seus elementos serem listados entre chaves "{" e "}" ou em diagramas como os diagramas de Venn (ou Venn-Euler).

Nunca utilize C={conjunto dos pares}. As chaves já dizem que se trata de um conjunto. O correto é C={pares}. Os elementos dos conjuntos são representados genericamente por letras *minúsculas*.

Pertinência: A principal relação entre um conjunto e elementos é a pertinência ou seja, quando o elemento está ou não está dentre os elementos de um conjunto. Se x é um elemento do conjunto A dizemos que x pertence ao conjunto A utilizando a notação $x \in A$. Caso contrário, dizemos que x não pertence ao conjunto A com notação $x \notin A$. Os conjuntos substituem as "propriedades" e as "condições". Assim, em vez de dizermos "o objeto x goza da propriedade P" ou "o objeto y satisfaz a condição P0, podemos escrever P0 ou P0 ou P0 ou estisfazem a condição P1.

Tipos especiais: Existem três tipos especiais de conjuntos:

- Conjunto Universo: É o conjunto que contém todos os possíveis elementos de um determinado contexto. Ex.: Em estudo relativo a alunos do campus, o conjunto universo terá como elementos todos os alunos do campus.
- Conjunto Vazio: É o conjunto que não tem nenhum elemento. É representado por $\{\}$ ou \emptyset . Ex.: O conjunto de todos os naturais que são pares e ímpares ao mesmo tempo.
- Conjunto Unitário: É o conjunto que contém apenas um elemento. Ex.: Em geometria uma reta é um conjunto específico de pontos (embora esta não seja uma definição formal de reta). Assim, duas retas concorrentes tem como interseção um único ponto, ou seja, um conjunto unitário.

Subconjuntos: Consideremos dois conjuntos A e B. Se todos os elementos do conjunto A também forem elementos do conjunto B dizemos que A é *subconjunto* de B, ou ainda que A *está contido* em B, representando por $A \subset B$. Também pode-se dizer que B *contém* A, representando por $B \supset A$.

Ex.: A= $\{2,3,5,7\}$ e B= $\{1,2,3,4,5,6,7,8,9,10\}$, vemos que todos os elementos de A também são elementos de B. assim, $A \subset B$.

Se algum elemento de A não for elemento de B, dizemos que A não está contido em B, representando por $A \subseteq B$.

Se, dados dois conjuntos, pudermos dizer que $A \subset B$ (todos os elementos de A são elementos de B) e $B \subset A$ (todos os elementos de B são elementos de A), então temos a *igualdade* dos conjuntos, representando por A = B.

Conjunto complementar: Dentro de um contexto onde é fixado um conjunto universo U, dado um conjunto A, necessariamente $A \subset U$, pois U contém todos os elementos do contexto, inclusive os elementos de A. Os elementos de U que não pertencerem ao conjunto A formam o conjunto complementar de A, denotado por A^C .

Ex.: $U = \mathbb{N} = \{\text{naturais}\}\$. Se $P = \{\text{pares}\} \subset \mathbb{N}$, então $P^C = \{\text{naturais não pares}\} = \{\text{impares}\}\$.

Operações:

União: Dados os conjuntos A e B, o conjunto união $A \cup B$ (lê-se "A união B") será o conjunto que terá todos os elementos de A e todos os elementos de B, ignoradas as repetições.

Ex.: Sendo $A = \{2,3,5,7\}$, $B = \{1,2,3,4\}$ temos $A \cup B = \{1,2,3,4,5,7\}$. Os elementos de $A \cup B$ são elementos de A ou são elementos de B.

Interseção: Dados os conjuntos A e B, o conjunto interseção $A \cap B$ (lê-se "A inter B") será o conjunto que terá todos os elementos de A que também forem elementos de B, ignoradas as repetições.

Ex.: Sendo $A = \{2, 3, 5, 7\}$, $B = \{1, 2, 3, 4\}$ temos $A \cap B = \{2, 3\}$. Os elementos de $A \cap B$ são elementos de A e são elementos de B.

Dois conjuntos A e B são ditos disjuntos se $A \cap B = \emptyset$. Ex.: Para algum universo U com $A \subset U$ temos que A e A^C são disjuntos, pois é impossível que algum $x \in U$ possa, ao mesmo tempo, $x \in A$ e $x \notin A$. Assim, $A \cap A^C = \emptyset$.

Diferença: Dados os conjuntos A e B, o conjunto diferença $A \setminus B$ ou A - B (lê-se "A menos B") será o conjunto que terá todos os elementos de A que não forem elementos de B, ignoradas as repetições. Ex.: Sendo $A = \{2, 3, 5, 7\}, B = \{1, 2, 3, 4\}$ temos $A \setminus B = \{5, 7\}$ e $B \setminus A = \{1, 4\}$

Cardinalidade de um conjunto: Um conjunto A é chamado finito ou com número $n \in \mathbb{N}$ de elementos quando é possível estabelecer uma correspondência entre cada um dos naturais menores ou iguais a n com um, e somente um, elemento do conjunto. Em outras palavras, quando é possível "contar" os elementos de um conjunto até um determinado valor n. O número n é chamado cardinal de um conjunto, podendo ser representado por #A ou n(A).

Ex.: $A = \{a, b, c, d, e, f, g, h, i, j\}$. Associando $a \leftrightarrow 1, b \leftrightarrow 2, \dots, j \leftrightarrow 10$ obtemos #A = 10 ou n(A) = 10.

Cardinalidade da união: Dados dois conjuntos finitos A e B, temos que

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Ex.: $A = \{2, 3, 5, 7\}$, $B = \{1, 2, 3, 4\}$. Temos n(A) = 4, n(B) = 4. Vimos que $A \cap B = \{2, 3\}$ e, portanto, $n(A \cap B) = 2$. Assim, $n(A \cup B) = 4 + 4 - 2 = 6$, o que é fato pois $A \cup B = \{1, 2, 3, 4, 5, 7\}$. Para 3 conjuntos A, B, C temos

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

Ex.: $A = \{2, 3, 5, 7\}, B = \{1, 2, 3, 4\}, C = \{3, 4, 5, 6, 7\}.$ Como são poucos elementos, é fácil calcular $A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7\}.$ Por outro lado, se tivéssemos apenas $n(A) = n(B) = 4, n(C) = 5, n(A \cap B) = n(B \cap C) = 2, n(A \cap C) = 3$ e $n(A \cap B \cap C) = 1$ então

$$n(A \cup B \cup C) = 4 + 4 + 5 - 2 - 2 - 3 + 1 = 7$$

Relação com Lógica: ¹ A linguagem de conjuntos é uma das formas que permite o trabalho com raciocínio lógico. Abaixo seguem as correspondências entre conjuntos e lógica:

Conjuntos	Lógica	Notação Conjuntos	Notação Lógica
∪ - União	∨ - Ou	$A \cup B$	$A \vee B$
∩ - Interseção	∧ - E	$A \cap B$	$A \wedge B$
^C - Complementar	¬ - Não	A^C	$\neg A$
⊂ - Inclusão	\Rightarrow - Implica (Se então)	$A \subset B$	$A \Rightarrow B$
= - Igualdade	\Leftrightarrow - Equivalência (se, e somente se,)	A = B	$A \Leftrightarrow B$

¹Especial para Computação

 ${\bf Quantificadores:}~$ As expressões "Para todo" e "Para algum" são chamadas de $\it quantificadores,$ tendo as seguintes representações

- \bullet Universal: Símbolo \forall representa as expressões "Para todo", "Para qualquer", "Qualquer que seja", e similares.
- Existencial: Símbolo \exists representa as expressões "Existe algum", "para algum". É possível especificar com o símbolo \exists ! a expressão "Existe um único".

Exemplos: Considerando $F = \{f | f \text{ \'e fil\'osofo}\}, M = \{m | m \text{ \'e matem\'atico}\}, C = \{c | c \text{ \'e cientista}\}, P = \{p | p \text{ \'e professor}\}.$ (Obs.: O símbolo "|" significa "tal que")

Frase	Lógica	Conjuntos
Todos os Matemáticos são Cientistas	$m \Rightarrow c$	$M \subset C$
Alguns matemáticos são professores	$\exists m \land p$	$M \cap P \neq \emptyset$
Todos os filósofos são cientistas ou professores	$f \Rightarrow c \lor p$	$F \subset (C \cup P)$
Nem todo professor é cientista	$\neg (p \Rightarrow c) \text{ ou } p \land \neg c$	$P \not\subset C$ ou $P \cap C^C \neq \emptyset$

Operações Lógicas:

Nome	Lógica	Conjuntos
Comutatividade	$A \vee B = B \vee A \in A \wedge B = B \wedge A$	$A \cup B = B \cup A \in A \cap B = B \cap A$
Associatividade	$(A \vee B) \vee C = A \vee (B \vee C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
	$e (A \wedge B) \wedge C = A \wedge (B \wedge C)$	$e (A \cap B) \cap C = A \cap (B \cap C)$
Distributividade	$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$e A \lor (B \land C) = (A \lor B) \land (A \lor C)$	$e A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Leis de "De Morgan"	$\neg (A \land B) = \neg A \lor \neg B$	$(A \cap B)^C = A^C \cup B^C$
	$\neg (A \lor B) = \neg A \land \neg B$	$(A \cup B)^C = A^C \cap B^C$
Contrapositiva	$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$	$A \subset B \Leftrightarrow B^C \subset A^C$
Negação da Negação	$\neg(\neg A) = A$	$(A^C)^C = A$