Expoentes JCE048 \ JCE023

Prof.^o Carlos Galvão

Campus Avançado em Jandaia do Sul Universidade Federal do Paraná

Esta obra tem a licença Creative Commons "Atribuição-Compartilhalgual 4.0 Internacional".

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n \text{ parcelas}}$$
 /expoente

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n \text{ parcelas}}$$
 /expoente

•
$$a^n \cdot a^m = a^{n+m}$$
 pois $a^n \cdot a^m = \underbrace{a \cdots a \cdot a \cdots a}_{n \text{ parcelas}} \cdot \underbrace{a \cdots a}_{n+m \text{ parcelas}}$.

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot \cdots a}_{n \text{ parcelas}}$$
 /expoente

- $a^n \cdot a^m = a^{n+m}$.
- $(ab)^m = \underbrace{a \cdot b \cdots a \cdot b}_{m \text{ parcelas}} = \underbrace{a \cdots a}_{m \text{ parcelas}} \cdot \underbrace{b \cdots b}_{m \text{ parcelas}} = a^m b^m.$

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n \text{ parcelas}}$$
 /expoente

- $a^n \cdot a^m = a^{n+m}$.
- $\bullet \quad (ab)^m = = a^m b^m.$

•
$$(a^n)^m = \underbrace{a^n \cdots a^n}_{m \text{ parcelas}} = a^{n+n+\cdots+n} = a^{nm}.$$

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n \text{ parcelas}}$$
 /expoente

Propriedades:

•
$$a^n \cdot a^m = a^{n+m}$$
.

$$\bullet \quad (ab)^m = = a^m b^m.$$

•
$$(a^n)^m = = a^{nm}$$
.

•
$$a^{-n}$$
: Seja $m, n, k > 0$ com $m + n = k$ (e $m = k - n$). $a^k = a^{m+n} = a^m \cdot a^n$.

Para "isolar" a^m e "subtrair" n do expoente, é preciso dividir tudo por a^n , e necessário $a \neq 0$.

$$\Rightarrow \frac{a^k}{a^n} = a^m$$
. Embora isso não seja uma demonstração formal, ilustra que

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot \cdots a}_{n \text{ parcelas}}$$
 /expoente

- $\bullet \quad a^n \cdot a^m = a^{n+m}.$
- $\bullet \quad (ab)^m = = a^m b^m.$
- $(a^n)^m = = a^{nm}$.
- $a^{-n} = \frac{1}{a^n}$, para $a \neq 0$.
- $a^0 = a^{n-n} = \frac{a^n}{a^n} = 1$ para $a \neq 0$. 0^0 é uma indeterminação matemática!

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot \cdots a}_{n \text{ parcelas}}$$
 /expoente

Propriedades:

- $a^n \cdot a^m = a^{n+m}$
- $(ab)^m = = a^m b^m$.
- $(a^n)^m = = a^{nm}$.
- $a^{-n} = \frac{1}{2^n}$, para $a \neq 0$.
- $a^0 = 1$ para $a \neq 0$. 0^0 é uma indeterminação matemática!
- $a^{1/n}$: Sendo $x = a^{1/n}$, elevando ambos os lados a n fica $x^n = \left(a^{1/n}\right)^n = a^{n/n} = a$.

Assim $a^{1/n} = \sqrt[n]{a}$ para os valores de a e n em que essa expressão exista em números reais.

base
$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n \text{ parcelas}}$$
 /expoente

- $a^n \cdot a^m = a^{n+m}$
- $(ab)^m = = a^m b^m$.
- $(a^n)^m = = a^{nm}$.
- $a^{-n} = \frac{1}{a^n}$, para $a \neq 0$.
- $a^0 = 1$ para $a \neq 0$. 0^0 é uma indeterminação matemática!
- $a^{1/n} = \sqrt[n]{a}$ para os valores de a e n em que essa expressão exista em números reais.
- $a^{m/n} = \sqrt[n]{a^m}$, nas mesmas condições acima.

Convenções

Ao se tratar de variáveis

A menos que seja especificado ao contrário, consideram-se que as bases são positivas.

Com isso
$$(x^n)^{1/n} = x$$
.

Caso contrário
$$\begin{cases} (x^n)^{1/n} = x & \text{se } n \text{ \'e impar ou } n \text{ par com } x > 0 \\ (x^n)^{1/n} = |x| & \text{se } n \text{ par com } x < 0 \end{cases}$$

Para números:

- $64^{1/6} = (2^6)^{1/6} = 2^{6/6} = 2^1 = 2$.
 - $(-1296)^{1/4}$ \nexists em \mathbb{R} .

Até a próxima!!!

