

Sensoriamento Remoto: Classificação de imagens

Jorge Centeno - UFPR

Classificação: Por que classificar?

Classificação: Por que classificar?

Imagem Landsat

deve ser rotulado dentro de uma das prováveis classes, como é mostrado na figura abaixo. Isto se chama **classificar** os pixels da imagem

Para responder tais perguntas, cada pixel

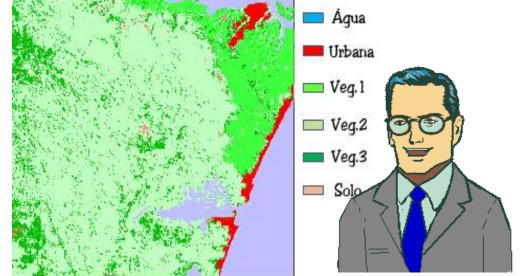


Imagem temática

Classificação digital

A partir dos valores do contador digital gerar uma nova imagem, mais simples, onde cada pixel está associado a uma categoria.

Produto final: uma imagem com valores associados às classes. Esta associação é feita através de uma legenda.

Os produtos são imagens temáticas", pois neles a cena é representada por temas ou classes.

and the second s	💻 Água
	urbana 💳
	Veg.1
a de la companya della companya della companya de la companya della companya dell	□ Veg.2
	■ Veg.3
and the second s	□ Solo

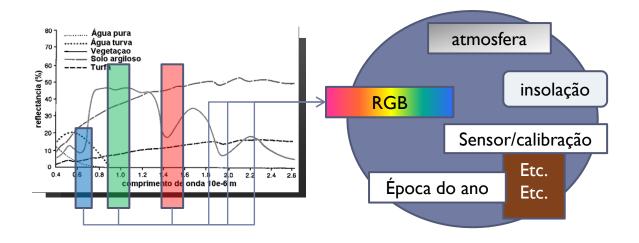
N ro	Nome	Cor no mapa	Nro pixels	Área (km2)
ı	Água	(192, 192, 255)	1.230.500	1107,45
2	Área urbana	(255,0,0,)	456050	410,445
3	Vegetação I	(64,255,64)	13253	11,9277
4	Vegetação 2	192,255,192)	12455	11,2095
5	Vegetação 3	(8, 195,8)	12445	11,2005
5	Solo nu	(255,128,128)	1124	1,0116

Classificar

Esse problema pode ser resolvido pela análise visual da imagem, delimitando as áreas com o "mouse".

Esta tarefa pode se tediosa e demorada.

Por isso, a intenção e realizar a tarefa usando programas em computadores, capazes de processar grande quantidade de pixels de forma rápida e sistemática, evitando assim a decisão subjetiva de diferentes operadores humanos.



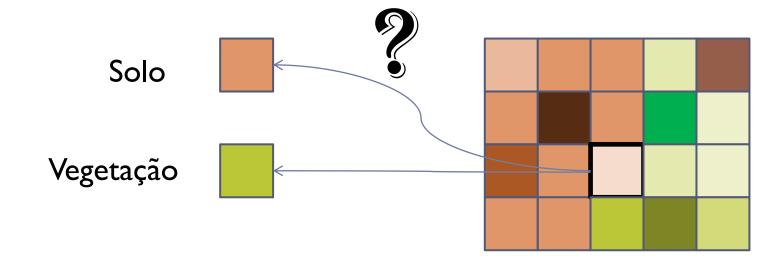
Exemplos de aplicação

- Cartografia: atualização de mapas;
- Hidrologia: estimar cobertura do solo para conhecer potencial de escoamento superficial
- Agricultura/Ciências Florestais: Estimar a produção de culturas
- Arquitetura/planejamento: monitorar crescimento de cidades

classificação

- Com base nos conhecimentos do comportamento espectral dos alvos e das características dos sensores usados para a coleta de imagens é esperado que os objetos na superfície da Terra tenham cores (tonalidades) típicas.
- Porém, estas cores podem variar em função das condições ambientais.

Relação Imagem-Realidade



De que cor é a agricultura?

Estratégia

- Criar padrões de valores digitais para cada classe e comparar os pixels da imagem com este padrão.
- Assim, cada pixel pode ser classificado como membro da classe representada com o padrão mais parecido.

Passos

- Definir classes de interesse
- 2. Definir padrões de valores digitais para cada classe
 - 1. Calcular parâmetros de cada classe por amostragem
 - 2. Amostragem manual? Automática?
 - 3. Avaliar qualidade de amostras
- 3. Classificar todos os pixels da imagem
- 4. Verificar a qualidade do produto

Método Supervisionado ou não

- Segundo o grau de participação do analista no processo de descrição das classes, os métodos de classificação digital podem ser:
 - <u>supervisionado</u>

O analista coleta amostras representativas, visualmente, para criar os padrões de valor digital das classes,

não supervisionado

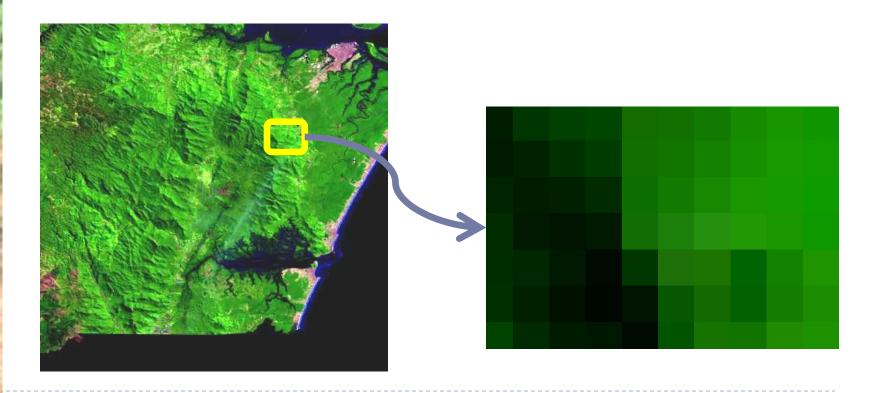
As classes mais frequentes na imagem são identificadas por meio de algoritmos.

Supervisionado

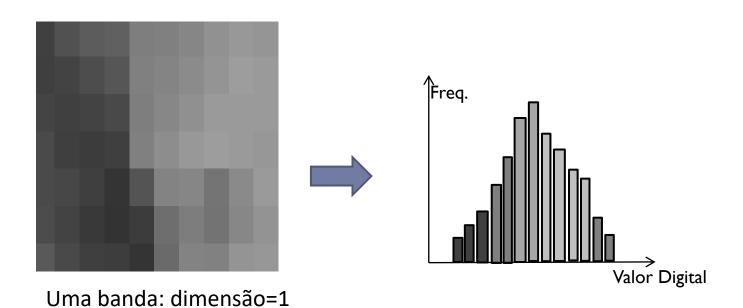
O usuário contribui com seu conhecimento a respeito da área para definir as classes de interesse. Assim, ele identifica na imagem áreas onde as classes aparecem puras e informa isto ao computador, que, a partir dos valores correspondentes a estas regiões, calcula parâmetros estatísticos para cada classe.

Nome	Banda I	Banda 2	Banda 3
Água	10	30	47
Urbana			
Vegetação	45	60	38

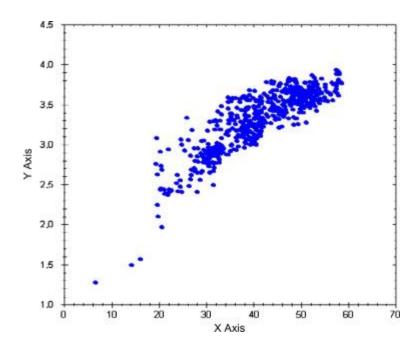
Amostragem manual


Na amostragem as características das classes são definidas através de amostras (aprendizado).

A amostragem é feita identificando áreas de cobertura conhecida na imagem e demarcando estas regiões com o cursor na tela para que o sistema identifique os pixels que ocupam esta região.


amostragem

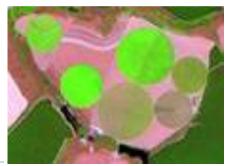
- Uma opção é obter um valor típico da imagem em questão.
- Mas... Qual?



variabilidade

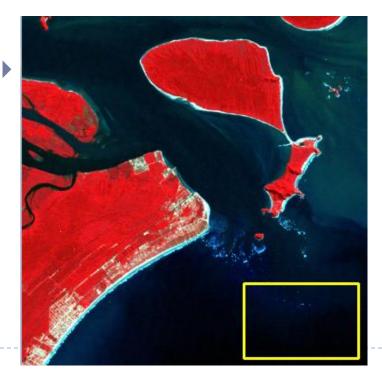
Devido à variação dos valores digitais, é esperado que exista uma dispersão dos mesmos dentro da classe.

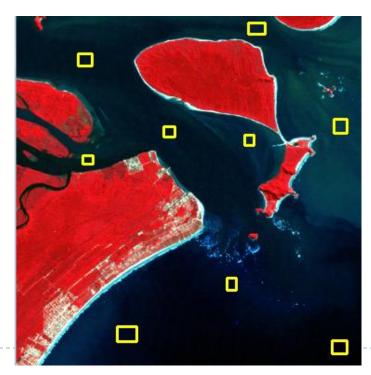
Considerando duas (Bandas) dimensões...


▶ E com 7 bandas?

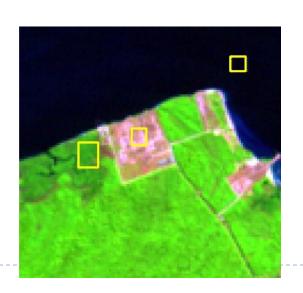
amostras

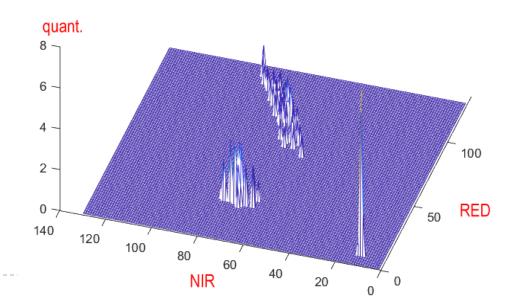
Regiões em locais onde as classes apareçam puras.


Evitar áreas de transição, onde a interpretação é duvidosa.


Se for necessário, subclasses podem ser definidas.

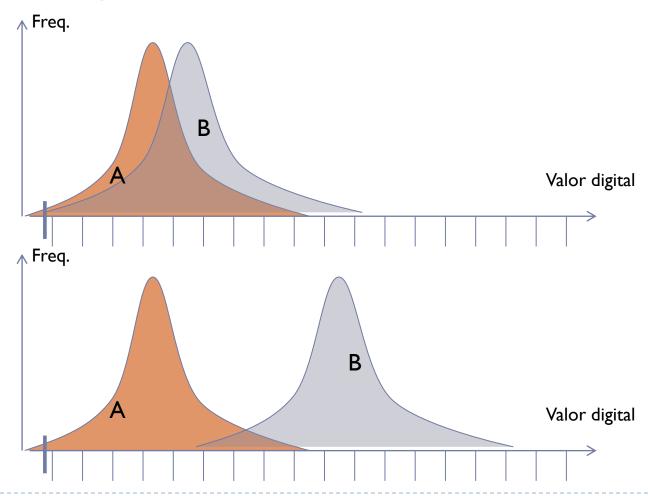
Amostragem: Cuidados


- Usar áreas de treinamento distribuídas ao longo de toda a região pesquisada, procurando cobrir todas as diferentes situações nas quais a classe aparece.
- O tamanho da amostra deve ser suficientemente grande para descrever adequadamente a classe.

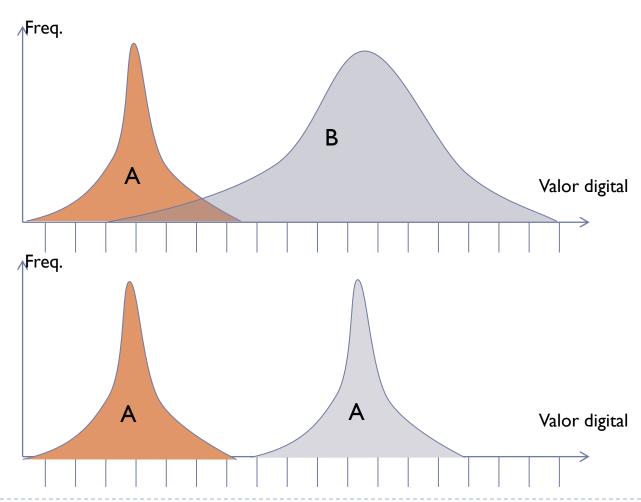


Descrição das classes

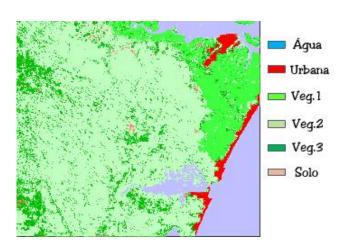
- Com os pixels de uma (ou várias) amostra(s) é possível descrever cada classe em termos de parâmetros estatísticos como
- 1. A) valores médios em cada banda
- 2. B) variância em cada banda
- 3. C) covariância entre diferentes bandas



É possível avaliar se haverá confusão entre algumas classes? Ou se elas são facilmente separáveis com base nos valores digitais das amostras?


As Classes são separáveis?

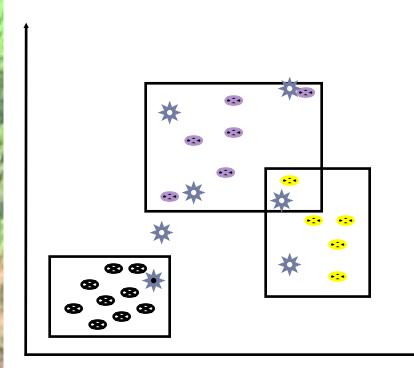
A médias são próximas?



As Classes são separáveis?

▶ E as variâncias?

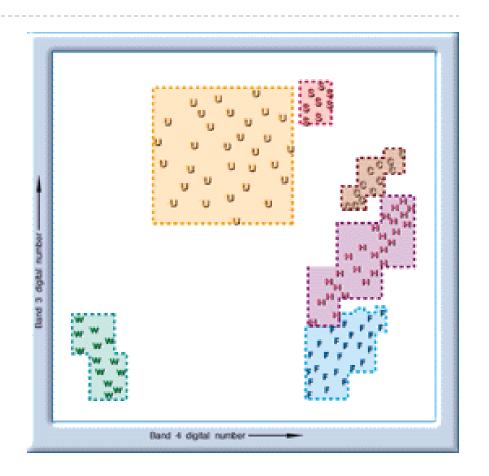
classificação


Classificação

- Atribuir a cada pixel um rótulo que o identifique como membro de uma das classes, em função de seus valores do contador digital.
- Para isto, temos os parâmetros estatísticos de cada calculados a partir das amostras.
- A estratégia consiste em classificar o pixel como pertencendo à classe "mais parecida".
- Com quem se parece mais cada pixel, considerando as classes disponíveis?
- Como medir o grau de similaridade entre o pixel e as classes?

<u>Métodos</u>

- Hipercubos
- Distância Mínima (Euclidiana)
- Máxima Verossimilhança Gaussiana


<u>Hipercubos</u>

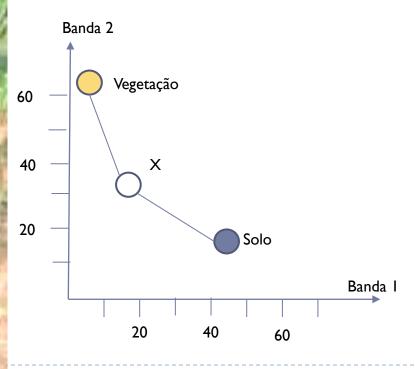
O espaço multiespectral é dividido demarcando regiões em torno das amostras. Por ex. em função dos valores mínimos e máximos de cada banda dos pixels que formam a amostra.

A similaridade, neste caso, é medida em função da posição do pixel em relação aos limites fixados pelo usuário

- A delimitação das classes, na realidade, é efetuada em várias dimensões, do que deriva o nome hipercubos, paralelepípedos.
- Mais de um retângulo pode ser usado para uma classe.
- ▶O operador deve selecionar os limites entre bandas de acordo com as classes e seu conhecimento da região.

Distância Mínima Euclidiana

- A Similaridade pode ser medida em função do afastamento (diferença) entre os valores digitais do pixel e de cada classe.
- Dada as médias no vermelho e no IVP das classes vegetação (V) e solos (S), e o pixel X... Qual classe é mais parecida (próxima) do pixel X?:


$$m\acute{e}dia_V = \begin{bmatrix} 7,90\\65,1 \end{bmatrix}$$

$$m\acute{e}dia_S = \begin{bmatrix} 42,2\\18,5 \end{bmatrix}$$

$$X = \begin{bmatrix} 18,5\\30,3 \end{bmatrix}$$

Distância Mínima Euclidiana

 Podemos resolver graficamente, plotando os pontos e medindo a distância, ou usando o conceito de distância Euclidiana

$$d^{2}(x,V) = \sum_{i=1}^{2} [(m \acute{e} dia(V)_{i} - X_{i})^{2}]$$

$$d^{2}(x,S) = \sum_{i=1}^{2} [(m \acute{e} dia(S)_{i} - X_{i})^{2}]$$

Se
$$d^2(x,V) > d^2(x,S)$$
,
X é mais próximo de Solos (S) ... Ou
seja, se parece mais com solos.
Seria logico, classificar o pixel como
"solos"

Distância Mínima Euclidiana

 O conceito de distância Euclidiana pode ser estendido a "n" bandas

$$d^{2}(x,A) = \sum_{i=1}^{n} [(m \neq dia(A)_{i} - X_{i})^{2}]$$

Considerando "Nc" classes, deve-se calcular a distância Euclidiana entre o pixel e todas as classes e encontrar a classe associada à menor distância;.

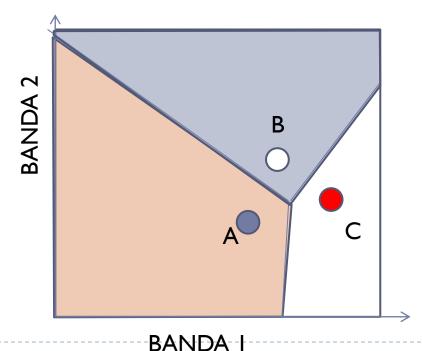
X pertence à classe "A" se:
Se
$$d^2(x, A) < d^2(x, B)$$
,

Onde "B" denota todas as outras classes.

Problema

- Se uma classe tem medias
- MI = [30,22,113]

e uma segunda


- M2=[29, 50,83]
- A qual classe atribuiria os pixels com valores:
- 145 39 18 -
- 75 68 123 -
- **116 187 2 -**
- **23** 78 115 -
- 12 55 158 -
- 196 30 47 -
- **57** 79 90 -
- 119 75 114 -
- 192 26 12 -
- **37** 87 99 -

Distância Mínima

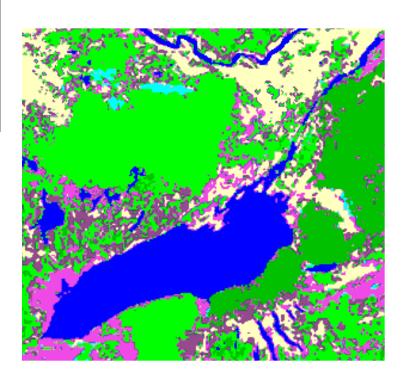
Pros

- Todos os valores possíveis dentro do espaço n-dimensional são classificados
- Não ocorre superposição de classes

Uma classe sempre será mais próxima de cada pixel, mesmo que a distância seja grande. |Procura-se a "menor" distância. O "mais parecido"

Exercício

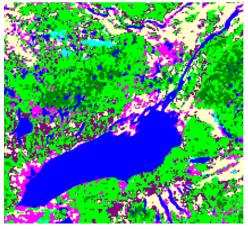
Colete amostras de várias classes e classifique a imagem usando o método da distância mínima Euclidiana.



Ex:
Água
Mata Atlântica
Áreas urbanas
Areia
Restinga
Solo úmido
Solo seco.... Etc etc

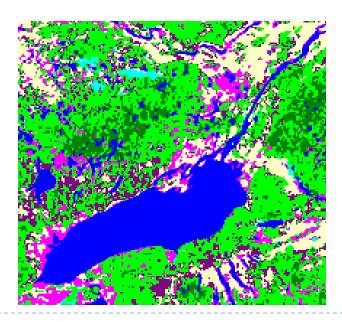
Avaliação da qualidade

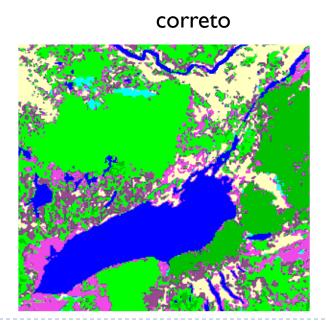
Como posso afirmar que esta imagem temática está correta? Que a informação é verdadeira?


Verificação da qualidade

Após a classificação se dispõe de um mapa temático, todos os pixels são rotulados como membros de uma classe, mas o processo pode ter erros.

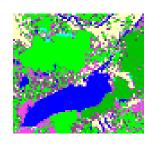
Como saber quantos pixels (%) estão corretamente classificados?


Se ocorrem erros, em qual classe estes erros são mais frequentes?



Avaliação por amostragem

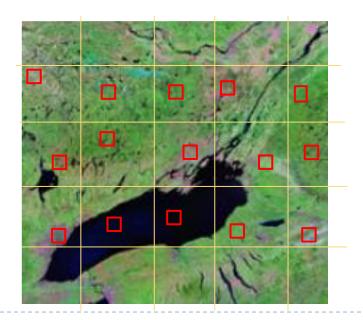
 Uma opção é comparar o resultado com um mapa com a verdadeira classificação, isto permitiria calcular a taxa de pixels errados.

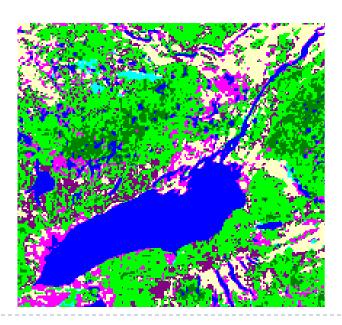


Avaliação por amostragem

Comparando as duas imagens podemos calcular:

- quantos pixels realmente são de uma classe e foram classificados dentro dessa classe (OK)?
- quantos pixels realmente são de uma classe e foram classificados dentro de OUTRA classe (x)?

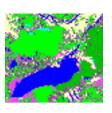

Na verdade é ...


Foi classificado como...

	Application of the second of t						
		A	В	С	D		
Α		ОК	×	×	×		
В		×	ОК	×	×		
U	1	×	×	ОК	×		
D	100	×	×	×	ОК		

Avaliação por amostragem

- Uma opção é comparar o resultado com um mapa com a verdadeira classificação, mas isto é impraticável.
- Outra opção é fazer uma avaliação amostral, ou seja, avaliar a classificação apenas em algumas regiões da imagem e derivar um valor que descreva a qualidade.



A matriz de confusão

- ▶ É uma forma de representar as coincidências e contradições entre a verdade de campo e o resultado da classificação.
- São confrontadas duas situações: as linhas correspondem à classe correta e as colunas à classe estimada no processo de classificação.
- Cada célula armazena o valor de pixels que deveriam ser classificados como a classe especificada na linha e que foram classificados segundo a classe especificada na coluna.
- Numa situação ideal a matriz será diagonal.

Foi classificado como...

Na verdade é ...

					Control of the Contro
		A	В	С	D
Α		ОК	×	×	×
В		×	ОК	×	×
С		×	×	OK	×
D	200	×	×	×	ОК

Exemplo de matriz de confusão

Classe	solo	Bosque	Agricult.	área urbana	soma parcial
solo	60	0	0	0	60
bosque	0	40	5	15	60
Agricultura	0	0	55	5	60
Área urbana	8	16	4	32	60
Soma parcial	68	56	64	52	240

A estimativa global da qualidade pode ser calculada como a soma da diagonal principal dividida pelo total de pixels nas amostras, ou seja a soma de todas as células.

exercício

- A) Calcule a acurácia global
- ▶ B) Calcule a acurácia do usuário e do produtor da classe _3_
- Discuta as diferenças

Class	1	2	3	4	5	6	Sum
1	61	20	19	0	0	0	100
2	7	55	35	3	0	0	100
3	2	15	83	0	0	0	100
4	1	25	36	38	0	0	100
5	0	4	4	2	90	0	100
6	0	0	3	0	0	97	100
Sum	71	119	180	43	90	97	600

Produtor/Usuário

- exatidão do ponto de vista do produtor:
- Os erros de omissão são pixels pertencentes a uma determinada classe que foram erroneamente classificados como sendo de outra, foram omitidos da classe. A taxa de acerto pode ser calculada dividindo o número de pixels corretamente classificados da classe pela soma parcial da linha da mesma classe.

	Classe	solo	Bosque	agricult	urbana	
•	solo	60	0	0	10	
•	bosque	0	40	5	15	
•	Agricultura	0	0	55	5	
•	Urbana	8	6	4	32	total Urbana=60

Exemplo para a classe URBANA: Ac(Prod) = 32/60 = 53%

Produtor/Usuário

exatidão do ponto de vista do usuário:

Os erros de inclusão correspondem aos pixels que, sendo na realidade de outra classe, foram incluídos na classe considerada. A taxa de acerto pode ser calculada dividindo o número de pixels corretamente classificados da classe pela soma parcial da coluna da mesma classe.

•	Classe solo	Bosque	agricult	urbana	
•	solo	60	0	0	10
•	bosque	0	40	5	15
•	Agricultura	0	0	55	5
•	Urbana	8	16	4	32
			▶ total l	Jrbana =	62

Exemplo para a classe URBANA: Ac(Prod) = 32/62 = 52%