

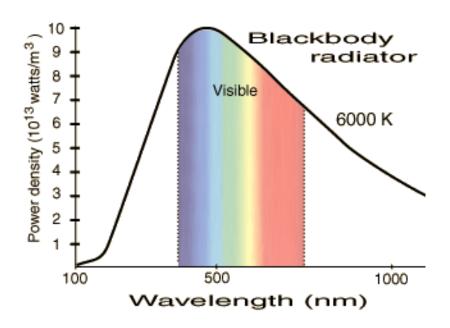
Sensoriamento Remoto II

- 2: transformações espetrais
 - IHS,
 - Tasseled Cap

UFPR – Departamento de Geomática Prof. Jorge Centeno

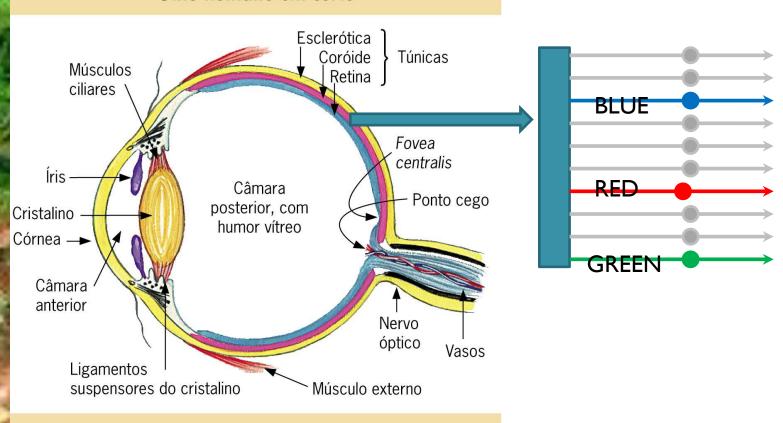
2020 copyright@ centenet

Sensoriamento Remoto II


- IHS
 - Intensity
 - Hue
 - Saturation

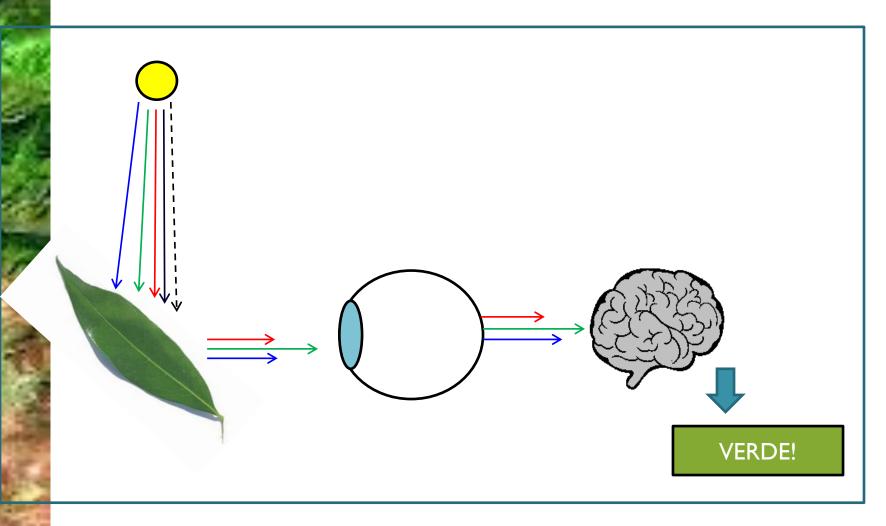
UFPR – Departamento de Geomática Prof. Jorge Centeno

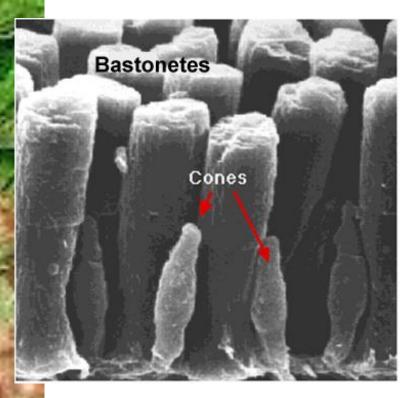
2024 copyright@ centenet


LUZ - COR

Faixa visível

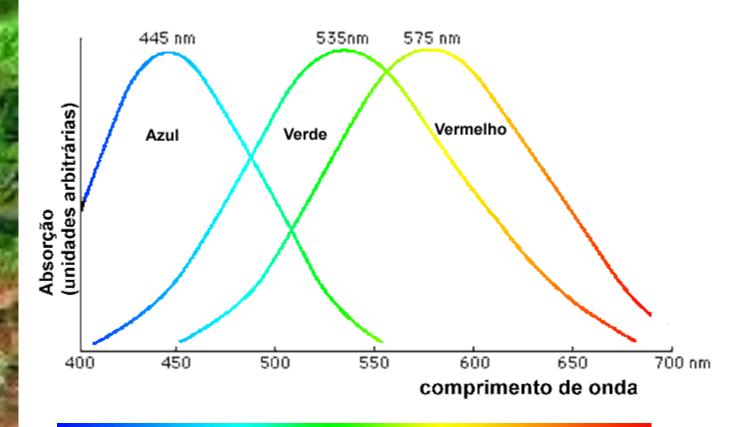
O que é cor? Como descrever as cores?


Olho humano em corte



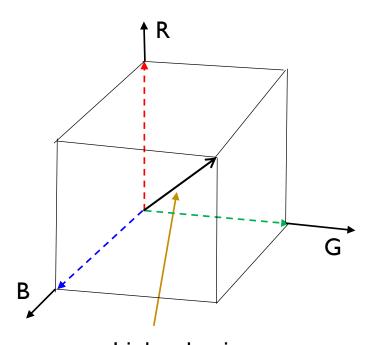
Biologia — César e Sezar

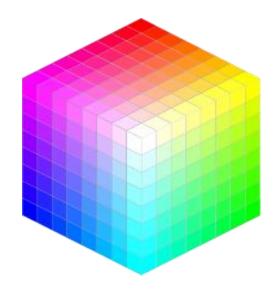
Perceber luz como "cor"


Cones e bastonetes

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/V/Vision.html

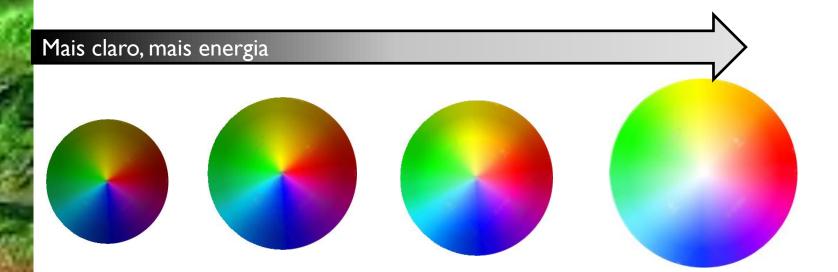
- Existem aproximadamente 6 milhões em cada olho humano concentrados na região fóvea.
- Os bastonetes (rods), percebem a luminosidade.
- Os Cones são as células do olho humano capazes de reconhecer as cores.


Sensibilidade de 3 tipos de cones



Podemos chamar de cones B,G e R?

CUBO RGB


As cores podem ser representadas pelo vetor (r,g,b) dentro de um cubo de cores

Linha de cinza: vai de (0,0,0) a (1,1,1). Região de cores sem saturação. Branco, cinza, preto...

Variação de intensidade

De que cor é a combinação RGB:

$$(0,1\ 0,2\ 0,1) =$$

$$(0,20,40,2) =$$

$$(0,3\ 0,6\ 0,3) =$$

$$(0,5 1,0 0,5) =$$

Qual delas tem mais energia (intensidade)?

Intensidade da cor

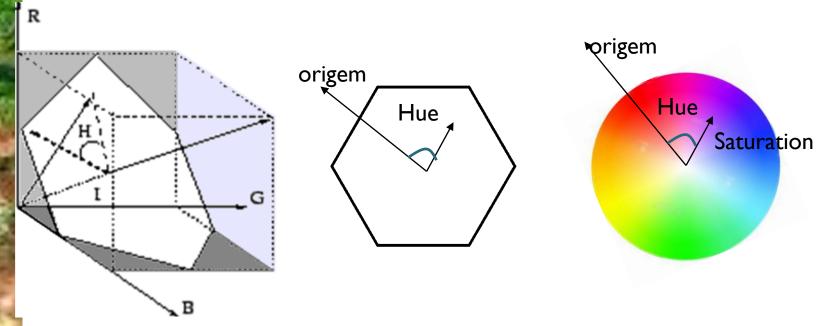
- o total de intensidade da cor, ou seja a soma de todas as componentes:
- |=r+g+b
- Ou normalizando
- I = (r + g + b)/3
- Se é a soma de todas as bandas do visível... Não lembra uma banda pancromática?

Calcule a intensidade de ...



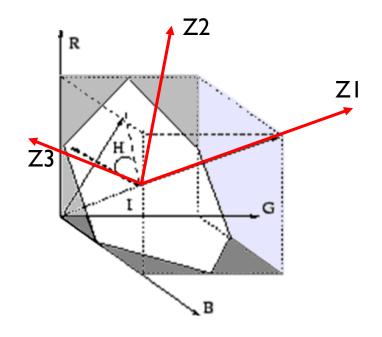
cor	R	G	В	Intensidade
1	1.0	0,0	0,0	1
2	0,0	0,0	1,0	0
3	1,0	1,0	0,0	2
4	1,0	0,0	0,1	2
5	0,0	0,9	0,1	1,9
6	1,0	1,0	1,0	3
7	0,0	0,0	0,0	0

Como veria o jogo em uma TV preto e branco?



Hue & Saturation

- Fazendo um corte perpendicular à linha de cinzas podemos medir
- o afastamento da cor em relação à linha de cinzas (Saturação)
- e a direção deste afastamento (tonalidade=Hue)


Somente falta definir uma origem...

Definamos então:

Um sistema 3D (rotação de RGB)

Com as seguintes propriedades

- a) Z1, Z2 e Z3 são perpendiculares;
- b) Um eixo é perpendicular à linha de cinzas (Z1);
- b) Z2 e Z3 definem um plano perpendicular a Z1.

Z2 pode ser [1 0 -1], por exemplo.

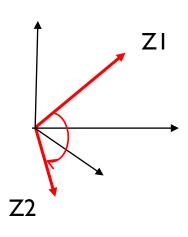
Ou (-½ 0 ½), ou ...

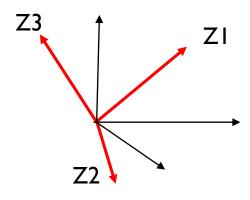
Prova:

$$[1,1,1]*[10-1]'=0$$

Se já temos Z1 e Z2,

Z3 perpendicular a Z1

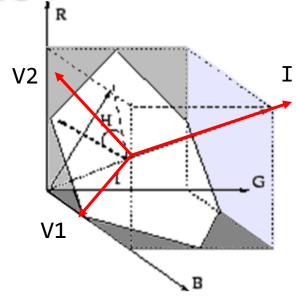

$$Z3*(1,1, 1)=0$$

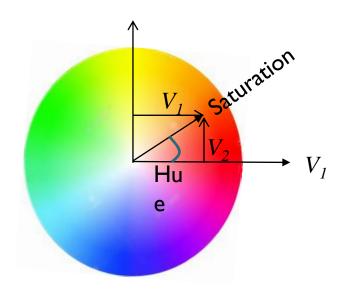

Z3 Perpendicular a Z2

$$Z3*(1,0,-1)=0$$

Uma solução é Z3=(-1, 2, -1)

Lembrando que Z2 e Z3 definem um plano perpendicular a Z1.


Tranformação RGB-HSV


Chamando Z1,Z2,Z3 de (I,V1,V2)

$$H = \arctan\left(\frac{V_2}{V_1}\right)$$

$$S = \sqrt{{V_1}^2 + {V_2}^2}$$

$$V = I$$

Tranformação RGB-HSV

$$\begin{bmatrix} I \\ V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- H: (Hue) cor predominante
- S: saturação, ou quanto se afasta da linha central (cinzas)
- I: Intensidade (soma de toda a energia das três cores)

$$H = \arctan\left(\frac{V_2}{V_1}\right)$$

$$S = \sqrt{{V_1}^2 + {V_2}^2}$$

A inversa ... RGB-HSV

Transformações HSV-RGB

$$V_1 = S \cos(H)$$

$$V_2 = Sse n(H)$$

$$I=V$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{3} & 0 & \frac{2}{\sqrt{6}} \\ \frac{\sqrt{3}}{3} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{\sqrt{3}}{3} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} I \\ V_1 \\ V_2 \end{bmatrix}$$

Sensoriamento Remoto II

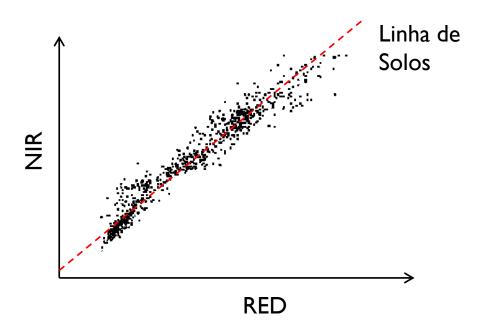
Tasseled Cap

UFPR – Departamento de Geomática Prof. Jorge Centeno

2024 copyright@ centenet

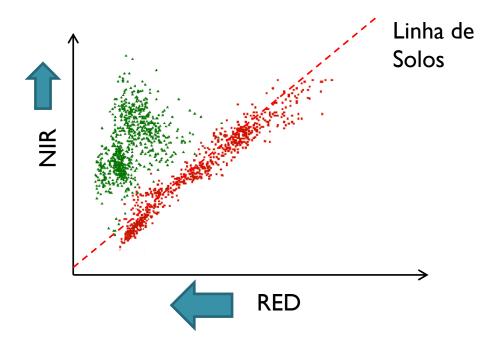
Transformação tasseled cap

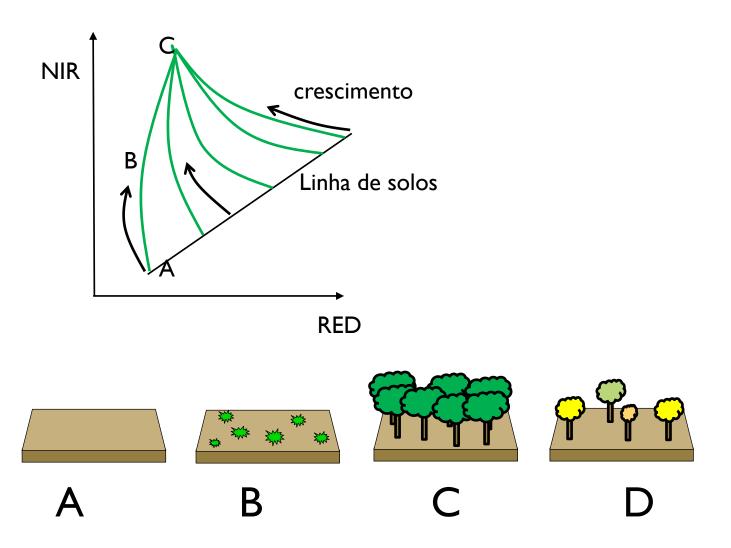
- A transformação tasseled cap foi originalmente desenvolvida para o estudo de campos de agricultura.
- Analisando a variação espectral de campos agrícolas em imagens do antigo MSS foram constatadas algumas propriedades que variam em função do crescimento da vegetação.


http://auracle.ca/news/wordpress-content/uploads/2011/08/ag-montage.jpg

Imagine ...

Considerando a variação espectral nas bandas vermelho e infravermelho notou-se que os campos agrícolas, quando descobertos de vegetação, formam uma.

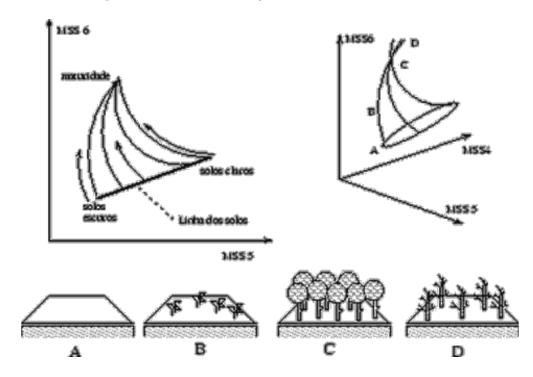

As bandas são altamente correlacionadas, independentemente do tipo ou cor de solo presente.

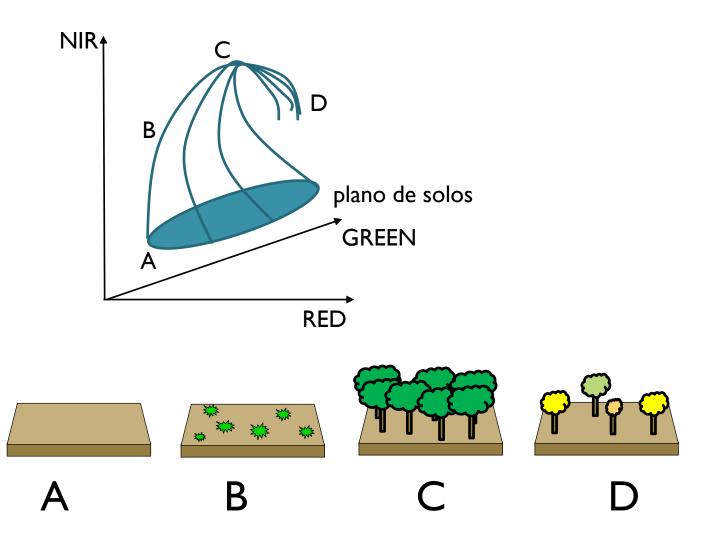


crescimento

Na medida em que a vegetação cresce, a resposta espectral do pixel torna-se mais escura na banda RED, sendo este fenômeno mais evidente para regiões com solos claros, até atingir o ponto onde todo o pixel é coberto por vegetação.

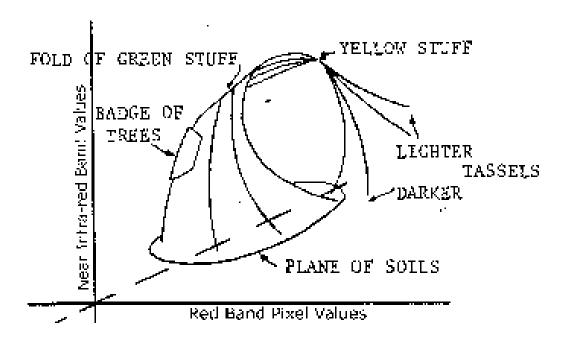
Red vs. NIR




Tasseled cap

No plano formado pelas bandas verde e vermelho, nota-se que os solos não formam uma linha, se não uma leve dispersão origina uma elipse.

Quando a folha se torna amarela, a resposta espectral na banda 4 diminui e cresce na banda 5. Combinando as três bandas, forma-se um cone inclinado, que tem a aparência de um gorro com borlas, do que deriva o nome inglês tasseled cap.



Red, NIR + Green

Tasseled cap

R.J. Kauth and G.S. Thomas, "The tasseled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT." Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Purdue University of West Lafayette, Indiana, 1976, pp. 4B-41 to 4B-51.

Tasseled cap

Estes fatos sugeriram a criação de um sistema, apropriado para descrever a evolução da vegetação em campos agrícolas, com os seguintes eixos:

- Primeiro eixo paralelo à linha de solos nas bandas RED e NIR, chamado de solos;
- Segundo eixo paralelo à direção de crescimento da vegetação, chamado de verde
- Terceiro eixo na direção do amarelamento da folha, chamado de amarelo;
- Um quarto eixo que não foi passível de interpretação, denominado de outras coisas.

TASSELED CAP LANDSAT MSS DATA

Component	Channel 1	Channel 2	Channel 3	Channel 4
Brightness	0.433	0.632	0.586	0.264
Greenness	-0.290	-0.562	0.600	0.491
Yellowness	-0.829	0.522	-0.039	0.194
"Non-such"	0.223	0.012	-0.543	0.810

TASSELED CAP THEMATIC MAPPER DATA

Component	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 7
Brightness	0.3037	0.2793	0.4343	0.5585	0.5082	0.1863
Greenness	-0.2848	-0.2435	-0.5436	0.7243	0.0840	-0.1800
Wetness	0.1509	0.1793	0.3299	0.3406	-0.7112	-0.4572

http://www.sjsu.edu/faculty/watkins/tassel.htm