Neste exercício,
as propriedades de imagens de RADAR serão analisadas comparando
imagens de radar com imagens de sensores ópticos como o Landsat
TM.
Por isso, analisaremos a imagem de Paranaguá/Ilha do Mel, a mesma que analisamos nas aulas anteriores.
Parte 1: Visualizar no e.e.
Primeiro, selecione no e.e. um ponto na área de interesse e leia as coordenadas. Se não sabe como fazer isso, use as que temos aqui. ponto=(-48.472, -25.565).Agora, codifique este ponto no script do e.e.
No e.e. existe uma grande quantidade de imagens, então devemos selecionar uma imagem, ou várias delas para visualizar.
VVamos selecionar as imagem com polarização VV e no período entre 1/jun/2020 - 1/12/2020.
Como conhecemos o problema do speckle, vamos ler varias imagens sucessivas e produzir uma nova imagem, que contenha a mediana de todas (mediana temporal). Assim, evitamos os valores extremos altos e baixos causados pelo ruído.
veja abaixo, como especificamos o período: filterDate('2020-06-01', '2020-12-01')
a polarização 'transmitterReceiverPolarisation', 'VV'))
e ainda a região em torno de nosso ponto .filterBounds(pt)
var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD')
.filter(ee.Filter.eq('instrumentMode', 'IW'))
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'))
.filterDate('2020-06-01', '2020-12-01')
.filterBounds(pt)
.select(['VV']);
print(collectionVV);
agora, calcule a mediana das 12 datas para cada pixel, usando a função median da coleçãome guardamos na variável "VV"
Map.addLayer(VV, {min: -20, max: -0}, 'VV');
Juntando
// Filtrar a coleção de imagens do Sentinel 1 na polarização VV, da trajetórioa descendente do satélite
var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD')
.filter(ee.Filter.eq('instrumentMode', 'IW'))
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'))
.filterDate('2020-06-01', '2020-12-01')
.filterBounds(pt)
.select(['VV']);
print(collectionVV);
// calculamos a mediana de todas as imagens disponiveis no periodo
var VV = collectionVV.median();
//agora posicionamos o display no local de interesse usando o ponto "pt" e visualizamos a imagem
Map.centerObject(pt, 12);
Map.addLayer(VV, {min: -20, max: -0}, 'VV');
Analise a imagem e responda
Analisando esta imagem de radar responda: Analisando as diferenças de iluminação que podem ser percebidas na região nordeste da imagem, deduza por onde passou o sensor em relação à cidade de Paranaguá. Ao norte, leste, sul, oeste, no meio no sentido norte-sul, ou no meio no sentido leste-oeste? | ||
Existe areia em torno de Pontal do Paraná. Como aparece a areia na imagemde radar? Por que não é clara, como na imagem Landsat? | ||
Analise as áreas de vegetação. Quantos tipos de vegetação você pode identificar? a que se devem as diferenças de cor? Na saída/entrada de Pontal de Paraná existe uma mancha de vegetação escura, a que atribui esta diferença? | ||
Explique o que são as áreas claras que ocorrem perto dos rios? | ||
Localize a cidade de Paranguá e explique por que ela aparece tão clara na imagem. Por que alguns locais parecem "brilhar" em forma de estrela de quatro pontas? COnsidere onde ocorre este fenómeno. | ||
por que a água tem uma tonalidade escura na imagem. |
a- Quais são as feições facilmente interpretáveis ?
Speckel
h- Observe este parde imagens de radar JERS e compare o ruído speckle.
Parte 2: optico vs. microondas
Agora visualize a imagem Landsat de Paranaguá (paratm) . Usando o Multispec você pode escolher combinações de bandas mais apropriadas.
i_01_02.jpgimagem Landsat
imagem de Radar
a- Quais feições não puderam ser detectadas na imagem de radar e são visíveis nesta imagem?
Analizando a imagem Landsat da primeira aula, localize áreas correspondentes a "área urbana", "solo exposto", "água", "solo úmido", "vegetação densa", "areia", "vegetação rasteira",e "restinga".
Agora compare a imagem Landsat, na composição (Mir-Nir-Red, com a imagem de radar Sentinel 1 e verifique
Ou somente a imagem do sensor óptico?
Objeto |
somente RADAR |
As duas |
Somente Landsat |
área urbana |
|||
Areia |
|||
Solo exposto |
|||
Solo úmido |
|||
água |
|||
Vegetação densa |
|||
Manguezal |
|||
Restinga |
|||
Vegetação rasteira |
Na imagem Landsat dois tipos de água sao visíveis. Exlique porque na imagem de radar esta diferença não é evidente.
Tarefa
Usando o e.e. selecione 3 imagens (como fizemos hoje) porém de três trimestres diferentes do mesmo ano e visualize uma composição colorida.<;p>
Visualize a cidade de Paranaguá. (var pt = ee.Geometry.Point(-48.52126, -25.50934);). O que são as áreas extremamente vermelhas e as extremamente azuis?
isto pode ajudar...
var VV1 = ee.Image(collectionVV.filterDate('2020-01-01', '2020-03-30').median());
var VV2 = ee.Image(collectionVV.filterDate('2020-04-01', '2020-06-30').median());
var VV3 = ee.Image(collectionVV.filterDate('2020-10-01', '2020-12-30').median());
//visualizar
Map.addLayer(VV1.addBands(VV2).addBands(VV3), {min: -25, max: 10}, 'Season composite');
Jorge Centeno: centeno@ufpr.br