
The Future of Educational Computing Research: The Case of Computer
Programming

DOUGLAS H. CLEMENTS
State University of New York at Buffalo
Department of Learning and Instruction

593 Baldy Hall
Buffalo, NY 14260, USA

Clements@acsu.buffalo.edu

What directions should research on computers in education take in the next century? We
examine one application, computer programming, with a particularly long and rich
research history (Clements & Meredith, 1993). We review the literature and discuss
implications for future research. While emerging from the domain of computer
programming, these implications have wide applicability across various applications of
computers. For example, in all applications of computer to education, we need to learn to
operationalize and optimize the complex webs of variables that determine efficacy. We
need continuing research and development to expand our knowledge of what students and
teachers learn in various environments; test conjectures and theories abstracted post hoc
in extant research; and investigate how unique features of various programming
environments interact with the goals and content of specific subject matters domains and
the particular features of various teaching and learning situations to promote learning and
development. Future research should also ask how computers might be successfully
implemented in a manner consistent with systemic reform.

What directions should research on computers in education take in the next century? We
examine one application, computer programming, with a particularly long and rich
research history (Clements & Meredith, 1993). We review the literature and discuss
implications for future research. While emerging from the domain of computer
programming, these implications have wide applicability across various applications of
computers.

MATHEMATICS

Early reviews concluded that effects of computer programming on overall mathematics
achievement were either conflicting or positive but not consistently strong (Clements,
1985; Clements & Meredith, 1993). Recent reviews, in contrast, are quite positive
(Clements & Sarama, 1997b; McCoy, 1996). The negative cases remind us that results
are by no means guaranteed and that many factors must be considered (Hamada, 1987).
Mere “exposure” to computer programming may often fail to provide measurable
benefits. The positive cases begin to illustrate how to effectively teach mathematics with
computer programming (Barker, Merryman, & Bracken, 1988; Butler & Close, 1989;
Clements & Meredith, 1993; Hoyles & Noss, 1987; Miller, Kelly, & Kelly, 1988; Oprea,
1988; Salem, 1989; Tanner, 1992; Yelland, 1995).

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 2

Geometry and Spatial Sense

The emphasis on turtle graphics in the Logo language and its imitators has generated a
considerable body of research in the domain of geometry and spatial sense, with
generally positive results. Why is the turtle helpful? Students construct initial spatial
notions from actions (Piaget & Inhelder, 1967), and they command the turtle to move
(Clements & Battista, 1992b). In this way, Logo activities facilitate students’ progression
to higher levels in the van Hiele hierarchy of geometric thinking (van Hiele, 1986). That
is, students move from thinking of geometric shapes as wholes (“It just looks like a
rectangle”) to conceptualizing them in terms of their properties (“It’s a rectangle because
it has opposite equal sides and 90° angles”). Guided Logo experience significantly
enhances students’ concepts of plane figures (Butler & Close, 1989; Clements, 1987;
Clements & Battista, 1992b; Hughes & Macleod, 1986) and other geometric objects
(Yusuf, 1994).

For example, one large study involved 656 K-6 students working on Logo Geometry
activities (Battista & Clements, 1988; Battista & Clements, 1991; Clements & Battista,
1992a; Clements & Battista, 1992b). Control students (644) worked with their regular
geometry curriculum. After introductory path activities (e.g., walking paths, creating
Logo paths), students engaged in off- and on-computer activities exploring squares and
rectangles. For example, they identified these shapes in the environment, wrote Logo
procedures to draw them, and drew complex figures with these procedures. Logo
students performed better over all. They demonstrated flexible consideration of multiple
properties of geometric shapes that may help lay the groundwork for hierarchical
classification. Similarly, in another study students were better able to apply their
knowledge of geometry than a comparison group. There was no difference in knowledge
of basic geometric facts; therefore, the use of Logo influenced the way in which students
represented their knowledge of geometric concepts (Lehrer, Randle, & Sancilio, 1989).
Middle school students move to higher levels of conceptualizing and being to integrate
visual and symbolic representations (Clements & Battista, 1988; Clements & Battista,
1989; Clements & Battista, 1992a; Hoyles, Healy, & Sutherland, 1991; Hoyles & Noss,
1988; Kierna & Hillel, 1990).

Several research projects have investigated the effects of computer programming on
students’ conceptualizations of specific ideas in mathematics. For example, Logo
experience appears to significantly affect students’; ideas about angle. Responses of
control students in one study reflected either little knowledge of angle or common
language usage such as “a line tilted.” In comparison, the Logo students indicated more
generalized and mathematically oriented conceptualizations, such as “Like where a point
is. Where two lines come together at a point” (Clements & Battista, 1989). Several
researchers have reported a positive effect of Logo on students’ angle concepts (Clements
& Battista, 1989; du Boulay, 1986; Frazier, 1987; Kieran, 1986; Kieran & Hillel, 1990;
Olive, Lankenau, & Scally, 1986).

In a similar vein, Logo experiences may affect competencies in linear measurement.
They permit students to manipulate units and to explore transformations of unit size and

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 3

number of units free of the dexterity demands associated with measuring instruments
(Campbell, 1987). Turtle geometry is inherently measurement-based. Therefore, Logo
can provide meaningful tasks and models for thinking about number and arithmetic
operations as they apply to length and angle. In such an environment, students are
motivated to integrate numeric and geometric notions. They receive feedback that aids
them to reflect on their own thinking about these ideas and how they are connected
(Clements, Battista, Sarama, Swaminathan, & McMillen, 1997). Older students can learn
more sophisticated ideas about measurement, as well as about directions and coordinates
(Kynigos, 1992).

Some research has not shown positive results (Johnson, 1986). Again, “exposure”
without teacher guidance often yields little learning (Clements & Meredith, 1993). One
reason is that students do not always think mathematically, even if the Logo environment
invites such thinking. For example, some students rely excessively on visual cues and
avoid analytical work (Hillel & Kieran, 1988). Such a visual approach is not related to
visualization ability but to the role of visual “data” of a geometric figure in determining
students’ constructions. Although helpful initially, overuse inhibits students from
arriving at mathematical generalizations. There is little reason for students to abandon
visual approaches unless teachers present tasks whose resolution requires an analytical,
generalized, mathematical approach.

In sum, studies that have shown the most positive effects involve carefully planned
sequences of computer programming activities. Teacher mediation of students’ work
with those activities is necessary for successful construction of geometric concepts.
Mediation includes helping students to forge links between computer and other
experiences (Clements & Battista, 1989; Lehrer & Smith, 1986b).
Future research needs to establish the relationship between specific characteristics of
computer programming environments and these gains. Simply stated: Is it the turtle or
the programming? Or at least, what is the contribution of each? In a similar vein, we
know that enriching the primitives and tools available to students facilitates their
construction of geometric notions and increases analytical, rather than visual, approaches
(Clements & Battista, 1992s; Clements & Sarama, 1995; Kynigos, 1992). Future
research should establish the relationship between specific enhancements (and in the
broader picture specific features of the teaching and learning environment) and specific
aspects of conceptual and procedural learning (Hiebert & Carpenter, 1992).

Number, Arithmetic, and Algebra

Arithmetic has long dominated the elementary school mathematics curriculum. While
results are mixed, the effect of nonstructured computer programming on arithmetic skills
usually appears small (Butler & Close, 1989), though the finding that time spent does not
decrease such skills is significant. Although computer programming does not provide
efficient practice on arithmetic processes, it can provide a context in which there is a real
need for these processes and in which children must clearly conceptualize which
operation they should apply. For example, 1st-grade children determined the correct
length for the bottom line of their drawing by adding the lengths of the three horizontal

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 4

lines that they constructed at the top of the tower: 20 + 30 + 20 = 70 (Clements, 1983-
84). If used in such reflective ways, computer programming can aid growth in arithmetic
skills equally to CAI drill on those same skills (Carmichael, Burnett, Higginson, Moore,
& Pollard, 1985; Wilson & Lavelle, 1992). Further, studies have shown that activities
with young students can facilitate basic number sense; for example, learning relationships
between size of numbers and the length of a line drawn by the turtle (Bowman, 1985;
Clements, 1987; Hughes & Macleod, 1986; Robinson, Gilley, & Uhlig, 1988; Robinson
& Uhlig, 1988). Such experience can positively affect achievement test scores (Barker et
al., 1988).

Computer programming in Logo or BASIC can help students generalize their
understanding of number and arithmetic to understand variables and algebra (Carmichael
et al., 1985; Findlayson, 1984a; Milner, 1973; Nelson, 1986; Oprea, 1988; Soloway,
Lochhead, & Clement, 1982). However, such learning can be limited; for example,
students may not fully generalize the variable idea as used in computer programming to
other situations (Lehrer & Smith, 1986a). Again, mere “exposure” without teacher
planning and mediation is insufficient. Students need to build a conceptual framework
based on intuitions and “primitive conceptions” upon which they can build later algebraic
learning (Noss & Hoyles, 1992). Significantly, compared to not only paper-and-pencil,
but also spreadsheet environments, students working collaboratively with computer
programming more frequently use formal language as a means of articulating general
ideas (Hoyles et al., 1991). They combine natural and computer language and ideas.
Supporting this beneficial tendency may be students’ realization that the computer does
not understand a natural language formulation. Students may come to expect that they
will have to formalize to communicate their generalization and represent their task
solution (Hoyles et al., 1991).

In summary, there is some evidence that Logo provides an environment in which number
sense (National Council of Teachers of Mathematics, 1989) can provide an “entry” to the
use of the powerful tool of algebra. It is an environment in which some students perceive
the use of formalizations such as variables as natural and useful. Again, however, we
find that students’ ability to generalize their programming-based notion of variable may
depend to a great degree on the depth of their experience and the instructional support
given them.

Future research needs to determine how to connect specific programming activities to the
development of specific aspects of number sense and algebraic conceptualizations. What
kinds of conceptual frameworks might be developed within typical classroom situations
and what types of organized instruction and thoughtfully structured tasks engender those
frameworks (Hillel & Samurçay, 1985; Milner, 1973; Sutherland, 1987)?

Ratio and Proportion

Researchers have observed similar facilitative effects of computer programming
environments on ratio and proportion tasks. On a geometric proportion task, students
used additive strategies on paper-and-pencil tasks, but none used such strategies on the

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 5

related Logo tasks (Hoyles & Noss, 1989). The reason lay in the interaction between
students’ formalization and computer feedback. They formalize proportional
relationships algebraically as Logo programs. They receive graphical feedback regarding
their mathematical intuitions. On pencil-and-paper, the formalization is less salient; the
feedback is absent. Students may have abandoned additive thinking because the
computer provided a way to think about the general within the specific. Paper-and-pencil
invited a fixed answer to a fixed question. The computer allowed exploration to escape
from mental “blocks” and activated a dynamic answer. Posing the task of writing a
superprocedure that would handle all cases promoted additional development.
Thus, again, we see the encouragement of more generalized and abstract views of
mathematical objects within structured computer programming environments. We also
see similar implications.

Future research needs to address that most explanations for computer programming’s
benefits are generated post hoc. Therefore, they need to be tested by other researchers
and either confirmed, altered, or rejected. In addition, particular features of computer
programming environments and activities need to be causally connected to the
development of sophisticated mathematical strategies. That is, researchers need to
identify the specific attributes of computer programming that engenders students learning
of better strategies and concepts in the domain of ratio and proportion.

PROBLEM SOLVING AND HIGHER-ORDER THINKING

As with mathematics, approaches to teaching problem-solving and higher-order thinking
skills with computer programming based only on exposure usually have not been positive
(Bruggeman, 1986; Dalton, 1985; LeWinter, 1986; Mitterer & Rose-Drasnor, 1986),
though there are some exceptions in which it did raise problem-solving scores (Choi &
Repman, 1993; Dvarskas, 1984). Other studies were based on variations of the
conceptual framework hypothesis, agreeing with Papert (1980) that Logo can make the
abstract concrete, accelerating cognitive development. Some reported gains (Miller et al.,
1988; Rieber, 1987), but others found no significant differences (Clements & Gullo,
1984; Howell, Scott, & Diamond, 1987). With teacher planning and mediation, however,
computer programming can facilitate higher-order thinking (Billings, 1986; Reed,
Palumbo, & Stolar, 1988; Roblyer, Castine, & King, 1988; Wiburg, 1989). As with
mathematics, then, the most positive results have involved teacher mediation based on a
well-developed theoretical foundation (Clements, 1990; De Corte & Verschaffel, 1989;
Delclos & Burns, 1993; Lehrer, Guckenberg, & Lee, 1988; Lehrer, Harckham, Archer, &
Pruzek, 1986; Littlefield et al., 1988). Positive effects also take a considerable time (Liu,
1997, found 150 hours of experience was necessary).

In addition, strength of effects may differ for different processes. For example, planning
shows weak effects in many studies, and may have to be carefully mediated. Other
aspects of problem solving, such as deciding on the nature of the problem, selecting a
representation for solving the problem, and especially cognitive monitoring, show more
consistent effects (Clements & Nastasi, 1988; Clements & Sarama, 1997b). Indeed,
certain processes and strategies, especially when mediated by the teacher, show more

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 6

growth in computer programming environments than in noncomputer environments
involving paper-and-pencil or manipulative tasks (Clements, 1986; Clements, 1990;
Swan, 1991; Swan & Black, 1989). A recent metaanalysis was conducted on problem
solving (a metaanalysis combines the results of many studies mathematically, measuring
the results of each in terms of “effect sizes,” where an effect size of 1 indicates that the
experiment group scored 1 standard deviation above the control group). The researchers
found that 84% of the effect sizes favored computer programming over comparison
groups, with an average moderate effect size of .41 (Liao & Bright, 1989).

Future research might ascertain when, how, and why such positive effects have been
found. Computer languages may provide malleable representations that students can
inspect, manipulate, and test, helping them connect concrete and formal understandings
(Swan, 1991). The educational environment may need to include a general framework
for metacognitive strategies and the embedded application of these strategies within a
specific domain or metaphorical connections between computer programming processes
and higher-order thinking processes (Clements, 1990). The social interactions within the
computer programming educational environment might be critical (Clements & Nastasi,
1992b).

LANGUAGE ARTS

It may be surprising to some that results are also generally positive for computer
programming’s effect on language arts. For example, early programming experiences
can engender language rich with emotion, humor, and imagination in young children
(Genishi, McCollum, & Strand, 1985; Yelland, 1994a). In a similar vein, working with
Logo in a narrative context (a) enhances language-impaired preschool students’
perceptual-language skills (Lehrer & deBernard, 1987); (b) increases kindergartners’
readiness scores on visual discrimination, visual motor skills, and visual memory
(Reimer, 1985); and (c) increases first graders’ scores on assessments of visual motor
development, vocabulary, and listening comprehension (Robinson et al., 1988; Robinson
& Uhlig, 1988). The talk students weave around their Logo is impressively task-related,
other-directed, cooperative, and nonplayful (Genishi, 1988).

Logo work may also enhance reading skills. Emersion in a Logo culture can lead to
increases in language mechanics and reading comprehension, even without direct
instruction (Studyvin & Moninger, 1986). These effects may be delayed (Clements,
1987). There are even accounts of Logo assisting the learning of foreign languages. For
example, 5th- and 6th-graders in one study learned both Logo and German vocabulary.
This method also improved their attitudes (Tracy & Williams, 1990).
Future research is needed that extends and explains these positive findings. Even more
than in other areas, we need to know what aspects of computer programming are
responsible for growth in the various components of language arts.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 7

CREATIVITY

Early observational research suggested that Logo drawing helps students create pictures
that are more elaborate than those that they can create by hand. They transfer
components of these new ideas to artwork on paper (Vaidya & McKeeby, 1984). Such
computer drawing is appropriate for children as young as three years, who show signs of
developmental progression in the areas of drawing and geometry during such computer
use (Clements & Nastasi, 1992a; Tan, 1985). Other studies showed an increase in figural
creativity on transfer tests, although gains in some were moderate (Clements & Gullo,
1984; Clements & Nastasi, 1992a; Horton & Ryba, 1986; Reimer, 1985; Roblyer et al.,
1988; Wiburg, 1987) and occasionally nonsignificant (Mitterer & Rose-Drasnor, 1986;
Plourde, 1987). Originality, in contrast to fluency or flexibility, was most often
enhanced.

One study analyzed the reasons that these aspects would be enhanced by Logo (Clements,
1991). A Logo group significantly outperformed both a comparison group receiving
nonLogo creativity experiences (word processing and graphics programs) and a
nontreatment control group on an assessment of figural creativity. In addition, the Logo
group significantly outperformed the control group on an assessment of verbal creativity.
These results support the hypothesis that Logo was enhancing not just students’ figural
knowledge, but the processes involved in creative though.
Future Research. As with problem solving and higher-order thinking, we need to know
more about the characteristics of computer programming, and mediated computer
programming environments, that lead to the development of specific components of
creativity.

SOCIAL-EMOTIOANL DEVELOPMENT

Contrary to a popular view of programmers held by nonprofessionals strong beneficial
effects of computer programming have been reported in the area of social and emotional
development. Teachers report that students exposed to computer programming are more
likely to interact with their peers. They engage in group problem solving, sharing, and
acknowledging expertise and creative thinking. Social isolates benefit the most
(Carmichael et al., 1985; St. Paul Public Schools, 1985). Children are eager to cooperate
and share what they have learned with others (Genishi, 1988). Thus, computer-
programming environments can facilitate social interaction and positively focus that
interaction on learning.

Research also indicates that students learn to solve social problems cooperatively and
flexibly in Logo classrooms (Carmichael et al., 1985). One study indicated that students
work cooperatively more often on computers—with either Logo or CAI drill—than off
(Clements & Nastasi, 1985). Interestingly, they also got into more conflicts (possibly
because they interacted more). Conflicts alone can be important. In another study,
students working in Logo, compared to those working in spreadsheet and paper-and-
pencil environments, experienced more conflicts, which had the effect of destabilizing
inappropriate solutions before students formed incorrect generalizations. This helped

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 8

students keep “on track” (Hoyles et al., 1991). These conflicts, and the social interaction
at the computer, have been identified as leading to positive gains in learning (Healy,
Pozzi, & Hoyles, 1995).

Additional research has found that not only does Logo generate useful conflicts, but also
that students working with Logo, compared to students working with CAI programs, are
more likely to resolve these conflicts (Clements & Nastasi, 1985). After experiencing
CAI drill, students generated more oppositional behaviors in their noncomputer drill
work. They may have found that this drill lacked the excitement of the CAI drill
(Clements & Nastasi, 1985).

In a similar vein, students working together on Logo tasks spent a significant proportion
of their time resolving conflicts (Lehrer & Smith, 1986b). Finally, research indicates that
the type of conflict—social or cognitive—is critical (Nastasi, Clements, & Battista,
1990). Students working in Logo evinced more cognitive conflict, and attempts at and
successes in resolution of these conflicts, than those working with CAI did. Differences
were not evident for social conflict or its resolution. Thus, the effects of Logo seemed to
be specific to disagreements about ideas. Moreover, only those behaviors indicative of
cognitive conflict were related to scores on a measure of problem solving (higher-order
thinking). In particular, it was the successful resolution of those conflicts, more than the
occurrence or attempts to resolve, that accounted for variability in problem-solving
performance. Opportunities to experience and resolve conflicts are necessary for the
development of problem-solving competencies. Therefore, Logo contexts may enhance
the development of social and cognitive problem-solving skills.

To optimize learning, educators must also consider goals and tasks. Paired work at the
computer coupled with the coordination of others’ perspectives in group discussions, may
be most advantageous for learning conceptually based mathematics. In contrast, for
certain “technology-driven” tasks, in which ideas are directly generated from computer-
based actions, concentrated work at the computer may prove to be more efficient (Healy
et al., 1995). Thus, there may be times when individual work is more beneficial and
computer feedback (alone) adequate (Hughes & Greenhough, 1995).

According to their teachers, students working with Logo experience an increase in self-
esteem and confidence. This may occur only if their teacher gives them greater
autonomy over their learning and fosters social interaction (Carmichael et al., 1985; Fire
Dog, 1985; Kull, 1986). Logo can provide special needs students with prestige and
respect from their peers, enhancing their self-esteem (Michayluk, Saklofske, & Yackulic,
1984). Attitudes toward learning are positively affected in some classrooms (Assaf,
1986; Blumenthal, 1986; Carmichael et al., 1985; Findlayson, 1984b), but not others
(Horner & Maddux, 1985; Milojkovic, 1984). So, this effect may be sensitive to many
factors in the classroom environment that remain to be researched.

Students working in Logo environments engage in more self-directed explorations and
show more pleasure at discovering phenomena (Clements & Nastasi, 1985; Clements &
Nastasi, 1988). Findings regarding locus of control are mixed, but possess one consistent

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 9

and interesting pattern: Students experiencing Logo did appear to judge situations for
themselves and accept responsibility for their actions (Blumenthal, 1986; Horner &
Maddux, 1985). Recent studies indicate that Logo may enhance internal locus of control
for preschool children (Bernhard & Siegel, 1994). Similarly, Logo can increase mastery-
oriented thinking and a belief that one can work to become more intelligent (Burns &
Hagerman, 1989).

In summary, research suggests that (a) educators build classroom cultures that encourage
students to take responsibility for their own learning; (b) to engage in tasks that are
challenging, but not too difficult or too easy; and (c) to work cooperatively, asking each
other questions (King, 1989), engaging in cognitive conflicts, and always working to
resolve them through discussion of ideas and negotiation (Clements & Nastasi, 1988;
Hoyles et al., 1991). This should not be taken to mean that children should always work
together, however; a balance of cooperative and individual work may be ideal. A
combination of structured interdependence and individual autonomy, with a high-status
student coordinator, may be best (Hoyles, Healy, & Pozzi, 1994).

Future research. Although this is already a comprehensive list of implications, future
research on social development could go further. What is the contribution of each of
these characteristics of computer programming environments? Do other computer and
noncomputer activities offer similar advantages? If so, what features are critical?
Similarly, computer programming may have the power to enhance students’ self-esteem
and attitudes toward school. However, not much is known about the mechanisms of that
enhancement. Such knowledge would help address contradictions in the literature, such
as those concerning locus of control. More broadly, it would help us learn how to more
effectively enhance a broad range of social and emotional competencies.

INNOVATIONS AND A NEED FOR RESEARCH

Several new approaches to computer programming have created new areas in need of
research. Examples are presented in the following section.

Projects With Computer Programming

One promising educational application of computer programming is the creation of
projects. For example, 4th-grade students designed software to teach fractions to 3rd-
graders (Harel, 1991). Students were given both the freedom and the responsibility to
create their own designs. Similarly, they were responsible for learning about fractions and
about ways to represent fractions so that other students could learn about them. The
students were divided into three groups: the instructional design (ID) group and two
comparison groups. The first comparison group was given the same amount of exposure
to Logo programming as the ID group. This exposure was integrated with various
curriculum topics; however, the projects tended to be short and assigned by the teacher.
The second comparison group received Logo once a week in a computer literacy course.
The ID group showed greater mastery of both Logo and fractions than the two
comparison groups, because they had created a rich variety of ways to represent fractions

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 10

for a real audience. They (a) divided a circle into four regions and flashed two on and off
to show two-fourths with the written text “two-fourths;” (b) showed an animated clock;
and (c) showed a one-dollar bill with four quarters underneath, two of which moved and
stopped near the written words “two-fourths of one dollar.”

In another study, a different group of 4th-graders designed computer games to teach 3rd-
graders about fractions (Kafai, 1993). Compared to other groups, students who designed
games improved significantly in their knowledge of Logo programming and fractions,
although fraction knowledge did not increase as much as in the Harel study.
Therefore, conducting computer programming design projects has potential for learning.
A good environment—one with features that support the designing—offers real
advantages to this type of design activity. A useful aspect of Logo in these studies
appears to be giving students control over their own representations of mathematical
ideas. Various pictures, animations, and texts can be composed, selected, and combined.
Future research might conjecture and test what other types of tools and affordances
support rich projects. Further, these two projects have shown what intensive four months
of meaningful Logo experience can do. We have yet to see an investigation of several
year’s use of programming (Clements & Meredith, 1993). This may represent the least
realized potential of computer programming. Only after years of consistent, creative use
will children truly use programming as a powerful thinking tool. A substantive
contribution to educational research would be made by those willing to investigate what
students can do and learn after programming computer projects throughout their
educational career.

Robotics

Using LEGO-Logo, students create Lego structures, including lights, sensors, motors,
gears, and pulleys, as well as Logo programs that control these structures. As with the
computer programming projects previously discussed, such activity can be fruitful. For
example, 4th-grader Kevin started by building a car out of LEGO (Resnick, 1988). The
car moved forward a bit, but then the motor fell off and vibrated across the table. The
movement interested Kevin. He wondered if he could use the vibrations to power the
vehicle. He mounted a motor on a LEGO base and learned that he could control his
“walker,” turning it to the right when the motor rotated in one direction, left when It
rotated in the other. There are only a few studies on such robotic environments. These
studies suggest that such experiences can positively affect mathematical achievement
(Browning, 1991; Enkenberg, 1994; Flake, 1990; Weir, 1992), although one control
group showed higher gains in computation than did the LEGO-Logo group (Flake, 1990).
LEGO-Logo appears to provide authentic learning tasks (Lafer & Markert, 1993),
motivate and empower students as well, and possibly develop self-esteem (Silverman,
1990; Weir, 1992).

Future research is sorely needed. We have but scratched the surface of investigating
what might be done in LEGO-Logo and other robotic environments in which computer
languages are used to control machines.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 11

Redesigning Computer Languages Based on Research

Turtle Math was born in previous research on educational computer programming. We
abstracted five principles and designed Turtle Math based on these principles so as to
fine-tune it for the learning of geometry and other mathematical topics (Clements &
Sarama, 1995).

For example, the nature of programming creates the need to make relationships between
symbols (code) and drawings explicit. Research indicates that this is a crucial advantage
of programming, but also that students often lose the psychological connection between
the two. There are, then, two issues for a Logo programming environment. First is the
issue of immediate mode programming vs. the use of procedures. Students (especially
novices) often prefer this exploratory mode and find it easier to make sense of tasks.
Further, immediate mode encourages students to take a more global perspective on the
task and to look for structure within their program design (Hoyles & Noss, 1987). In
contrast, use of procedures can lead to a separation between symbols and drawings
(Hoyles & Noss, 1988). Finally, students working in immediate mode also are more
likely to abandon inappropriate solution strategies before they make incorrect
generalizations, which keeps them on track. These results lead to the following features
of Turtle Math. Students enter commands in “immediate mode” in a command window,
or as procedures in a “teach” window, but usually in the former. Any change to
commands in either location, once accepted, are reflected automatically in the drawing.
A tool copies these into the teach window, applies a student-supplied name, and thus
defines the procedure. The dynamic link between the commands in the command
window and the geometry of the figure is critical. Any change in the commands leads to
a corresponding change in the figure, so that the commands in the command window
precisely reflect the geometry in the figure. So, the Logo code in the command window
stands halfway between traditional immediate mode records and procedures created in an
editor, helping link the symbols and drawing.

The second basic issue is the direction of the symbol-drawing connection. One of Logo’s
main strengths has been its support of linkages between drawings and symbols. One of
its limitations has been in the lack of two-way connection between these modes. That is,
one creates or modifies symbolic code to produce visual drawings, but not the reverse.
Turtle Math provides two tools to support that reversal. A “draw commands” tool allows
the student to use the mouse to turn and move the turtle, with corresponding Logo
commands created automatically. A “change shape” tool allows students to click on a
corner or side of a path and drag it to a new location. The commands in the Command
window are updated automatically.

A series of classroom-based studies have indicated that Turtle Math as implemented does
realize the potential posited in the five principles upon which it was designed and was
efficacious in supporting mathematical development along the lings of current
mathematics reform recommendations (Clements & Sarama, 1997a; Sarama, 1995).
Students’ integration of number and geometry was especially potent in the Turtle Math
environment, which provided meaningful tasks. The geometric setting provided both

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 12

motivations and models for thinking about number and arithmetic together. The
motivations included game settings and the desire to create shapes and designs. The
models included length and turn as settings for building a strong sense of both numbers
and operations on numbers, with meaning and labeling tools supporting such
construction. Separate studies revealed positive effects on students’ concepts and length
(Clements et al., 1997) and angle (Clements, Battista, Sarama, & Swaminathan, 1996).
In addition, the numerical aspects of the measures provided a context in which students
had to attend to certain properties of geometric forms. The measure made such properties
(e.g., opposite sides equal) more concrete and meaningful to the students. In addition, the
change in problem situation encouraged the use of larger number units. The dynamic
links between these two domains structured in the Turtle Math environment (e.g., a
change in code automatically reflected in a corresponding change in the geometric figure)
facilitated students’ construction of connections between their own number and spatial
schemes.

In regular, sequential, computer languages there is a single process that runs instructions
one-step at a time. One of the many recent innovations in various versions is the addition
of parallel programming. Also called “concurrent” or “multiprocessing,” this feature
allows programmers to control multiple, interacting processes. Fourth and fifth-graders
used a multiprocessing Logo to control the concurrent actions of robotic machines; one of
the main findings was the emergence of new types of conceptual errors, or “bugs” in
students’ programming due to parallel processing (Resnick, 1990).
Resnick extended this work to investigate people’s thinking about decentralized systems
in the context of StarLogo, a version of Logo that simultaneously controls hundreds or
thousands of turtles. He worked with high school students on projects ranging from (a)
simulations of slime mold (which, when food is scarce, stop reproducing and move
toward one another, forming a cluster with tens of thousands of cells that act as a whole),
(b) ants, (c) traffic jams, and (d) geometry. Students’ design of StarLogo programs often
was based on an unquestioned assumption of a “leader” or an “outside force” or “seed”
for change. For instance, people would quickly assume that a radar trap might cause
traffic jams, or an accident. They predicted that without such outside forces, “there was
nothing,” so traffic would proceed smoothly. However, traffic slowdowns and jams
emerge even with no seed and no leader. Across a variety of areas, the simplest and most
accurate programs did not use “leads or seeds.” Instead, they used myriad interactions
among objects or beings following a few simple rules. Centralized thinking seems a
strong bias in our thinking.

Future research is needed to explain more fully the benefits of such new versions of
computer programming languages. In addition, there are many other versions of
computer programming languages, many with graphical interfaces. A gaping hole in the
research is the lack of systematic investigations of the advantages and disadvantages of
these languages for learning and doing computer programming and for learning via
computer programming. We also need research on programming environments that go
beyond the traditional text-based language.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 13

LEARNING COMPUTER PROGRAMMING

Early research has identified that students employ different strategies in programming
tasks. Often two categories are used, usually reflecting variations on a top-down vs.
bottom-up dichotomy (Papert, Watt, diSessa, & Weir, 1979; Singh, 1992). The top-
down, analytic style is often associated with more proficiency (Dytman & Wang, 1984).
However, students often combine the styles (Lemerise, 1992) and some benefit from
being allowed to “tinker” in a bottom-up manner at first before planning in a top-down
manner (Noss, 1984). Individual differences affect such strategies (Allen, Watson, &
Howard, 1993; Van Merriënboer, 1990; Yelland, 1994b).

Researchers have also identified stages students pass through in learning computer
programming. For example, 1st-graders showed three phases (Kull, 1986). At the first,
children practiced in immediate mode, took notes, then copied the code from the
notebook onto the screen in the editor, often including the errors. They then ran the
procedures, noted the bugs, and learned how to edit. They soon wrote down only the
moves that worked. At the second stage, children recognized that this process was
cumbersome, and began planning several moves ahead, writing them down, then
checking them for accuracy in immediate mode, and finally adding them to a procedure.
At the third stage, children began writing whole procedures at once. The time spent
drawing and taking notes constituted an important developmental step in learning to
program effectively.

Older students show three stages of learning Logo programming (Howe, 1980): (a)
product oriented, in which the student attempts to produce effects without concern for the
method used; (b) style-conscious, in which effort is made to program in a correct style (as
defined by worksheets); and (c) creative problem solving, in which Logo was used for
analytic activities, including the adaptation of other procedures and the use of plans for
solving problems.

These and other (Singh, 1992) attempts to delineate stages of learning computer
programming may serve as useful frameworks and provide educators with insights into
children’s learning. However, they are sensitive to the educational context. In addition,
with few exceptions, this body of work is based on anecdotal observation and intuition.
Future work, involving increased specificity and assessment reliability, needs to be done
if developmental stages are to be validated and applied to teaching.

Some studies have investigated factors that predict students’ ability to learn computer
programming and thus may be required for that learning. Many such factors have been
mentioned in the literature, including (a) mathematical ability, b) processing capacity, (c)
analogical reasoning, (d) conditional reasoning, (e) procedural thinking, and (f) temporal
reasoning (Pea & Kurland, 1984). However, empirical evidence on such factors and their
role has been mixed. General development, such as in Piagetian theory, appears to
predict the ability to learn some concepts of computer programming, although not
precisely (Folk, 1973). Different abilities are required for different programming tasks
(Bishop-Clark, 1995; Clements, 1985). Certain mathematical (Singh, 1992), spatial

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 14

(Easton & Watson, 1993), and problem-solving abilities appear to be involved. A review
of cognitive style and personality factors concluded that success in learning computer
programming can be predicted by field independence, divergent thinking, and to a lesser
extent, a reflective (rather than impulsive) cognitive style and internal locus of control
(Bishop-Clark, 1995).

Students prefer working with computers in a computer laboratory rather than learning
about them in the classroom (Schofield, 1995). This increase in enjoyment and
motivation seems due to relations between students and teachers becoming more
collegial, a change consistent with the constructivist emphasis on challenging learners’
existing notions in ways that will foster the development of even more viable ones.
Future research needs to address the roles of each and determine whether these abilities
must be taught as prerequisites (or, for example, they might be learned simultaneously
with computer programming). Some factors may be culturally determined. For example,
previous experience with computers predicts performance in college computer science
courses (Kersteen, Linn, Clancy, & Hardyck, 1988). Males have more prior experience,
especially in advanced computer science topics, than females, often gained outside of
school through “hacking” and unguided exploration. It may be that an initial course
should be graded pass/fail and decisions concerning who will be permitted into the major
be help in abeyance until the experience level of students is somewhat equalized.
Further, more educational computer experience, and new appealing learning
opportunities, should be offered to girls before college.

Research in all three of these areas, strategies, stages, and requisites, needs to be updated,
extended, and combined in the future. Many issues have been addressed only by a small
number of studies. In addition, computer programming usually has been measured as a
single activity; however, it has separate and distinct phases, such as (a) problem
representation, (b) program design, (c) coding, and (d) debugging. It may be that certain
cognitive styles and personality dimensions affect some phases but not others (Bishop-
Clark, 1995). Further, even the directionality of the connections must be addressed. For
example, while certain factors may influence how well or how quickly students learn
computer programming, it might also be that computer programming affects these
factors. For example, a small amount of research indicates that computer programming
can cause students to become (a) more field independent, (b) more reflective, and (c)
more divergent thinkers (Bishop-Clark, 1995; Clements, 1995). Longitudinal and
qualitative studies will further help address such questions.

We also need qualitative and experimental studies that examine how such information
might be used in teaching. Should students with different profiles be taught in different
ways? Is there a way for teachers to structure activities to help ensure that dependent
students achieve their highest potential (Bishop-Clark, 1995)? Such research is
important, as teaching strategies are not straightforward. For example, one might assume
that encouraging or “forcing”” impulsive students to be more reflective would be
effective. However, the opposite has been found (Van Merriënboer, 1990). It appears
that forcing students (either impulsive or reflective) to use the opposite strategy does not

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 15

allow them to apply their own cognitive style, and thus they learn less. However, more
intensive cognitive style training may still be effective.

TEACHING AND TEACHING WITH COMPUTER PROGRAMMING

Research has only begun to address the complex questions of teaching computer
programming as a discipline and teaching with computer programming as a means to
reach other goals. Teaching in computer environments seems to differ from off-computer
instruction; for example, student-teacher interactions may be more student-centered and
individualized. There can be up to 17 times more individual interactions (Swan &
Mitrani, 1993). Many factors affect such teaching. The amount of inquiry-based
teaching, for example, is affected by the teaching style that predominates in the school
(Tanner, 1992). Individual teachers pose different tasks and hold different aims for
teaching computer programming (many of which are uncertain). Instructional practices
influence what students learn in Pascal programming classes (Husic, Linn, & Sloane,
1989). For example, often introductory students, who learn mostly syntax, benefit from
direct instruction; in comparison, AP (Advanced Placement) students learned to plan and
debug complex problems most effectively with less direct guidance and more
opportunities for autonomy.

Research also has affirmed that the teacher’s role is critical (Dalbey & Linn, 1986;
Delclos & Burns, 1993; Keller, 1990; McGill & Volet, 1997). Teacher mediation
appears to involve multiple actions. Effective teachers appear to plan and oversee
computer programming experiences to ensure that students reflect on and understand the
mathematical concepts (McCoy, 1996, p. 443). Research indicates that they (a) select or
create tasks designed to achieve educational goals, (b) focus students’ attention on
particular aspects of their experience, (c) educe informal language and provide formal
mathematical language for the mathematical concepts, (d) emphasize planning for
algorithm development, (e) suggest paths to pursue, (f) provide metacognitive prompts
and asking higher-order questions, (g) facilitate disequilibrium using computer feedback
as a catalyst, (h) provide tailored feedback regarding students’ problem-solving efforts,
(I) discuss errors and common misunderstandings, (j) continually connect the ideas
developed to those embedded in other contexts, (k) provide modeling and coaching, and
(l) promote both student-teacher and student-student interaction.
Future research should ascertain which aspects or combination of aspects on this rather
intimidating list are necessary and sufficient. It is needed to answer related questions.
How are these (effectively) instantiated in a computer-programming environment? Are
they different in computer programming than in other environments? How d they
interact with the environment in unique ways?

Future research also needs to build on the following additional initial findings. Learning
in unstructured computer programming environments may be troubled by unreflective
use of tools and avoidance of mathematical analysis (Noss & Hoyles, 1992). What
versions of languages, curricula, and teaching strategies could maintain the benefits while
mitigating the disadvantages? Effects may be more positive if programming is integrated
into the curriculum (Clements & Meredith, 1994; Hoyles & Noss, 1987). How might that

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 16

best be done (especially considering the lack of knowledge and even resistance to such
integration that is undoubtedly present in some educators; see the following section)?
Delicate balances have been necessary both between teacher structuring and students
explorations, and cooperative endeavors and time for solitary work (Heller, 1986).
Structured curricula and activities may enable teachers with less knowledge of computer
programming (Tanner, 1992). Young children appear to benefit from modifications to
computer programming environments (Genishi, 1988; Watson, Lange & Brinkley, 1992).
What types of environments are ideal? Equity should remain a concern; home owners of
computer out perform nonowners (Nichols, 1992). What can be done to achieve and
maintain equal access?

IMPLEMENTATION AND PROFESSIONAL DEVELOPMENT

Integrating computer programming into the curriculum is a challenge, especially in that
many implicit beliefs and structures of teachers and schools stand in contraposition to
goals of this integration (c.f., Moreira & Noss, 1995). In one study (Sarama, Clements, &
Henry, 1998), both teachers and administrators initially thought the computer lab was
ideal. Later, teachers realized that one or two blocks of time per week represented
inadequate access, but though this was communicated, the administrators believed that
schedule readjustment was adequate. As another example, administrators saw multiple
simultaneous reform efforts as mutually reinforcing. However, they overwhelmed the
teachers, who named ten different reforms they were implementing that year—reforms
that they believed were separate demands. Thus, personal, emotional, and social
dimensions are at least as critical as professional and cognitive dimensions. Some of
these dimensions might be addressed in professional development. Those in charge of
such development should recognize that change of critical beliefs and attitudes takes
considerable time. It can be beneficial, but if difficulty levels are not carefully
monitored, some teachers may develop more negative attitudes toward programming per
se (Brownell, 1993; Moreira & Noss, 1992).

Future research faces an important challenge in determining how to address the myriad
systemic factors that affect the success of implementations of computer programming
curricula both in elementary schools and in professional development schools. This may
be especially important if such research confirms that
Programming, especially when using LOGO as a discovery environment, allows for a
diverse range of styles to manifest themselves, not only to teachers, but to the instructors
of teachers. The programming assignment [in comparison to other applications, such as
CAI, spreadsheets, databases, and word processing] becomes a mirror for the teachers to
recognize their own style strengths and weaknesses. They are able to reflect on that
information and use it as insight into how they would teach computer literacy and, more
significantly, how they would deliver and design curricula in general. As an
observational tool for instructors and a platform for teachers to examine their won
learning, the Logo environment provides the springboard for mindful consideration and
reflection of learning and teaching preferences that impact teaching practice (Howard &
Howard, 1994, p. 27).

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 17

FINAL WORDS

Depending on the environment in which it is embedded, computer programming can
constitute a trivial enterprise or a variegated educational experience. From an optimistic
perspective, it could be claimed that few educational environments have shown consistent
benefits of such a wide scope, from the development of academic knowledge and
cognitive processes to the facilitation of positive social and emotional climates. Yet,
somewhat paradoxically, realizing these multifarious benefits does not imply lack of
focus: Integration into one or more subject matter areas maximizes positive effects. A
critical factors, however, is a clear and elaborated vision of the goals of Logo experience-
—shared among administrators, curriculum developers, teachers, and students. Such a
vision provides a gyroscope that guides the myriad activities of educators: (a)
administration, (b0 curriculum development, (c) lesson guidance, and (d) moment-by-
moment interactions with students.

Research could do much more, however, to help us fully understand and realize this
potential. We need to learn to operationalize and optimize the complex webs of variables
that determine the effectiveness of educational computer programming. We need
continuing research and development to expand our knowledge of what students and
teachers learn in various computer-programming classrooms. This research should
include a wide range of methodologies and assessments. Standardized tests do not
measure many concepts and skills developed in Logo (Butler & Close, 1989).
Many of the conjectures and theories related to educational computer programming have
been abstracted post hoc. We need studies that provide experimental tests of these
hypotheses. We know far too little about how the unique features of computer
programming environments interact with the goals and content of the domain and the
particular features of various teaching and learning situations to promote learning and
development.

We need to know if other computer environments offer more, the same, or less than
computer programming environments. In a similar vein, we need to know whether
aspects of computer programming should be embedded into other environments, as it is
being increasingly embedded in other applications, from spreadsheets to word processing
to operating systems.

Future research could also address several related and far-reaching questions. How can
computer programming be successfully implemented in elementary schools and graduate
schools of education in a manner consistent with systemic reform? Does the fascination
of our country’s desire for new technology relegate computer programming to history?
That is, can we expect to have educators produce and use mathematically simple, but
multimedia-enhanced word problems because they are today’s bandwagon rather than
mathematically richer programming environments? The creation of new version of
programming languages will not mean much if such a narrow view predominates. On the
other, optimistic side, the philosophy, goals, and pedagogies of computer programming in
education have closely matched those in reform recommendations (National Council of
Teachers of Mathematics, 1989). Ironically, educators who support those reform

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 18

movements previously called such philosophies “romantic” and “unrealistic.” The next
century is the time to rebuild bridges. A major issue to investigate is what students can
do and learn after programming computer projects throughout their educational career.
The tantalizing suggestions of long-term and delayed effects of computer programming
suggest unrealized potential of such a long-rage approach (Clements & Gullo, 1984;
Johnson-Gentile, Clements & Battista, 1994; Ortiz & Miller, 1991).
We need research across the spectrum. From the traditional hypothesis tests that will
evaluate the many (usually post hoc) conjectures and initial results in the literature to
exploratory studies that stretch the conceptions of what computer programming and
education might be.

References

Allen, J., Watson, J.A., & Howard, J.R. (1993). The impact of cognitive styles on the
problem solving strategies used by preschool minority children in Logo
microworlds. Journal of Computing in Childhood Education, 4, 203-217.

Assaf, S.A. (1986). The effects of using Logo turtle graphics in teaching geometry on
eighth grade students’ level of thought, attitudes toward geometry and knowledge
of geometry. Dissertation Abstracts International, 46,_2952A. (University
Microfilms No. DA8512288)

Barker, W.F., Merryman, J.D., & Bracken, J. (1988, April). Microcomputers, math CAI,
Logo and mathematics education in elementary school: A pilot study. Paper
presented at the meeting of the American Educational Research Association, New
Orleans.

Battista, M.T., & Clements, D.H. (1988). A case for a Logo-based elementary school
geometry curriculum. Arithmetic Teacher, 36, 11-17.

Battista, M.T., & Clements, D.H. (1991). Logo geometry. Morristown, NJ: Silver
Burdett & Ginn.

Bernhard, J.K., & Siegel, L.S. (1994). Increasing internal locus of control for a
disadvantaged group: A computer intervention. Computers in the Schools, 11(1),
59-77.

Billings, L.J., Jr. (1986). Development of mathematical task persistence and problem-
solving ability in fifth and sixth grade students through the use of Logo and
heuristic methodologies. Dissertation Abstracts International, 47, 2433A.

Bishop-Clark, C. (1995). Cognitive style, personality, and computer programming.
Computers in Human Behavior, 11(2), 241-260.

Blumenthal, W. (1986). The effects of computer instruction on low achieving children’s
academic self-beliefs and performance. Unpublished doctoral dissertation, Nova
University, Fort Lauderdale, FL.

Bowman, B.T. (1985, November). Computers and young children. Paper presented at
the meeting of the National Association for the Education of Young Children,
New Orleans, LA.

Brownell, G. (1993). Preservice teachers in a computer utilization in the classroom
course: An overview of four studies. In N. Estes & M. Thomas (Eds.), Rethinking
the roles of technology in education (pp. 143-145). Cambridge, MA: MIT.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 19

Browning, C.A. (1991). Reflections on using Lego®TC Logo in an elementary
classroom. In E. Calabrese (Ed.), Proceedings of the Third European Logo
Conference (pp. 173-185). Parma, Italy: Associazione Scuola e Informatica.

Bruggeman, J.G. (1986). The effects of modeling and inspection methods upon problem
solving in a computer programming course. Dissertation Abstracts International,
47, 1821A. (University Microfilms No. DA8619363)

Burns, B., & Hagerman, A. (1989). Computer experience, self-concept and problem-
solving: The effects of Logo on children’s ideas of themselves as learners.
Journal of Educational Computing Research, 5, 199-212.

Butler, D., & Close, S. (1989). Assessing the benefits of a Logo problem-solving course.
Irish Educational Studies, 8, 168-190.

Campbell, P.F. (1987). Measuring distance: Children’s use of number and unit. Final
report submitted to the National Institute of Mental Health Under the ADAMHA
Small Grant Award Program. Grant No. MSMA 1 R03 MH423425-01.
University of Maryland, College Park.

Carmichael, H.W., Burnett, J.D., Higginson, W.C., Moore, B.G., & Pollard, P.J. (1985).
Computers, children and classrooms: A multisite evaluation of the creative use of
microcomputers by elementary school children. Toronto, Ontario, Canada:
Ministry of Education.

Choi, W.S., & Repman, J. (1993). Effects of Pascal and FORTRAN programming on
the problem-solving abilities of college students. Journal of Research on
Computing Education, 25(3), 290-302.

Clements, D.H. (1983-84). Supporting young children’s Logo programming. The
Computing Teacher, 11(5), 24-30.

Clements, D.H. (1985). Research on Logo in education: Is the turtle slow but steady, or
not even in the race? Computers in the Schools, 2, 55-71.

Clements, D.H. (1986). Effects of Logo and CAI environments on cognition and
creativity. Journal of Educational Psychology, 78, 309-318.

Clements, D.H. (1987). Longitudinal study of the effects of Logo programming on
cognitive abilities and achievement. Journal of Educational Computing
Research, 3, 73-94.

Clements, D.H. (1990). Metacomponential development in a Logo programming
environment. Journal of Educational Psychology, 82, 141-149.

Clements, D.H. (1991). Enhancement of creativity in computer environments.
American Educational Research Journal, 28, 173-187.

Clements, D.H. (1995). Teaching creativity with computers. Educational Psychology
Review, 7(2), 141-161.

Clements, D.H., & Battista, M.T. (1988, November). The development of geometric
conceptualizations in Logo. Paper presented at the meeting of the International
Group for the Psychology in Mathematics Education—North American Chapter,
DeKalb, IL.

Clements, D.H., & Battista, M.T. (1989). Learning of geometric concepts in a Logo
environment. Journal for Research in Mathematics Education, 20, 450-467.

Clements, D.H., & Battista, M.T. (1992a). The development of a Logo-based elementary
school geometry curriculum (Final Report: NSF Grant No.: MDR-8651668).

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 20

Buffalo, NY/Kent, OH: State University of New York at Buffalo/Kent State
University.

Clements, D.H., & Battista, M.T. (1992b). Geometry and spatial reasoning. In D. A.
Grouws (Ed.), Handbook of research on mathematics teaching and learning, (pp.
420-464). New York: Macmillan.

Clements, D.H., Battista, M.T., Sarama, J., Swaminathan, S., & McMillen, S. (1997).
Students’ development of length measurement concepts in a Logo-based unit on
geometric paths. Journal for Research in Mathematics Education, 28(1), 70-95.

Clements, D.H., & Gullo, D.F. (1984). Effects of computer programming on young
children’s cognition. Journal of Educational Psychology, 76, 1051-1058.

Clements, D.H., & Meredith, J.S. (1993). Research on Logo: Effects and efficacy.
Journal of Computing in Childhood Education, 4, 263-290.

Clements, D.H., & Nastasi, B.K. (1985). Effects of computer environments on social-
emotional development: Logo and computer-assisted instruction. Computers in
the Schools, 2(2-3), 11-31.

Clements, D.H., & Nastasi, B.K. (1988). Social and cognitive interactions in educational
computer environments. American Educational Research Journal, 25, 87-106.

Clements, D.H., & Nastasi, B.K. (1992a). Computers and early childhood education. In
M. Gettinger, S.N. Elliott, & T.R. Kratochwill (Eds.), Advances in school
psychology: Preschool and early childhood treatment directions (pp. 187-246).
Hillsdale, NJ: Lawrence Erlbaum.

Clements, D.H., & Nastasi, B.K. (1992b). The role of social interaction in the
development of higher-order thinking in Logo environments. In E. De Corte, M.
C. Linn, H. Mandl, & L. Verschaffel (Eds.), Computer-based learning
environments and problem solving (pp. 229-248). Berlin-Heidelberg-New York:
Springer-Verlag.

Clements, D.H., & Sarama, J. (1995). Design of a Logo environment for elementary
geometry. Journal of Mathematical Behavior, 14, 381-398.

Clements, D.H., & Sarama, J. (1997a). Children’s mathematical reasoning with the
turtle metaphor. In L.D. English (Ed.), Mathematical reasoning: Analogies,
metaphors, and images (pp. 313-337). Hillsdale, NJ: Lawrence Erlbaum.

Clements, D.H., & Sarama, J. (1997b). Research on Logo: A decade of progress.
Computers in the Schools, 14(1-2), 9-46.

Dalbey, J., & Linn, M. (1986). Cognitive consequences of programming:
Augmentations to BASIC instruction. Journal of Educational Computing
Research, 2, 75-93.

Dalton, D.W. (1985). A comparison of the effects of Logo and problem-solving strategy
instruction on learner achievement, attitude, and problem-solving skills.
Unpublished doctoral dissertation, University of Colorado.

De Corte, E., & Verschaffel, L. (1989). Logo: A vehicle for thinking. IN B. Greer & G.
Mulhern (Eds.), New directions in mathematics education (pp. 63-81).
London/New York: Routledge.

Delclos, V.R., & Burns, S. (1993). Mediational elements in computer programming
instruction: An exploratory study. Journal of Computing in Childhood Education,
4, 137-152.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 21

du Boulay, B. (1986). Part II: Logo confessions. In R. Lawler, B. du Boulay, M.
Hughes, & H. Macleod (Eds.), Cognition and computers: Studies in learning (pp.
81-178). Chichester, England: Ellis Horwood.

Dvarskas, D.P. (1984). The effects of introductory computer programming lessons on
the learners’ ability to analyze mathematical word problems. Dissertation
Abstracts International, 44, 2665A. (University Microfilms No. DA8400949)

Dytman, J.A., & Wang, M.C. (1984, April). Elementary school children’s accuracy and
strategy use in problem solving. Paper presented at the meeting of the American
Educational Research Association, New Orleans, LA.

Easton, C.E., & Watson, J.A. (1993). Spatial strategy use during Logo mastery: The
impact of cognitive style and developmental level. Journal of Computing in
Childhood Education, 4, 77-96.

Enkenberg, J. (1994). Situated programming in a LEGOLogo environment. Computers
and Education, 22(1-2), 119-28.

Findlayson, H.M. (1984a). The transfer of mathematical problem solving skills from
Logo experience. D.A.I. Research Paper No. 238. Unpublished manuscript,
University of Edinburgh, Edinburgh, Scotland.

Findlayson, H.M. (1984b, September). What do children learn through using Logo?
D.A.I. Research Paper No. 237. Paper presented at the meeting of the British
Logo Users Group Conference, Loughborough, U.K.

Fire Dog, P. (1985). Exciting effects of Logo in an urban public school system.
Educational Leadership, 43, 45-47.

Flake, J.L. (1990). An exploratory study of Lego Logo. Journal of Computing in
Childhood Education, 1(3), 15-22.

Folk, M.J. (1973). Influences of developmental level on a child’s ability to learn
concepts of computer programming. Dissertation Abstractions International, 34,
1125A. (University Microfilms No. 73-19, 806)

Frazier, M.K. (1987). The effects of Logo on angle estimation skills of 7th graders.
Unpublished master’s thesis, Wichita State University.

Genishi, C. (1988). Kindergartners and computers: A case study of six children. The
Elementary School Journal, 89, 184-201.

Genishi, C., McCollum, P., & Strand, E.B. (1985). Research currents: The interactional
richness of children’s computer use. Language Arts, 62(5), 526-532.

Hamada, R.M. (1987). The relationship between learning Logo and proficiency in
mathematics. Dissertation Abstracts International, 47, 2510-A.

Harel, I. (1991). Children designers. Norwood, NJ: Ablex.
Healy, L., Pozzi, S., & Hoyles, C. (1995). Making sense of groups, computers, and

mathematics. Cognition and Instruction, 13(4), 505-523.
Heller, R.S. (1986). Different Logo teaching styles: Do they really matter. In E.

Soloway & S. Iyengar (Eds.), Empirical studies of programmers (pp. 117-127).
Norwood, NJ: Ablex.

Hiebert, J., & Carpenter, T.P. (1992). Learning and teaching with understanding. In D.
A. Grouws (Ed.), Handbook of research on mathematics teaching and learning
(pp. 65-97). New York, Macmillan.

Hillel, J., & Kieran, C. (1988). Schemas used by 12-year-olds in solving selected turtle
geometry tasks. Recherches en Didactique des Mathématiques, 8/1.2, 61-103.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 22

Hillel, J., & Samurçay, R. (1985). Analysis of a Logo environment for learning the
concept of procedures with variable. Unpublished manuscript, Concordia
University, Montreal.

Horner, C.M., & Maddux, C.D. (1985). The effects of Logo on attributions toward
success. Computers in the Schools, 2(2-3), 45-54.

Horton, J., & Ryba, K. (1986). Assessing learning with Logo: A pilot study. The
computing Teacher, 14(1), 24-28.

Howard, D.C.P., & Howard, P.A. (1994). Learning technology: Implications for
practice. Journal of Technology and Teacher Education, 2(1), 17-28.

Howe, J.A.M. (1980). Developmental stages in learning to program. In F. Klix & J.
Hoffmann (Eds.), Cognition and memory: Interdisciplinary research of human
memory activities. Amsterdam, NY: North-Holland.

Howell, R.D., Scott, P.B., & Diamond, J. (1987). The effects of “instant” Logo
computing language on the cognitive development of very young children.
Journal of Educational Computing Research, 3, 249-260.

Hoyles, C., Healy, L., & Pozzi, S. (1994). Groupwork with computers: An overview of
findings. Journal of Computer Assisted Learning, 10, 202-215.

Hoyles, C., Healy, L., & Sutherland, R. (1991). Patterns of discussion between pupil
pairs in computer and non-computer environments. Journal of Computer Assisted
Learning, 7, 210-228.

Hoyles, C., & Noss, R. (1988). Formalising intuitive descriptions in a parallelogram
Logo microworld. In A. Borbás (Ed.), Proceedings of the 12th Annual Conference
of the International Group for the Psychology of Mathematics Education (pp.
417-424). Veszprem, Hungary: International Group for the Psychology of
Mathematics Education.

Hoyles, C., & Noss, R. (1989). The computer as a catalyst in children’s proportion
strategies. Journal of Mathematical Behavior, 8, 53-75.

Hughes, M., & Greenhough, P. (1995). Feedback, adult intervention, and peer
collaboration in Initial LOGO learning. Cognition and Instruction, 13(4), 525-
539.

Hughes, M., & Macleod, H. (1986). Part II: Using Logo with very young children. In R.
Lawler, B. du Boulay, M. Hughes, & H. Macleod (Eds.), Cognition and
computers: Studies in learning (pp. 179-219). Chichester, England: Ellis
Harwood.

Husic, F.T., Linn, M.C., & Sloane, K.D. (1989). Adapting instruction to the cognitive
demands of learning to program. Journal Educational Psychology, 81, 570-583.

Johnson, P.A. (1986). Effects of computer-assisted instruction compared to teacher-
directed instruction on comprehension of abstract concepts by the deaf.
Unpublished doctoral dissertation, Northern Illinois University.

Johnson-Gentile, K., Clements, D.H., & Battista, M.T. (1994). The effects of computer
and noncomputer environments on students’ conceptualizations of geometric
motions. Journal of Educational Computing Research, 11, 121-140.

Kafai, Y.B. (1993). Minds in play: Computer game design as a context for children’s
learning. Unpublished Doctoral dissertation, Harvard University.

Keller, J.K. (1990). Characteristics of Logo instruction promoting transfer of learning:
A research review. Journal of Research on Computing in Education, 23, 55-71.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 23

Kersteen, Z.A., Linn, M.C., Clancy, M., & Hardyck, C. (1988). Previous experience and
the learning of computer programming: The computer helps those who help
themselves. Journal of Educational Computing Research, 4, 321-333.

Kieran, C. (1986). Logo and the notion of angle among fourth and sixth grade children.
In Proceedings of Psychology in Mathematics Education 10 (pp. 99-104).
London, England: City University.

Kieran, C., & Hillel, J. (1990). “It’s tough when you have to make the triangles angles”:
Insights from a computer-based geometry environment. Journal of Mathematical
Behavior, 9, 99-127.

King, A. (1989). Verbal interaction and problem-solving within computer-assisted
cooperative learning groups. Journal of Educational Computing Research, 5, 1-
15.

Kull, J.A. (1986). Learning and Logo. In P.F. Campbell & G.G. Fein (Eds.), Young
children and microcomputers (pp. 103-130). Englewood Cliffs, NJ: Prentice-
Hall.

Kynigos, C. (1992). The turtle metaphor as a tool for children’s geometry. In C. Hoyles
& R. Noss (Eds.), Learning mathematics and Logo (pp. 97-126). Cambridge,
MA: MIT.

Lafer, S., & Markert, A. (1994). Authentic learning situations and the potential of Lego
TC Logo. Computers in the Schools, 11(1), 79-94.

Lehrer, R., Guckenberg, T., & Lee, O. (1988). Comparative study of the cognitive
consequences of inquiry-based Logo instruction. Journal of Educational
Psychology, 80, 543-553.

Lehrer, R., Harckham, L.D., Archer, P., & Pruzek, R.M. (1986). Microcomputer-based
instruction in special education. Journal of Educational Computing Research, 2,
337-355.

Lehrer, R., Randle, L., & Sancilio, L. (1989). Learning pre-proof geometry with Logo.
Cognition and Instruction, 6, 159-184.

Lehrer, R., & Smith, P. (1986a, April). Logo learning: Is more better? Paper presented
at the meeting of the American Educational Research Association, San Francisco.

Lehrer, R., & Smith, P. (1986b, April). Logo learning: Are two heads better than one?
Paper presented at the meeting of the American Educational Research
Association, San Francisco, CA.

Lemerise, T. (1992). On intra- and interindividual differences in children’s learning
styles. In C. Hoyles & R. Noss (Eds.), Learning mathematics and Logo (pp. 191-
221). Cambridge, MA: MIT.

LeWinter, B.W. (1986). A study of the influence of Logo on locus of control, attitudes
toward mathematics, and problem-solving ability in children in grades 4, 5, 6.
Dissertation Abstracts International, 47, 1640A. (University Microfilms No.
DA8616959)

Liao, Y.K., & Bright, G.W. (1989). Computer programming and problem solving
abilities: A meta-analysis. In W. C. Ryan (Ed.), Proceedings of the National
Educational Computing Conference (pp. 10-17). Eugene, OR: International
Council on Computers for Education.

Littlefield, J., Delclos, V.R., Lever, S., Clayton, K.N., Bransford, J.D., & Franks, J.J.
(1988). Learning Logo: Method of teaching, transfer of general skills, and

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 24

attitudes toward school and computers. In R. Mayer (Ed.), Teaching and learning
computer programming: Multiple research perspectives (pp. 111-135). Hillsdale,
NJ: Erlbaum.

Liu, M. (1997). The effects of HyperCard programming on teacher education students’
problem-solving ability and computer anxiety. Journal of Research on
Computing in Education, 29, 248-262.

McCoy, L.P. (1996). Computer-based mathematics learning. Journal of Research on
Computing in Education, 28, 438-460.

McGill, T.J., & Volet, S.E. (1997). A conceptual framework for analyzing students’
knowledge of programming. Journal of Research on Computing in Education,
29, 276-297.

Michayluk, J.O., Saklofske, D.H., & Yackulic, R.A. (1984, June). Logo. Paper
presented at the meeting of the CAP Convention, Ottawa, Ontario.

Miller, R.B., Kelly, G.N., & Kelly, J.T. (1988). Effects of Logo computer programming
experience on problem solving and spatial relations ability. Contemporary
Educational Psychology, 13, 348-357.

Milner, S. (1973, February). The effects of computer programming on performance in
mathematics. Paper presented at the meeting of the American Educational
Research Association, New Orleans, LA. (ERIC Document Reproduction Service
No. ED 076 391)

Milojkovic, J.D. (1984). Children learning computer programming: Cognitive and
motivational consequences. Dissertation Abstracts International, 45, 385B
(University Microfilms No. 84-08330)

Mitterer, J., & Rose-Drasnor, L. (1986). LOGO and the transfer of problem solving: An
empirical test. The Alberta Journal of Educational Research, 32, 176-194.

Moreira, C., & Noss, R. (1992). The teacher’s view of Logomaths. In S. Dawson & R.
Zazkis (Eds.), Proceedings of the Six International Conference for Logo and
Mathematics Education (pp. 27-50). Vancouver, B.C., Canada: Simon Fraser
University.

Moreira, C., & Noss, R. (1995). Understanding teachers’ attitudes to change in a Logo
mathematics environment. Educational Studies in Mathematics, 28(2), 155-76.

Nastasi, B.K., Clements, D.H., & Battista, M.T. (1990). Social-cognitive interactions,
motivation, and cognitive growth in Logo programming and CAI problem-solving
environments. Journal of Educational Psychology, 82, 150-158.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation
standards for school mathematics. Reston, VA: Author.

Nelson, G.T. (1986). Development of fourth-graders’ concept of literal symbols through
computer-oriented problem-solving activities. Dissertation Abstracts
International, 47, 2607A. (University Microfilms No. DA8526359)

Nichols, L.M. (1992). The influence of student computer-ownership and in-home use on
achievement in an elementary school computer programming curriculum.
Journal of Educational Computing Research, 8(4), 407-21.

Noss, R. (1984). Children learning Logo programming: Interim report No. 2 of the
Chiltern Logo Project. Hatfield, England: Advisory Unit for Computer Based
Education.

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 25

Noss, R., & Hoyles, C. (1992). Afterword: Looking back and looking forward. In C.
Hoyles & R. Noss (Eds.), Learning mathematics and Logo (pp. 427-268).
Cambridge, MA: MIT.

Olive, J., Lankenau, C.A., & Scally, S.P. (1986). Teaching and understanding geometric
relationships through Logo: Phase II. Interim Report: The Atlanta-Emory Logo
Project. Atlanta, GA: Emory University.

Oprea, J.M. (1988). Computer programming and mathematical thinking. Journal of
Mathematical Behavior, 7, 175-190.

Ortiz, E., & Miller, D. (1991, April). A Logo vs. a textbook approach in teaching the
concept of variable. Paper presented at the meeting of the National Council of
Teachers of Mathematics, New Orleans, LA.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York:
Basic Books.

Papert, S., Watt, D., diSessa, A., & Weir, S. (1979). Final report of the Brookline Logo
Project. Part II: Project summary and data analysis (Logo Memo No. 53).
Cambridge, MA: MIT, Artificial Intelligence Laboratory.

Pea, R.D., & Kurland, D.M. (1984). On the cognitive and educational benefits of
teaching children programming: A critical look. New Ideas in Psychology, 2,
137-168.

Piaget, J., & Inhelder, B. (1967). The child’s conception of space. New York: W. W.
Norton.

Plourde, R.R. (1987, December). The insignificance of Logo—Stop “mucking around”
with computers. Mirco-scope 30-31.

Reed, W.M., Palumbo, D.B., & Stolar, A.L. (1988). The comparative effects of BASIC
and Logo instruction on problem-solving skills. Computers in the Schools, 4,
105-118.

Reimer, G. (1985). Effects of a Logo computer programming experience on readiness
for first grade, creativity, and self concept. “A pilot study in kindergarten.”
AEDS Monitor, 23(7-8), 8-12.

Resnick, M. (1988). LEGO, Logo, and design. Children’s Environments Quarterly,
5(4), 14-18.

Resnick, M. (1990). Multilogo: A study of children and concurrent programming.
Interactive learning environments, 1(3), 153-170.

Rieber, L.P. (1987, February). Logo and its promise: A research report. Educational
Technology, 12-16.

Robinson, M.A., Gilley, W.F., & Uhlig, G.E. (1988). The effects of guided discovery
Logo on SAT performance of first grade students. Education, 109, 226-230.

Robinson, M.A., & Uhlig, G.E. (1988). The effects of guided discovery Logo
instruction on mathematical readiness and visual motor development in first grade
students. Journal of Human Behavior and Learning, 5, 1-13.

Roblyer, M.D., Castine, W.H., & King, F.J. (1988). Assessing the impact of computer-
based instruction: A review of recent research. New York: Haworth.

Salem, J.R. (1989). Using Logo and BASIC to teach mathematics to fifth and sixth
graders. Dissertation Abstractions International, 50, 1608A. (University
Microfilms No. DA8914935)

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 26

Sarama, J. (1995). Redesigning Logo: The turtle metaphor in mathematics education.
Unpublished Doctoral Dissertation, State University of New York at Buffalo.

Sarama, J., Clements, D., & Henry, J.J. (1998). Network of influences in an
implementation of a mathematics curriculum innovation. International Journal of
Computers for Mathematical Learning, 3, 113-148.

Schofield, J.W. (1995). Computers and classroom culture. Cambridge, MA: Cambridge
University.

Silverman, N.S. (1990). Logo and underachievers. Unpublished Masters thesis,
University of the Virgin Islands.

Singh, J.K. (1992). Cognitive effects of programming in Logo: A review of literature
and synthesis of strategies for research. Journal of Research on Computing in
Education, 25(1), 88-104.

Soloway, E., Lochhead, J., & Clement, J. (1982). Does computer programming enhance
problem solving ability? Some positive evidence on algebra word problems. In
R. J. Seidel, R. E. Anderson, & B. Hunter (Eds.), Computer literacy (pp. 171-
185). New York: Academic.

St. Paul Public Schools. (1985). Logo Studies. St. Paul, MN: Author.
Studyvin, D., & Moninger, M. (1986, July). Logo as an enhancement to critical

thinking. Paper presented at the meeting of the Logo 86 Conference, Cambridge,
MA.

Sutherland, R. (1987). What are the links between variable in Logo and variable in
algebra? Unpublished manuscript, University of London Institute of Education,
London, England.

Swan, K. (1991). Programming objects to think with: Logo and the teaching and
learning of problem solving. Journal of Educational Computing Research, 7(1),
89-112.

Swan, K., & Black, J.B. (1989). Logo programming, problem solving, and knowledge-
based instruction. Unpublished manuscript, University of Albany, Albany, NY.

Swan, K., & Mitrani, M. (1993). The changing nature of teaching and learning in
computer-based classrooms. Journal of Research on Computing in Education,
26(1), 40-54.

Tan, L.E. (1985). Computers in pre-school education. Early Child Development and
Care, 19, 319-336.

Tanner, H. (1992). Developing the use of IT within mathematics through action
research. Computers and Education, 18(1-3), 143-48.

Tracy, D.M., & Williams, M.A. (1990). Fifth and sixth grade German students learn
turtle Logo: A pilot study. Journal of Computing in Childhood Education, 1(4),
55-66.

Vaidya, S., & McKeeby, J. (1984, September). Computer turtle graphics: Do they affect
children’s thought processes? Educational Technology, 24, 46-47.

Van Hiele, P.M. (1986). Structure and insight. Orlando, FL: Academic.
Van Merriënboer, J. J. G. (1990). Instructional strategies for teaching computer

programming: Interactions with the cognitive style reflection-impulsivity.
Journal of Research on Computing in Education, 23, 45-53.

Watson, J.A., Lange, G., & Brinkley, V.M. (1992). Logo mastery and spatial problem-
solving by young children: Effects of Logo language training route-strategy

Clements, D. H. (1999). The Future of Educational Computing Research: The Case of Computer Programming. 27

training, and learning styles on immediate learning and transfer. Journal of
Educational Computing Research, 8, 521-540.

Weir, S. (1992). LEGO-Logo: A vehicle for learning. In C. Hoyles & R. Noss (Eds.),
Learning mathematics and Logo (pp. 165-190). Cambridge, MA: MIT.

Wiburg, K.M. (1987). The effect of different computer-based learning environments on
fourth grade students’ cognitive abilities. Unpublished doctoral dissertation,
United States International University.

Wiburg, K.M. (1989). Does programming deserve a place in the school curriculum?
The Computing Teacher, 17(2), 8-11.

Wilson, D., & Lavelle, S. (1992). Effects of Logo and computer-asided instruction on
arithmetical ability among 7- and 8-year-old Zimbabwean children. Journal of
Computing in Childhood Education, 3(1), 85-91.

Yelland, N. (1994a). A case study of six children learning with Logo. Gender and
Education, 6, 19-33.

Yelland, N. (1994b). The strategies and interactions of young children in Logo tasks.
Journal of Computer Assisted Learning, 10, 33-49.

Yelland, N. (1995). Mindstorms or a storm in a teacup? A review of research with
Logo. International Journal of Mathematics Education, Science, and
Technology, 26(6), 853-869.

Yusuf, M. M. (1994, April). Mathematics instruction with Logo tutorials and activities.
Paper presented at the meeting of the American Educational Research
Association, New Orleans, LA.

Note
This paper was funded in part by the National Science Foundation, grant numbers MDR-
8954664, “An Investigation of the Development of Elementary Children’s Geometric
Thinking in Computer and Noncomputer Environments,” and ESI-9730804, “Building
Blocks—Foundations for Mathematical Thinking, Pre-Kindergarten to Grade 2:
Research-based Materials Development.” Opinions expressed are those of the authors
and not necessarily those of the Foundation.

