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a b s t r a c t

In this study, we propose an automatic detection algorithm for cloud/shadow on remote sensing optical
images. It is based on physical properties of clouds and shadows, namely for a cloud and its associated
shadow: both are connex objects of similar shape and area, and they are related by their relative locations.
We show that these properties can be formalized using Markov Random Field (MRF) framework at two
levels: one MRF over the pixel graph for connexity modelling, and one MRF over the graph of objects
(clouds and shadows) for their relationship modelling. Then, we show that, practically, having performed
an imagepre-processing step (channel inter-calibration) specific to clouddetection, the local optimization
of the proposed MRF models leads to a rather simple image processing algorithm involving only six
parameters. Using a 39 image database, performance is shown and discussed, in particular in comparison
with the Marked Point Process approach.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

High resolution optical remote sensing images (such as
SPOT/HRVIR) are often affected by cloud presence. For surface
studies such as vegetation monitoring, change detection or
land cover/land use analysis, these clouds appear either as some
noise or some erroneous measurements that conceal or distort
the information corresponding to the surface. Moreover, even if
they represent only a small percentage of the scene surface, this
proportion may be not negligible with regard to the rate of the
studiedphenomena, such as the land cover change.Hence, even if it
is generally not possible to retrieve themissing data, it is important
to identify the clouds and their shadows in order to not consider
their signals on the studied area.
A large number of cloud detection methods have already been

proposed. However, these methods are generally dedicated to
data with spatial resolution of about one kilometer square, such
as the NOAA/AVHRR images. Indeed, these approaches are based
on the high temporal (Cihlar and Howarth, 1994) and spectral
(Rossow and Garder, 1993; Chen et al., 2002) resolutions of that
kind of data. Dealing with higher spatial resolution, the fourth
component of the ’Tasseled Cap’ transform (Kauth and Thomas,
1976) was found to be a good indicator of the presence of mist or
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clouds (Richter, 1996). However, this orthogonal transformation
of the spectral bands is not optimized for cloud detection, since
it was developed to distinguish the radiometric contribution of
vegetation from those of bare soil. Then, recent work (Zhang
et al., 2002) proposed an extension to derive a mist indicator
and perform pixel radiometric correction. Concerning the shadow
detection, different approaches have also been proposed. Some
are based on the projection of the cloud shapes on the surface
knowing the sun direction and the cloud altitude (Simpson and
Stitt, 1998). Other approaches exploit the matched filter concept
(Richter and Muller, 2005). The matched filter is then evaluated
using the spectral band covariance matrix. Once more when the
aim is the correction of the radiometric signal, previous methods
are exploited in collaboration with a radiative transfer model.
Finally, Ho and Zhenlei (1996) proposed comparing clouds and
shadows to perform mutual validation of their detections.
Our work exploits several of the previously presented ideas.

Theywere adapted and combined in order to derive a cloud/shadow
detectionmethodwhich is both robust and automatic. Relatively to
classical threshold techniques, the proposedmethod exploits three
main features of clouds (and shadows):

– P1: Clouds and shadows are connex objects;
– P2: Knowing the geometry of the acquisition and the sun
location, the image location of the shadow of a cloud is known,
but for one parameter (the cloud altitude);

– P3: Each cloud and its associated shadow have the same shape
and area (but for the deformations due to relief).
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In this study we show that these properties (P1, P2, and P3)
can be formalized using Markov Random Field (MRF) framework
at two levels: one MRF over the pixel graph for P1 modelling, and
oneMRF over the graph of objects (clouds and shadows) for P2 and
P3. In the case of the object MRF, the graph nodes represent the
objects, whereas the graph edges model the interactions between
objects. Hence, this approach assumes the a priori knowledge
of the number of objects and their interactions. Practically, this
implies an initial over-detection of clouds and shadows that
may have an impact on the final result. Therefore we have
compared our approach to amodel in which the number of objects
and relationships between objects may be a priori unknown,
namely the Marked Point Processes (MPP). However, this last
approach is alsomuchheavier in terms of optimization process and
computation time. Besides, since it uses a global optimization, it
demands the precise setting of themodel parameters, whereas the
local optimization of our first model (MRF) allows avoiding such a
fastidious process.
The rest of the article is organized as follows. Section 2 presents

the considered SPOT/HRVIR image features and database acquired
in the AMMA (African Monsoon Multidisciplinary Analysis)
program framework. Section 3 presents the model based on
MRF (whereas MPP main concepts and model are presented
in the Appendices). Section 4 describes the implementation of
our model, in particular specifying the used observation fields
(derived frommultispectral satellite measurements), the assumed
interactions (derived from acquisition and scene geometries) and
the algorithm. Section 5 shows the obtained results, and Section 6
gathers our conclusions.

2. Study context and database AMMA/SPOT

2.1. AMMA database

The important inter-annual variability of the monsoon in West
Africa is a phenomenon – with sometimes dramatic consequences
– known and observed for several decades. However, this vari-
ability still raises a large number of questions both about the
involved physical processes and about their social and economic
consequences. The research program AMMA (African Monsoon
Multidisciplinary Analysis) has hence two aims (Redelsperger
et al., 2006). On the one hand, it tries to improve the comprehen-
sion of themonsoon inWest Africa and its impact on the biosphere
both at global and at local scales. On the other hand, it looks for the
relationships between the climatic variability and the problems of
health, water resources and food safety.
AMMA includes four interacting scales of observations. The

larger one, the global scale, deals with the interactions between
monsoon phenomenon and the remainder of the Earth. The
monsoon process scale is the regional scale. The meso-scale
deals with the interactions between atmosphere and watershed
hydrology. At this scale, three study sites have been selected
within West Africa, namely the Ouémé watershed in Benin, the
Gourma one in Mali, and the Hapex square degree in Nigeria.
Finally, over each of these sites, some ‘super-sites’ have been
selected for studies and measurements at local scale studying the
impacts of the climate on agriculture and antropic activities and
the associated retroactions. At this scale, the characterization and
the monitoring of surface state from remote sensing data require
high spatial resolution sensors (pixel size of about few tens of
meters). This requirement is fulfilled by SPOT4/HRVIR images. The
whole database includes 39 SPOT/HRVIR scenes, whose acquisition
dates and places are given in Table 1.
Finally, for algorithm performance evaluation, some cloud

masks have been obtained by photointerpretation. In the lack of
more objective data, these masks have been used as ‘ground truth’
to estimate the performance of the proposed automatic image
processing method.
2.2. SPOT/HRVIR image features

The SPOT satellites, dedicated to the observation of the emerged
surfaces, have quasi-polar, circular and heliosynchronous orbits at
832 km altitude. The fourth one (SPOT4) has two identical optical
sensors HRVIR (High Resolution Visible and InfraRed on board),
having a 60 km swath and acquiring panchromatic ormultispectral
images. In this last acquisitionmode,measurements are performed
in four bands (corresponding to wavelengths from green, to mid-
infrared through red and near-infrared) with pixel size equal to
20× 20 m2.
As for any visible/infrared optical sensor, the acquired images

may be affected by the presence of clouds. We propose a generic
automatic cloud/shadow detection method. The proposed one
is generic and would be applicable to any image provided that
the basic assumptions (P1, P2, and P3) are valid. First, note that
the separation of clouds (respectively shadows, respectively mist)
from the remainder of the image is a non-trivial problem in most
application cases. In particular, it is generally not possible to
determine a decision threshold by simple analysis of the image
histogram. Fig. 1 points out this difficulty. It compares, for each
of the four spectral bands, the histograms of the pixels of soil
and those of clouds in the case of a typical scene (extracted
from the image acquired at 04/29/2006 over Benin). Whatever the
spectral band, there is an important overlapping between soil and
cloud histograms, inducing important rates of false alarms or mis-
detection regardless of the chosen threshold value. The only case
where a threshold approach would be efficient is when the images
only present completely opaque clouds. Besides, note that, even
in this case, the threshold value can generally not be obtained
from image histogram analysis because the cloud pixels are minor
relative to the soil pixels.

3. Markov Random Field modelling

In this section, we recall the main concepts of the Markov
Random Fields (MRF). We also introduce the notations used in
the following sections. In the following section the general model
is presented whereas its practical implementation described in
Section 4.
MRFs are widely used in image processing (Abend et al., 1965;

Geman and Geman, 1984) providing a solution to the causality
problem. Nowadays, research is still active in this domain. Some
work has focused on the development of efficient optimization
techniques, in particular using graph cut methods (Boykov et al.,
2001; Boykov and Kolmogorov, 2004; Kolmogorov and Zabih,
2004). Someother approaches aimat consideringmodelsmore and
more flexible, in particular relaxing the stationarity assumption
of the image (Benboudjema and Pieczynski, 2005; Pieczynski and
Benboudjema, 2006; Le Hégarat-Mascle et al., 2007), or models at
higher level, in particular using MRF to model the relationships
between image objects (Descombes, 2004).

3.1. Markov fields over graphs

Let G be a non-oriented graph. We assume that the edges of
G define a neighbourhood system where Vs is the neighbourhood
associated to node s, i.e. a set of nodes all having an edge toward s
and checking t ∈ Vs ⇔ s ∈ Vt . The cliques c associated to Vs are
defined as the union of some subsets of Vs and s such that a clique is
a complete subgraph of G (constituted by 2 × 2 nodes considered
to be neighbours; for example, Fig. 2 shows the possible cliques
containing a pixel s, in 8-connexity over the pixel graph). Then, C
denotes the set of cliques c over G.
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Table 1
Dates and geographic coordinates of the 39 SPOT/HRV images of the AMMA database (over Nigeria the region of interest is covered by two images at each date, except from
08/28/2005).

Site Dates (month/day/year) Geographic coverage
Longitude Latitude

Benin 04/21/2005, 10/30/2005, 01/10/2006, 03/03/2006, 04/08/2006, 04/14/2006, 04/29/2006, 05/25/2006 1◦16E– 2◦06′E 9◦26′N– 10◦04′N

Mali 06/05/2005, 07/06/2005, 07/22/2005, 08/06/2005, 08/22/2005, 10/08/2005, 10/23/2005, 01/04/2006,
04/13/2006, 06/04/2006

1◦59′W– 1◦11′W 15◦03′N– 15◦39′N

Nigeria 06/06/2005, 06/27/2005, 07/13/2005, 08/03/2005 2◦7
′

E– 3◦06′E 13◦11′N14◦20′N
08/28/2005 2◦7′E– 3◦06′E 13◦11′N13◦50

′

N
09/12/2005, 09/28/2005, 10/14/2005, 10/25/2005, 05/05/2006, 05/10/2006 2◦7′E– 3◦06′E 13◦11′N14◦20′N
Fig. 1. Comparison of the histograms of the cloud pixels (in grey) and the soil pixels (in black) in the case of the four SPOT4/HRVIR bands. Concerning the soil histograms,
only a subpart has been represented (for low reflectance values, the number of pixels takes very high values making the curve out of the figure).
Let X be a random field defined over G, and x a realisation of X .
xs denotes the value of x at the node s of G. xs is a realisation of the
random variable Xs. Then, by definition, X is a Markov field if and
only if

P (Xs = xs|xt ,∀t ∈ G− {s}) = P (Xs = xs|xt ,∀t ∈ Vs) . (1)

If in addition there is no configuration ofX with null probability:
∀x, P (X = x) > 0, then, according to the Hammersley–Clifford
theorem (Besag, 1974) that states the equivalence between a
Markov field and a Gibbs field, X is a Gibbs field having potential
functions associated to the cliques c of C whose probability is

P (X = x) =
1
Z
. exp (−U (x)) ,

where U (x) =
∑
c∈C

Uc (xs, s ∈ c) , (2)

and Z is a normalization constant equal to Z =
∑
x exp (−U (x)),

called the ‘partition function’.
Let us now assume that X is hidden and that, for the estimation

of xwe have at our disposal the realisation y of the random field of
the observations Y , also defined over G, and related to X through
the conditional probabilities P(X = x|Y = y) and P(Y = y|X =
x). The Maximum A Posteriori (MAP) criterion corresponds to the
estimation of x that maximizes P(X = x|Y = y): x̃MAP =
arg maxx P (X = x|Y = y), or, using the Bayes theorem:

x̃MAP = argmax
x

P (Y = y|X = x) .P (X = x) . (3)
Finally, assuming first that no configuration of Y has a null prob-
ability:∀y, P (Y = y) > 0, and second that the randomvariables Ys
associated to Y at the G nodes s are independent conditionally to X ,
then P (Y = y|X = x) = exp

{
−
∑
s∈G− ln (P (Ys = ys|Xs = xs))

}
,

and the maximization of the a posteriori probability is equivalent
to the minimization of the energy:

x̃MAP = argmin
x

[∑
s∈G

− ln P (ys|xs)+
∑
c∈C

Uc (xt , t ∈ c)

]
. (4)

In the following we focus on the minimization of the energy
function, and we denote U0s (ys|xs) = − ln P (ys|xs) the ‘data
attachment’ energy.
The success of MRF models is also due to the convenience of

the minimization of the global (over the whole graph G) energy,
that can be obtained by successively considering the G nodes
separately processing each node s: (i) testing a new value xs,
(ii) computing the new s local energy: Us (ys|xs, xt , t ∈ Vs) =
U0s (ys|xs) +

∑
c:s∈c Uc (xs, xt , t ∈ c, t 6= s), and (iii) deciding in

favour of xs or not depending on the difference between the
new value of Us (ys|xs, xt , t ∈ Vs) and its former value. In the
case of a local minimization, the tested value xs is accepted
only if it induces a decrease of the local energy. Conversely, the
global minimization techniques, such as those based on simulated
annealing (Kirkpatrick et al., 1983; Geman and Geman, 1984),
allow some energy increases in order to overcome the local
minima and reach the global minimum. In both cases, algorithms
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Fig. 2. Cliques over the pixel graph in 8-connexity that contain a pixel s (surrounded pixel).
are necessarily iterative. More recently, non-iterative techniques
have been developed that propose efficient solutions to some
energy minimization problems encountered in image processing
(Greig et al., 1989). In particular, Kolmogorov and Zabih (2004)
characterize the energy function that can be minimized by graph
cut techniques.
We now describe the two particular cases of G used in the

proposed automatic detection algorithm for cloud and shadow
over the SPOT/HRVIR images, namely G is either the pixel graph,
or the graph of the objects ‘cloud’, ‘shadow’ and ‘mist’.

3.2. Pixel graph case

Let Ω be the image space, |Ω| is the cardinality of Ω , i.e. the
number of image pixels. X is a random field defined over Ω (G =
Ω). x is the label or class image, and y is the data image. xs denotes
the class of a pixel s, i.e. of an element ofΩ , and ys its radiometric
value (possibly a combination of different spectral bands, as will
be detailed in Section 4.1). Xs is a random variable taking values in
the class set, namely the class ‘cloud or mist’ denoted λc∪m and its
complement denoted λc∪m in the case of cloud detection, and the
class ‘shadow’ denoted λsh and its complementary denoted λsh in
the case of shadow detection.
Here,we aimatmodelling P1, i.e. a kind of class regularity. Then,

we propose the following model for the detection of cloud and
mist:

∀s ∈ Ω, U0s (ys|xs = λc∪m) =

{0 if ys ≥ tch ,
β1 if ys ∈ [tcl , t

c
h)

β2 if ys < tcl ,
, (5)

∀s ∈ Ω, U0s (ys|xs = λc∪m) =

{0 if ys < tcl ,
β3 if ys ∈ [tcl , t

c
h)

β4 if ys ≥ tch ,
, (6)

∀s ∈ Ω, Uc=(s,t) (xs, xt)

= γ × [1− δ (xs, λc∪m)× δ (λc∪m, xt)] , (7)

where βi, i ∈ {1, 2, 3, 4}, γ , tcl and t
c
h are parameters such that

∀i ∈ {1, 2, 3, 4} βi > 0, 0 < β1 − β3 < γ < β2/nconnex,
and tcl ≤ t

c
h − t

c
l and t

c
h correspond to thresholds high and low,

respectively. Here, we only consider the cliques of order 2, nconnex
is the neighbourhood connexity: 4 or 8. δ(i, j) equals 1 if i = j, and
0 otherwise. According to (7), the energy of a clique c is not null
(equal to γ ) except if its two pixels are labelled λc∪m.
The data attachment energy piecewise constant functions (5)

and (6) are rather basic. They were chosen in order to establish
an equivalence, in terms of label decision, with the approaches
based on either hysteresis thresholding or region growing. The
label decision equivalence between our MRF model at pixel level
and hysteresis thresholding is shown by Table 2. Indeed, for a given
pixel s, Table 2 gives the energy values associated to each of the
hypotheses λc∪m and λc∪m depending on the value ys relatively to
the threshold parameters tcl and t

c
h and on the presence of a pixel

labelled λc∪m in the s neighbourhood Vs. Grey cells point out the
decisions in the case of the inequalities ∀i ∈ {1, 2, 3, 4} βi > 0,
0 < β1 − β3 < γ < β2/nconnex. We see that they are identical
to the decisions that would be given by a thresholding method
using hysteresis between thresholds tcl and t

c
h . Thus, provided that

the inequalities ∀i ∈ {1, 2, 3, 4} βi > 0, 0 < β1 − β3 <
γ < β2/nconnex are verified, the local minimization of the global
energy corresponds, in terms of label decision, to a threshold with
hysteresis. Hence it is not necessary (assuming local minimization
is sufficient) to carefully set the values of parameters βi, i ∈
{1, 2, 3, 4}, and γ .
The case of the shadow detection is processed similarly with

three main differences: the considered classes, namely ‘shadow’
λsh and its complementary λsh, the sense of inequality, and the
consideration of the spatial non-stationarity through a subset ω of
Ω (ω ⊆ Ω):

∀s ∈ Ω, U0s
(
ys|xs = λsh

)
=


0 if ys ≥ tshh ,
β ′3 if

(
ys ∈ [tshl , t

sh
h ) and s ∈ ω

)
or
(
ys < tshh and s 6∈ ω

)
β ′4 if ys < tshl and s ∈ ω,

, (8)

∀s ∈ Ω, U0s (ys|xs = λsh)

=


0 if ys < tshl and s ∈ ω,
β ′1 if

(
ys ∈ [tshl , t

sh
h ) and s ∈ ω

)
or
(
ys < tshh and s 6∈ ω

)
β ′2 if ys ≥ tshh ,

, (9)

∀s ∈ Ω, Uc=(s,t) (xs, xt) = γ ′ × [1− δ (xs, λsh)× δ (λsh, xt)] ,
(10)

where the β ′i , i ∈ {1, 2, 3, 4} and γ
′ parameters check an analogue

condition as the βi,i∈{1,2,3,4} and γ parameter one. Then, in the
shadow case, the local minimisation of the energy is equivalent in
terms of label decision to a region growing (rather than a hysteresis
threshold) using as germs the pixels included in ω and having a ys
value lower than tshl and as merging condition the inferiority to a
‘high’ threshold, tshh . Note that here t

sh
l and t

sh
h are specific to the

region (cf. Section 4.3). Indeed, using a table analogous to Table 2
but replacing the conditions on the ys value relative to tcl and t

c
h

in Table 2 by conditions on s belonging to a germ (belonging to ω
and value inferior to tshl ) and value relative to t

sh
h , it can be shown

that, provided that conditions on β ′i,i∈{1,2,3,4} and γ
′ parameters are

verified, a decision in favour ofλsh occurs eitherwhen (ys < tshl and
s ∈ ω) (germ pixel) or when (ys < tshh and ∃t ∈ Vs|xt = λsh), and
decision in favour of λsh occurs otherwise.

3.3. Object graph case

Here we assume that the previous processing steps have led to
the detection on the one hand of the clouds and mist, and on the
other hand of the shadows.G is the object graph such that its nodes
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Table 2
Values of the local energy associated to the different cases depending on data and neighbourhood n-connexity; the grey cells point out the minimal value for each case
(column), the decisions in favour of λc∪m correspond to a grey case on the 3rd line, and those in favour of λc∪m to a grey case on the 4th line.

ys <tcl ∈ [tcl , t
c
h [ ≥tch

∃t ∈ Vs/xt = λc∪m No Yes No Yes No Yes
Us(ys|xs = λc∪m, xt , t ∈ Vs) β2 + n.γ ∈ [β2, β2 + (n− 1).γ ] β1 + n.γ ∈ [β1, β1 + (n− 1).γ ] +n.γ ∈ [0, (n− 1).γ ]

Us(ys|xs = λc∪m, xt , t ∈ Vs) +n.γ +nγ β3 + n.γ β3 + n.γ β4 + n.γ β4 + n.γ
are the different connex objects (derived from pixel level previous
detections). ys being the initial label of the object s, only two values
are possible for ys: ‘cloud or mist’, λc∪m, or ‘shadow’, λsh. xs being
the searched label, four possible xs values are considered: ‘cloud’,
λ̃c , ‘mist’, λ̃m, ‘shadow’, λ̃sh, or ‘other’, λ̃c∪m∪sh (that corresponds to
invalid initial detection).
Our aimhere is tomodel P2 and P3, i.e. the relationship between

the classes ‘cloud’ and ‘shadow’. The neighbourhoods are defined in
the direction given by the position of the shadow relatively to the
projection of the cloud over the surface (cf. Section 4.2). The clique
order is equal to 2 (one cloud and its shadow), but the cardinality
of the neighbourhood is not set a priori (we only assume amaximal
value |Vs|max to calibrate the other model parameters).
The following model was then proposed:

U0s
(
ys|xs = λ̃c

)
=

{
δ if ys = λc∪m andΠ true
+A otherwise , (11)

U0s
(
ys|xs = λ̃sh

)
=

{
δ if ys = λsh
+A otherwise , (12)

U0s
(
ys|xs = λ̃m

)
=

{
0 if ys = λc∪m andΠ false
+A otherwise , (13)

U0s
(
ys|xs = λ̃c∪m∪sh

)
=

{
α if (ys = λc∪m andΠ true) or (ys = λsh)
+A if ys = λc∪m andΠ false

, (14)

Uc=(s,t) (xs, xt)

=


0 if

((
xs = λ̃c and xt = λ̃sh

)
or
(
xs = λ̃sh and xt = λ̃c

))
and H false

−δ otherwise

, (15)

where α, δ are parameters such that 0 < α < δ, A is a constant
taking a very large value (|Vs|max.δ < A < +∞, A is not
infinite to prevent null probability for any configuration), Π is a
property allowing the distinction between clouds (Π true) and
mist (Π false) and H is a predicate corresponding to the criterion
of overlapping of the translated objects. Π and H will be detailed
in Section 4.4.1.
Table 3 allows checking that the local minimization of the

global energy over G corresponds to the mutual validation of
the detections of respectively the clouds and the shadows.
Assuming the previous paragraphs ordering relationships between
parameters, the grey cells point out the decisions.We see that they
are identical to the decisions that would be given by a direct cross-
validation between detected clouds and associated shadows. Thus,
provided that the inequalities 0 < α < δ and |Vs|max.δ < A are
verified, the local minimization of the global energy corresponds,
in terms of label decision, to a ‘mutual validation’ of clouds and
shadows, and once more as far as local optimization is concerned,
the precise tuning of model parameters is not necessary. Finally,
note that, according to (15) cloud and shadow are valid by default
and they may be invalidated only if H predicate can be estimated,
i.e. in particular if a cloud and a shadow have been associated. In
other words, H is true by default if it cannot be estimated. It allows
dealing with the cases where a cloud masking a shadow prevents
the mutual validation and the cases where cloud or shadow is
outside the image.

4. Implementation and algorithms

The implementation of previous models requires specifying:

– The choice of the data image: for cloud detection, having inter-
calibrated the Green and MIR bands, we use a combination of
these bands; for shadow detection, only the MIR band is used;

– The estimation of the direction of the shadow location relatively
to the image projected cloud location;

– The setting of the model parameters.

In this section, we first detail these three points, and then we
present the global algorithm.

4.1. Observation data

In the proposed model, the observations are taken into account
through the ‘data attachment’ energy term (5)–(6) (8)–(9). First
note that there is no reason a priori that the more pertinent
observation (i.e. the one inducing the smallest false alarm and non-
detection rates) be the same for cloud and for shadow detections.
Indeed, the used observation data are different and will induce
different performance. However, the key point is, the less the
individual performance of each detection considered separately,
the more the absence of redundancy between errors. In particular,
as far as the individual (cloud or shadow) detections are concerned,
the false alarms, provided that they are complementary, are
much preferable to the non-detections. Indeed, through the
cloud/shadow interaction model on the object graph, the false
alarms will be strongly reduced.
For shadowdetection,we use theMIR band (Richter andMuller,

2005). Indeed, even if some signal measurementsmay be confused
with the signal measurement over dark soils, we assume these
confusions will decrease either considering the limitation to the
subsetω ofΩ in the pixel graph, or thanks to themutual validation
cloud/shadow in the object graph. In the following we present the
processing of the data that will be used for cloud detection.

4.1.1. Cloud case: Approach
Generally, clouds are distinguished from the surface thanks to

their reflectance in one or several spectral bands. However, such
an approach presents several drawbacks. First, the clouds may
not be the sole targets that present high reflectance values in the
visible and near-infrared inducing a real difficulty to set a detection
threshold. Second, some clouds may be not completely opaque
presenting then reflectance values that depend on the soil features
below them. These two difficulties are visible in Fig. 3 that shows,
in the plane (MIR, Green) the reflectance values of some pixels
selected in a supervised way. Similar results have been obtained
considering different images.
Considering only one band, we note that the spreading of the

measurements of both soil and cloud pixels makes the threshold
determination difficult. However, a linear separation of the two
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Table 3
Values of the local energy associated to the different cases depending on the data and the neighbourhood; the grey cells point out the minimal value for each case (column),
the decision in favour of λ̃c , λ̃sh , λ̃m , or λ̃c∪m∪sh correspond to a grey field on the 3rd, 4th, 5th, or 6th line, respectively.

ys λc∪m andΠ true λsh λc∪mandΠ false

H true? No Yes No Yes No Yes
Us(ys|xs = λ̃c) +δ ≤ δ − δ = 0 +A ≥ A− |Vs|max.δ > 0 +A ≥ A− |Vs|max.δ > 0

Us(ys|xs = λ̃sh) +A ≥ A− |Vs|max.δ > 0 +δ ≤ δ − δ = 0 +A ≥ A− |Vs|max.δ > 0

Us(ys|xs = λ̃m) +A +A +A +A 0 0

Us(ys|xs = λ̃c∪m∪sh) +α +α +α +α +A +A
Fig. 3. Reflectance values of pixels respectively corresponding to clouds and soils,
in the (Green–MIR) plane.

kinds of signals seems possible. Let us then consider the image ydiff
such that in each pixel s,

ydiff ,s = yG,s − a · yMIR,s − b, (16)

where a and b are the parameters of a line modelling the
correlation between MIR and Green reflectance values over the
soil, yG,s is the Green s pixel reflectance, and yMIR,s the MIR s pixel
reflectance. A similar approachwas proposed in Zhang et al. (2002).
It allows taking into account the soil reflectance that affects the
cloud reflectance in the case of semi-transparent clouds or clouds
that do not saturate the signal.

4.1.2. Cloud case: Inter-calibration of the Green–MIR bands
The derivation of the image difference ydiff requires the

estimation of the line parameters (a, b). We propose an automatic
estimation of these latter. Now, the difficulty is due to the presence
of some clouds.
In the (MIR, Green) plane, each pixel is characterized by the

reflectance values (yMIR,s, yG,s). The linear regression of a point
cluster in this plane according to a quadratic error minimization
criterion takes into account the whole set of points and is
then very sensitive to the presence of ‘aberrant’ points such
as the cloud pixels (or the shadow ones) for the estimation
of the soil line. The first way to remove automatically these
‘aberrant’ points would consist in considering, in the (MIR, Green)
plane, the bi-dimensional (2D) histogram of the image (that is
assumed representing the joint probability) and approximating the
relationship between Green and MIR reflectances by the function
f giving for each MIR value, yMIR,., the modal value of the 1D
histogram of the pixels (yMIR,., yG.):

ỹG,. = f
(
yMIR,.

)
= argmax

yG,.

{
P
(
yMIR,., yG,.

)}
, (17)

where P(t, u) is the joint probability of the random variables T
and U at T = t and U = u, and yG,. and yMIR,. are the Green
andMIR reflectance values; since these values are pixel values (not
an image), but this pixel may be any pixel, the s reference in the
subscript ‘s’ in (16) for example was replaced by a dot ‘.’.
However, nothing secures the constraint that the obtained

function f be a straight line even in first approximation. Moreover,
for the ‘high’ MIR values, even the modal value of the conditional
histogram may be distorted by the presence of clouds whose
proportion for these ‘high’ reflectance values may be important.
This clearly appears in Fig. 4 that represents, in the case of the
shown image, the soil and cloud pixel values and the inter-
calibration relationship f (yMIR,.) estimation using (17).
Then, in order to improve the estimation robustness, we

constrain f to be linear at least in first approximation and we
propose then the following ‘cost’ function that is to maximize:

CN = max
(ỹG,.(i))i∈[1,N]:∀i∈{1,...,N−1},|(ỹG,.(i))−(ỹG,.(i+1))|≤K

×

(
N∑
i=1

P
(
yMIR,. (i) , ỹG,. (i)

))
, (18)

where N is the number of classes of the 1D histogram associated
to the random variable YMIR,. , yMIR,.(i) is the MIR reflectance of
the class i, ỹG,. = f

(
yMIR,.

)
the i class MIR reflectance given

by the function f , P(t, u) the joint probability of t and u, that
are random variable realisations, K is a parameter modelling the
‘rigidity’ constraint set on f (absolute value of the maximal local
slope). The CN maximization consists in the search for the most
probable way Γ through the (MIR, Green) plane. Such a way can
be evaluated in two iterations using the Viterbi algorithm (Viterbi,
1967) that is also known as the dynamic programming principle.
In our case, the partial costs are derived by recurrence as follows:
∀j ∈ [1,M] , C (1, j) = P

(
yMIR,. (1) , yG,. (j)

)
,

∀i ∈ [1,N − 1] , C (i+ 1, j) = P
(
yMIR,. (i+ 1) , yG,. (j)

)
+ max
k∈[−K ,K ]

(C (i, j+ k)) ,
(19)

where M is the number of classes of the 1D histogram associated
to the random variable YG,., yG,.(i) the Green reflectance of the
class i, and K is the maximal jump accepted (in number of Green
histogram classes) between two successive points on Γ (i.e. two
successive MIR histogram classes). Once the partial cost is derived,
the Γ way is obtained by a backward recurrence:{
Γ (N) = max

j∈[1,M]
(C (N, j)),

∀i ∈ [1,N − 1] , Γ (i) = max
k∈[−K ,K ]

(C (i− k,Γ (i+ 1))) . (20)

The constraint set by the maximal jump amplitude K prevents
Γ from drifting toward the high Green values even for high
MIR values for which clouds are most probable. Finally, Γ is
approximated by its linear regression, assumed equal to the
researched (MIR, Green) soil line.
The improvement of the f estimation in terms of regularity is

obvious from Fig. 4.
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Fig. 4. Comparison for the left image (acquired on 04/29/2006 over Benin) of the results of the Green–MIR band inter-calibration using modal value estimation and the
Viterbi estimation (linear approximations are plotted with the corresponding dark colour) respectively.
Fig. 5. Sun/Cloud/Shadow geometry, actual and apparent on the remote sensing image: (a) 3D representation, (b) 2D soil projection (with ag = h. tanφβ , bg = h. tanφµ).
4.2. Estimation of the location of the shadow relative to the cloud

The shadow of each cloud is located in the opposite direction
relative to the sun apparent azimuth θ . As illustrated in Fig. 5, this
direction depends at once on the azimuth φα , the sun incidence
angle φβ , the looking angle φµ and the orbit tilt π/2− φω .
According to Fig. 5 geometry:

tan θ = −
sinϕα tanϕβ + sinϕω tanϕµ
cosϕα tanϕβ − cosϕω tanϕµ

. (21)

Note that it is possible at this stage to detail the shadow location
only in terms of direction, since the cloud altitude is unknown.

4.3. Model parameter setting

Let us first recall that there is no need to set precisely the
parameters βi∈{1,2,3,4} and γ of Eqs. (5)–(7) and similar parameters
of Eqs. (8)–(10) provided that the conditions ∀i ∈ {1, 2, 3, 4}
βi > 0, 0 < β1−β3 < γ < β2/nconnex (and similar conditions forβ ′i
and γ ′ parameters) are met – which will be done in the following
– and as far as local minimization is concerned. Indeed, the local
minimization of the global energy corresponds to a threshold with
hysteresis which only depends on the values of the threshold
parameters. Note that the global optimum is a priori dependent
on Markovian model parameters (βi, β ′i , i ∈ {1, 2, 3, 4}, γ , γ

′)
and one should first set these parameters (whatever the way the
global optimization is then performed). From our point of view
and for this study, the advantage of avoiding the step of estimation
of Markovian model parameters prevails upon the drawback of
getting a local optimum instead of a global one.
Concerning the ‘threshold’ parameters involved in the data

attachment terms, we distinguish the cloud and the shadow cases.
In the clouddetection case, these parameters, denoted tch and t

c
l , are

stationary over the image and directly estimated from the image
histogramanalysis. In the shadowdetection case, these parameters
are local to the estimated ‘shadow’ object.
More precisely, tch and t

c
l are estimated from the ydiff pixel

distribution. Indeed, we observe that the cloud shadows do not
really affect the ydiff distribution, and in the absence of clouds the
distribution is symmetric. The thresholds are hence parameterized
using the histogram’s left part (values lower than the median
value) assumed to be ‘non-contaminated’ by some possible clouds.
Let zp be the p-percentile (i.e.P(ydiff ,. ≤ zp) = p/100). tp is the zp
symmetric relative to the distribution mean (that is very close to
0). Then, tch and t

c
l are such that: t

c
h = ch · tp, and t

c
l = cl · tp, where

ch and cl are two empirical coefficients such that cl ≤ 1 ≤ ch. In
our application, p = 0.1, ch = 1.25, cl = 0.95. Fig. 6 illustrates the
location of zp, tp, tch and t

c
l in the histogram.

In the case of the shadows, the parameters to define are ω, tshh
and tshl . These parameters are specific to each cloud shadow. The
model (8)–(10) will then be applied as many times as there are
cloud detections. The introduction of ω is motivated both by the
fact that the shadow detection applied with stationary parameters
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Fig. 6. Histogram of the image acquired on 04/29/2006 over Benin and values of zp = −17, tp = 19, tch = 24 and t
c
l = 18.
to the whole image induces important false alarm rates, and by
the fact that the model at object level (using the object graph) will
invalidate any shadownot possibly associated to a cloud, i.e. having
not a cloud in the direction θ given by (21) (cf. Section 4.2).
Hence, practically and in order to reduce both false alarms and
computation time, the shadow research areas are restricted to the
areas consistent with the location of the detected clouds (cloud
detection is performed first). The ω estimation is based on the a
priori similarity (except for the cloud/shadow overlaps) between
shadow and cloud shapes. Note that this assumption is true only in
first approximation (because of the soil relief), and the ‘exact’ shape
of the shadowwill be detected from the data observations. For each
cloud, the corresponding shadow is then researched by translating
a binary mask BC of the cloud shape in the direction θ . Practically,
for each geometric translation step i in θ direction, BC (θ, i) being
the translated mask, and ȳBC (θ,i) the mean y pixel reflectance over
BC (θ, i), the shadow location is given by the minimal argument of
the reflectances ȳBC (θ,i): ĩ = argmini∈I ȳBC (θ,i), and ω = BC (θ, ĩ).
Note that when the intersection of the cloud and BC (θ, i) is not
empty, the pixels belonging to this intersection are not considered
for the estimation of ȳBC (θ,i). Finally, let us specify that the i search
domain I excludes the geometric translations inducing a new
selection of a shadow already associated to a cloud (so that two
clouds aligned in θ direction get a priori two different shadows),
and that the presence of another cloud in I or an overlapping of I
with the image outside may invalidate the shadow search (making
the H predicate valid, by default). The order of the estimation of
the ω areas associated to the different clouds has thus an effect on
the result: in an ad hoc way, we process the clouds by decreasing
the size order. Besides ω = BC (θ, ĩ), the previously estimated
shadow location provides approximate statistical parameters of
the shadow, namely a minimal radiometric value, ymin (ω), and a
standard deviation, σ (ω) - values that depend on the soil features.
The thresholds are then given by: tshl = ymin(ω), and tshh =
ymin(ω) + cshσ(ω), where csh is a real coefficient empirically set
to 1 in our case.
In summary, concerning shadow detection, first the location of

the shadow is estimated assuming its shape (equal to those of the
cloud) and knowing the direction of the cloud-shadow axis. This
gives the first rough estimation of the shadow called ω. Secondly,
shadow shape is more accurately estimated using region growing
processwith germgiven by the pixel(s) reaching theminimal value
overω andmerging criterion involving a threshold tshh also derived
from ω.

4.4. Algorithm

4.4.1. Definitions of propertyΠ and criterion H
Here we focus on theMarkovianmodel at object level. We have

to specify firstly the property Π that allows distinguishing mist
from clouds, and secondly the predicate H corresponding to the
overlapping criterion for the shadow and translated clouds.
The mist being a priori more ‘transparent’ than clouds, for an
object labelled ‘cloud or mist’ Rc∪m,Π is defined based on the pro-
portion of pixels taking values between the two thresholds tch and
tcl :Π is true if

∣∣{s ∈ Rc∪m : ydiff ,s ∈ [tcl , tch)}∣∣ /|{s ∈ Rc∪m : ydiff ,s ≥
tch}| ≥ tb, and is false otherwise. In our case, tb = 10

3.
H is estimated by comparison of the shadows detected (as

explained in Section 4.2) to the masks ω of the translated
clouds. Let us consider a clique composed of an object ‘shadow’,
denoted Rsh, and an object ‘cloud’, denoted Rc . ω(Rc) is the region
corresponding to the ĩ geometric translation of Rc (in θ direction),
but the pixels belonging to the cloud (in the same way as for ω
estimation, when a cloud overlaps its shadow, the pixels belonging
to the cloud are not considered). nsh, nc , and nc∩sh are the numbers
of pixels belonging respectively only to Rsh, only to ω(Rc), and
both to ω(Rc) and Rsh: nsh = |{t ∈ Ω : t ∈ Rsh, t 6∈ ω (Rc)}|, nc =
|{t ∈ Ω : t 6∈ Rsh, t ∈ ω (Rc)}|, nc∩sh = |{t ∈ Ω : t ∈ Rsh, t ∈ ω
(Rc)}|. Then H is true if the proportions

nsh
nc∩sh

and nc
nc∩sh
, that are the

parameters used for the mutual validation of clouds and shadows,
are lower than the threshold tv . Fig. 7 gives examples of false alarm
detection or validation depending on H .
In this study, the threshold tv was set equal to 0.75. Such a value

may appear high, however, in the case of small clouds the surface
relief may introduce important deformations in the shadow shape
relatively to the cloud one, and the false alarm cases aremainly due
to very ‘bright’ fields or buildings and the erroneously associated
shadows are very large inducing ratios nsh/nc∩sh � 1.

4.4.2. Global algorithm
Having defined the imagemodel allowing the representation of

properties P1, P2 and P3 in a Markovian framework, we showed
that in the simple case of the proposed potential functions, the
energy minimization (that corresponds to the maximization of the
a posteriori probability) is obtained by hysteresis thresholding,
region growing, and mutual validation of clouds and shadows
as far as the local minimization is concerned. Besides, we recall
that the shadow detection uses the cloud detection results (for
ω estimation) so that the algorithm shall consider these two
steps sequentially. Roughly, the proposed algorithm has three
main steps respectively corresponding to cloud andmist detection,
shadow detection, and cloud and shadow mutual validation. A
priori parameters (p, ch, cl, csh, tb, tv) are set to the default values
(0.1, 1.25, 0.95, 1, 103, 0.75) in our case.
The global algorithm synopsis is shown in Fig. 8.

5. Application and discussion of results

5.1. Markovian model results

Fig. 9 shows qualitatively the cloud and shadow detection
by the proposed algorithm. Fig. 9(a) is the original multispectral
SPOT/HRVIR image, fromwhich the images ydiff (Fig. 9(b)) and yMIR
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(a) nc/nc∩sh &
nsh/nc∩sh > tv ⇒ false alarm.

(b) nc/nc∩sh > tv ⇒ false alarm. (c) nc/nc∩sh &
nsh/nc∩sh < tv ⇒ validation.

Fig. 7. Mutual validation according to criterion H based on the overlap between ‘translated’ cloud and its assumed shadow.
Fig. 8. Global algorithm synopsis. First Green and MIR bands are inter-calibrated (cf. Section 4.1.2) to get the image difference ydiff . Then, hysteresis thresholding of ydiff
(that gives the local optimum of the pixel level MRF model for clouds) leads to the cloud mask (cf. Section 3.2). Then, for each detected cloud, the location of the associated
shadow is determined knowing the acquisition parameters and theMIR image (cf. Section 4.2). The cloud is then projected to this location to get the germ and the parameters
of the region growing process (that gives the local optimum of the pixel level MRF model for shadows) leading to the shadow mask (cf. Section 3.2). Finally, for each cloud,
the intercomparison of its projection and its detected shadow allows validating it. If not validated, both cloud and associated shadow are removed from the cloud and the
shadow masks, respectively.
Table 4
Possible decisions versus the truth: grey cells point out the erroneous decisions.

Decision Truth
No cloud (A+ C) Cloud (B+ D)

No cloud (A+ B) Right non-detection (A) mis-detection (B)

Cloud (C+ D) False alarm (C) Right detection (D)

(Fig. 9(c)) are derived. By processing the mist and cloud detection
based on the pixel graph, the Fig. 9(d) image is obtained, and
by processing the shadow detection, so is the Fig. 9(e) image.
Finally, the cloud and shadow mutual validation processed using
the object model provides the Fig. 9(f) image. The presented
results are typical of those obtained with the different AMMA
database images. Qualitatively, these results appear satisfying.
Main remaining false alarms are due to bright areas for which the
absence of shadowwas justified by the location at the scene border
or by the possible masking by another cloud. Non-detected clouds
are small clouds over a bright soil.
Quantitatively, the results are evaluated in terms of ‘right non-

detections’, ‘false alarms’ (there is no cloud in both cases that differ
by the decision, either a non-detection, i.e. right decision, or a
detection, i.e. erroneous decision), and in terms of ‘mis-detections’
and ‘right detections’ (there is a cloud in both cases that differ by
the decision, either a non-detection, i.e. erroneous decision, or a
detection, i.e. right decision). Table 4 summarizes these different
cases.
Fig. 10(a)–(d) plot, in number of pixels, the ‘right non-

detections’, the ‘false alarms’, the ‘mis-detections’ and the ‘right
detections’. Each point corresponds to a result from one of the
39 AMMA images. For a given Fig. 10(x) the total number of
considered pixels (clouds for Fig. 10(a), (b), and clear pixels
for Fig. 10(c), (d)) varies with the proportion of clouds within
the images. We note the sum of the pixels corresponding to a
right decision and those corresponding to an erroneous decision:
graphically, for a given x-axis value, the sum of the y-axis value
of the green cross and the y-axis value of the blue asterisk equals
the y-axis value of the red cross. Results are hence good if the
green crosses (right detections on Fig. 10(a), (b) or right non-
detection on Fig. 10(c), (d)) are close to the red crosses, and the
blue asterisks (erroneous decision) close to the x-axis. Then, we
observe satisfyingly the previously described good results and that
the errors are minor.
Now, most processed images include only a low percentage of

clouds, that is represented in Fig. 10(a) by a point cluster close to
the graph origin (most cloudy images correspond to about 3.5%
and 1.5% of clouds on the image). Fig. 10(b) presents a zoom
around the graph origin. The distribution of the ‘mis-detection’ rate
(B/(B + D) × 100) has median value equal to 8.33%, and 1st and
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Fig. 9. Example of cloud and shadow detection: (a) HRV image, (b) ydiff , (c) yMIR , (d) pixel level cloud detection (in blue), (e) pixel level shadow detection (in green) using
the cloud projection (red arrows) in θ direction, (f) object level mutual validation.
3rd quartile values respectively equal to 2.33% and 12.23%. The
proposed method mainly is efficiently reducing the false alarms;
cf. Fig. 10(c), (d) (zoom). The distribution of the ‘false alarm’ rate
relative to the non-cloud pixels (C/(A + C) × 100) has median
value equal to 0.0%, and 3rd quartile value equal to 0.0016% and the
distribution of the ‘false alarm’ rate (C/(C+D)× 100) has median
value equal to 8.47%, and 1st and 3rd quartile values respectively
equal to 0.16% and 100% (corresponding to the cases of clear sky
images in which a ‘small’ cloud was detected, inducing 100% false
alarms). Just for comparison of performance, we performed cloud
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Fig. 10. MRF model results obtained on AMMA database: each point corresponds to an image, the 1st line presents the results (right detection and mis-detection) relative
to the cloud pixels, the 2nd line presents the results (right non-detection and false alarm) relative to the clear pixels (no cloud); the 2nd column is a zoom over a subpart of
the graph on the same line.
Table 5
Performance of a simple threshold approach for cloud detection: comparison with the proposed MRF based algorithm results (values between brackets).

Thresholding above (tch + t
c
l )/2 ‘mis-detection’ rate (B/(B+ D)× 100) ‘false alarm’ rate (C/(A+ C)× 100) ‘false alarm’ rate (C/(C+ D)× 100)

1st quartile value 0.0% (<2.33%) 0.006% (>0.0%) 6.18% (>0.16%)
Median value 17.7% (>8.33%) 0.31% (>0.0%) 54.0% (>8.47%)
3rd quartile value 29.3% (>12.23%) 0.72% (>0.0016%) 100% (=100%)
Table 6
Sensitivity to parameters — cloud thresholds, shadow threshold, mist/cloud distinction parameter and cloud/shadow comparison one: L1 (L2) norm values of difference
between obtained error rates with tested parameter values and error rates corresponding to parameter default value, varying the parameters within a range of±10% around
the proposed default values.

L1 (L2) tcl tch tcsh tb tv

Mis-detection rate (in %) 1.84 (3.32) 0.44 (0.94) 5.40 (19.9) 0.38 (1.44) 0.0097 (0.052)
False alarm rates (in %) 0.93 (2.74) 0.51 (1.79) 3.30 (17.7) 0.021 (0.065) 0.0007 (0.0032)
detection using thresholds equal to (tch+t
c
l )/2. The 1st, 2nd and 3rd

quartile values of ‘mis-detection’ rate relative to the cloud pixels,
and ‘false alarm’ rate either relative to non-cloud pixels or relative
to the cloud labelled pixels are given in Table 5.
Finally, Table 6 shows the sensitivity of our results to algorithm

parameters. We note that it is rather robust since performance
measured in terms of ‘mis-detection’ rate (B/(B + D) × 100) and
‘false alarm’ rate (C/(C+D)× 100) does not vary much (less than
1% in most cases, the shadow threshold being the most critical
parameter).
5.2. Results using Marked Point Process

Marked Point Processes (MPP) can be viewed as a natural
extension of the stochastic model, in particular Markov Random
Field ones. Even if their use in image processing is relatively recent,
they have already been applied to various problems (Descombes
et al., 2004). They allow in particular making up for the lack
of flexibility of the MRF over graphs as far as the number of
considered nodes (i.e. objects) is concerned.
In this study, our aim is to use the MPP as an advanced model

for comparison with the MRF model proposed. In this section only
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Fig. 11. MPPmodel results obtained on AMMA database: each point corresponds to an image, the 1st line presents the results (right detection andmis-detection) relative to
the cloud pixels, the 2nd line presents the results (right non-detection and false alarm) relative to the clear pixels (no cloud); the 2nd column compares the results obtained
using respectively the MRF proposed model and the MPP one — for figure legibility, the y-axis scale focuses on error (mis-detection or false alarm) value range.
the obtained results are presented and commented in comparison
with the MRF ones, whereas the main features of the MPP are
summarized in Appendices A and B presenting the way we apply
them to our cloud/shadow detection problem.
Fig. 11 shows the results obtained using the MPP model and

compares them to the results obtained using the MRF model over
graphs (Section 5.1). Note that among the 39 data images, only 5
have beenprocessed. These images are thosewhere theMPPmodel
performs better, in particular images without mist since the MPP
developed model does not process the case of the mist. Indeed, as
in the case of the MRF model, the mist shadow, difficult to detect,
cannot be used for mutual validation with mist without taking the
risk of highly increasing the mist mis-detection. Now, conversely
to the MRF model, the MPP model does not distinguish the cloud
and mist cases (the distinction done in the MRF model is at object
level while the MPP model remains at pixel level) and therefore
always looks for a shadow pixel associated to a ‘cloud or mist’
pixel. The second reason for processing only a few images is the
algorithm running time that is much more important (multiplied
by a factor about 1000) for the MPP model because of the use of
a simulated annealing process for global optimization (while only
local optimization is performed in the case of theMRFmodel). Note
thatwe checked that local optimization ofMPPmodel leads to very
poor results.
Fig. 11(a), (c) are similar to Fig. 10(a), (c) except for the number

of considered images (figure points). The MPP results obtained
correspond to the same order of performance as MRF ones. To
compare the two models in a more precise way, Fig. 11(b), (d)
present both results (for each of the 5 considered images) focusing
on the error value ranges (either mis-detection number or false
alarm number). The main comments are the following.
From Fig. 11(b), we note that mis-detection cases are reduced

using the MPP model instead of the MRF model. This is consistent
with the fact that, using MRF over graphs, the graph node number
cannot vary. Practically, in our application, if a cloud pixel is mis-
detected during the first algorithm step (using the pixel graph),
there is no way to recover it during the following steps: at object
level, only previous step detections can be validated. Conversely,
the MPP model is able to handle a graph with a variable number
of nodes thanks to the birth and death transformations. Our
results hence illustrate the advantage of such a more general
model. However, we also note that the price for the mis-detection
rate decrease is an increase of the false alarm rate, visible in
Fig. 11(d). Now, if one recalls that, for applications such as
quantitative estimation of land cover change, cloud/shadow false
alarms are preferable to mis-detection, the advantage is for the
MRF model approach (MPP will be more advantageous in the case
of applications for which the respective costs of false alarm and
mis-detection are almost equal).
Fig. 12 shows an example of results obtained in the case of

the image acquired on 04/29/2006 on Benin: Fig. 12(a) is the
data image, Fig. 12(b), (c) show, respectively, the MRF model
result and the MPP one, and Fig. 12(d) is the image difference
between MPP and MRF results. One can see a slight increase in the
number of detected cloud pixels consistent with Fig. 11 previously
commented on. However, themain point of Fig. 12 is the difference
in shadow estimation. The shadows obtained from the MPP model
aremuch closer in shape than those obtained using theMRFmodel.
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Fig. 12. Comparison of MPP and MRF models (subpart of the 04/29/2006 image acquired on Benin): (a) data image, (b) MRF model result, (c) MPP model result, (d) image
difference between MPP and MRF results.
This can be explained by the fact that in the MPP model there is a
term that compels the geometric translation (between cloud pixel
and associated shadow pixel) of neighbouring pixels to be close
(that is necessary to ensure the similarity of cloud and shadow
global shapes). In the MRF model, having estimated approximate
shadow locations, shadow shape is achieved independently of
cloud (for comparison between cloud and shadow at object level).
Now, even if we have not performed quantitative evaluation of the
algorithmperformance on shadow, areas circled in Fig. 12 point out
areas where the shadows obtained in Fig. 12(b) seem qualitatively
more consistent (relative to Fig. 12(c)) with those that would be
obtained performing themanual photo interpretation of Fig. 12(a).
Finally, it should be recalled that the MPP approach requires

the precise fitting of 12 parameters. On the one hand, even
if numerous tests have been performed in order to determine
(in a supervised way) the parameter values that lead to best
performance, it is still possible that better results can be obtained
using other parameters. On the other hand, the fact that the MRF
model based algorithm requires only few parameters to fit (at least
in the practical implementation that we propose) may be seen as a
serious advantage in terms of robustness and user-friendliness of
the algorithm.

6. Conclusions

In this paper, we present a new method to detect cloud and
shadow on optical visible high resolution images. It is based on
the use of the Markov Random Field formalism on graphs at two
levels: the pixel level in which case the considered graph is the
image lattice, and the object level in which case the considered
graph nodes are the cloud/mist/shadow objects detected from the
first processing steps at pixel level. The main advantages of the
proposed algorithm are:

(i) good performance on the tested database (containing 39
SPOT/HRV images),

(ii) reduced false alarm rates (relative to classical pixel level
approaches),

(iii) only six effective parameters (ch, cl, p, csh, tb, tv) that are rather
robust and can be set at a default value (kept constant for the
processing of the considered 39 images, that correspond to
various acquisition, landscape and season conditions),

(iv) fast convergence (relatively to methods requiring global
optimization).

The proposed model was compared to a more general and
flexible model defined using theMarked Point Process framework,
and the results of our simplest approach in terms of performance
were shown. The development and the use of the MPP model
pointed to two drawbacks: the absence of consideration of the
object level (due to the difficulty to model simply the geometrical
properties of clouds), and the fastidious feature of the task to set
MPP model parameters. Then, future studies can try to overcome
these drawbacks by constructing a more sophisticated model
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including object features and exploiting unsupervised techniques
(that automatically estimate the model parameters).
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Appendix A. Point processes — Notations, definitions and
algorithms

In this section, the main definitions of Point Processes (PP)
are given on the prospect of their application to the stochastic
modelling of the objects (existence and interactions) present in the
image (Van Lieshout, 2000; Descombes, 2004). The definitions are
given assuming a space χ , that is generally a continuous bounded
set included in R2 representing the image, L(χ) the Lebesgue
σ -algebra overχ , andhaving ametric, d, e.g. the Euclidian distance.

A.1. Marked Point Processes

A configuration x is a not-ordered set of χ points. It is locally
finite if in any χ Borel bounded set, there is a finite number of
points. A PP is an application X from a probability space (Ω , A, P)
to the set N lf of the locally finite configurations, such that for any
Borel set A ⊆ χ , the number of points in A, denotedN(A), is a finite
random variable (the PP realisations are random configurations of
a finite number of points).
Let us now consider (χ, d) and (M, d′), two metric spaces

complete and separable. A Marked Point Process (MPP) whose
locations are in χ and the marks in M is a PP such that the
process of the not-marked points is a well defined PP. Now, the
marginalisation over χ of the joint random variable is a finite
random variable in particular ifM , finite, is discrete.

A.2. Density of a point process with respect to the Poisson process

The Poisson PP (most famous) corresponds to a uniform
repartition of the points inχ . By definition, a Poisson PP of intensity
ν(.) (ν(.) being a Borel measure over (χ, d) such that ν(χ) > 0
and ν(A) < +∞ for any bounded A) is such that: (P1′) for any
Borel bounded A ⊆ χ , N(A) follows a Poisson law of mean ν(A):
P (N (A) = n) = e−ν(A) · (ν(A))

n

n! , and (P2
′) for any k disjoint Borel

sets A1, . . . , Ak, the random variables N(Ai), i = 1, . . . , k, are
independent. (P2′) can be interpreted as a spatial non-correlation
property.
The Poisson processes are used, in an analogue way to the

Lebesgue measure over Rd, to define any PP by its density with
respect to the distribution of the reference Poisson PP: Let π(.) be
the distribution of a finite intensity Poisson process over χ , and
h(.) a positive function from N f , the set of finite configurations, to
[0,+∞); if Z (h, π) =

∫
N f h (x) .dπ (x) < +∞, then Z

−1.h(x)
may be interpreted as the density of a PP with respect to the
reference Poisson process (Van Lieshout, 2000). In the following,
PP are characterized by their density h(.).
A.3. Markov and Gibbs point processes

Let∼ be a symmetrical relationship over χ : Two points of χ , r
and s are ‘neighbours’ if r ∼ s. The neighbourhood of a bounded
Borel set A ⊆ χ is the set of χ points having a neighbour in A:
{x ∈ χ |∃a ∈ A : a ∼ x}. A configuration x of N f is a clique if any
two x points are neighbours: ∀ (u, v) ∈ x× x, u ∼ v. Then, Ripley
and Kelly (1977) defined aMarkov PP as follows. Let ν(.) be a Borel
measure over (χ, d), πν(.) the Poisson PP law with intensity ν(.),
and X a PP over χ defined by its density h(.)with respect to πν(.).
X is a Markov PP with respect to the relationship ∼ over χ if for
any x of N f such that h(x) > 0, then (i) for any y ⊆ x, h(y) > 0,
and (ii) for any u ∈ χ , λ(x, {u}) = h(x ∪ {u})/h(x) only depends
on u and {x ∈ χ |u ∼ x}.
Using a theorem analogue to the Hammersley–Clifford the-

orem, the density h: N f → [0,+∞) of a Markov PP writes
h (x) =

∏
cliques y⊆x φ (y), where φ(.) is a measurable function:

N f → [0,+∞). More generally, h (x) =
∏
y⊆x φ (y) where φ(.)

is a function modelling the interactions that equals 1 except if its
argument is a clique. Finally, by definition, a Gibbs PP has a den-
sity (h(.) with respect to the reference PP) that writes in its most
general form 1

Z exp {−U (x)}, where Z is a normalization constant
and U(x) the PP energy written as a sum of interaction potentials
between couple pixels: U (x) =

∑
i,j:
∑
1≤i<j≤n V

(
xi, xj

)
. For ex-

ample, when χ = R2 and V
(
xixj
)
=

{
− ln γ if d

(
xixj

)
< r

0 if d
(
xixj

)
≥ r , where

d(., .) is a spatial distance, r > 0, γ > 0, the PP is a Strauss PP:
γ = 1 corresponds to the Poisson PP (i.e. without point interac-
tion), γ ∈ (0, 1) to a repulsion between neighbour points, and
γ > 1 to an attraction between neighbour points.

A.4. Algorithm RJMCMC

Let us consider the space S = χ×M . Here, N f is the set of finite
configurations ofmarkedpoints. p(.) is theMPP law, h(.) its density
with respect to the reference Poisson PP π(.) having intensity ν(.)
over N f : ∀x ∈ N f , p (dx) = h (x) .π (dx)
The RJMCMC algorithm aims at constructing a Markov chain

(Xn)n≥0 over N f . The convergence toward p(.) of a Markov
chain having transition node Q (x, dx) is ensured once Q is
aperiodic, irreducible and satisfies

∫
A p (dx) .

∫
B Q (x, dy) =∫

B p (dy) .
∫
A Q (y, dx) (‘equilibrium’ condition). Green (1995) pro-

poses using a mixing proposition node Qm (x, dy), where m rep-
resents a transformation (e.g. ‘birth’, i.e. addition of a point,
‘death’, i.e. suppression of a point, modification of the parame-
ters of a point, etc.), such that: Q (x, dy) =

∑
m Qm (x, dy) and

Q (x, χ) ≤ 1 so that we stay in the same state with probability[
1−

∑
m Qm (x, χ)

]
. Qm (x, χ), also denoted pm(x), is the proba-

bility to select transformation m being in state x. Qm (x, χ) = 0
for somemmeans that some transformations from a given state x
are not possible. Let αm (x, y) be the probability to accept the new
state y (using a transformation m). To estimate αm (x, y), we con-
sider fm(., .) the density of h(.).Qm(., .)with respect to themeasure
ξm overχ×χ :

∫
A

∫
B p (dx) .Qm (x, dy) =

∫
A

∫
B fm (x, y) .ξm (dx, dy)

(fm(., .) is the Radon–Nikodym derivative). According to Green
(1995), if ξm is symmetrical, the equilibrium condition is checked
once fm (x, y) · αm (x, y) = fm−1 (y, x) · αm−1 (y, x)where the sub-
scriptm−1 denotes them reverse transformation. Besides, to mini-
mize the Markov chain autocorrelation αm (x, y) should be chosen
as large as possible (Peskun, 1973). Green (1995) proposes:

αm (x, y) = min
{
1,
fm−1 (y, x)
fm (x, y)

}
. (A.1)

The Reversible-Jump-Monte-Carlo-Markov-Chains (RJMCMC)
algorithm is then as follows:

http://www.amma-international.org
http://www.amma-international.org
http://www.amma-international.org


S. Le Hégarat-Mascle, C. André / ISPRS Journal of Photogrammetry and Remote Sensing 64 (2009) 351–366 365
1. choose a transformation m with probability pm(x); either
go to step 2, or stay in configuration x with probability[
1−

∑
m pm (x)

]
and do not consider the following steps;

2. simulate y according to Qm (x, dy);
3. compute the Green ratio R = fm−1 (y, x) /fm (x, y);
4. accept the transformation x → y with probability αm (x, y) =
min (1, R).

Appendix B. Marked Point Process: The proposed model

Generally used in the context of object detection in image
processing, MPP allows for some stochastic modelling that takes
into account the geometrical features of the objects as the
interactions between objects. However such modelling requires
that the objects be characterized by simple geometrical shapes:
line segments for the roads, ellipses for the trees and rectangles
or parallelepipeds for the buildings (Descombes, 2004). In our
application case, unfortunately clouds do not have a sufficiently
simple geometry to allow characterization by a small number
of parameters or marks. Hence we apply the MPP not at the
cloud object level, but at the cloud pixel level (or equivalently
we consider only elementary clouds of size equal to 1 pixel).
Then, each couple of a cloud pixel and a shadow pixel can be
characterized by the location of the cloud pixel (at pixel level
the space χ is the image space Ω) and the length l of the line
segment between the two pixels (since the direction is determined
by the sun and geometry acquisition conditions). The MPP is
hence defined over S = Ω × [lmin, lmax], where lmin and lmax are
the minimal and maximal values of the cloud-shadow geometric
translation norm. In the following, the length l is estimated with a
given precision so thatM is discrete.
Pixel level allows getting a mark space of low dimension even

if it induces some drawbacks. In particular, it will not be possible
to introduce (at least in a simple way) some criteria about the
respective shapes and sizes of a cloud object and its assumed
shadow one, or some criteria about the object proportion checking
a property (useful to distinguish the cloud from the mist). Thus,
even if the energy functions for the proposed model have been
chosen to make it as close as possible to the previous Markovian
model (Section 3), both models will not be equivalent: The gain
in flexibility of the modelling related to the possibility to get a
graph of dimension variable (number of points of configuration x)
contrasts with the loss of the possibility to consider twomodelling
levels (pixel and object).

B.1. Energy term definition

In Appendix A, we saw that for a Gibbs PP, the density h(.)
is determined by the energy U(x). Generally U(x) writes as the
sum of a data attachment energy Ud(x) that involves each point
of x separately and a prior energy Up(x) that represents the a
priori information about point interactions and that involves some
subsets points of x belonging to a same clique: U (yc, ys|x) =
Ud (yc, ys|x)+ Up (x).
Concerning the prior energyUp(.), it is defined in order tomodel

some spatial regularity and consistence between cloud object and
associated shadow object. More precisely, it is composed of two
terms: an attraction termUa(x) favouring the gathering together of
theMPP points (in agreementwith P1 property according towhich
clouds are connex objects), and a likeness term Ul(x) favouring
close mark (cloud-shadow geometric translation norm) values for
neighbour points (that are assumed belonging to a same cloud
and therefore having consistent shadow location in agreement
with properties P2 and P3). Then, the neighbourhood is chosen
to coincide with the nconnex-connexity (nconnex ∈ {4, 8}) at least
one of the two extremities of the cloud-shadow line segment:
u ∼ v ⇔ (‖u− v‖2 ≤ dmax or
∥∥u+ Etu − v − Etv∥∥2 ≤ dmax),

where dmax ∈ [1,
√
2) if nconnex = 4, and dmax ∈ [

√
2, 2) if

nconnex = 8. Vu is the set of points v of x, configuration of Ω , such
that u ∼ v: Vu = {v ∈ x, v 6= u : v ∼ u}, having cardinal |Vu|.
Finally, we propose Up(x) = Ua(x)+ Ul(x)with:

Ua (x) = −β ·
∑
u∈x
|Vu| , (B.1)

Us (x) = δ ·
∑
u

∣∣∣∣∣ lu − µ
(
lVu
)

σ(lVu)

∣∣∣∣∣ , (B.2)

where β is a parameter, µ
(
lVu
)
and σ

(
lVu
)
are the mean and the

standard deviation of l over Vu.
Concerning the data attachment energy Ud(.), it is decomposed

into two terms concerning respectively the cloud and the shadow.
Let yc,u denote the data value at pixel u (u ∈ x) for the cloud
detection observation field and ys,t the data value at pixel t
for the shadow detection observation field. The shadow pixel
coordinate is determined from the coordinate of the cloud pixel u
and the associated mark lu that gives the cloud-shadow geometric
translation vector Elu: t = u +Elu. Now, assuming independence of
the observations conditionally to the label field, andmimicking the
Markovian modelling over theΩ graph (pixel level), we propose:

Ud (yc, ys|x) =
∑
u∈x
[U cd

(
yc,u|u ∈ x

)
+ U sd

(
ys,u+Elu |u ∈ x

)
]

+

∑
u6∈x
[U cd

(
yc,u|u 6∈ x

)
+ U sd

(
ys,u+Elu |u 6∈ x

)
], (B.3)

where U cd (yc,u|u ∈ x) is U
0
s (ys|xs = λc∪m) of (5) for s = u,

U cd (yc,u|u 6∈ x) is U
0
s (ys|xs = λc∪m) of (6) for s = u, U

s
d(ys,v=u+Elu |u ∈

x) is U0s (ys|xs = λsh) of (9) for s = v and ω = Ω , and
U sd(ys,v=u+Elu |u 6∈ x) is U

0
s (ys|xs = λsh) of (8) for s = v and ω = Ω .

B.2. Used transformations

We now aim at specifying, for each transformation m, fm(x, y)
versus h(x) and x.
Let us first consider the basic transformations that are the birth

(subscript b) and the death (subscript d) of a point. According to
(e.g. Descombes (2004), for a death, the point to remove is chosen
among the points of the current configuration x following the
uniform law 1/n(x), and, for a birth, the point to add is chosen
following the ν(.)/ν(χ) law for its location and the uniform law
1/|M| for its marks. Then, for y = x − {u} (u death): p (dx) ·
Qd (x, dy) = h (x) · π (dx) · pd (x) .1/n (x) ⇒ fd (x, y) = h (x) ·
pd (x) /n (x), and for y = x ∪ {u} (u birth): p (dx) · Qb (x, dy) =
h (x) · π (dx) · pb (x) · ν (du) /ν (χ) ⇒ fb (x, y) = h (x) ·
pb (x) / [ν (χ) . |M|]. The Green ratios Rm = fm−1 (y, x) /fm (x, y)
are thus:

Rd =
h (x− {u}) · pb (x− {u}) · n (x)

h (x) · pd (x) · (lmax − lmin) /δl · ν (Ω)

∝̃
h (x− {u})

h (x) · (lmax − lmin)
, (B.4)

Rb =
h (x ∪ {u}) · pd (x ∪ {u}) · (lmax − lmin) /δl.ν (Ω)

h (x) · pb (x) · (n (x)+ 1)

∝̃
h (x ∪ {u}) · (lmax − lmin)

h (x)
, (B.5)

where δl is the l mark resolution, and the approximations are
obtained approximating the ratio pd (x) /pb (y) by n (x) /ν (Ω)
(x and y are two configurations related by a death or a birth).
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Finally, it is also possible to consider transformations that only
change the parameters of a point (e.g. modification of the value
of its mark) and leave unchanged the total number of points of
the current configuration x. Such transformations that are said to
be ‘non-jumping’, subscribed nj, are performed in order to speed
up the convergence. They induce a classical Metropolis–Hasting
scheme with a probability to accept the change x→ y:

αnj (x, y) = min
{
1,
h (y)
h (x)

}
. (B.6)
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