Interações Intermoleculares

▲ Figure 11.1 A microscopic view of a water droplet on the surface of a lotus leaf.

Chlorine, Cl₂

Particles far apart; possess complete freedom of motion

Particles are closely packed but randomly oriented; retain freedom of motion; rapidly change neighbors

Particles are closely packed in an ordered array, positions are essentially fixed

Strong intramolecular attraction (covalent bond)

H—CI

H—CI

H—CI

Weak intermolecular attraction

▲ Figure 11.3 Intermolecular and intramolecular interactions.

Table 11.3 Melting and Boiling Points of Representative Substances

Force Holding Particles Together	Substance	Melting Point (K)	Boiling Point (K)
Chemical bonds			
Ionic bonds	Lithium fluoride (LiF)	1118	1949
Metallic bonds	Beryllium (Be)	1560	2742
Covalent bonds	Diamond (C)	3800	4300
Intermolecular forces			
Dispersion force	Nitrogen (N ₂)	63	77
Dipole-dipole force	Hydrogen chloride (HCl)	158	188
Hydrogen-bonding force	Hydrogen fluoride (HF)	190	293

Forças de Dispersão (Forças de London)

▲ Figure 11.4 Dispersion forces. "Snapshots" of the charge distribution for a pair of helium atoms at three instants.

Efeito da Forma da Molécula

Linear molecule—larger surface area enhances intermolecular contact and increases dispersion force

n-Pentane (C₅H₁₂) bp = 309.4 K

Spherical molecule—smaller surface area diminishes intermolecular contact and decreases dispersion force

Neopentane (C_5H_{12}) bp = 282.7 K

Interação Dipolo-Dipolo

▲ Figure 11.7 Dipole-dipole interactions. The dipole-dipole interactions in (a) crystalline CH₃CN and (b) liquid CH₃CN.

Propane $CH_3CH_2CH_3$ MW = 44 amu $\mu = 0.1$ D bp = 231 K

Dimethyl ether CH_3OCH_3 MW = 46 amu $\mu = 1.3$ D bp = 248 K

Acetaldehyde CH_3CHO MW = 44 amu $\mu = 2.7$ D bp = 294 K

Acetonitrile CH_3CN MW = 41 amu $\mu = 3.9$ D bp = 355 K

Increasing polarity Increasing strength of dipole–dipole forces

▲ Figure 11.8 Molecular weights, dipole moments, and boiling points of several simple organic substances.

Ligação de Hidrogênio

Why is the boiling point of SiH₄ higher than that of CH₄?

▲ Figure 11.9 Boiling points of the covalent hydrides of the elements in groups 4A–7A as a function of molecular weight.

Onde as ligações de hidrogênio são mais importantes?

CH₄
H₂NNH₂
CH₃F
H₂S?

What is the approximate $H - O \cdots H$ bond angle in ice, where H - O is the covalent bond and $O \cdots H$ is the hydrogen bond?

▲ Figure 11.11 Hydrogen bonding in ice. The empty channels in the structure of ice make water less dense as a solid than as a liquid.

Why does the O side of H₂O point toward the Na⁺ ion?

▲ Figure 11.13 Ion-dipole forces.

At which point in this flowchart would a distinction be made between SiH₄ and SiH₂Br₂?

