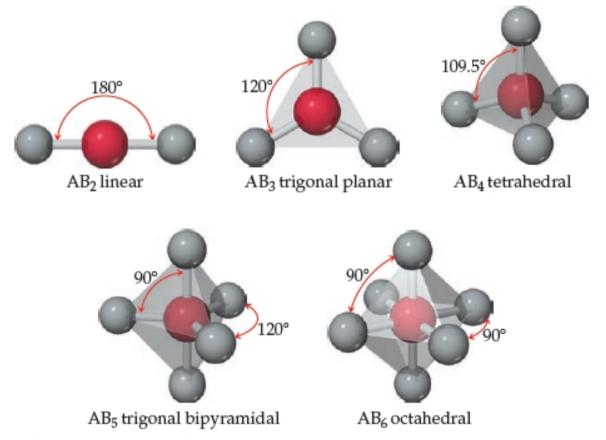
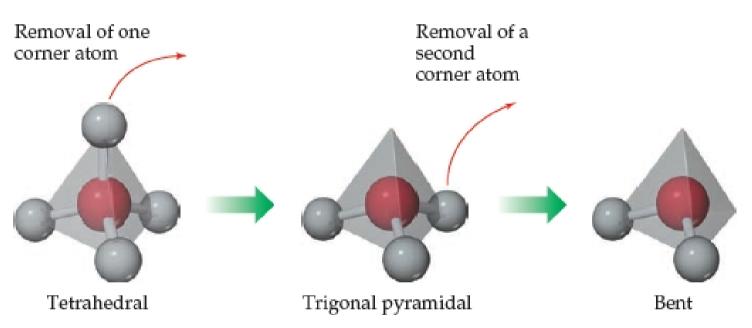

Ligações Químicas – Geometrias Moleculares e Comportamento Químico

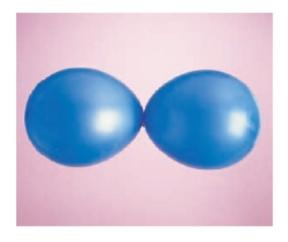
Geometria Planar?



▲ Figure 9.1 Tetrahedral shape of CCI₄.

Geometrias Moleculares de compostos simples


▲ Figure 9.2 Shapes of AB₂ and AB₃ molecules.

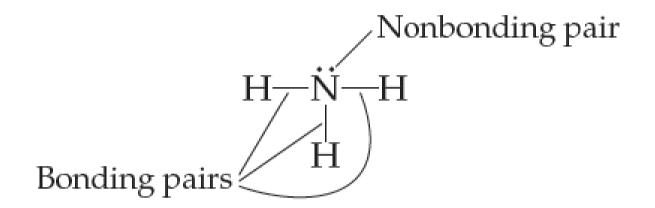

▲ Figure 9.3 Shapes allowing maximum distances between B atoms in AB_n molecules.

Por que as distâncias interatômicas são maximizadas ?

E, se um átomo fosse removido de um tetraedro?

▲ Figure 9.4 Derivatives of the tetrahedral molecular shape.

Two balloons linear orientation


Three balloons trigonal-planar orientation

Four balloons tetrahedral orientation

VSEPR: Valence Shell Electron Pair Repulsion

Domínios de elétrons

- 1) Os elétrons são domínios negativamente carregados, logo eles se repelem ao máximo
- 2) O melhor arranjo é aquele onde a repulsão é minimizada
- 3) Pares não-ligados, ligações simples e ligações múltiplas produzem um único domínio

- 1) A regra do octeto é seguida?
- 2) Qual a geometria molecular?

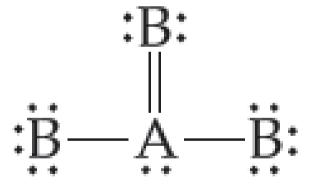
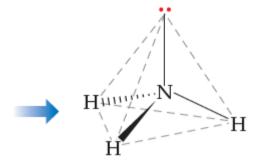



Table 9.1 Electron-Domain Geometries as a Function of Number of Electron Domains


Number of Electron Domain	Arrangement of S Electron Domains	Electron-Domain Geometry	Predicted Bond Angles
2 -	180°	Linear	180°
3		Trigonal planar	120°
4	109.5°	Tetrahedral	109.5°
5	120	Trigonal bipyramidal	120° 90°
6	90°	Octahedral	90°

Draw Lewis structure.

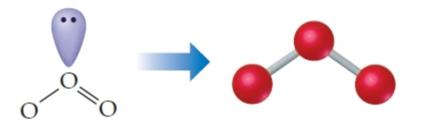
Determine electron-domain geometry by counting all electron domains, then use Table 9.1 to determine the appropriate electron domain geometry.

Determine molecular geometry by counting only bonding electron domains to see the arrangement of bonded atoms (trigonal pyramidal).

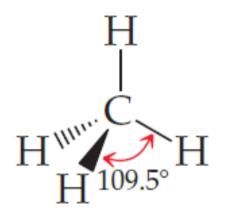
Table 9.2 Electron-Domain and Molecular Geometries for Two, Three, and Four Electron Domains around a Central Atom

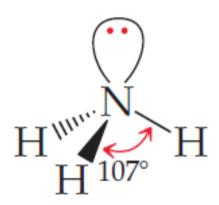
Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
2	Linear	2	0	Linear	ö—c—ö
3	Trigonal planar	3	0	Trigonal planar	:F: - -
		2	1	Bent	

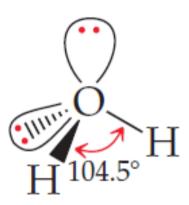
Table 9.2 Electron-Domain and Molecular Geometries for Two, Three, and Four Electron Domains around a Central Atom


Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
4	Tetrahedral	4	0	Tetrahedral	H H H
		3	1		H ^{Wr.N} H
		2	2	Trigonal pyramidal Bent	H ^{WIT} , Ö.

Exercício:

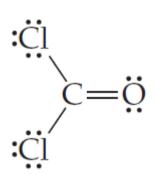

Quais as geometrias moleculares de O₃ e SnCl₃⁻?


Dados: ₈O ₁₇Cl ₅₀Sn

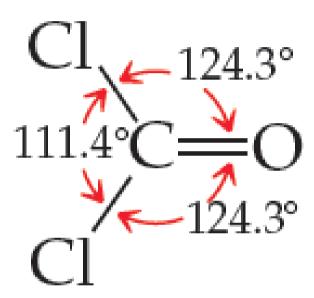

$$\ddot{\circ}-\ddot{\circ}=\ddot{\circ}\longleftrightarrow \ddot{\circ}=\ddot{\circ}-\ddot{\circ}$$
:

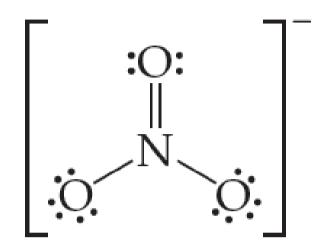
Efeito de Pares eletrônicos não-ligados

Bonding electron pair



Nonbonding pair



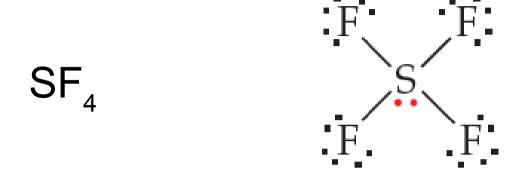

▲ Figure 9.7 Relative volumes occupied by bonding and nonbonding electron domains.

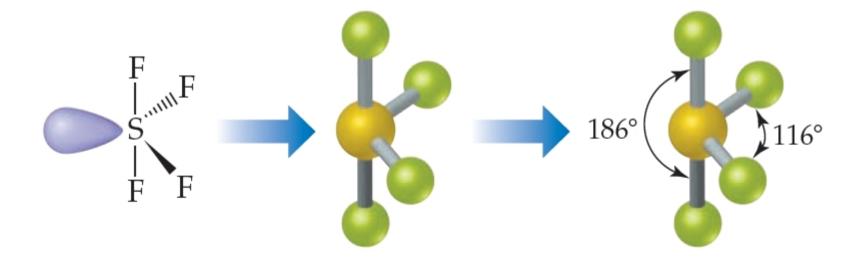
Efeito de Ligações Múltiplas

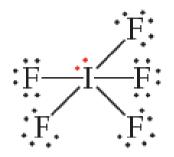
Fosgênio

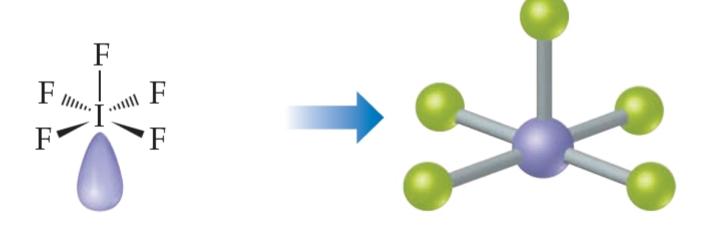
Por que os ângulos são todos iguais a 120.0°?

Átomos centrais com valência estendida

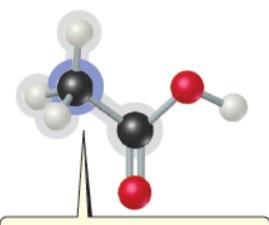

Table 9.3 Electron-Domain and Molecular Geometries for Five and Six Electron Domains around a Central Atom

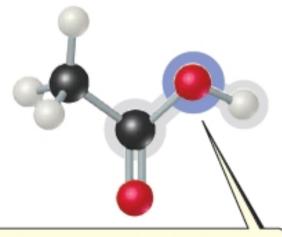

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
5	Trigonal	5	0	Trigonal bipyramidal	PCl ₅
	bipyramidal	4	1	Seesaw	SF ₄
		3	2	T-shaped	CIF ₃
		2	3	Linear	XeF ₂


Table 9.3 Electron-Domain and Molecular Geometries for Five and Six Electron Domains around a Central Atom

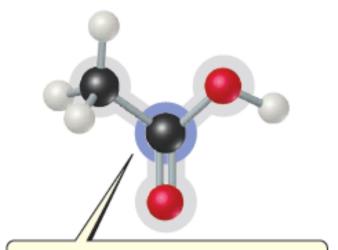

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
6	Octahedral	6	0	Octahedral	SF ₆
		5	1	Savara auramidal	BrF_5
		4	2	Square pyramidal Square planar	XeF ₄

Exemplos

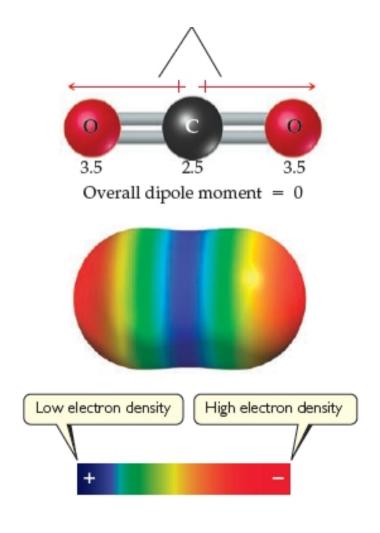



Moléculas Maiores

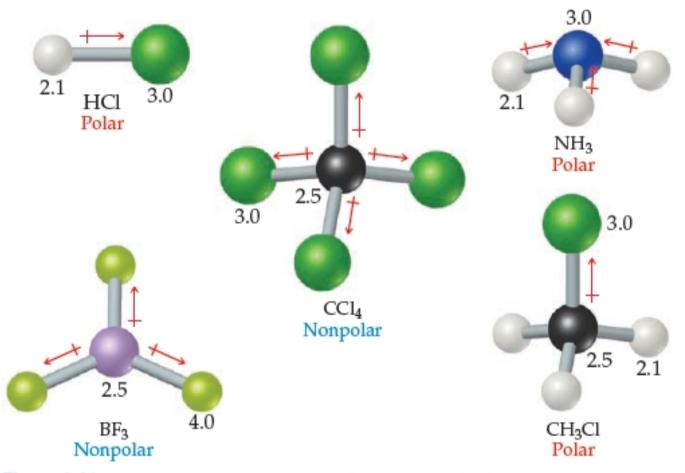
. . .


	H—C—— H	:0: C	——;;;—Н
Number of electron domains	4	3	4
Electron-domain geometry	Tetrahedral	Trigonal planar	Tetrahedral
Predicted bond angles	109.5°	120°	109.5°

Electron-domain geometry tetrahedral, molecular geometry tetrahedral


Electron-domain geometry tetrahedral, molecular geometry bent

Electron-domain geometry trigonal planar, molecular geometry trigonal planar


Desenhe a geometria de:

Polaridade e Geometria Molecular

numbers are electronegativity values.

▲ Figure 9.12 Polar and nonpolar molecules containing polar bonds. The numbers are electronegativity values.

A Química da Visão

▲ Figure 9.31 The rhodopsin molecule, the chemical basis of vision. When rhodopsin absorbs visible light, the π component of the double bond shown in red breaks, allowing rotation that produces a change in molecular geometry before the π bond re-forms.