GABARITO DA PRIMEIRA PROVA - PROVA TIPO A - 28/09/2011

Questão 1 Considere a curva $\gamma : \mathbb{R} \to \mathbb{R}^2$ dada por $\gamma(t) = (x(t), y(t))$, onde $x(t) = 2t^3 + 3t^2 - 12t$ e $\gamma(t) = 2t^3 + 3t^2 + 1$.

(a) (2 pontos) Estude o crescimento/decrescimento de x(t) e y(t) e o sinal de $\frac{d^2y}{dx^2}$.

Solução. Temos que $x'(t) = 6(t^2 + t - 2) = 6(t - 1)(t + 2)$, $y'(t) = 6(t^2 + t) = 6t(t + 1)$ e

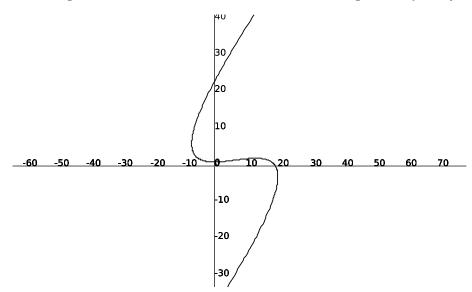
$$\frac{d^2y}{dx^2} = -\frac{1}{3} \frac{2t+1}{(t-1)^3(t+2)^3}.$$

Assim x(t) é decrescente em (-2,1) e crescente fora de (-2,1) e y(t) é decrescente em (-1,0) e crescente fora de (-1,0). Já $\frac{d^2y}{dx^2}$ é positiva em $(-\infty,-2)\cup(-1/2,1)$ e negativa fora deste conjunto. Assim, a tabela que usamos para desenhar o traço de γ é:

	$(-\infty, -2)$	(-2, -1)	(-1, -1/2)	(-1/2,0)	(0,1)	$(1,\infty)$
x	1	1	<u> </u>	1	1	1
у	1	1	1	↓ ↓	1	1
d^2y/dx^2))

(b) **(2 pontos)** Faça um esboço da imagem (ou traço) de γ indicando seu sentido de percurso e os pontos em que ocorrem possíveis mudanças de concavidade.

Solução. Usando o quadro construído no ítem anterior, vemos que o traço de γ é



A concavidade de γ muda nos pontos $\gamma(-2) = (20, -3)$, $\gamma(-1/2) = (13/2, 3/2)$ e $\gamma(1) = (-7, 6)$.

Questão 2 (**2 pontos**) Considere a curva γ dada em coordenadas polares pela equação $r=2\cos\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Encontre uma parametrização para γ em coordenadas *cartesianas*, calcule seu comprimento e esboce seu traço.

Solução. Basta observar que $x = r\cos\theta = 2\cos^2\theta$ e $y = r\sin\theta = \sin(2\theta)$, assim a curva admite a parametrização

 $\gamma(\theta) = (2\cos^2\theta, \sin(2\theta)), -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}.$

Temos que $\gamma'(\theta) = (-2\text{sen}(2\theta), 2\cos(2\theta))$, e portanto, $|\gamma'(\theta)| = 2$, para todo $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Assim, o comprimento de γ é dado por

 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\gamma'(\theta)| d\theta = 2\pi.$

Para esboçar o traço de γ , basta observar que $\frac{r}{2}=\cos\theta=\frac{x}{r}$, assim, $r^2=2x$, logo, $x^2+y^2=2x$ e, portanto,

 $(x-1)^2 + y^2 = 1$.

Logo, o traço de γ é uma circunferência de raio 1 centrada no ponto (1,0), percorrida no sentido antihorário.

Esta mesma conclusão pode ser obtida fazendo cálculos semelhantes aos da questão anterior, i.e., considerando $x'(\theta)$, $y'(\theta)$ e d^2y/dx^2 .

Questão 3 (a) (2 pontos) Calcule, ou justifique porque não existe, o limite abaixo

$$\lim_{(x,y)\to(0,0)}\frac{x^4y}{y^3-2x^6}.$$

Solução. Pondo $\gamma_1(t) = (t,0)$ e $f(x,y) = \frac{x^2y}{x^4-y^2}$, temos que $\lim_{t\to 0} f(\gamma_1(t)) = 0$. Pondo $\gamma_2(t) = (t,t^2)$, temos que $\lim_{t\to 0} f(\gamma_2(t)) = -1$, portanto, o limite não existe.

(b) (2 pontos) Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \frac{5x^4 \sqrt{x} - 7\sin(x^4 + y^4)}{2x^4 + 2y^4} & \text{se } (x,y) \neq (0,0) \\ a & \text{se } (x,y) = (0,0) \end{cases},$$

onde a é um número real. Determine o valor de a para que f seja uma função contínua em \mathbb{R}^2 . Solução. Vemos que

$$\frac{5x^4\sqrt{x} - 7\mathrm{sen}(x^4 + y^4)}{2x^4 + 2y^4} = \frac{5}{2}\sqrt{x}\frac{x^4}{x^4 + y^4} - \frac{7}{2}\frac{\mathrm{sen}(x^4 + y^4)}{x^4 + y^4}.$$

A primeira parcela da soma acima tem limite zero quando $(x,y) \to (0,0)$, pois $\left| \frac{x^4}{x^4 + y^4} \right| \le 1$ e $\lim_{x \to 0} \sqrt{x} = 0$. Para analisar a segunda parcela, podemos fazer $u = x^4 + y^4$ e observar que

$$\lim_{(x,y)\to(0,0)} \frac{\operatorname{sen}(x^4+y^4)}{x^4+y^4} = \lim_{u\to 0^+} \frac{\operatorname{sen}u}{u} = 1.$$

Assim, $\lim_{(x,y)\to(0,0)} f(x,y) = -\frac{7}{2}$, portanto, para que f seja contínua em (0,0), devemos ter $a = -\frac{7}{2}$.