UFPR - Universidade Federal do Paraná Departamento de Matemática CM053 - Álgebra Linear II (Matemática - Matemática Industrial) Prof. José Carlos Eidam

GABARITO DA PRIMEIRA PROVA - 28/03/2012

Questão 1 Seja W o subespaço de \mathbb{R}^4 gerado pelos vetores $u_1 = (1, 1, 0, 0), u_2 = (0, 1, 1, 0), u_3 = (-1, 2, 3, 0)$ e $u_4 = (1, 0, -1, 0)$.

(a) (1,5 ponto) Determine uma base para W^o.

Solução. Escalonando, percebemos que u_1 , u_2 são linearmente independentes e u_3 , u_4 são combinação linear de u_1 , u_2 , portanto, $\{u_1, u_2\}$ é uma base de W. Um funcional linear $\varphi(x_1, x_2, x_3, x_4) = a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4$ anula W se e só se $a_1 + a_2 = 0$ e $a_2 + a_3 = 0$, logo,

$$\varphi(x_1, x_2, x_3, x_4) = a_1(x_1 - x_2 + x_3) + a_4x_4$$

de onde concluímos que $\varphi_1(x_1, x_2, x_3, x_4) = x_1 - x_2 + x_3$ e $\varphi_2(x_1, x_2, x_3, x_4) = x_4$ formam uma base para W^o.

(b) **(1,5 ponto)** Seja Z o subespaço gerado por $v_1 = (0,0,1,1)$, $v_2 = (0,0,0,1)$ e $v_3 = (0,0,2012,2013)$. Mostre que W \oplus Z = \mathbb{R}^4 .

Solução. Escalonando, percebemos que v_1, v_2 são linearmente independentes e v_3 é combinação linear de v_1, v_2 , portanto, $\{v_1, v_2\}$ é uma base de W. Devemos provar que W + Z = \mathbb{R}^4 e W \cap Z = $\{0\}$. Para provar a primeira afirmação, basta observar que $\{u_1, u_2, v_1, v_2\}$ é linearmente independente. Para a segunda, basta observar que o sistema

$$\alpha_1(1,1,0,0) + \alpha_2(0,1,1,0) = \alpha_3(0,0,1,1) + \alpha_4(0,0,0,1)$$

possui somente a solução trivial $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$ ou usar o fato que $4 = \dim(W + Z) = \dim(W + \dim Z - \dim(W \cap Z) = 4 - \dim(W \cap Z)$.

(c) (1,5 ponto) Calcule a matriz, em relação à base canônica de \mathbb{R}^4 , do operador $P: \mathbb{R}^4 \to \mathbb{R}^4$ de projeção sobre W paralelamente a Z.

Solução. Dado $u = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$, vamos obter $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ tais que $u = \alpha_1 u_1 + \alpha_2 u_2 + \beta_1 v_1 + \beta_2 v_2$, i.e.,

$$\begin{cases}
\alpha_1 &= x_1 \\
\alpha_1 + \alpha_2 &= x_2 \\
\alpha_2 + \beta_1 &= x_3 \\
\beta_1 + \beta_2 &= x_4
\end{cases}$$

Assim, $\alpha_1 = x_1$, $\alpha_2 = x_2 - x_1$, $\beta_1 = x_3 - x_2 + x_1$ e $\beta_2 = x_4 - x_3 + x_2 - x_1$. O operador P, por definição, satisfaz

$$P(x_1, x_2, x_3, x_4) = \alpha_1 u_1 + \alpha_2 u_2 = x_1(1, 1, 0, 0) + (x_2 - x_1)(0, 1, 1, 0) = (x_1, x_2, x_2 - x_1, 0),$$

portanto, sua matriz em relação à base canônica é

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

(d) **(1,5 ponto)** Eventualmente descartando os vetores de índices maiores, encontre uma base \mathscr{B} de \mathbb{R}^4 tal que $\mathscr{B} \subset \{u_1, u_2, u_3, u_4, v_1, v_2, v_3\}$ e determine sua base dual.

Solução. A base obtida descartando os vetores de índices maiores é $\mathcal{B} = \{u_1, u_2, v_1, v_2\}$ e sua base dual $\mathcal{B}^* = \{\varphi_1, \varphi_2, \psi_1, \psi_2\}$ já foi determinada no ítem anterior:

$$\varphi_1(x_1, x_2, x_3, x_4) = x_1
\varphi_2(x_1, x_2, x_3, x_4) = x_1 - x_2
\psi_1(x_1, x_2, x_3, x_4) = x_3 - x_2 + x_1
\psi_2(x_1, x_2, x_3, x_4) = x_4 - x_3 + x_2 - x_1$$

Questão 2 Prove as seguintes afirmações:

- (a) **(2 pontos)** Um operador linear $T \in \mathcal{L}(V, W)$ é injetor se e só se $T^t \in \mathcal{L}(W^*, V^*)$ é sobrejetor. **Solução.** Basta observar que (ker T)^o = Im T^t e usar o fato que $Z^o = Z^*$ se e só se $Z = \{0\}$. (Provado em aula)
- (b) **(2 pontos)** Sejam $Z \subset W$ um subespaço e $T \in \mathcal{L}(V,W)$. Então $\operatorname{Im} T \subset Z$ se e só se $Z^o \subset \ker T^t$. **Solução.** Assumindo que $\operatorname{Im} T \subset Z$, temos que $(T^t \varphi)(u) = \varphi(Tu) = 0$ para todos $u \in Z$ e $\varphi \in Z^o$, logo $T^t \varphi = 0$. Reciprocamente, temos $Z^o \subset \ker T^t = (\operatorname{Im} T)^o$. Tomando anuladores, temos que $\Lambda(Z) = Z^{oo} \supset (\operatorname{Im} T)^{oo} = \Lambda(\operatorname{Im} T)$, onde $\Lambda : V \to V^{**}$ é o isomorfismo canônico. Como Λ é bijetora, segue que $Z \supset \operatorname{Im} T$.