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Dedicated in friendship
to George, Gerhard, and Lamar

It is a peculiar fact that all the trans-
finite axioms are deducible from a
single one, the axiom of choice, —
the most challenged axiom in the
mathematical literature.

D. Hilbert (1926)

It is the great and ancient prob-
lem of existence that underlies the
whole controversy about the axiom of
choice.

W. Sierpiński (1958)

Wie die mathematische Analysis gewis-
sermaßen eine einzige Symphonie des
Unendlichen ist.

D. Hilbert (1926)
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Preface

Zermelo’s proof, and especially the Axiom of Choice
on which it was based, created a furor in the inter-
national mathematical community.
. . .
The Axiom of Choice has easily the most tortured
history of all the set–theoretic axioms.

Penelope Maddy (Believing the axioms I)1

Of course not, but I am told it works even if you don’t
believe in it.

Niels Bohr (when asked whether
he really believed a horseshoe hanging over his door
would bring him luck).2

Without question, the Axiom of Choice, AC (which states that for every
family of non–empty sets the associated product is non–empty3), is the most
controversial axiom in mathematics. Constructivists shun it, since it asserts
the existence of rather elusive non–constructive entities. But the class of crit-
ics is much wider and includes such luminaries as J.E. Littlewood and B.
Russell who objected to the fact that several of its consequences such as the
Banach–Tarski Paradox are extremely counterintuitive, and who claimed that
“reflection makes the intuition of its truth doubtful, analysing it into preju-
dices derived from the finite case”4, resp. that “the apparent evidence of the

1 [Mad88]
2 c. 1930. Cited from: The Oxford Dictionary of Modern Quotations. Second

Edition with updated supplement. 2004.
3 cf. Definition 1.1.
4 [Lit26]



VIII Preface

axiom tends to dissipate upon the influence of reflection”5. (See also the com-
ments after Theorem 1.4.) Nevertheless, over the years the proponents of AC
seemed to have won the debate, first of all due to the fact that disasters
happen without AC: many beautiful theorems are no longer provable, and
secondly, Gödel showed that AC is relatively consistent6. So AC could not
be responsible for any antinomies which might emerge. This somewhat op-
portunistic attitude, sometimes supported by such arguments as “Even if we
knew that it was impossible ever to define a single member of a class, it would
not of course follow that members of the class did not exist.”7, led to the
situation that in most modern textbooks AC is assumed to be valid indis-
criminately. Still, these facts only show the usefulness of AC not its validity,
and Lusin’s verdict8 “For me the proof of a theorem by means of Zermelo’s
axiom is valuable only as an indication that it is useless to waste time on an
exact proof of the falsity of the theorem in question” is still shared at least by
the constructivists. Unfortunately, our intuition is too hazy for considering
AC to be evidently true or evidently false, as expressed whimsically by J.L.
Bona: “The Axiom of Choice is obviously true, the Well–Ordering Principle
is obviously false; and who can tell about Zorn’s Lemma”.9

Observe however that the distinction between the Axiom of Choice and
the Well–Ordering Theorem is regarded by some, e.g. by H. Poincaré, as a
serious one:

“The negative attitude of most intuitionists, because of the existential
character of the axiom [of choice], will be stressed in Chapter IV. To
be sure, there are a few exceptions, for the equivalence of the axiom
to the well–ordering theorem (which is rejected by all intuitionists)
depends, inter alia, on procedures of a supposedly impredicative char-
acter; hence the possibility exists of accepting the axiom but rejecting
well–ordering as it involves impredicative procedures. This was the at-
titude of Poincaré.”10

When Paul Cohen demonstrated that the negation of AC is relatively
consistent too11, and when he created a method for constructing models of
ZF (i.e., Zermelo–Fraenkel set theory without the Axiom of Choice) in which
not only AC fails, but in which certain given substitutes of AC — either
weakening AC or even contradicting AC — hold, he triggered “the post Paul

5 [Rus11]
6 [Goed39]
7 [Hard06]
8 Lusin 1926, cited after [Sie58, p. 95].
9 [Sch97, p. 145]
10 [FrBaLe73, p. 81]
11 [Coh63/64]
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Cohen set–theoretic renaissance”12, and a vast literature emerged in which
AC is not assumed; thus giving life to Sierpiński’s program13:

“Still, apart from our being personally inclined to accept the axiom of
choice, we must take into consideration, in any case, its role in the
Set Theory and in the Calculus. On the one hand, since the axiom of
choice has been questioned by some mathematicians, it is important to
know which theorems are proved with its aid and to realize the exact
point at which the proof has been based on the axiom of choice; for
it has frequently happened that various authors had made use of the
axiom of choice in their proofs without being aware of it. And after all,
even if no one questioned the axiom of choice, it would not be without
interest to investigate which proofs are based on it and which theorems
can be proved without its aid.
. . .
It is most desirable to distinguish between theorems which can be
proved without the aid of the axiom of choice and those which we
are not able to prove without the aid of this axiom.
Analysing proofs based on the axiom of choice we can
1. ascertain that the proof in question makes use of a certain partic-

ular case of the axiom of choice,
2. determine the particular case of the axiom of choice which is suf-

ficient for the proof of the theorem in question, and the case which
is necessary for the proof . . .

3. determine that particular case of the axiom of choice which is both
necessary and sufficient for the proof of the theorem in question.”

This book is written in Sierpiński’s spirit, but one more step will be added
which occurred neither to Sierpiński nor to Lusin, but was made possible by
Cohen’s work that opened new doors for set theorists: “Set theory entered its
modern era in the early 1960’s on the heels of Cohen’s discovery of the method
of forcing and Scott’s discovery of the relationship between large cardinal ax-
ioms and constructible sets.”14 Some striking theorems will be presented, that
can be proved to be false in ZFC (i.e., Zermelo–Fraenkel set theory with the
Axiom of Choice), but which hold in ZF provided AC is replaced by some
(relatively consistent) alternative axiom.

This book is not written as a compendium, or a textbook, or a history of
the subject — far more comprehensive treatments of specific aspects can be
found in the list of Selected Books and Longer Articles. I hope, however, that
this monograph might find its way into seminars. Its purpose is to whet the

12 J.M. Plotkin in the Zentralblatt review Zbl. 0582.03033 of [RuRu85].
13 [Sie58, p. 90 and 96] Cf. also [Sie18]
14 [Kle77]
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reader’s appetite for studying the ZF–universe in its fullness, and not just
its highly interesting but rather small ZFC–part. Mathematics is sometimes
compared with a cathedral, the mathematicians being simultaneously its ar-
chitects and its admirers. Why visit only one of it wings — the one built with
the help of AC? Beauty and excitement can be found in other parts as well —
and there is no law that prevents those who visit one of its parts from visiting
other parts, too.

An attempt has been made to keep the material treated as simple and
elementary as possible. In particular no special knowledge of axiomatic set
theory is required. However, a certain mathematical maturity and a basic ac-
quaintance with general topology will turn out to be helpful.

The sections can be studied more or less independently of each other. How-
ever, it is recommended not to skip any of the sections 2.1, 2.2, or 3.3 since
they contain several basic definitions.

A treatise like this one does not come out of the blue. It rests on the work
of many people. Acknowledgments are due and happily given:

• to all those mathematicians — living or dead — whose work I have can-
nibalized freely, most of all to Paul Howard and Jean Rubin for their
wonderful book, Consequences of the Axiom of Choice,

• to those colleagues and friends whose curiosity, knowledge, and creativ-
ity provided ample inspiration, often leading to joint publications: Lamar
Bentley, Norbert Brunner, Marcel Erné, Eraldo Giuli, Gonçalo Gutierres,
Y.T. Rhineghost, George Strecker, Juris Steprāns, Eleftherios Tachtsis,
and particularly Kyriakos Keremedis,

• to those who helped to unearth reprints: Lamar Bentley, Gerhard Preuss,
and George Strecker,

• to those who read the text carefully to reduce the number of mistakes
and to smoothen my imperfect English go very special thanks: Lamar
Bentley, Kyriakos Keremedis, Eleftherios Tachtsis, Christoph Schubert,
and particularly George Strecker,

• to Birgit Feddersen, my perfect secretary, who transformed my various
crude versions of a manuscript miraculously into the present delightful
shape,

• to Christoph Schubert for putting the final touches to the manuscript.



Preface XI

Let us end the preface with the following three quotes:

“Pudding and pie,”
Said Jane, “O, my!”
“Which would you rather?”
Said her father.
“Both,” cried Jane,
Quite bold and plain.

Anonymous (ca. 1907)

The Axiom of Choice and its negation cannot coexist in one proof, but
they can certainly coexist in one mind. It may be convenient to accept AC
on some days — e.g., for compactness arguments — and to accept some
alternative reality, such as ZF + DC + BP15on other days — e.g., for
thinking about complete metric spaces.

E. Schechter (1997)16

So you see!
There’s no end
To the things you might know,
Depending how far beyond Zebra you go!

Dr. Seuss (1955)17

15 DC is the Principle of Dependent Choices; see Definition 2.11.
BP stipulates that every subset of R has the Baire property, i.e., can be ex-
pressed as a symmetric difference of an open set and a meager set; see [Sch97].

16 [Sch97]
17 From On Beyond Zebra.
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1

Origins

In 1904 the powder keg had been exploded through the match
lighted by Zermelo.

A.A. Fraenkel, Y. Bar–Hillel, and A. Levy1

The Axiom of Choice (together with the Continuum Hypoth-
esis) is probably the most interesting and most discussed
axiom in mathematics after Euclid’s Axiom of Parallels.

P. Bernays and A.A. Fraenkel2

In particular, since the continuum is virtually the set of all
subsets of a denumerable set, solving the continuum prob-
lem possibly requires a more far–reaching characterization
of the concept of subset than obtained above by the Axiom
of Subsets and of Choice. What these two axioms furnish,
may be separated by a deep abyss from what Cantor had in
mind when speaking of s, viz. arbitrary multitudes of ele-
ments of s. One cannot expect to determine the number of
the subsets of s before it is unambiguously settled what they
are.

P. Bernays and A.A. Fraenkel3

1 [FrBaLe73, p. 84]
2 [BeFr58, p. 16]
3 [BeFr58, p. 26]



2 1 Origins

1.1 Hilbert’s First Problem

Diese Disziplin ist die Mengenlehre, deren Schöpfer Georg Cantor war, . . . ,
diese erscheint mir als die bewundernswerteste Blüte mathematischen Geistes
und überhaupt eine der höchsten Leistungen rein verstandesmäßiger mensch-
licher Tätigkeit
. . .
Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben
können.4

D. Hilbert

Everyone agrees that, whether or not one believes that set
theory refers to an existing reality, there is a beauty in its
simplicity and in its scope.

P. Cohen5

Cantor, after creating set theory, left two famous conjectures:

• the Continuum Hypothesis (CH), stating that every infinite subset of
the reals is either countable or has the same cardinality as R itself, and

• the Well–Order Theorem (WOT), stating that every set can be well–
ordered,

the latter of these he originally regarded as a self–evident law of thought6,
but later convinced himself that it required a proof.

Hilbert considered these problems as so fundamental, in particular for our
understanding of the concept of the continuum, that in his 1900 Paris lecture7

— without question the most influential mathematical lecture ever given —
he formulated the conjunction of Cantor’s two conjectures as the first of his
famous problems:

4 This field is the theory of sets, whose creator was Georg Cantor, . . . , this appears
to me as the most marvelous fruit of the mathematical mind, indeed as one of
the highest achievements of purely rational human activities. . . . Nobody is to
banish us from the paradise created by Cantor. [Hil26].

5 [Coh2002]
6 “Daß es immer möglich ist, jede wohldefinierte Menge in die Form einer wohlge-

ordneten Menge zu bringen, auf dieses, wie mir scheint, grundlegende und fol-
genreiche, durch seine Allgemeingültigkeit besonders merkwürdige Denkgesetz
werde ich in einer späteren Abhandlung zurückkommen.” Cantor (1883)

7 [Hil1900]



1.1 Hilbert’s First Problem 3

Hilbert’s First Problem

1. CANTOR’s Problem of the Cardinal Number
of the Continuum

Two systems, i.e., two assemblages of ordinary real numbers or points, are said
to be (according to Cantor) equivalent or of equal cardinal number, if they can
be brought into a relation to one another such that to every number of the one
assemblage corresponds one and only one definite number of the other. The
investigations of Cantor on such assemblages of points suggest a very plausible
theorem, which nevertheless, in spite of the most strenuous efforts, no one has
succeeded in proving. This is the theorem:
Every system of infinitely many real numbers, i.e., every assemblage of numbers
(or points), is either equivalent to the assemblage of natural integers, 1, 2, 3,
. . . or to the assemblage of all real numbers and therefore to the continuum,
that is, to the points of a line; as regards equivalence there are, therefore, only
two assemblages of numbers, the countable assemblage and the continuum.
From this theorem it would follow at once that the continuum has the next
cardinal number beyond that of the countable assemblage; the proof of this
theorem would, therefore, form a new bridge between the countable assemblage
and the continuum.

Let me mention another very remarkable statement of Cantor’s which stands
in the closest connection with the theorem mentioned and which, perhaps,
offers the key to its proof. Any system of real numbers is said to be ordered, if
for every two numbers of the system it is determined which one is the earlier
and which the later, and if at the same time this determination is of such a
kind that, if a is before b and b is before c, then a always comes before c. The
natural arrangement of numbers of a system is defined to be that in which
the smaller precedes the larger. But there are, as is easily seen infinitely many
other ways in which the numbers of a system may be arranged.
If we think of a definite arrangement of numbers and select from them a par-
ticular system of these numbers, a so–called partial system or assemblage, this
partial system will also prove to be ordered. Now Cantor considers a particular
kind of ordered assemblage which he designates as a well ordered assemblage
and which is characterized in this way, that not only in the assemblage itself
but also in every partial assemblage there exists a first number. The system
of integers 1, 2, 3, . . . in their natural order is evidently a well ordered assem-
blage. On the other hand the system of all real numbers, i.e., the continuum
in its natural order, is evidently not well ordered. For, if we think of points
of a segment of a straight line, with its initial point excluded, as our partial
assemblage, it will have no first element.

The question now arises whether the totality of all numbers may not be

arranged in another manner so that every partial assemblage may have a

first element, i.e., whether the continuum cannot be considered as a well or-

dered assemblage — a question which Cantor thinks must be answered in the

affirmative. It appears to me most desirable to obtain a direct proof of this

remarkable statement of Cantor’s, perhaps by actually giving an arrangement

of numbers such that in every partial system a first number can be pointed

out.
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Let us pause for a moment and try to reconstruct the ideas that led to
Cantor’s second conjecture, restricted to the set of real numbers, and to an-
alyze the relations between the two conjectures. We may try to well–order R

as follows:
Pick a first element x1, then a second x2, then a third x3, and so on, picking

xn for each natural number n different from the ones picked previously. Since
R is uncountable, the xn’s do not exhaust R. So, after infinitely many steps,
we have to continue by picking new elements xω, xω+1, . . . , xα, . . . where α
runs through the collection of all countable ordinals. Here a serious problem
arises: Not only does the ordered set of all countable ordinals have a very
complicated structure, if considered in ZFC, but — even worse — its structure
is not determined by ZF. There are several models for it with quite different
properties8. Our intuition fails to help us decide on the “right” one — if there
is such a thing at all. Our procedure starts to get somewhat nebulous, even
obscure. But suppose that we can do it anyway. What then? There may still
be real numbers left unpicked — and, if the first conjecture is false, there will
be. So at least in the latter case, but in general also if CH holds, we will have
to continue with our picking process. How far do we have to continue? This
will depend on the size of R, so here Cantor’s first conjecture plays a vital
part. Modern set theorists consider the size of R to be bigger than ℵ1.

Gödel (1947)9 conjectured it to be ℵ2 and wrote:

“Therefore one may on good reason suspect that the role of the con-
tinuum problem in set theory will be this; that it will finally lead to
the discovery of new axioms which will make it possible to disprove
Cantor’s conjecture.”

This is indeed what Woodin and other leading set theorists are trying to
do now. Cohen (1966)10 however went even further:

“A point of view which the author feels may eventually come to be
accepted is that CH is obviously false.
. . .
This point of view regards [the continuum] as an incredibly rich set
given to us by one bold new axiom [the Power Set Axiom; recall that
|R| = |P(N)|], which can never be approached by any piecemeal process
of construction.”

8 “If there be two of these postulates neither of which leads to contradiction [which
is indeed the case, provided ZF is consistent], then there are corresponding
to them two distinct self–consistent second ordinal classes, just as Euclidean
geometry and Lobachevskian geometry are distinct self–consistent geometries,
with, however, the difference, that the two second ordinal classes are incapable
of existing together in the same universe of discourse.” [Chu27, p. 187–188]

9 [Goed47]
10 [Coh66]
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In fact the independence results of Cohen and his successors show that
any ℵ which is not a countable sum of smaller ℵ’s can be made to be the
cardinality of the continuum R.

So, can we well–order the reals by means of the above procedure? Unlikely!

Let us return to Hilbert’s First Problem. In 1904 Zermelo provided a pos-
itive solution to its second part by showing in a 3–page paper by means of a
new axiom, the Axiom of Choice, that every set can be well–ordered.11 This
result brought him instant fame, a professorship in Göttingen one year later,
and — created a big controversy about the validity of the Axiom of Choice.

Definition 1.1. AC, the Axiom of Choice, states that for each family (Xi)i∈I

of non–empty sets Xi, the product set
∏

i∈I

Xi is non–empty.12

Fact 1.2. For every set X there exists an ordinal α with |α| � |X|.

This fact follows from the observation that there is only a set of possible
well–orderings of X. We omit the technical details of a proof in ZF. But
we mention, for later use, that the above fact guarantees the existence of a
smallest such α. This must automatically be a cardinal, thus in the infinite
case an ℵ. It has a name:

Definition 1.3. For any infinite set X, the smallest ℵ with ℵ � |X| is called
the Hartogs–number13 of X.

Theorem 1.4. Equivalent are:

1. AC.
2. WOT.

Proof. (1) ⇒ (2) Let X be an infinite set (the result is obvious for finite sets).
By (1) the family P0X of all non–empty subsets of X, indexed by itself, has
a non–empty product, i.e., there exists a map f : P0X → X with f(A) ∈ A
for each A ∈ P0X. Let ℵ = {α ∈ Ord | α < ℵ} be the Hartogs–number of X
and define, via transfinite recursion, a function g : ℵ → X ∪ {∞} by

g(α) =
{

f(X \ {g(β) | β < α}), if X �= {g(β) | β < α}
∞, otherwise .

Since ℵ � |X| there exists some α with g(α) = ∞. If γ = min{α <
ℵ | g(α) = ∞}, then the restriction of g to a map from γ = {α ∈ Ord | α < γ}
to X is a bijection. Thus with γ also X is well–orderable.
11 [Zer04]. See also [Zer08] and [Zer08a].
12 Note that the elements of the product set

∏

i∈I

Xi are choice functions (xi)i∈I ,

i.e., functions x : I →
⋃

i∈I

Xi, satisfying x(i) = xi ∈ Xi for each i ∈ I.

13 ℵ = sup{α ∈ Ord | |α| ≤ |X|}. Cf.[Har15].
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(2) ⇒ (1) Let (Xi)i∈I be a family of non–empty sets. Well–order the union
of all the Xi’s, and choose in Xi its smallest member xi. Then (xi) ∈

∏

i∈I

Xi.

Observe that the above proof of AC ⇒ WOT is nothing but a formaliza-
tion of the naive procedure sketched earlier, where the “picking” of elements
in X is done once and for all by our marvelous and mysterious apparatus, the
Axiom of Choice.

Why the objections?

First of all constructivists, particularly intuitionists, deny the existence of
all things that cannot be “constructed”. E.g.:

“A formal system in which ∃xG(x) is provable, but which provides no
method for finding the x in question, is one in which the existential
quantifier fails to fulfill its intended function.”

R.L. Goodstein (1968)14

However skepticism towards the validity of AC is not restricted to con-
structivists, whose idea of “existence” is decidedly narrower than that of the
majority of mathematicians, leading them to such extremes as the abolish-
ment of the law of excluded middle15, the assertion that all real functions are
continuous, and the claim that there exist real numbers a and b, different from
0, such that the function f : R → R, defined by f(x) = a ·x+ b, has no root16.

Consider, for example, the following statements:

“It [AC] may be true but it lacks obviousness, and the conclusions
drawn from it are astonishing. In these circumstances I think it would
be well to abstain from using it.
. . .
The apparent evidence of the axiom tends to dissipate upon the influ-
ence of reflection.
. . .
In the end one ceases to understand what it means.
. . .
In my opinion there is no reason whatsoever to believe the truth of the
axiom.”

B. Russell (1911)17

14 [Goo68]
15 W.V.O. Quine comments on this: “The doctrine . . . has led its devotees to such

quixotic extremes as that of challenging the method of proof by reductio ad
absurdum — a challenge in which I sense a reductio ad absurdum of the doctrine
itself.” Note that AC implies the law of excluded middle (see [GoMy78]).

16 [Hey56]
17 [Rus11]
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“The axiom of choice has many elegant consequences, but that is an
argument for its mathematical interest, not for its truth.
. . .
The formal consistency of making this assumption [validity of the Ax-
iom of Strong Choice] can hardly be doubted, but it ascribes to us abil-
ities which I for one am not aware of possessing.
. . .
It is dangerous to claim the existence of an object one cannot describe:
“Whereof one cannot speak thereof one must be silent”, to hijack a slo-
gan (Wittgenstein 1922).”

M.D. Potter (1990)18

Other mathematicians had difficulties deciding for or against the axiom, e.g.,
van der Waerden:

“In 1930, van der Waerden published his Modern Algebra, detailing
the exciting new applications of the axiom. The book was very influen-
tial, providing Zorn and Teichmüller with a proving ground for their
versions of choice, but van der Waerden’s Dutch colleagues persuaded
him to abandon the axiom in the second edition of 1937. He did so, but
the resulting limited version of abstract algebra brought such a strong
protest from his fellow algebraists that he was moved to reinstate the
axiom and all its consequences in the third edition of 1950.”

P. Maddy (1988)19

After Gödel (1938) proved the relative consistency of the Axiom of Choice
by constructing within a given model of ZF a model of ZFC, the proponents
of AC gained ground. Most modern textbooks take AC for granted and the
vast majority of mathematicians use AC freely. However, after Cohen (1963)
proved the relative consistency of the negation of AC and, moreover, pro-
vided a method, called forcing, for producing a plethora of models of ZF that
have or fail to have a wide range of specified properties, a growing number
of mathematicians started to investigate the ZF world by substituting AC
by a variety of possible alternatives, sometimes just by weakening AC and
sometimes by replacing AC by axioms that contradict it.

All this work demonstrates how useful or convenient such axioms as AC
and its possible alternatives are. But the question of the truth of AC is not
touched, and Hilbert’s First Problem remains unanswered. It is conceivable,
even likely, that it will never be solved20, despite Hilbert’s optimistic slogan
expressed in his Paris lecture: “in mathematics there is no ignorabimus.”

18 [Pot90]
19 [Mad88]
20 “And whether, in particular, Zermelo’s axiom is true or false is a question,

which, while more fundamental matters are in doubt, is very likely to remain
unanswered.” Russell (1907)
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Our inability to decide on such basic questions of set theory, as those
formulated in Hilbert’s First Problem, leads inevitably to the conclusion for-
mulated by Mostowski21 that

“Probably we shall have in the future essentially different intuitive
notions of sets just as we have different notions of space.”

In some of these ZF–worlds Hilbert’s First Problem will have a positive
solution, in others a negative one.

Exercises to Section 1.1:

E 1. Show that, for a set X, the following conditions are equivalent:
(1) X is well–orderable.
(2) There exists a function f : P0X → X with f(A) ∈ A for each A ∈

P0X.
(3) AC(X), i.e.,

∏

i∈I

Xi �= ∅ for each family (Xi)i∈I of non–empty subsets

Xi of X.
[Hint: Analyze the proof of Theorem 1.4.]

E 2. Let (Xi)i∈I be a family of non–empty sets. Show that in each of the
following situations,

∏

i∈I

Xi �= ∅:

(1) I is finite.
(2) The Xi’s are well–ordered sets.
(3) The Xi’s are finite linearly ordered sets.
(4) The Xi’s are finite subsets of R.
(5) The Xi’s are closed subsets of R.
(6) The Xi’s are open subsets of R.
(7)

⋃

i∈I

Xi is well–orderable.

(8)
⋃

i∈I

Xi is linearly orderable and each Xi is finite.

E 3. 22 Construct a set X with the following properties:
(1) X is well–orderable.
(2) |X| �< |R|.
(3) |R| �< |X|.
(4) |X| = |R| iff R is well–orderable.

[Hint: Use Fact 1.2.]

21 [Mos67]
22 [Sie21]
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Choice Principles

2.1 Some Equivalents to the Axiom of Choice

We believe that the ZF–axioms describe in a correct way our in-
tuitive contemplations concerning the notion of set. The axiom of
choice (AC) is intuitively not so clear as the other ZF–axioms are,
but we have learned to use it because it seems to be indispensable in
proving mathematical theorems. On the other hand the (AC) has
“strange” consequences, such as “every set can be well–ordered”
and we are unable to “imagine” a well–ordering of the set of real
numbers.

U. Felgner1

Once this method for unveiling the truth had been discovered by
him, he found it indispensable.

Ivan Olbracht2

Let us start with some familiar observations:

Proposition 2.1. Equivalent are:

1. AC.
2. For every family (Xi)i∈I of non–empty pairwise disjoint sets there exists

a set Y with |Y ∩ Xi| = 1 for each i ∈ I.

Proof. Exercise.

Observe that the above condition (2) has been introduced under the name
multiplicative axiom by Russell, since it allowed the definition of arbitrary
products

∏

i∈I

ai of cardinal numbers ai.

1 [Fel71]
2 From: The Good Judge (Dobrý Soudce).
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Though nowadays the proof of the above proposition is a trivial exercise,
this was not the case when Russell submitted his paper in 1905 as the following
quote3 reveals4.

“This axiom is more special than Zermelo’s axiom. It can be deduced
from Zermelo’s axiom; but the converse deduction, though it may turn
out to be possible, has not yet, so far as I know, been effected. I shall
call this the multiplicative axiom.”

Theorem 2.2. Equivalent are:

1. AC.
2. Hausdorff’s Maximal Chain Condition: Each partially ordered set

contains a maximal chain5.
3. Zorn’s Lemma: If in a partially ordered set X each chain has an upper

bound, then X has a maximal element.
4. Teichmüller–Tukey Lemma: If a non–empty subcollection U of PX

is of finite character6, then U contains a maximal element w.r.t. the
inclusion–order.

5. Each preordered set contains a maximal antichain7.

Proof. (1) ⇒ (2) Let X be a partially ordered set without a maximal chain.
Then for each chain K in X the set

C(K) = {x ∈ (X \ K) | K ∪ {x} is a chain}

is non–empty. By (1), there exists a map f : P0X → X with f(A) ∈ A for
each A ∈ P0X. Let ℵ be the Hartogs–number of X. Define, via transfinite
recursion, a map g : ℵ → X by

g(α) = f(C{g(β) | β < α}).

Then g is injective, a contradiction.
(2) ⇒ (3) Let X be a partially ordered set, satisfying the premise of Zorn’s

Lemma. By (2), X has a maximal chain K. Let x be an upper bound of K.
Then x is a maximal element of X.

(3) ⇒ (4) Let U be a non–empty subset of PX that is of finite character.
Then every chain in U, ordered by inclusion, has an upper bound, its union.
Thus, by (3), U has a maximal element.

3 [Rus07]
4 G.H. Hardy made a similar statement: ”. . . but whether or not the latter imply

the former has not yet been decided.” [Hard06]
5 X is called a chain iff x ≤ y or y ≤ x for any x and y in X.
6

U is called of finite character provided that A ∈ U iff every finite subset of A
belongs to U.

7 X is called an antichain iff x ≤ y implies x = y for any x and y in X.
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(4) ⇒ (5) Let X be a preordered set. The collection U of all antichains
in X is of finite character and non–empty (since ∅ ∈ U). Thus, by (4), there
exists a maximal element of U.

(5) ⇒ (1) Let (Xi)i∈I be a family of non–empty sets. Preorder the set
X = {(x, i) | i ∈ I and x ∈ Xi} by

(x, i) ≤ (y, j) ⇔ i = j.

Then a maximal antichain K of X has the form K = {(xi, i) | i ∈ I}
where, for each i ∈ I, xi is a distinguished element of Xi. Thus

∏

i∈I

Xi �= ∅.

Condition (5) of the above theorem can be weakened by replacing preorders
by partial orders. That the resulting condition is in fact equivalent to (5) and
thus to AC is not obvious. To show this and some further equivalences to AC
we need the following lemma that we present without proof, since the latter
would require greater familiarity with the axioms of ZF than we presuppose
for our text; in particular it rests crucially on the axiom of foundation:

Lemma 2.3. 8 If for every well–orderable set X the power set PX is also
well–orderable, then every set is well–orderable.

Theorem 2.4. 9 Equivalent are:

1. AC.
2. The Axiom of Multiple Choice (AMC): For every family (Xi)i∈I of

non–empty sets there exists a family (Fi)i∈I of non–empty, finite sets Fi

with Fi ⊆ Xi for each i ∈ I.
3. Kurepa’s Maximal Antichain Condition: Each partially ordered set

has a
maximal antichain.

4. Every chain can be well–ordered.
5. The power set PX of each well–orderable set X is well–orderable.

Proof. (1) ⇒ (2) Trivial.
(2) ⇒ (3) Let X be a partially ordered set. By (2), there exists a map

f : P0X → PfinX from P0X into the set PfinX of all non–empty, finite subsets
of X with f(A) ⊆ A for each A ∈ P0X. Let g(A) be the set of all minimal
elements of f(A). Then each g(A) is a non–empty antichain with g(A) ⊆ A.
Define further, for each antichain K of X,

A(K) = {x ∈ (X \ K) | K ∪ {x} is an antichain}.

If X would have no maximal antichain, then all the A(K)’s would be non–
empty. Thus we could define an injective map h : ℵ → PX from the Hartogs–
number ℵ of PX into PX via transfinite recursion by
8 [Rub60], [FeJe73].
9 [Rub60], [FeJe73].
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h(α) =
⋃

β<α

h(β) ∪ g



A

( ⋃

β<α

h(β)
)


 .

Contradiction.
(3) ⇒ (4) Let X be a chain. Define a partially ordered set Y by

Y = {(A, a) | A ⊆ X and a ∈ A} and (A, a) ≤ (B, b) iff (A = B and a ≤ b in
X). Then an antichain K of Y has the form

K = {(A, a(A)) | A ∈ P0X}

where each a(A) is a distinguished element of A. Thus X is well–orderable by
Exercises to Section 1.1, E 1.

(4) ⇒ (5) Let X be well–ordered. Then PX is linearly ordered by

A < B ⇔ ∃a ∈ (A \ B) ∀b ∈ (B \ A) a < b.

Thus, by (4), PX is well–orderable.
(5) ⇒ (1) Lemma 2.3 and Theorem 1.4.

Exercises to Section 2.1:

E 1. 10 Show (without using Theorem 2.4) that AC is equivalent to the con-
junction of the following 2 conditions:
a) OAC: For every family (Xi)i∈I of non–empty sets there exists a family

(Fi)i∈I of finite sets with |Fi| odd and Fi ⊆ Xi.
b) EAC: For every family (Xi)i∈I of sets Xi with |Xi| ≥ 2 there exists a

family (Fi)i∈I of non–empty, finite sets Fi with |Fi| even and Fi ⊆ Xi.

E 2. Show that AC is equivalent to the condition

(*) Each set (of sets) contains a subset that is maximal w.r.t. the
property that its members are pairwise disjoint.

[Hint: For each family (Xi)i∈I of pairwise disjoint non–empty sets, con-
sider the set

{{(0, x), (1,Xi)} | i ∈ I and x ∈ Xi}.]

E 3. Show that AC is equivalent to the following version of Zorn’s Lemma:
If in an ordered set X a subset A has an upper bound in X whenever
each pair of elements of A has an upper bound in A, then X has a
maximal element.

10 [Ker96]
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E 4. Show the equivalence of:
a) AC.
b) Every surjection f : X → Y is a retraction, i.e., there exists a map

g : Y → X with f ◦ g = idY (= the identity map on Y ).
c) Every set X is projective, i.e., for each map f : X → Y and each

surjection g : Z → Y there exists a map k : X → Z with f = g ◦ k.
d) Every set is a subset of some projective set (i.e., there exist arbitrary

large projective sets with respect to the order ≤ of cardinals).
e) For every relation ϕ on a set X satisfying ∀x ∈ X ∃y ∈ X xϕy, there

exists a function f : X → X with xϕf(x) for each x ∈ X.
[Hint: For (e) ⇒ (a) and a family (Xi)i∈I of non–empty sets, consider
(X,ϕ) with X = I �

⋃

i∈I

Xi and ϕ = {(x, x) | x ∈
⋃

i∈I

Xi} ∪ {(i, x) | i ∈ I

and x ∈ Xi}.]

E 5. Show that AC holds iff for each family (Xi)i∈I there exists a family
(Yi)i∈I of pairwise disjoint subsets Yi of Xi with

⋃

i∈I

Yi =
⋃

i∈I

Xi.

2.2 Some Concepts Related to the Axiom of Choice

The last concept [AC] seems to me to be entirely devoid of sense. As regards
a denumerable infinity of choices, they cannot, of course, all be performed, but
we can at least indicate such a procedure that, if we establish it beforehand,
we may be sure that each choice will be made within a finite period of time;
therefore, if two given systems of choice are different, we are sure to notice
this after a finite number of operations. When an infinite number of choices is
not denumerable, it is impossible to imagine a way of defining it, i.e., distin-
guishing it from an analogous infinite number of choices; thus it is impossible
to regard it as a mathematical creation which can be introduced in arguments.

E. Borel11

The notion that there is nothing special about countability, which is
most pervasive in the works of Bourbaki, makes assuming only that
every countable set has a choice function seem a mite perverse.

M.D. Potter12

Some mathematicians, who reject the Axiom of Choice, still accept some
of its weaker forms, e.g., CC, the Axiom of Countable Choice, or DC, the
Principle of Dependent Choices, while others advocate either all or nothing.

In this section we will formulate several axioms, related to AC, and dis-
cuss their mutual relations. Natural ways to weaken AC are obtained by the
following procedures:
11 [Bor14], quoted from [Sie58].
12 [Pot90]
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(A) Restrict the size of the indexing set I.
(B) Restrict the nature of the single Xi’s.
(C) Replace the stipulation that one can exhibit simultaneously in each Xi a

distinguished point xi, equivalently: a one–element subset {xi}, by some
weaker requirement.

Procedure (A) gives:

Definition 2.5. CC, the Axiom of Countable Choice, states that for each
sequence (Xn)n∈N of non–empty sets Xn, the product set

∏

n∈N

Xn is non–empty.

Procedure (B) gives:

Definition 2.6. 1. AC(fin) states that for each family (Xi)i∈I of non–empty
finite sets Xi, the product set

∏

i∈I

Xi is non–empty.

2. AC(n), for n ∈ N, states that for each family (Xi)i∈I of n–element sets,
the product

∏

i∈I

Xi is non–empty.

Procedure (C) gives:

Definition 2.7. AMC, the Axiom of Multiple Choice, states that for each
family (Xi)i∈I of non–empty sets Xi, there exists a family (Fi)i∈I of non–
empty finite subsets Fi of Xi.

Definition 2.8. KW, the Kinna–Wagner Selection Principle, states that for
each family (Xi)i∈I of at least 2–element sets Xi, there exists a family (Yi)i∈I

of non–empty proper subsets Yi of Xi.

Combining the procedures (A) and (B) one obtains:

Definition 2.9. 1. CC(R) states that for each sequence (Xn)n∈N of non–
empty subsets Xn of R, the product set

∏

n∈N

Xn is non–empty.

2. CC(Z) states that for each sequence ((Xn,≤n))n∈N, each (Xn,≤n) being
order–isomorphic to the ordered set of integers, the product set

∏

n∈N

Xn is

non–empty.
3. CC(fin) states that for each sequence (Xn)n∈N of non–empty, finite sets,

the product set
∏

n∈N

Xn is non–empty.

4. CC(n), for n ∈ N
+, states that for each sequence (Xn)n∈N of n–element

sets, the product set
∏

n∈N

Xn is non–empty.

Combining the procedures (B) and (C) one obtains:

Definition 2.10. CMC, the Axiom of Countable Multiple Choice, states that
for each sequence (Xn)n∈N of non–empty sets Xn, there exists a sequence
(Fn)n∈N of non–empty finite subsets Fn of Xn.
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Closely related to CC are the following two axioms:

Definition 2.11. 1. DC, the Principle of Dependent Choices, states that
for every pair (X, �), where X is a non–empty set and � is a relation on
X such that

for each x ∈ X there exists y ∈ X with x�y,

there exists a sequence (xn) in X with xn�xn+1 for each n ∈ N.
2. PCC, the Axiom of Partial Countable Choice, states that for each se-

quence (Xn)n∈N of non–empty sets Xn, there exists an infinite subset M
of N with

∏

m∈M

Xm �= ∅.

Theorem 2.12. 1. AC ⇒ DC.
2. DC ⇒ CC.
3. CC ⇔ PCC.

Proof. (1) Let (X, �) be as specified in DC. Then, for each x ∈ X, the set
Sx = {y ∈ X | x�y} is non–empty. Thus, by AC, there exists an element
(sx)x∈X in

∏

x∈X

Sx. Choose an arbitrary x0 ∈ X and define, via recursion, a

sequence (xn) by: xn+1 = sxn
.

Then (xn) has the desired property.
(2) Let (Xn)n∈N+ be a sequence of non–empty sets Xn. Define Yn =∏

m≤n

Xm and

Y =
⋃

n∈N+
Yn. Let � be the relation defined on Y by:

(x1 . . . , xn)�(z1, . . . , zm) ⇔ (m = n + 1 and xi = zi for i = 1, . . . , n).

By DC, there exists a sequence (yn) in Y with yn�yn+1 for each n ∈ N
+.

Assume for simplicity that y1 = (x1), (cf. Exercise E 3). Then each yn has the
form (xn

1 , xn
2 , . . . , xn

n) ∈
∏

m≤n

Xm. Thus (xn
n)n∈N+ is an element of

∏

n∈N+
Xn.

(3) Obviously CC implies PCC. For the converse consider a sequence
(Xn)n∈N+ of non–empty sets. Define Yn =

∏

m≤n

Xm. Then (Yn)n∈N+ is a se-

quence of non–empty sets. By PCC there exists an infinite subset M of N

and an element (ym)m∈M of
∏

m∈M

Ym. Then ym = (xm
1 , . . . , xm

m) ∈
∏

k≤m

Xk. For

each n ∈ N
+ let m(n) = min{m ∈ M | n ≤ m}. Then (xm(n)

n )n∈N+ is an
element of

∏

n∈N+
Xn.

There are many other types of weak choice principles13. Next, we present a
few of these, that play a prominent part in subsequent sections of this treatise.
13 In [HoRu98] there is a list of 383 such “forms”.
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Definition 2.13. 1. Fin states that every infinite set X is Dedekind–
infinite14, i.e., allows an injection N → X.

2. Fin(R) states that every infinite subset of R is D–infinite.
3. Fin(lin) states that every infinite, linearly ordered set is D–infinite.

Theorem 2.14. 1. CC ⇒ Fin.
2. Fin ⇒ CC(fin).

Proof. (1) See Proposition 4.13.
(2) Let (Xn)n∈N be a sequence of non–empty, finite sets. Then X =⋃

n∈N

(Xn×{n}) is an infinite set, thus, by Fin, D–infinite. Let f : N → X be an

injection. Since each Xn is finite, the set M = {n ∈ N | f [N]∩(Xn×{n}) �= ∅}
must be infinite. For each m ∈ M , define n(m) = min{n ∈ N | f(n) ∈
Xm × {x}}. Then f(n(m)) = (xm,m) for a unique element xm of Xm. Thus
(xm)m∈M ∈

∏

m∈N

Xm. Thus PCC(fin) holds. By Exercise E 5 this implies

CC(fin).

Next, we present some maximality principles:

Definition 2.15. 1. PIT, the Boolean Prime Ideal Theorem, states that
every Boolean algebra with 0 �= 1 has a maximal ideal.

2. UFT, the Ultrafilter Theorem, states that on any set every filter can be
enlarged to an ultrafilter.

3. UFT(N) states that on N every filter can be enlarged to an ultrafilter.
4. WUF, the Weak Ultrafilter Principle, states that every infinite set has a

free ultrafilter.
5. WUF(N) states that there exists a free ultrafilter on N.
6. WUF(?) states that there exists a free ultrafilter on some set.

Theorem 2.16. 1. UFT ⇔ PIT.
2. UFT ⇒ AC(fin).
3. UFT ⇒ WUF ⇒ WUF(N) ⇒ WUF(?).

Proof. (1) See Theorem 4.37.
(2) See (1) and Exercises to Section 4.8, E 9.
(3) Holds trivially.

Next, we present some ordering principles:

Definition 2.17. 1. OP, the Ordering Principle, states that every set can
be linearly ordered.

14 Dedekind–infinite is sometimes abbreviated as D–infinite. Likewise Dedekind–
finite (i.e., not Dedekind–infinite) is sometimes abbreviated as D–finite. Cf.
Definition 4.1 and Proposition 4.2.
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2. OEP, the Order Extension Principle, states that every partial order rela-
tion on a set can be enlarged to a linear order relation.

Theorem 2.18. 1. UFT ⇒ OEP.
2. OEP ⇒ OP.
3. KW ⇒ OP.
4. OP ⇒ AC(fin).

Proof. (1) and (2): See Proposition 4.39.
(3) See Proposition 4.40.
(4) Let (Xi)i∈I be a family of non–empty finite sets. Order X =

⋃

i∈I

Xi

linearly. Then each Xi has a smallest element xi w.r.t. this order. Thus
(xi)i∈I ∈

∏

i∈I

Xi.

Besides conditions weaker than AC there are stronger ones. Let us mention
the following:

Definition 2.19. 1. GCH, the Generalized Continuum Hypothesis, states
that for infinite cardinals a and b the inequalities a ≤ b < 2a imply a = b.

2. AH, the Aleph–Hypothesis, states that 2ℵα = ℵα+1 for each ordinal α.

The following result, though interesting, we present without proof, since
even the special forms of GCH resp. AH, namely

CH, the Continuum Hypothesis: ℵ0 ≤ b < 2ℵ0 ⇒ ℵ0 = b,
resp. AH(0), the Special Aleph–Hypothesis: ℵ1 = 2ℵ0 ,

are generally supposed to be false.

Theorem 2.20. 1. GCH ⇒ AC.
2. AH ⇒ AC.
3. GCH ⇔ AH.

Proof. (1) See [Sie47], [Spe54].
(2) Immediate from Theorem 2.4, since AH implies that the power set of

each well–orderable set is well–orderable.
(3) Immediate from (1) and (2), since by Theorem 1.4 each set is well–

orderable and thus each cardinal is an Aleph15.

Observe that CH and AH(0) are not equivalent. See Section 7.2.
Observe further that the existence of sufficiently many strongly inaccessi-

ble cardinals also implies AC16. However, a discussion of such phenomena is
beyond the scope of this book.
15 Alephs are the cardinals of well–orderable sets.
16 [Tar39]
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The following diagram illustrates the logical relations between the prin-
ciples presented in this section: Note that none of the singleheaded arrows
A → B, with the possible exceptions of CC → CMC, CC(fin) → CC(n)
and WUF(N) → WUF(?) is an equivalence17.

Diagram 2.21.

ZF

CC(n)

Fin(R) CC(fin) AC(n) WUF(?)

CC(R) Fin AC(fin) WUF(N)

CMC

PCC ←→ CC OP WUF

OEP

DC KW PIT ←→ UFT

AMC ←→ ZFC ←→ AC

GCH ←→ AH
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17 [HoRu98]
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Exercises to Section 2.2:

E 1. 18 Show that AC(2) and AC(4) are equivalent.

E 2. Show the equivalence of:
(1) DC,
(2) DMC (states that for each non–empty set X and each relation � on

X, such that for each x ∈ X there exists some y ∈ X with x�y, there
exists a sequence (Fn) of non–empty, finite subsets of X such that for
each n ∈ N and each x ∈ Fn there exists some y ∈ Fn+1 with x�y)
and CC(fin).

E 3. Show that DC is equivalent to the following statement: If � is a relation
on a set X such that for each x ∈ X there exists some y ∈ X with x�y,
then for any a in X there exists a sequence (xn) in X with x0 = a and
xn�xn+1 for each n ∈ N.

E 4. Show that CC is equivalent to the statement: For each sequence (Xn)n∈N

of non–empty sets, there exists a sequence that meets infinitely many
Xn’s.

E 5. Define PCC(R), PCC(fin), and PCMC analogously to PCC, and
show:

(1) PCC(R) ⇔ CC(R).
(2) PCC(fin) ⇔ CC(fin).
(3) PCMC ⇔ CMC.

[Hint: Proceed as in proof of Theorem 2.12 (3) using resp. the facts that:
1) Finite products of finite sets are finite.
2) There exists a sequence (fn)n∈N+ of bijections fn : R

n → R.]

E 6. Show that CC(R) implies Fin(R).

E 7. 19 Show that each of the following conditions implies the succeeding ones:
a) AC.
b) There are enough projective sets, i.e., every set is an image of a pro-

jective set (in other words: there exists arbitrary large projective sets
w.r.t. the order ≤∗ of cardinals).20

c) DC.

E 8. Show the equivalence of:
a) CC.
b) N is a projective set.

18 [Sie58]
19 [Blass79]
20 Cf. with Exercises to Section 2.1, E 4, condition (4). Whether (a) and (b) are

equivalent is not known.
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E 9. Show that:
a) Every separable pseudometrizable space is second countable.
b) Every second countable pseudometric space is separable iff CC holds.

E 10. Show that AC(R) implies UFT(N) and thus WUF(N).
[Hint: By Exercises to Section 1.1, E 1 and |R| = |PN|, AC(R) implies
that PN is well–orderable.]
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Elementary Observations

3.1 Hidden Choice

Experience gained presenting the contents of this paper before a
learned audience discloses that the wily, attentive listener will ex-
pend more energy searching for the possible hidden presence of the
axiom of choice in the proofs than he will in following the positive,
constructive aspects of these proofs.

W.W. Comfort1

It is a historic irony that many of the mathe-
maticians who later opposed the Axiom of Choice had
used it implicitly in their own researches.

Gregory H. Moore2

The use of the Axiom of Choice is sometimes hidden, and, even if obvi-
ous to the expert, may elude the novice. Even several of those mathematicians
who rejected AC used it unconsciously. Hardy3 pointed out that Borel, though
strongly objecting to the use of AC for uncountable indexing sets4, used it
for an indexing set of cardinality 2ℵ0 in his proof that there exist continuous
functions f : R → R which cannot be represented as double series of polynomi-
als. Sierpiński5 demonstrated that Lebesgue, another outspoken critic of AC,
used it to show that countable unions of measurable sets of reals are again
measurable. And Moore6 exhibited a plethora of examples demonstrating that
“future critics of the Axiom [of Choice] where freely employing sequences of
arbitrary choices in real analysis before Zermelo’s proof appeared.”

1 [Com68]
2 [Moo82, p. 64]
3 [Hard06, p. 15]
4 See the headquote for Section 2.2
5 [Sie58, p. 127].
6 [Moo82, §17].
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Here follows an instructive example of a proof that appears to be construc-
tive, but is not:

Statement 3.1. Countable unions of countable sets are countable.

Proof. Let X =
⋃

n∈N

Xn be a countable union of countable sets Xn. Assume,

without loss of generality, that the Xn’s are pairwise disjoint. Since the Xn’s
are countable they can be written in the form

Xn = {xi
n | i ∈ N} = {x0

n, x1
n, x2

n, . . .}.

Define a bijection f : N → X via the following construction:

x0
0

�� x1
0

����
��

��
��

�
x2

0

����
��

��
��

�
x3

0

����
��

��
��

�
· · ·

x0
1

��������������������
x1

1

����
��

��
��

�
x2

1

����
��

��
��

�
x3

1 · · ·

x0
2

��������������������������������
x1

2

����
��

��
��

�
x2

2 · · ·

x0
3 x1

3 · · · · · ·�
�

�
��	

i.e.,

f(0) = x0
0, f(1) = (x1

0), f(2) = x0
1, f(3) = (x2

0), f(4) = x1
1,

f(5) = (x0
2), f(6) = x3

0, · · ·

resp. g = f−1 : X → N by the explicit formula:

g(xk
i ) =

i+k∑

ν=1

ν + (i + 1) =
(i + k) · (i + k + 1)

2
+ (i + 1).

Thus X is countable.

Discussion: Once the Xn’s are expressed in the form Xn = {xi
n | i ∈ N},

the remainder of the above proof is constructive indeed. However, there are
many ways to express each Xn in the above form, i.e., as a counted set instead
of a countable set. Thus the above proof uses CC, the Axiom of Countable
Choice.

Let us analyze the situation in more detail by introducing some definitions
first:
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Definition 3.2. 1. CUT, the Countable Union Theorem, states that count-
able unions of at most countable sets are at most countable.

2. CUT(R) states that countable unions of at most countable subsets of R

are at most countable.
3. CUT(fin) states that countable unions of finite sets are at most countable.
4. CUT(2) states that countable unions of 2–element sets are at most count-

able.

Then the proof given for Statement 3.1 yields:

Proposition 3.3. CC implies CUT.

The next diagram illustrates further relations between the above and some
closely related concepts: note that none of the single–headed arrows A → B,
with the possible exception of “Lebesgue measure is countably additive → R

is not a countable union of countable sets” is an equivalence.
Note further that none of the conditions entering the diagram holds in

ZF. In particular there exist models of ZF in which R is a countable union
of countable sets7, and models of ZF in which a countable union of certain
2–element sets is uncountable8.

The proofs of the two equivalences will follow after the diagram.

Diagram 3.4.

ZF

CUT(R)

CC(R)

CC

CUT(2) ↔ CC(2)

CUT(fin) ↔ CC(fin)

CUT

R is not a countable
union of countable sets

Lebesgue–measure is
countably additive








�

�������









�








�

�������
 �
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�

�

�
�

�
�

��

7 e.g., in the Feferman–Levy Model A8 (M9 in [HoRu98]).
8 e.g., in Cohen’s second model (M7 in [HoRu98]).
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Proposition 3.5. Equivalent are:

1. CUT(fin).
2. CC(fin).

Proof. (1) ⇒ (2) Let (Xn) be a sequence of non–empty finite sets. By (1),
there exists a surjection f : N →

⋃

n∈N

Xn. For each n, define

xn = f(min{m ∈ N | f(m) ∈ Xn}).

Then (xn) ∈
∏

n∈N

Xn.

(2) ⇒ (1) Let (Xn) be a sequence of finite sets with
⋃

n∈N

Xn = X. Then

the sequence (Yn), defined by Yn = Xn \
⋃

m<n
Xm is a sequence of pairwise

disjoint finite sets with
⋃

n∈N

Yn = X. For each n, the set Ln of linear order

relations on Yn is a non–empty, finite set. By (2), there exists an element (ϕn)
in

∏

n∈N

Ln. Order X as follows

x ≤ y ⇔






x ∈ Yn and y ∈ Ym and n < m
or
{x, y} ⊆ Yn and xϕny.

If X is infinite, then (X,≤) is order–isomorphic to the set of natural numbers
with its canonical order. Thus X is at most countable.

Proposition 3.6. Equivalent are:

1. CUT(2).
2. CC(2).

Proof. Analogous to the proof of Proposition 3.5. An alternative proof of the
implication (2) ⇒ (1) is the following:

Let (Xn) be a sequence of 2–element sets with union X: By (2), there
exists an element (xn) in

∏

n∈N

Xn. For each n, let yn be the unique element

of Xn \ {xn}. Then the function f : N → X, defined by f(2n) = xn and
f(2n + 1) = yn, is surjective. Thus X is at most countable.

The use of the Axiom of Choice may also be overlooked in proofs that are
so trivial that one does not bother to analyze any details. Here is an example:

Statement 3.7. 1. Finite topological spaces are compact.
2. Countable topological spaces are Lindelöf.
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Proof. Obvious.

Discussion: Although the proofs of the statements (1) and (2) are
straightforward indeed, and very similar too, there is a marked difference.
The proof of (1) holds in ZF, the proof of (2), however, makes use of the
Axiom of Choice. So (1) is a result in ZF, but (2) fails to be so. In fact, the
following holds:

Theorem 3.8. 9 Equivalent are:

1. Countable topological spaces are Lindelöf.
2. N is Lindelöf.
3. Q is Lindelöf.
4. Every unbounded subset of R contains an unbounded sequence.
5. CC(R).

Proof. (1) ⇒ (3) since Q is countable.
(3) ⇒ (4). Let A be a subset of R, unbounded to the right. Let, for each

a ∈ A, C(a) = {x ∈ Q | x < a}. Then C = {C(a) | a ∈ A} is an open cover
of Q. Let C′ = {Cn | n ∈ N} be a countable subset of C that covers Q. For
each Cn there exists a unique element an in A with Cn = C(an) — since
supR C(a) = a. Thus (an) is an unbounded sequence in A.

(4) ⇒ (5) Let (Xn) be a sequence of non–empty subsets Xn of R. Let
f : R → (0, 1) be a fixed bijection, and, for each n ∈ N, let σn : R → R be
defined by σn(x) = n + x.

Define Yn = σ[f [Xn]]. Then Yn ⊆ (n, n + 1), and Y =
⋃

n∈N

Yn is an un-

bounded subset of R.
By (4), there exists an unbounded sequence yn in Y . Thus

M = {m ∈ N | ∃n ∈ N yn ∈ Ym} is an infinite subset of N with
∏

m∈M

Ym �= ∅.

Let (ỹm)m∈M be an element of this product. Define xm to be the unique
element of Xm with σm(f(xm)) = ỹm. Then (xm) ∈

∏

m∈M

Xm. Thus (5) follows

via Exercises to Section 2.2, E 5(1).
(5) ⇒ (2) Let U be an open cover of N. Then for each n ∈ N the set

Xn = {U ∈ U | n ∈ U} is a non–empty subset of PN, the powerset of N. Since
PN and R have the same cardinality, (5) implies that there exists an element
(Un) in

∏

n∈N

Xn. Thus {Un | n ∈ N} is a countable subcover of U.

(2) ⇒ (1) Every countable topological space is a continuous image of N.
Since continuous images of Lindelöf spaces are Lindelöf, (1) follows from (2).

In analogy to Statement 3.7 we obtain:

Statement 3.9. 1. Finite sums of compact topological spaces are compact.
2. Countable sums of Lindelöf spaces are Lindelöf.

9 [Bru82a], [HeSt97].
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Proof. Obvious.

Discussion: Here, as for Statement 3.7, (1) and (2) have trivial and par-
allel proofs, but while (1) is a result in ZF, (2) is not. In fact, as will be shown
in Theorem 4.62, (2) is equivalent to CC. Not even finite sums of Lindelöf
spaces need to be Lindelöf. Even worse, the sum of a compact space and a
Lindelöf space may fail to be Lindelöf, as shown in Remark 4.63.

Exercises to Section 3.1:

E 1. Show that for each natural number n the following conditions are equiv-
alent:

(1) CC(≤ n), i.e.,
∏

i∈N

Xi �= ∅ for each sequence (Xi)i∈N of sets with

1 ≤ |Xi| ≤ n.
(2) For each sequence (Xi)i∈N of n–element sets there exists a sequence

(≤i)i∈N of linear orders ≤i on Xi.
(3) CUT(n), i.e., countable unions of n–element sets are at most count-

able.
(4) CUT(≤ n), i.e., the union of each sequence (Xi)i∈N of sets with

1 ≤ |Xi| ≤ n is at most countable.
(5) CC(i) holds for each i ∈ {1, 2, . . . , n}.

E 2. Show the equivalence of the following conditions:
(1) PCC(2), i.e., for each sequence (Xn) of 2–element sets Xn there exists

an infinite subset M of N with
∏

m∈M

Xm �= ∅.

(2) The countable union of pairwise disjoint 2–element sets is Dedekind–
infinite.

E 3. Show that, for each at most countable set X, the set
⋃

n∈N

Xn is at most

countable.

E 4. Show that the following sets are countable:
(1) The set Q of rational numbers.
(2) The set

⋃

n∈N

N
n.

(3) The set of all algebraic real numbers.
(4) The set of all algebraic complex numbers.

E 5. 10 Show that the following condition (1) implies all subsequent ones:
(1) R is the countable union of countable sets.
(2) ω1 is not regular, i.e., there exists a sequence (αn)n∈N of countable

ordinals with ω1 = sup
n∈N

αn.

(3) Fin(R).

10 [Spe57]
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(4) ℵ1 and 2ℵ0 are incomparable w.r.t. ≤.
Moreover11, show that (2) implies that CC(R) fails.
[Hint: For (1) ⇒ (2) use Exercise to Section 4.2, E 4.].

E 6. 12 Show that CC(R) implies that the Lebesgue–measure is σ-additive.
[Hint: See the proof of Proposition 7.14. Cf. also Exercise to Section 5.1,
E 13.]

3.2 Unnecessary Choice

In Section 3.1 it has been shown that several ZFC–theorems may erroneously
be considered to hold in ZF; due to the fact that the use of AC was hidden.
Here we will show that several ZFC–theorems may erroneously be considered
to fail in ZF; due to the fact that their familiar proofs use AC, although this
use of AC may be only apparent or can be avoided by alternative proofs which
sometimes are drastically different from the familiar ones but more often just
require a minor adjustment of the latter.

Proposition 3.10. Finite sums of compact spaces are compact.

Proof in ZFC: Let X be the sum of the pairwise disjoint compact spaces
X1, . . . , Xn, and let B be an open cover of X. For each i = 1, . . . , n the set
Bi = {B ∩ Xi | B ∈ B} is an open cover of Xi. By compactness each Bi

contains a finite cover Fi of Xi. For each F in Fi choose an element B(F ) in
B with F = B(F ) ∩ Xi.
Then the set F = {B(F ) | i ∈ I and F ∈ Fi} is a finite cover of X with
F ⊆ B. Thus X is compact.

Observation: In the above proof, choice has been used to select the
B(F )’s. However, this use of choice is only apparent, since I and each Fi are
finite, and the axiom of choice for finite indexing sets holds in ZF. Thus the
above is a valid proof in ZF. Observe however that the analogous proof of the
statement

Finite sums of Lindelöf spaces are Lindelöf
fails in ZF, since here countable choice is used. Indeed, the statement about
Lindelöf spaces may fail in ZF. See Remark 4.63.

Theorem 3.11. Every bounded, infinite subset X of R has an accumulation
point13 in R.

11 [Chu27]
12 [KeTa2003]
13 x is called an accumulation point of X iff every neighborhood of x meets X in

an infinite set.
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Proof in ZFC: Since X is bounded, there exist real numbers a and b with
X ⊆ [a, b]. Observe first that [a, b] is compact. Proceed indirectly by assuming
that there exists an open cover B of [a, b] without finite subcover, define x =
sup{y ∈ [a, b] | some finite subset of B covers [a, y]}, observe that x ∈ B
for some B ∈ B, and arrive at a contradiction. Next, assume that X has
no accumulation point in R. Then for each x ∈ [a, b], there exists an open
neighborhood B(x) such that X ∩B(x) is finite. Then B = {B(x)∩ [a, b] | x ∈
[a, b]} is an open cover of [a, b], and thus has a finite subcover F . Consequently
X =

⋃

F∈F
(X∩F ) is a finite union of finite sets and thus finite, a contradiction.

Observation: In the above proof, choice has been used to select the
B(x)’s. This use of choice can be avoided by defining B alternatively as the
set of all open subsets of [a, b] that meet only finitely many elements of X.
This way a proof in ZF results.

The method, employed above, to modify a ZFC–proof into a ZF–proof,
can be applied quite often. Here is another example:

Proposition 3.12. Closed subspaces of compact spaces are compact.

Proof in ZFC: Let X be a closed subspace of a compact space Y , and let B
be an open cover of X. For each B ∈ B select an open set A(B) in Y with
B = X ∩A(B). Define A = {A(B) | B ∈ B}. Then A∪{Y \X} being an open
cover of Y , contains a finite cover F . Consequently G = {X∩F | F ∈ (F∩A)}
is a finite cover of X with G ⊆ B, Thus X is compact.

Observation: In the above proof, choice has been used to select the
A(B)’s. This use of choice can be avoided by defining A alternatively by

A = {A | A open in Y and (X ∩ A) ∈ B}.

Theorem 3.13. 14 [0, 1]N is compact.

Proof in ZFC: It suffices (cf. the remark following Definition 3.21) to show
that in X = [0, 1]N every filter F has a cluster point (xn). Denote the n–th
projection by πn : [0, 1]N → [0, 1], and the neighborhood–filter of a point x in
[0, 1] by U(x). Define, by recursion, points xn in [0, 1] and filters Fn on X as
follows:

x0 is a cluster point of the filter {G ⊆ [0, 1] | π−1
0 [G] ∈ F}.

F0 is the filter on X, generated by the set

F ∪ {π−1
0 [U ] | U ∈ U(x0)}.

xn+1 is a cluster point of the filter {G ⊆ [0, 1] | π−1
n+1[G] ∈ Fn}.

Fn+1 is the filter on X, generated by the set

Fn ∪ {π−1
n+1[U ] | U ∈ U(xn+1)}.

14 [Loe65], [DHHKR2003a].
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Then x = (xn) is a cluster point of
⋃

n∈N

Fn and thus of F in X.

Observation: In the above proof, choice has been used (in fact: dependent
choice) to select the xn’s. This use of choice can be avoided via the observation
that for every filter G on [0, 1] the set of cluster points of G, being a non–empty,
closed subset of [0, 1], contains a smallest member. By choosing the xn’s as
the smallest cluster points of the corresponding filters we obtain a proof in
ZF.

Another such example, using distinguished choices instead of arbitrary
ones, is the following:

Proposition 3.14. Every continuous function f : [0, 1] → R is uniformly con-
tinuous.

Proof in ZFC: Let ε be a positive real number. For every x ∈ [0, 1], select a
positive δx such that y ∈ [[0, 1]∩(x−δx, x+δx)] implies |f(y)−f(x)| ≤ ε

2 . Then
the sets Ux = [0, 1]∩ (x−δx, x+δx) form, for x ∈ [0, 1], an open cover of [0, 1].
By compactness, there exists a finite subset F of [0, 1] such that {Ux | x ∈ F}
covers [0, 1]. Consider δ = min{ δx

2 | x ∈ F}. Then, for any points x and y in
[0, 1] with |x−y| < δ, there exists some z ∈ F with {x, y} ⊆ Uz, which implies
|f(x) − f(y)| ≤ |f(x) − f(z)| + |f(z) − f(y)| < ε.

Observation: In the above proof, choice has been used to select the δx’s.
However, as in the previous result, choice can be avoided, e.g., by defining
δx = 1

nx
, where nx = min{n ∈ N

+ | y ∈ [[0, 1]∩(x− 1
n , x+ 1

n )] ⇒ |f(y)−f(x)| <
ε
2}.

Next, an example of a ZFC–proof which requires drastic remodeling.

Theorem 3.15. 15 Every sequentially continuous16 function f : R → R is
continuous.

Proof in ZFC: Assume that f is sequentially continuous but not continuous
at some x ∈ R. Then there exists a positive real number ε such that for
each positive real number δ there exists some y ∈ R with |x − y| ≤ δ and
|f(x) − f(y)| > ε. Choose, for every n ∈ N

+, an xn in R with

|x − xn| ≤
1
n

and |f(x) − f(xn)| > ε.

Then the sequence (xn) converges to x, but the sequence (f(xn)) does not
converge to f(x), contradicting the sequential continuity of f at x.

15 [Sie18]
16 f is called sequentially continuous iff (xn) → x implies (f(xn)) → f(x).
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Observation: In the above proof, choice has been used to select the xn’s.
This use of choice is essential. In fact, the statement

Every function f : R → R, that is sequentially continuous at some
point x, must be continuous at x

does not hold in ZF (see Theorem 4.54). However, Theorem 3.15 holds in ZF:

Proof in ZF: Let f : R → R be sequentially continuous. Using the fact that
Q is countable and is dense in R we obtain, as above, that for each x ∈ R the
restriction of f to the set Q ∪ {x} is continuous at x. Thus for ε > 0 there
exists δ > 0 such that

(y ∈ Q and |x − y| ≤ δ) implies |f(x) − f(y)| ≤ ε.

Since for each z ∈ R with |x − z| ≤ δ, the restriction of f to Q ∪ {z} is
continuous, the above implies that |f(x)− f(z)| ≤ ε. Thus f is continuous at
x.

Finally, two examples of ZFC–proofs that remain valid only under special
assumptions. If these are not satisfied, another proof has to be constructed.
In other words: these results require two distinct proofs, each covering just
some part of the ZF–world:

Theorem 3.16. 17 For subspaces X of R, the following conditions are equiv-
alent:

1. X is compact.
2. X is sequentially compact and Lindelöf.

Proof in ZFC: Obviously (1) implies (2). For the converse, assume that there
exists an open cover B of X without a finite subcover. Since X is Lindelöf,
we may assume that B is countable, say B = {Bn | n ∈ N}. We may further
assume that, for each n ∈ N, Bn ⊆ Bn+1 and Bn+1 \ Bn �= ∅. Choose ele-
ments xn in Bn+1 \ Bn. Then (xn) is a sequence in X without a convergent
subsequence, contradicting sequential compactness of X. Thus X is compact.

Observation: In the above proof, choice has been used to select the xn’s.
Since the sets Bn+1 \ Bn are subsets of R, the proof remains valid provided
CC(R) is satisfied. What happens if CC(R) fails? Here a completely different
proof is needed. This will be supplied by Theorem 7.2, where it is shown that
the failure of CC(R) implies that every Lindelöf–subspace of R is already
compact.

Theorem 3.17. 18 Countable products of 2–element topological spaces are
compact.
17 [Gut2003]
18 [HeKe2000]
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Proof in ZFC: Let (Xn)n∈N be a sequence of topological spaces Xn, each
having precisely two points xn and yn. Let 2 be the discrete space with un-
derlying set {0, 1}. Then for each n ∈ N, the map fn : 2 → Xn, defined by
fn(0) = xn and fn(1) = yn is a continuous surjection. Hence

∏

n∈N

Xn is a

continuous image of 2N. Since the latter, being a closed subspace of [0, 1]N, is
compact by Proposition 3.12 and Theorem 3.13, so is the former.

Observation: In the above proof choice has been used to define the fn’s,
since we have no rule that determines which of the 2 points of Xn is to be called
xn, and which yn. However, the following simple case–distinction provides a
ZF–proof (each of the 2 cases may indeed occur):

Case 1:
∏

n∈N

Xn = ∅. In this case
∏

n∈N

Xn is trivially compact.

Case 2:
∏

n∈N

Xn �= ∅. In this case, let (xn) be an element of
∏

n∈N

Xn. Then

proceed as in the ZFC–proof, described above.

Observe, however, that in ZF countable products of 3–element spaces may
fail to be compact. See Section 4.8 for more details.

Exercises to Section 3.2:

E 1. Show that every closed subspace of a Lindelöf space is Lindelöf.

E 2. Show that, in a topological space, a set is open iff it is a neighborhood
of each of its points.

E 3. Show that a topological space X is compact iff each open cover B of X
contains a finite refinement F (i.e., a finite set F such that

⋃
F = X

and for each F ∈ F there is a B ∈ B with F ⊆ B).

E 4. Show that:
(a) Every compact Hausdorff space is normal.
(b) Every regular Lindelöf space is normal.

E 5. Let A be a dense, D–finite subset of R. (Such sets exist, provided that
infinite, D–finite subsets of R exist19). Define f : R → R by f(x) ={

1, if x ∈ A
0, otherwise.

Show that:
(a) f is sequentially continuous at x iff x ∈ (R \ A).
(b) f is continuous at no point of R.

E 6. 20 Show that [0, 1]I is compact for each well–orderable set I.

19 [Bru82]
20 However [0, 1]R may fail to be compact. See [Ker2000] and Exercises to Section

7.2, E 8. Cf. Exercises to Section 4.8, E 13.
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3.3 Concepts Split Up: Compactness

It is a hopeless endeavour, doomed to failure to attempt to prove
either the Stone–Čech compactification theorem or the Tychonoff
product theorem without invoking some form of the axiom of
choice, . . . It is my feeling, however, that the definition of com-
pactness relative to which the theorems of Stone–Čech and Ty-
chonoff are unprovable without the axiom of choice is, from the
point of view of topological analysis and the theory of rings of
continuous functions, unnatural and unsuitable.

W.W. Comfort21

However, this is ‘mere matter of detail’ as the Irishman said when
he was asked how he had killed his landlord.

Thomas Henry Huxley22

Another problem, encountered when working in ZF instead of ZFC, arises
from the fact that various familiar descriptions of a certain concept, equivalent
to each other in the presence of AC, may separate in its absence into different
concepts and that the validity in ZF of familiar results concerning this concept
may depend crucially on the chosen variant of the concept.

Paradigmatically we will illustrate this situation by analyzing the com-
pactness concept. In this section we will present several familiar descriptions
of compactness and investigate the set–theoretical conditions responsible for
any pair of these descriptions to characterize the same concept. How certain
theorems, in particular the Tychonoff Theorem and the Čech–Stone Theorem,
the Ascoli Theorem, and the Baire Category Theorem, depend on the chosen
form will be analyzed in later sections.

Let us start by presenting the definition of compactness (originally termed
bicompactness) as given by Alexandroff and Urysohn in their fundamental
paper23 (in the original French). They start with the definition of complete
accumulation points:

Définition 3.18. Un point est dit point d’accumulation complète de l’ensemble
A, si quel-que soi le voisinage V (ζ) la puissance de A∩ V (ζ) est égale à celle
de A tout entier.

Next they prove in the following theorem the equivalence of 3 conditions:

Théorème 3.19. I Les trois propriétés suivantes d’un espace topologique R,
sont équivalents:

21 [Com68]
22 From a letter of T.H. Huxley to his son, April 21, 1879. Quoted from L. Huxley

Life and Letters of Thomas Henry Huxley. Vol. II, p. 8 (1901).
23 [AlUr29]
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(A) Tout ensemble infini situé dans R possède au moins un point d’accumul-
ation complète.

(B) Toute suite infinie bien ordonnée d’ensembles fermés décroissants posséde
au moins un point appartenant à tous les ensembles de la suite.

(C) De toute infinité de domaines recouvrant l’espace R, on peut extraire un
nombre fini de domaines jouissant de la même propriété.

Finally, after proving the above theorem, they call a space (bi)compact
provided it satisfies one and hence all three of the above conditions:

Le théorème I justifie, il nous semble la définition fondamentale suivante:

Définition 3.20. Un espace R s’appelle BICOMPACT s’il vérifie l’un quel-
conque et par suite toutes les trois conditions (A), (B), (C).

This procedure of defining mathematical concepts is not uncommon. Un-
fortunately in the present case Theorem 3.19 fails badly in ZF. No two of the
3 properties (A), (B) and (C) remain equivalent. Moreover, as we will see in
a moment, the equivalence of conditions (A) and (C) holds true if and only if
AC is valid. Furthermore, in the absence of AC condition (B) is somewhat
unnatural and impracticable.

So, what should we understand by compactness, when working in ZF? His-
torically, condition (A) has been used by early investigators, e.g., Tychonoff
and Čech. Most modern books, however, use condition (C). In addition other
useful descriptions, in particular by means of filters and ultrafilters, have
emerged over the years. Next we are going to investigate the relations be-
tween the most familiar compactness concepts; first in the realm of topolog-
ical spaces, next in that of completely regular spaces, then for pseudometric
spaces, and finally for subspaces of R. Interesting facts will emerge on each of
these levels.

Definition 3.21. 24 A topological space X is called:

1. Compact provided that in X every open cover contains a finite one.
2. Filter–compact provided that in X each filter has a cluster point.
3. Ultrafilter–compact provided that in X each ultrafilter converges.
4. Alexandroff–Urysohn–compact provided that in X each infinite subset has

a complete accumulation point.

The only implications between the 4 compactness concepts, defined above,
are the trivial ones:

compact ⇐⇒ filter–compact =⇒ ultrafilter–compact.

A compact space need not be Alexandroff–Urysohn–compact (see the proof of
Theorem 3.22). Even the closed unit interval [0, 1], which is clearly compact,

24 For further compactness versions see [Com68], [BeHe98], and [DHHRS2002].
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may fail to be Alexandroff–Urysohn–compact (see Theorem 3.32). Conversely,
in certain models of ZF there exist Alexandroff–Urysohn–compact spaces that
fail to be ultrafilter–compact.25

Theorem 3.22. 26

1. Equivalent are:
a) Compact = Ultrafilter–compact.
b) UFT, the Ultrafilter Theorem.

2. Equivalent are:
a) Compact = Alexandroff–Urysohn–compact.
b) Ultrafilter–compact = Alexandroff–Urysohn–compact.
c) AC.

Proof. (1) (a) ⇒ (b). By Theorem 4.37, it suffices to show that products of
compact Hausdorff spaces are compact. Since products of ultrafilter–compact
Hausdorff spaces are ultrafilter–compact, this follows from (a).

(b) ⇒ (a) It suffices to show that each filter F in an ultrafilter–compact
space X has a cluster point. By (b), F can be enlarged to an ultrafilter U .
Since every convergence point of U is a cluster point of F , the result follows.

(2) As is well–known, (c) implies (a) and (b). To show that each of (a)
resp. (b) imply (c), consider two infinite cardinals a and b. Then there exist
disjoint sets A and B with |A| = a and |B| = b. The topological space X
whose underlying set is A∪B and whose open sets are ∅, A,B, and A∪B, is
simultaneously compact and ultrafilter–compact. So each of (a) and (b) imply
that X is Alexandroff–Urysohn–compact. Consequently the set A ∪ B has a
complete accumulation point x. If x ∈ A, then a = |A| = |A∪B| ≥ b. If x ∈ B,
then b = |B| = |A ∪ B| ≥ a. Thus a ≤ b or b ≤ a. Consequently Theorem
4.20, together with the observation that every finite cardinal is comparable
with any other one, implies that AC holds.

More important than compact spaces are compact Hausdorff spaces. This
is mainly due to two facts. First, compact Hausdorff spaces are regular and
satisfy a property that is analoguous to completeness among metric spaces:
they are H–closed, i.e., closed in every Hausdorff space in which they can be
embedded; in other words: they cannot be densely embedded into any properly
larger Hausdorff space. In fact, as Alexandroff and Urysohn have shown, these
properties characterize compact Hausdorff spaces: they are precisely the H–
closed regular spaces. This characterization remains valid in ZF (see Exercise
E 2).

Secondly, and even more important, is the fact that compact Hausdorff
spaces are normal and hence completely regular, — thus, modulo homeo-
morphism, precisely the closed subspaces of powers [0, 1]I of the closed unit

25 [DHHRS2002]
26 [How90], [Her96].
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interval. Unfortunately, in ZF this characterization breaks down for two rea-
sons: On one hand, though compact Hausdorff spaces are still normal, they
may no longer be completely regular27. On the other hand, though spaces of
the form [0, 1], [0, 1]n, and [0, 1]N are compact28; for arbitrary indexing sets I,
the spaces [0, 1]I need no longer be so.

Definition 3.23. A topological space is called Tychonoff–compact provided it
is homeomorphic to a closed subspace of some power [0, 1]I of the closed unit
interval.

Proposition 3.24. 29 Equivalent are:

1. Tychonoff–compact = compact and completely regular.
2. UFT.

Proof. (1) ⇒ (2) Theorem 4.70, and the fact that all spaces of the form [0, 1]I

are compact implies (2).
(2) ⇒ (1) Every completely regular space X can be embedded into

[0, 1]C(X,[0,1]). If X is compact, H–closedness of X implies that the embedding
is closed. Thus X is Tychonoff–compact. Conversely, let X be Tychonoff–
compact. Then X is completely regular. By (2) and Theorem 4.70, together
with the fact that closed subspaces of compact spaces are compact, X must
be compact.

Next we proceed to the realm of pseudometric30 spaces. Here, as opposed
to the situation with metric spaces, where the relations between the various
compactness concepts are not yet completely understood, we will be able to
satisfactorily analyze the relations between various familiar descriptions of
compactness.

Definition 3.25. A pseudometric space X is called:

1. Weierstrass–compact provided in X every infinite set has an accumulation
point31.

2. Countably compact provided in X every countable open cover contains a
finite one.

3. Sequentially compact provided in X every sequence has a convergent sub-
sequence.

4. Complete provided in X every Cauchy sequence converges.

27 [Laeu62/63]
28 [Loe65]. Cf. Theorem 3.13.
29 [Her96]
30 Here d(x, y) = 0 is allowed for distinct points x and y.
31 x is called an accumulation point of A iff every neighborhood of x meets A in

an infinite set.
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5. Totally bounded provided that for each positive real number r there exists
a finite subset F of X such that for each x ∈ X there exists some y ∈ F
with d(x, y) < r.

Proposition 3.26. 32 Under CC the following conditions are equivalent for
pseudometric spaces X:

1. X is compact.
2. X is Weierstrass–compact.
3. X is countably compact.
4. X is sequentially compact.
5. X is totally bounded and complete.

Proof. The implications, illustrated in the following diagram, are easily shown
to hold even in ZF:

sequentially
compact

countably
compact

compact

Weierstrass–
compact

totally bounded
and complete

�

�

������

������

������

������

So it remains to be shown that (4) implies (1). This will be done in 2
steps:

(4) ⇒ (5) If X is sequentially compact, then X is complete. Assume that
X fails to be totally bounded. Then there exists a positive real number r such
that for each n ∈ N

+ the set

Xn = {(x1, . . . , xn) ∈ Xn | i �= j ⇒ d(xi, xj) ≥ r}

is non–empty. Under CC there exists an element (an) in
∏

n
Xn. Consider

a1, a2, a3, . . . by concatenation as a sequence in X. This sequence contains
arbitrary long strings xn, xn+1, . . . , xn+k such that any two of its members
have a distance d(xn+i, xn+j) ≥ r. This fact immediately implies that (xn)
has a subsequence (xν(n)) in which the distance of any two members is at least

32 [BeHe98]
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1
2r. Thus (xν(n)) has no convergent subsequence, contradicting the sequential
compactness of X.

(5) ⇒ (1) Let X be totally bounded and complete. Assume that U is an
open cover of X without a finite subcover of X. For x ∈ X and r ∈ R

+, define
S(x, r) = {y ∈ X | d(x, y) < r}. By total boundedness of X, for each n ∈ N

+,
the set An of all tuples (x1, . . . , xm) in X with X =

⋃m
i=1 S(xi,

1
n ) is non–

empty. By CC, there exists an element (an) in
∏

n
An. Denote each an by

(xn
1 , xn

2 , . . . xn
m(n)), and define, via recursion, a sequence (yn) in X as follows:

y1 = x1
k where k = min{i | no finite subset of U covers S(x1

i , 1)}
yn+1 = xn+1

k where

k = min
{

i | no finite subset of U covers S
(
xn+1

i , 1
n+1

)
∩

n⋂

ν=1
S

(
yν , 1

ν

)
} .

Then (yn) is a Cauchy sequence in X. By completeness, (yn) converges to
some point y in X. Thus there exists some n ∈ N

+ and some U ∈ U with
S(y, 1

n ) ⊆ U , providing a contradiction. Thus X is compact.

For the above result to hold, CC is not only sufficient but also necessary.
More precisely:

Theorem 3.27. 33 In the realm of pseudometric spaces the following condi-
tions are equivalent:

1. CC.
2. Compact = sequentially compact.
3. Compact = totally bounded and complete.
4. Weierstrass–compact = totally bounded and complete.
5. Countably compact = totally bounded and complete.
6. Sequentially compact = totally bounded and complete.
7. Sequentially compact = countably compact.

Proof. By Proposition 3.26, (1) implies all the above conditions. To show that
each of these implies (1), assume that (1) fails. Then, by Theorem 2.12(3),
also PCC fails, i.e., there exists a sequence (Xn) of non–empty sets such that
each sequence in

⋃

n
Xn meets only finitely many Xn’s.

Construct a pseudometric space with underlying set X =
⋃

n
(Xn × {n})

and distance function d, defined by

d((x, n), (y,m)) =
{

0, if n = m
1, otherwise.

Then (X, d) is sequentially compact, but neither totally bounded nor count-
ably compact. Thus (2), (6), and (7) fail. Next, construct a pseudometric space
with underlying set X as above and distance function a, defined by
33 [BeHe98]
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a((x, n), (y,m)) =
∣
∣
∣
∣
1
n
− 1

m

∣
∣
∣
∣ .

Then (X, a) is complete and totally bounded, but fails to be countably com-
pact. Thus (3) and (5) fail.

It remains to be shown that (4) implies (1). Assume that (1) fails, choose
a sequence (Xn) as above, and construct a space (X, d) as above. Since (X, d)
fails to be totally bounded, condition (4) implies that it fails to be Weierstrass–
compact. So there exists an infinite subset A of X without an accumulation
point in X. Define An = A ∩ (Xn × {n}) and M = {n ∈ N | An �= ∅}. Then
(Am)m∈M is a countable family of non–empty finite sets.

Assume that no sequence in Z =
⋃

m∈M

Am meets infinitely many Am’s.

Then the pseudometric space (Z, b), defined by

b((x, n), (y,m)) =
∣
∣
∣
∣
1
n
− 1

m

∣
∣
∣
∣

is complete and totally bounded, but not Weierstrass–compact, thus violating
condition (4). Therefore there exists a sequence in Z which meets infinitely
many Am’s and thus infinitely many Xm’s, contradicting the choice of the
Xn’s. Thus (1) holds.

Observe that the first part of the proof of (4) ⇒ (1) above also shows that
the implication

Weierstrass–compact ⇒ countably compact

implies PCMC and thus CMC. This implication is an equivalence, as
the following result, presented here without proof, states:

Theorem 3.28. 34 In the realm of pseudometric spaces the following condi-
tions are equivalent:

1. CMC.
2. Weierstrass–compact ⇒ countably compact.
3. Weierstrass–compact = compact.

Proposition 3.29. 35 In the realm of pseudometric spaces the following con-
ditions are equivalent:

1. Fin.
2. Weierstrass–compact = sequentially compact.

34 [Ker2000]
35 [BeHe98]
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Proof. (1) ⇒ (2) Every Weierstrass–compact space is sequentially compact.
For the converse, consider an infinite subset A of a sequentially compact space
X. By (1), there exists an injective sequence (an) in A. By sequential com-
pactness of X, some subsequence of (an) converges to some x ∈ X. Then x is
an accumulation point of A. Thus X is Weierstrass–compact.

(2) ⇒ (1) If (1) fails, there exists an infinite, D–finite set X. Then the

pseudometric space (X, d) defined by d(x, y) =
{

0, if x = y
1, if x �= y

is sequentially

compact, but not Weierstrass–compact. Thus (2) fails.

Finally let us sketch the situation for subspaces of R. More details will be
presented in Section 4.6.

Proposition 3.30. 36 For subspaces X of R, the following conditions are
equivalent:

1. X is compact.
2. X is countably compact.
3. X is closed and bounded in R.
4. X is sequentially compact and Lindelöf.

Proof. The proof that (1), (2), and (3) are equivalent can be carried out as in
ZFC. To show that (4) implies (1) consider two cases (cf. Theorem 3.16):
Case 1: CC(R) holds.
In this case, every sequentially compact space is easily seen to be closed and
bounded in R, thus compact.

Case 2: CC(R) fails.
In this case, every Lindelöf subspace of R is already compact (see Section 7.1).

Proposition 3.31. 37 In the realm of subspaces of R, the following conditions
are equivalent:

1. Sequentially compact = compact.
2. Sequentially compact ⇒ closed.
3. Sequentially compact ⇒ bounded.
4. Complete ⇒ closed.
5. R is a sequential space.

Proof. See Theorem 4.55 and Exercises to Section 4.6, E 4.

Theorem 3.32. 1. If there is no free ultrafilter on R, then every subspace
of R is ultrafilter–compact.

2. If there is no free ultrafilter on N, then N is Tychonoff–compact.
3. If R has an infinite, D–finite subset X, then the following hold:

36 [Gut2003]
37 [Gut2003]
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a) R has compact subspaces that fail to be Alexandroff–Urysohn–compact,
e.g., the closed unit interval [0, 1].

b) R has subspaces that are Weierstrass–compact and complete, but fail
to be Alexandroff–Urysohn–compact or compact, e.g., X itself.

Proof. (1) Immediate.
(2) Since N is discrete every subset of N is a zeroset. Thus in N every

zero–ultrafilter is fixed and thus converges. By Exercise E 4 this implies that
N is Tychonoff–compact.

(3) Let R have an infinite, D–finite subset X. Then every proper subset
of X has a smaller cardinality than X. Consequently X has no complete
accumulation point in R. Hence neither X nor any subspace Y of R with
X ⊆ Y can be Alexandroff–Urysohn–compact. Let f : R → (0, 1) be some
homeomorphism. Then f [X] is an infinite, D–finite subset of [0, 1]. Thus [0, 1]
is not Alexandroff–Urysohn–compact.

Being D–finite, X contains no injective sequence. Thus X is complete.
X is not closed, since otherwise one could construct an injective sequence
in X. Thus X is not compact. However, X is Weierstrass–compact, for the
assumption that there exists an infinite subset Y of X without accumulation
point in X, leads to a contradiction as follows: for each x ∈ X (except for the
largest element of X, if X has one) there exists a largest half–open interval
I(x) = [x, rx) in R with [x, rx)∩Y = ∅. Since these intervals I(x) are pairwise
disjoint and Q is dense in R and countable, it follows that the set of these
intervals and thus X itself must be countable; a contradiction.

Exercises to Section 3.3:

E 1. 38 For topological spaces X, show the equivalence of the following con-
ditions:

(1) X is compact.
(2) For each topological space Y the projection πY : X × Y −→ Y is a

closed map.

E 2. 39 Show the equivalence of:
(1) X is a compact Hausdorff space.
(2) X is an H–closed regular space.

E 3. 40 For completely regular spaces X, show the equivalence of the following
conditions:

(1) X is compact.
(2) In X, every zero–filter is fixed.

38 [Her96]
39 [Her96]
40 [Her96]
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(3) In the ring C∗(X), every ideal is fixed.
(4) In the ring C(X), every ideal is fixed.

E 4. 41 For completely regular spaces X, show the equivalence of the following
conditions:

(1) X is Tychonoff–compact.
(2) The canonical map X → [0, 1]C(X,[0,1]) is closed.
(3) In X, every zero–ultrafilter converges.
(4) In the ring C∗(X), every maximal ideal is fixed.
(5) In the ring C(X), every maximal ideal is fixed.

E 5. 42 Show that every Tychonoff–compact space is ultrafilter–compact.

E 6. 43 Show that, in case no free ultrafilters exist:
(1) Every space is ultrafilter–compact.
(2) Not every completely regular space is Tychonoff–compact.

E 7. 44 Show that in the realm of pseudometric spaces as well as in the realm
of Hausdorff spaces the following conditions are equivalent:

(1) Compact = Alexandroff–Urysohn–compact.
(2) Ultrafilter–compact = Alexandroff–Urysohn–compact.
(3) AC.

E 8. Show the equivalence of:
(1) Every space with a finite topology is Alexandroff–Urysohn–compact.
(2) AC.

E 9. 45 Call a topological space X
• Lindelöf, if every open cover of X contains an at most countable sub-

cover of X.
• w–Lindelöf (= weakly Lindelöf), if every open cover of X has an at

most countable open refinement.
• vw–Lindelöf (= very weakly Lindelöf), if every open cover of X has

an at most countable refinement.
• s–Lindelöf (= strongly Lindelöf), if for every extension Y of X, each

open cover of X in Y contains an at most countable subcover of X.
Prove that:

(1) s–Lindelöf ⇒ Lindelöf ⇒ w–Lindelöf ⇒ vw–Lindelöf.
(2) None of the above implications is an equivalence.
(3) In ZFC each of the above implications is an equivalence.
(4) Lindelöf = w–Lindelöf ⇔ CC.
(5) Lindelöf = vw–Lindelöf ⇔ CC.

41 [Com68], [Sal74], [BeHe98].
42 [Sal74]
43 [Her96a]
44 [How90]
45 [Her2002]
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(6) w–Lindelöf = vw–Lindelöf ⇔ CMC.
(7) Equivalent are:

(a) Lindelöf = s–Lindelöf for T1–spaces.
(b) CC(R) implies CC.



4

Disasters without Choice

Absence of choice
— in mathematics as in life —
may affect outcome.

S. Shelah and A. Soifer1

4.1 Finiteness

Without AC, however, things be-
come “sticky”.

J.L. Hickman2

Elementare Begriffe, wie Endlichkeit und Wohlord-
nung hängen jeweils vom gewählten System (Σ1 oder
Σ2) ab; und es ist nicht ausgeschlossen, daß dieses
Abhängen von wesentlichem Charakter ist: daß eine
Menge a im System Σ1 wohlgeordnet (bzw. endlich)
zu sein scheint und sich im “feineren” System Σ2 als
nicht wohlgeordnet (bzw. unendlich) herausstellt.3

J. von Neumann

The concept of finiteness, defined as commonly done via natural numbers,
is categorical, thus not problematic. If, however, the concept of being finite
1 [ShSo2003]
2 [Hic76]
3 “Elementary concepts such as finiteness and well–order depend on the chosen

system (Σ1 or Σ2) and it is conceivable that this dependence is essential: a set
A may appear to be well–ordered (resp. finite) in system Σ1, but turn out not to
be well–ordered (resp. infinite) in the “finer” system Σ2.” [vNeu25]. Note that
von Neumann’s skepticism, expressed above, uses — independently of Tarski —
the finiteness–definition that we present in 4.3.
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is considered to be more fundamental than that of number, as strongly advo-
cated, e.g., by Frege and Dedekind (and natural numbers are defined as the
cardinals of finite sets), problems arise. First of all the concept of being finite
loses its absoluteness. Secondly, how should finiteness be defined? There are
several different descriptions, all equivalent to each other in ZFC, but not so
in ZF. Historically the oldest definition is due to Dedekind (1888)4.

It leads to disaster!

Definition 4.1. 5 A set X is called Dedekind–infinite or just D–infinite pro-
vided that there exists a proper subset Y of X with |X| = |Y |; otherwise X is
called Dedekind–finite or just D–finite.

Proposition 4.2. Equivalent are:

1. X is D–infinite.
2. |X| = |X| + 1.
3. 6 ℵ0 ≤ |X|.

Proof. (3) ⇒ (2) Let f : N → X be an injection, and let ∞ be an element,
not contained in X. Then the map g : X → X ∪ {∞}, defined by

g(x) =






∞, if x = f(0)
f(n), if x = f(n + 1)
x, otherwise

,

is a bijection.
(2) ⇒ (1) Let ∞ be an element, not contained in X, and let

f : X → X ∪ {∞} be a bijection. Then f−1, restricted to X, is an injection
from X onto the proper subset X\{f−1(∞)} of X.

(1) ⇒ (3) Let f : X → X be an injection onto a proper subset of X.
Choose an element y in X\f [X] and define recursively a map g : N → X by
g(0) = y and g(n + 1) = f(g(n)). Then g is an injection.

Disaster 4.3. The following can happen:

1. 7 D–finite unions of D–finite sets may be D–infinite.
2. The power set of a D–finite set may be D–infinite.
3. A D–infinite set may be the image of a D–finite set.8

4 [Ded1888]
5 Cf. Definition 2.13.
6 I.e., there exists an injection N → X. Here the natural numbers are supposed

to have their familiar properties, being either defined axiomatically or as the
cardinal numbers of finite sets (as defined in 4.4). The cardinal numbers of D–
finite sets may contain “infinitely large” members and fail badly to satisfy the
principle of induction, a real disaster!

7 Contrast this with Exercise E 14a.
8 Even worse: any ℵα (no matter how large) maybe the image of some D–finite

set. See [Mon75].
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Proof. Consider a model of ZF with the following property:
(F) There exists a sequence (Xn) of pairwise disjoint 2–element sets

Xn = {xn, yn} such that X =
⋃

Xn is D–finite
(Such models exist9— another disaster). Then
(1) For each x ∈ X consider the set Yx = {x, n}, where n is the unique

natural number with x ∈ Xn. Then Y =
⋃

x∈X

Yx is a D–finite union of D–finite

sets, but Y = N ∪
⋃

n Xn is D–infinite, since the map f : N → Y , defined by
f(n) = n is obviously injective.

(2) Though X is D–finite, the power set PX is D–infinite, since the map
f : N → PX, defined by f(n) =

⋃

m≤n

Xm is injective.

(3) Though X is D–finite, the map f : X → N, defined by

f(x) is the unique n ∈ N with x ∈ Xn

is surjective.

The foregoing disasters show that — in the absence of AC — the above
definition of D–finiteness is badly flawed. As satisfactory concept can however
be obtained — as shown by Tarski (1924) — in the following way:

Definition 4.4. 10 A set X is called finite, provided that each non–empty
subset of PX contains a minimal element with respect to the inclusion order.
Sets that are not finite are called infinite.

Here follow some sample results:

Proposition 4.5. 11 Equivalent are:

1. X is finite.
2. If A ⊆ PX satisfies

a) ∅ ∈ A, and
b) A ∈ A and x ∈ X imply (A ∪ {x}) ∈ A,

then X ∈ A.

Proof. (1) ⇒ (2) The collection B = {X\A | A ∈ A} has a minimal element
B. Consequently A has a maximal element A = X\B. Thus (b) implies that
A = X.

(2) ⇒ (1) Let A be the set of all finite subsets of X. Since A satisfies (a)
and (b), (2) implies that X ∈ A. Thus X is finite.

9 See, e.g., Model A5 (N2(2) in [HoRu98]).
10 [Tar24a]. Cf. also [vNeu25].
11 [Tar24a]. Observe that by Proposition 4.5, the definition of finiteness as given

in 4.4 is equivalent to the traditional definition that X is finite iff |X| = n for
some n ∈ N.
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Proposition 4.6. 12 If X and Y are finite, so is X ∪ Y .

Proof. Let A be a non–empty subset of P(X∪Y ). Then B = {A∩X | A ∈ A}
contains a minimal element B, since X is finite; and C = {A∩ Y | A ∈ A and
A∩X = B} contains a minimal element C, since Y is finite. Thus B ∪C is a
minimal element of A.

Proposition 4.7. 13 Finite unions of finite sets are finite.

Proof. Let M be a finite set of finite sets. Consider

A = {B ⊆ M |
⋃

B is finite}.

Then, in view of 4.6, A satisfies the conditions (a) and (b) of 4.5(2). Thus
M ∈ A, i.e.,

⋃
M is finite.

Proposition 4.8. 14 If X is finite, then so is PX.

Proof. Consider A = {A ⊆ X | PA is finite }. Then, in view of 4.6, A satisfies
the conditions (a) and (b) of 4.5(2). Thus X ∈ A, i.e., PX is finite.

Proposition 4.9. 15 Images of finite sets are finite.

Proof. Let X be finite, and let f : X → Y be a surjection. If A is a non–empty
subset of PY , then B = {f−1[A] | A ∈ A} is a non–empty subset of PX, and
thus contains a minimal element B. Then f [B] is a minimal element of A.

Let us return to Dedekind’s definition of D–finiteness. How are the con-
cepts of finiteness and D–finiteness related to each other?

Proposition 4.10. Every finite set is D–finite.

Proof. Assume that X is D–infinite. Then there exists an injection f : N → X.
Consequently the collection A = {{f(m) | m ≥ n} | n ∈ N} of subsets of X is
non–empty, but contains no minimal element. Thus X is infinite.

The converse, however, is not true. I.e., there exist models of ZF in which
there exist infinite, D–finite sets16

When do the two finiteness–concepts coincide? Precisely, if the disasters
of 4.3 do not occur. The following Lemma will prepare the ground for the
corresponding Theorem:

12 [Tar24a]
13 [Tar24a]
14 [Tar24a]
15 [Tar24a]
16 E.g., in Cohen’s First Model A4 (M1 in [HoRu98]).
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Lemma 4.11. Equivalent are:

1. ℵ0 ≤∗ |X|, i.e., there exists a surjection X → N.
2. PX is D–infinite, i.e., there exists an injection N → PX.

Proof. (1) ⇒ (2) Let f : X → N be a surjection. Then the map g : N → PX,
defined by g(n) = f−1(n), is an injection.

(2) ⇒ (1) Let f : N → PX be an injection. Define recursively a map
g : N → PX such that the g(n)’s are non–void and pairwise disjoint: For
n ∈ N, assume that the g(m)’s are defined for all m < n such that the set
{f(k) \

⋃

m<n
g(m) | k ≥ n} is infinite. Define

n∗ = min{k | k ≥ n and f(k) \
⋃

m<n

g(m) �= ∅ �= (X \ f(k)) \
⋃

m<n

g(m)}.

In case {f(k) \ (f(n∗) ∪
⋃

m<n
g(m)) | k > n∗} is infinite, define

g(n) = f(n∗) \
⋃

m<n
g(m); otherwise define g(n) = X \ (f(n∗) \

⋃

m<n
g(m)).

The so defined g : N → PX has the required properties. Thus the map h : X →

N, defined by h(x) =

{
n, if x ∈ g(n)
0, if x �∈

⋃

n∈N

g(n) , is a surjection.

Theorem 4.12. Equivalent are:

1. Finite = D–finite.
2. D–finite unions of D–finite sets are D–finite.
3. Images of D–finite sets are D–finite.
4. The power set of each D–finite set is D–finite.
5. For each set X we have ℵ0 ≤ |X| or |X| ≤ ℵ0.

Proof. (1) ⇒ (2) Proposition 4.7.
(2) ⇒ (3) Let f : X → Y be a surjection with D–finite domain X. Then

Y =
⋃

x∈X

{f(x)} is a D–finite union of D–finite sets, thus D–finite.

(3) ⇒ (4) Assume that PX is D–infinite. Then, by Lemma 4.11, there
exists a surjection f : X → N. Since N is D–infinite, (3) implies that X is
D–infinite.

(4) ⇒ (1) It suffices to show that each infinite set X is D–infinite. The
map f : N → PPX, defined by f(n) = {A ⊆ X | |A| = n} is injective. Thus
PPX is D–infinite. Hence (4) implies that PX is D–infinite. Hence, by (4)
again, X is D–infinite.

(1) ⇔ (5) Straightforward.

Observe that D–finite sets can possibly be quite “large”. If X is D–finite
and PX is D–infinite, then ℵ0 ≤∗ |X| by 4.11. Moreover, Monro17 has shown

17 [Mon75]
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that it is consistent to assume that for any ℵα (no matter how large) there
exist D–finite sets X with ℵα ≤∗ |X|.

AC implies that finite = D–finite. CC suffices:

Proposition 4.13. Under CC, finite = D–finite.

Proof. It suffices to show that each infinite set X is D–infinite. If X is infinite
then, for each n ∈ N, the set Xn of all injective n–tuples (x1, . . . , xn) in X is
non–empty. Thus, by CC, there exists an element (yn) ∈

∏

n
Xn. Concatenation

of the yn’s yields a sequence (xn) in X with infinite range (precisely: if yn =
(x1

n, . . . , xn
n), then x

n
(n+1)

2 +k
= xk

n+1 for n ∈ N and k ∈ {1, . . . , n + 1}).
Cancellation of repeatedly occurring terms yields an injection f : N → X

(precisely: f(n) = xmin{k|xk �∈{f(m)|m<n}}). Thus X is D–infinite.

However, there are models18 of ZF that satisfy the equation finite = D–finite,
but fail to satisfy CC. For other models19 the equation finite = D–finite even
fails for subsets of R.

Though in general the classes of all finite sets and of all D–finite sets are
different, the first of these classes is completely determined by the latter.

Proposition 4.14. 20 Equivalent are:

1. X is finite,
2. PPX is D–finite.

Proof. (1) ⇒ (2) Immediate from Propositions 4.10 and 4.8.
(2) ⇒ (1) Assume X to be infinite. Then the map f : N → PPX, defined

by
f(n) = {A ⊆ X | |A| = n}

is injective. Thus PPX is D–infinite.

Definition 4.15. Cardinal numbers of infinite, D–finite sets are called Dedek-
ind cardinals.

By Proposition 4.13, CC implies that there are no Dedekind cardinals.
However, the next result, which we present without proof, shows that if there
is at least one Dedekind cardinal, then there is a multitude of them with
rather bizarre properties:

18 E.g., Sageev’s model (M6 in [HoRu98]).
19 E.g., in Cohen’s First Model A4 (M1 in [HoRu98]).
20 [Tar24a]
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Disaster 4.16. 21

1. If there exists a Dedekind cardinal, then there is a set A of Dedekind
cardinals which, supplied with its natural order, is order–isomorphic to
R. However, with respect to the order relation ≤∗ any two elements of A
are comparable.

2. If there exist two non–comparable Dedekind cardinals, then there exists a
countable set B of Dedekind cardinals that in its natural order forms an
antichain.

3. In some models of ZF there are 2ℵ0 non–comparable Dedekind cardinals.

Exercises to Section 4.1:

E 1. Show that a set X is D–infinite iff ℵ0 + |X| = |X|.

E 2. Show that the following conditions are equivalent:
a) X is finite.
b) There exists an order relation ≤ on X such that (X,≤) and (X,≥)

are well–ordered.
c) There exists an order relation on X and each order–relation on X is

a well–ordering.
d) There exists an order relation on X and any two order relations on X

are similar to each other (= order–isomorphic).
e) In the lattice PX each ideal is principal.

E 3. 22 Investigate the relations between the following statements:
a) X is finite.
b) PX is D–finite.
c) (Y ⊆ X and |X| ≤∗ |Y |) ⇒ Y = X.
d) X is D–finite.
e) X = ∅ or |X| < 2 · |X|.
f) |X| ≤ 1 or |X| < |X|2.
g) |X| ≤ 1 or there exists a subset Y of X with |Y | < |X| and

|X\Y | < |X|.
h) There exists a map f : X → X such that ∅ and X are the only subsets

S of X with f [S] ⊆ S.

E 4. Show that finite products of finite sets are finite.

E 5. Show that the following conditions are equivalent.
a) Finite = D–finite.
b) If ℵ0 ≤∗ |X|, then ℵ0 ≤ |X|, (i.e., if there exists a surjection

f : X → N, then there exists an injection g : N → X).
c) If X and Y are disjoint infinite sets, then X ∪ Y is D–infinite.

21 [Tar65], [Tru74].
22 [Tar38], [Lev58], [HoYo89], [DCr2002].
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E 6. 23 Show the equivalence of:
a) Finite = D–finite for subsets of R.
b) R has no dense, D–finite subset.

[Cf. Exercises to Section 4.6, E 5.]

E 7. (a) Show that every non–empty set X with 2 · |X| = |X| is D–infinite.

(b) Show that, if a = 2 ·a for all infinite cardinals, then finite = D–finite.
E 8. Show the equivalence of:

a) AC.
b) X is finite iff for any well–ordering ≤ of X, the inverse order ≥ well–

orders X, too.
E 9. Let PfinX be the set of all finite subsets of X. Show the equivalence of:

a) |X| = |PfinX| for each infinite set X.
b) AC.

E 10. 24 Show for infinite cardinals a:
a) If a ≤ b and b is a Dedekind cardinal, then so is a.
b) If a and b are Dedekind cardinals, then so are a + b and a · b.
c) a is a Dedekind cardinal iff a and ℵ0 are incomparable.
d) a is a Dedekind cardinal iff a + b = a + c implies b = c.

E 11. An amorphous set is an infinite set which has no infinite subset with an
infinite complement.25 Show that:

a) Each amorphous set is D–finite.
b) Under OP there are no amorphous sets.
c) If X is amorphous, then X � X is a non–amorphous D–finite set.

E 12. Show the equivalence of:
a) AC.
b) If |A| < |A ∪ B| and |B| < |A ∪ B|, then A ∪ B is finite.

E 13. 26 Show the equivalence of:
a) Finite = D–finite.
b)

∏

i∈I

Xi �= ∅ for each family (Xi)i∈I of non–empty sets, indexed by a

D–finite set I.
c)

∏

n∈N

Xn �= ∅ for each sequence (Xn) of non–empty, D–finite sets.

E 14. Show that
a) D–finite unions of pairwise disjoint D–finite sets are D–finite.
b) Finite unions of D–finite sets are D–finite.

23 [Bru82a]
24 [Tar65]
25 Amorphous sets exist in some ZF–models, e.g., in the basic Fraenkel’s First

Model A7 (N1 in [HoRu98]). Cf. also [Hic76].
26 [DCr2002]
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c) D–finite unions of finite sets may be D–infinite.

E 15. Show the equivalence of:
a) Finite = D–finite.
b) For each family (Xi)i∈I , indexed by a D–finite set I, there exists a

family (Yi)i∈I of pairwise disjoint subsets Yi of Xi with
⋃

i∈I

Yi =
⋃

i∈I

Xi.

[Hint: Use Exercise E 14. above and Theorem 4.12.]

4.2 Disasters in Cardinal Arithmetic

What remains is to show that given two sets A and B, one is
less than or equal to the other. If one thinks of this problem for
two “arbitrary” sets, one sees the hopelessness of trying to actually
define a map from one into the other. I believe that almost anyone
would have a feeling of unease about this problem; namely that,
since nothing is given about the sets, it is impossible to begin to
define a specific mapping. This intuition is, of course, what lies
behind the fact that it is unprovable in the usual Zermelo–Fraenkel
set theory.

P. Cohen27

Many interesting and deep investigations on cardi-
nal numbers become trivial if the axiom of choice is
accepted.

J. Mycielski28

For cardinals a and b, the order relation a ≤ b, their sum a + b, product

a · b, and power ba are defined in ZF as in ZFC; so are finite sums
n∑

ν=0
aν

and finite products
n∏

ν=0
aν . But neither countable sums

∑

n∈N

an nor countable

products
∏

n∈N

an can be defined as usual, since the following disaster can occur:

Disaster 4.17. 29 In some models of ZF there exist sequences (An)n∈N and
(Bn)n∈N of sets such that |An| = |Bn| for each n ∈ N, but |

⊎

n∈N

An| �= |
⊎

n∈N

Bn|

and |
∏

n∈N

An| �= |
∏

n∈N

Bn|.

Proof. If CC(2) fails there exists a sequence (An)n∈N of 2–element sets An

with
∏

n∈N

An = ∅. Let Bn = {0, 1} for each n ∈ N. Then:

1. |An| = 2 = |Bn| for each n ∈ N.
27 [Coh2002]
28 [Myc64]
29 |A| denotes the cardinal number of the set A.
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2. |
∏

n∈N

An| = 0 �= 2ℵ0 = |
∏

n∈N

Bn|.

3. |
⊎

n∈N

An| �= ℵ0 = |
⊎

n∈N

Bn|.

The unwelcome phenomenon, described above, has been illustrated by Rus-
sell by means of a sequence of pairs of boots, where the right and left boots
of each pair are distinguishable, and a sequence of pairs of socks, where the
right and left socks of each pair are indistinguishable; and thus in the latter
case “we cannot choose one out of each of an infinite number of pairs unless
we have a rule of choice, and in the present case no rule can be found.”30

Even more dramatic is the fact that already in the finite case undesired
phenomena may occur. E.g., cardinals may no longer be comparable.

Definition 4.18. 31 Cardinals a and b are called comparable w.r.t. ≤ (resp.
w.r.t. ≤∗) iff a ≤ b or b ≤ a (resp. a ≤∗ b or b ≤∗ a).

Disaster 4.19. It can happen that:

1. There are cardinals a and b with a ≤∗ b and a � b.
2. There exist cardinals a and b that are incomparable w.r.t. ≤.
3. There exist cardinals a and b that are incomparable w.r.t. ≤∗.
4. There exist cardinals a and b with a ≤∗ b, b ≤∗ a, and a �= b.

Proof. (1) If in a model of ZF there exists an infinite, D–finite set X (see
Section 4.1), then there exists (see Exercises to Section 4.1, E 5) a cardinal
a with ℵ0 ≤∗ a and ℵ0 � a. [Hint: If PX is D–infinite, choose a = |X|,
otherwise choose a = |PX|.]

(2) Let X be a set that cannot be well–ordered and let ℵ be the Hartogs–
number of X. Then ℵ � |X|, by definition; and |X| � ℵ, since otherwise X
would be well–orderable.

(3) See the following theorem.
(4) See Theorem 7.21(3).

Theorem 4.20. 32 Equivalent are:

1. Any two cardinals are comparable w.r.t. ≤.
2. Any two cardinals are comparable w.r.t. ≤∗.
3. AC.

Proof. (1) ⇒ (2) follows from the trivial fact that a ≤ b implies a ≤∗ b.
(2) ⇒ (3) Let X be an arbitrary set. Then |Y | ≤∗ |X| for some set Y

implies |Y | ≤ |PX|. Thus the Hartogs–number ℵ of PX satisfies ℵ �
∗ |X|. By

30 [Rus07] Actually, Russell writes of indistinguishable boots, not socks.
31 By definition,

• |A| ≤ |B| iff there exists an injection f : A → B,
• |A| ≤∗ |B| iff A = ∅ or there exists a surjection g : B → A.

32 [Har15] and [Sie58].
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(2), this implies |X| ≤∗ ℵ, i.e., (for X �= ∅) there exists a surjection f : ℵ → X.
Define a map g : X → ℵ by g(x) = min f−1(x). Then g is injective. Thus X
is well–orderable. Thus (3) holds.

(3) ⇒ (1) Let X and Y be arbitrary sets. By (3), X and Y can be well–
ordered. As well–ordered sets they are either order–isomorphic or one of them
is order–isomorphic to an initial segment of the other. Thus |X| = |Y | or
|X| ≤ |Y | or |Y | ≤ |X|.

In view of the above theorem, sets of cardinals may fail to be linearly
ordered, and thus fail to be well–ordered with respect to either the order
relations ≤ or ≤∗. Does at least every cardinal have a direct successor?

W.r.t. ≤ the following two theorems, that we include without proof,
present two sharply contrasting answers:

Theorem 4.21. 33 Every cardinal a has a minimal successor w.r.t. ≤, namely

• a + 1, if a is finite,
• a + ℵ, if a is infinite and ℵ is the Hartogs–number of a.

As we will see in Theorem 7.22, a cardinal may have several minimal
successors.

Theorem 4.22. 34 Equivalent are:

1. Every cardinal has a smallest successor w.r.t. ≤.
2. AC.

Moreover, in ZF cardinal arithmetic tumbles. Whereas in ZFC, addition
and multiplication, restricted to infinite cardinals a and b, are trivial opera-
tions satisfying

a · b = a + b = max{a, b}
hence in particular

a2 = 2 · a = a,

in ZF addition and multiplication are as simple as above just for Alephs, but
no longer so for arbitrary infinite cardinals.

Lemma 4.23. 35 If a · ℵ = a+ℵ for some cardinal a and some Aleph ℵ, then
a and ℵ are comparable, w.r.t. ≤.

Proof. Let A be a set with |A| = a, let W be a well–ordered set, disjoint
from A, with |W | = ℵ, and let f : A × W → A ∪ W be a bijection. Consider
Ā = f−1[A] and W̄ = f−1[W ]. Then |Ā| = a and |W̄ | = ℵ.

33 [Tar54]
34 [Tar54]
35 [Tar24]
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Case 1: There exists ā ∈ A with ({ā} × W ) ⊆ Ā.
Then ℵ = |W | = |{ā} × W | ≤ |Ā| = a, thus ℵ ≤ a.

Case 2: For each a ∈ A, Wa = {w ∈ W | (a,w) ∈ W̄} �= ∅.
Then each set Wa has a smallest element wa. Hence:

a = |A| = |{(a,wa) | a ∈ A}| ≤ |W̄ | = ℵ,

thus a ≤ ℵ.

Theorem 4.24. 36 Equivalent are:

1. a2 = a for all infinite cardinals a.
2. a · b = a + b for all infinite cardinals a and b.
3. AC.

Proof. (1) ⇒ (2) a + b ≤ a · b ≤ a2 + 2ab + b2 = (a + b)2 = a + b. Thus
a + b = a · b.

(2) ⇒ (3) Let A be an infinite set with |A| = a, and let ℵ be the Hartogs–
number of A. By (2), a · ℵ = a + ℵ. Thus by Lemma 4.23, a and ℵ are
comparable w.r.t. ≤. Since ℵ � a, by definition, we conclude that a < ℵ.
Thus A is well–orderable. This implies (3).

(3) ⇒ (1) Let A be an infinite set with |A| = a. By (3), A has a countable
infinite subset N . Obviously, there exists a bijection f : N → N2. Consider the
set M of all pairs (M, g), where N ⊆ M ⊆ A and g : M → M2 is a bijection.
Order M by

(M, g) ≤ (K,h) ⇔ (M ⊆ K and g is a restriction of h).

Then, in the ordered set (M,≤), each chain has an upper bound. Thus (3), via
Zorn’s Lemma, implies that (M,≤) has a maximal element (B, g). Consider,
C = A \ B, |B| = b, and |C| = c.

Case 1: c ≤ b.
Then a ≤ a2 = (b2 + b · c + c · b + c2) ≤ 4b2 = 4b ≤ b2 = b ≤ a.
Thus a = a2.

Case 2: b ≤ c.
Then there exists a subset D of C with |D| = b. Consider E =
(B ∪ D)2 \ B2 and e = |E|. Then b = |D| ≤ |D2| ≤ e = 3b2 =
3b ≤ b2 = b.

Thus e = b. Consequently there exists a bijection h = D → E. Thus

the map k : (B ∪ D) → (B ∪ D)2, defined by k(x) =
{

g(x), if x ∈ B
h(x), if x ∈ D

, is a

bijection that extends g : B → B2. This contradicts the maximality of (B, g).
Thus Case 2 cannot occur.
36 [Tar24]. For a historical discussion of this result see [Dei2005].



4.2 Disasters in Cardinal Arithmetic 55

The above theorem, due to Tarski, has a remarkable history concerning
its publication. Moore37 relates in his book, p. 215, the following story com-
municated to him by Tarski himself:

“Before these results appeared in Fundamenta Mathematica in 1924,
Tarski sent Lebesgue a note showing that (4.3.2) [i.e., condition (1)
of the above theorem] is equivalent to the Axiom, and asked him to
submit it to the Comptes Rendus of the Paris Academy of Sciences.
Lebesgue returned the note on the grounds that he opposed the Axiom,
but suggested sending it to Hadamard. When Tarski did as Lebesgue
advised, Hadamard also returned the note — saying that, since the
Axiom was true, what was the point of proving it from (4.3.2)?”

Exercises to Section 4.2:

E 1. Show that, for cardinals a, b and Alephs ℵ, the following hold:
a) a ≤ b ⇒ a ≤∗ b.
b) a ≤ ℵ ⇔ a ≤∗ ℵ.
c) a ≤∗ b ⇒ a ≤ 2b.
d) ℵ0 ≤∗ a ⇔ ℵ0 ≤ 2a [cf. Lemma 4.11].
e) a ≤∗ b ⇒ 2a ≤ 2b.

E 2. Show that, for cardinals a, b, the inequalities a ≤ b ≤ a imply a = b.
[Hint: Use the proof of Theorem 5.24.]

E 3. 38 Let a be the cardinal number of the set of all well–order relations on
N. Show that
a) a ≤ 2ℵ0 .
b) 2ℵ0 ≤ a.
c) a = 2ℵ0 .
[Hint: (b) Consider all well–order relations on N for which the subset of
even numbers and the subset of odd numbers occur each in their natural
order.
(c) Use E 2. above.]

E 4. 39 Show that ℵ1 ≤∗ 2ℵ0 .
[Hint: Use E 3. above.]

E 5. Show that |NN| = |RN| = |Rn| = |R| = |PN| = |PQ| = 2ℵ0 for each
n ∈ N

+.

37 [Moo82]
38 [Chu27]
39 [Chu27]
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E 6. 40 Show that for cardinals a, the following conditions are equivalent:
a) a = 2 · a.
b) a = ℵ0 · a.

E 7. 41 Show that the following conditions are equivalent:
a) a = 2 · a for infinite cardinals.
b) a+b is the least upper bound, w.r.t. ≤ of a and b for infinite cardinals

a and b.

4.3 Disasters in Order Theory

Linearly ordered sets may have unfamiliar properties (cf. Exercise E 1).

Disaster 4.25. The following can happen in a linearly ordered set, even in a
subset X of R:

1. X contains no decreasing sequence, but fails to be well–ordered.
2. X is infinite but contains neither a decreasing42 nor an increasing42 se-

quence.
3. X is non–empty and without a largest element, but contains no increasing

sequence.

Proof. Let X be an infinite, D–finite subset of R, supplied with its natural
order43. Then X contains neither an increasing nor a decreasing sequence. X
is not well–ordered, since otherwise we could define an increasing sequence
(xn) via recursion by

xn is the smallest element of X \ {xm | m < n}.

In case X has a largest element, there exists a finite set F such that
Y = X\F is an infinite, D–finite set without a largest element, since otherwise
we could define a decreasing sequence (xn) in X via recursion by:

xn is the largest element of X \ {xm | m < n}.

Disaster 4.26. A partially ordered set may have neither a maximal chain nor
a maximal antichain.

40 [HaHo70]
41 [Haeu83]
42 A sequence (xn) in an ordered set is called decreasing (resp. increasing) provided

that xn+1 < xn (resp. xn < xn+1) for each n ∈ N.
43 Such sets exist in certain models of ZF, e.g. in Cohen’s First Model A4 (M1 in

[HoRu98]).
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Proof. Immediate from Theorems 2.2 and 2.4.

Next, let us turn our attention to the question whether lattices have maxi-
mal filters. For convenience we adopt the following slightly restricted definition
of lattices44.

Definition 4.27. A lattice is a partially ordered set L in which each finite
subset F has an infimum, inf F , and a supremum, supF , (in particular L has
a smallest element, 0 = sup ∅, and a largest element, 1 = inf ∅) and such that
0 �= 1.

Definition 4.28. A lattice L is called

1. distributive, provided it satisfies the equation x∧ (y∨z) = (x∧y)∨ (x∧z)
for all x, y, and z (and thus also the equation x∨(y∧z) = (x∨y)∧(x∨z)).

2. complete, provided that each of its subsets has a supremum (and thus also
an infimum).

3. a powerset–lattice, provided L is isomorphic to the lattice of all subsets of
some non–empty set,

4. an open lattice, provided that L is isomorphic to the lattice τ(X) of all
open sets of some non–empty topological space,

5. a closed lattice, provided that L is isomorphic to the lattice γ(X) of all
closed sets of some non–empty topological space X.

Definition 4.29. 1. A subset F of a lattice L is called a filter in L iff the
following two conditions are satisfied:
(a) 1 ∈ F and 0 �∈ F .
(b) (x ∧ y) ∈ F iff (x ∈ F and y ∈ F ).

2. A filter F in L is called maximal iff L has no properly larger filter than
F .

3. A filter F in L is called prime iff it satisfies the condition
(c) (x ∨ y) ∈ F ⇔ (x ∈ F or y ∈ F ).

4. A filter (resp. maximal filter) in the powerset–lattice of a set X is also
called a filter (resp. ultrafilter) on X.

Dual concepts: ideal, maximal ideal, prime ideal.

Observe that for distributive lattices every maximal filter is prime. How-

ever, the lattice

◦
�� ��

◦ �� ◦ ◦
��

◦

has precisely 4 filters, 3 of which are maximal, but
none is prime.

In the lattice τ(R) of open sets in R, for each x ∈ R the filter
F (x) = {A ∈ τ(R) | x ∈ A} is prime but not maximal. For Boolean algebras,
in particular for powerset–lattices, a filter is prime iff it is maximal.

44 By standard terminology our lattices would have to be called non–trivial
bounded lattices.
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Do lattices have maximal filters? In the case of powerset–lattices of the
form P(X) the obvious answer is “yes”, since for each x ∈ X the set

•
x =

{F ⊆ X | x ∈ F} is an ultrafilter on X. Ultrafilters F of this simple type are
called fixed (since

⋂
F �= ∅), all others are called free (since their intersection

is empty). Are there any free ultrafilters on X? For finite X, obviously not.
However, for infinite X there are 22|X|

free ultrafilters on X — provided that
we work in ZFC. However, in ZF the situation is very different:

Disaster 4.30. The following might happen:

1. There are no free ultrafilters.
2. There are free ultrafilters on some sets, but there is none on N.
3. There are free ultrafilters on every infinite set, but not every filter F on

a set X can be enlarged to an ultrafilter on X.
4. There are sets with precisely one free ultrafilter.

Proof. (1), (2) see [Bla77] or Pincus–Solovay’s Model A6 (M27 in [HoRu98]).
(3) is true in Fraenkel’s First Model A7 (N1 in [HoRu98]).
(4) See Exercise E 4.

What about the existence of maximal filters in one of the wider classes
of lattices defined above? In the case of all lattices, the following proposition
provides an answer.

Proposition 4.31. 45 Equivalent are:

1. Every lattice has a maximal filter.
2. AC.

Proof. (1) ⇒ (2) Let (Xi)i∈I be a family of non–empty sets. Consider the
set of all pairs (J, x) with J ⊆ I and x ∈

∏

j∈J

Xj , ordered by

(J, x) ≤ (K, y) iff (J ⊆ K and x is the restriction of y to J).

By adding a largest element 1, a lattice L results. By (1), the dual lattice
has a maximal filter, thus L itself has a maximal ideal M . For (J, x) and
(K, y) in M , the inequality (J, x) ∨ (K, y) �= 1 implies that xi = yi for each
i ∈ (J ∩K). Thus the union of all the first components of members of M is a
subset K of I, and the union of all the second components of members of M
is an element x of

∏

k∈K

Xk. Maximality of M implies K = I. Thus x ∈
∏

i∈I

Xi.

(2) ⇒ (1) Immediate via Zorn’s Lemma.

There is a deeper result: In condition (1) of the above proof the collection
of all lattices can be reduced considerably.
45 [Sco54]
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Theorem 4.32. 46 Equivalent are:

1. Every lattice has a maximal filter.
2. Every complete lattice has a maximal filter.
3. Every distributive lattice has a maximal filter.
4. Every closed lattice has a maximal filter.
5. AC.

Proof. In view of Proposition 4.31 and the fact that every closed lattice is
complete and distributive it suffices to show that (4) implies (5):

(4) ⇒ (5) Let (Xi)i∈I be a family of non–empty sets. For each i ∈ I, add
a new element ∞ to Xi, and consider Yi = Xi ∪ {∞} as a topological space
whose collection of closed sets is

γ(Xi) = {Yi} ∪ {A ⊆ Xi | A finite}.

Then the product space Y =
∏

i∈I

Yi is non–empty, hence its lattice γ(Y ) of

closed sets contains a maximal filter F . For each i ∈ I denote the i–th pro-
jection by πi : Y → Yi, and define Fi = {A ∈ γ(Xi) | π−1

i [A] ∈ F}. Then each
Fi is a prime filter in γ(Xi). Define J = {i ∈ I | Fi = {Yi}} and K = I \ J .
For each k ∈ K there exists a unique element xk ∈ Xk with {xk} ∈ Fk. Thus
(xk)k∈K ∈

∏

k∈K

Xk. It remains to be shown that K = I, i.e., J = ∅. Define

y = (yi)i∈I ∈ Y by

yi =
{

xi, if i ∈ K
∞, if i ∈ J

.

Consider i ∈ I and a neighborhood U of yi in Yi. Then π−1
i [U ] meets every

member of F . (This is obvious for i ∈ K. It holds for i ∈ J , since otherwise
there would exist some finite subset A of Xi in Fi, contradicting the definition
of J .) Since F is prime, this implies that every neighborhood of y meets every
member of F . Since F consists of closed sets only, this implies that y ∈

⋂
F

and hence cl{y} ⊆
⋂
F is the product of the closures of its components47, i.e.,

cl{y} =
∏

i∈I

cli{yi} =
∏

i∈I

Zi, with

Zi =
{
{xi}, if i ∈ K
Yi, if i ∈ J

.

In view of the maximality of F this implies J = ∅, since otherwise for a fixed
j ∈ J and a fixed x ∈ Xj the filter in γ(Y ), generated by the set π−1

j (x),
would be properly larger than F . Thus y ∈

∏

i∈I

Xi.

46 [Kli58], [Ban61], [KeTa99], [Her2003].
47 where cl{y} is the closure of {y} in Y
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Corollary 4.33. Equivalent are:

1. In every lattice each filter can be enlarged to a maximal one.
2. In every closed lattice every filter can be enlarged to a maximal one.

Observe that the space Y , constructed in the proof of Theorem 4.32 is a
T0–space, but fails to be a T1–space. In fact, for non–empty T1–spaces X the
corresponding closed lattices γ(X) always have maximal closed filters, namely
•
x = {A ∈ γ(X) | x ∈ A}, for each x ∈ X.

The open lattices τ(X) are just the duals of the corresponding closed
lattices γ(X). So one might expect similar results. Surprisingly, however, the
statement that each open lattice contains a maximal filter is weaker than AC.

Definition 4.34. Let X be a topological space and A ∈ τ(X). Then

A∗ = int(X \ A),

the interior of the complement of A, is called the pseudocomplement of A.

Lemma 4.35. Let X be a topological space, A ∈ τ(X), and F a filter in τ(X).
Then the following hold:

1. A∗ is the largest element of τ(X) that misses A.
2. F is maximal iff the following condition is satisfied:

(*) For each A ∈ τ(X), either A ∈ F or A∗ ∈ F .

Proof. (1) is trivial.
(2) Let F be maximal and let A be an element of τ(X) that does not

belong to F . Then, by maximality of F , there exists a member F of F with
F ∩ A = ∅. Thus F ⊆ A∗. This implies A∗ ∈ F .

Now, let F satisfy the condition (*) and let G be a filter in τ(X) with
F ⊆ G. For G ∈ G we have either G ∈ F or G∗ ∈ F . The latter case G∗ ∈ F
cannot happen, since otherwise G and G∗, and thus ∅ = G∩G∗, would belong
to G. Thus G ∈ F , hence G ⊆ F , hence G = F .

Theorem 4.36. 48 Equivalent are:

1. Every open lattice has a maximal filter.
2. In every open lattice, every filter can be enlarged to a maximal one.
3. UFT, the Ultrafilter Theorem.

Proof. (1) ⇒ (2) Let X be a topological space, and let F be a filter in τ(X).
Let Y be the topological space, whose underlying set (also denoted by Y )
consists of all filters in τ(X) that enlarge F , and whose topology consists of
all subsets of Y that contain with any element G all elements of Y that enlarge
G. By (1), there exists a maximal filter M in τ(Y ). For each A ∈ τ(X) define

48 [Rhi2002]
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U(A) = {G ∈ Y | A ∈ G}.

Then U = {A ∈ τ(X) | U(A) ∈ M} is an element of Y . Maximality of
U will follow, by 4.35 from the fact that for each A ∈ τ(X) either A or its
pseudocomplement A∗ belongs to U . To establish the latter fact, observe first
that if A �∈ U , i.e., if U(A) �∈ M, maximality of M implies that there is some
M ∈ M with M ∩ U(A) = ∅. Thus A �∈ G for each G ∈ M . This implies
A∗ ∈ G for each G ∈ M , since A∗ �∈ G ∈ M would imply that each member of
G would meet A, hence there would exist an enlargement H of G — hence a
member H of M — with A ∈ H; a contradiction.
Consequently M ⊆ U(A∗). This implies U(A∗) ∈ M, thus A∗ ∈ U .

(2) ⇒ (3) Immediate, since (3) is the restriction of (2) to discrete spaces.
(3) ⇒ (1) Let X be a non–empty topological space (whose underlying

set we also denote by X). Consider the filter F ⊆ τ(X) consisting of all
F ∈ τ(X) that are dense in the space X. Then F can be enlarged to a filter G
on the set X, and, by (3), we may assume that G is an ultrafilter on X. Thus
H = G ∩ τ(X) is a prime filter in τ(X) that enlarges F . For each A ∈ τ(X)
the set A ∪ A∗ is dense in X and thus belongs to F , hence to H. Since H is
prime, this implies that A ∈ H or A∗ ∈ H. By 4.35, this implies that H is
maximal in τ(X).

For the following result we regard 2 as a Boolean lattice with underlying
set {0, 1} and 0 < 1. Obviously, a subset F of a Boolean algebra B is a prime

filter in B iff the map f : B → 2, defined by f(x) =
{

1, if x ∈ F
0, otherwise , is a

Boolean homomorphism.

Theorem 4.37. 49 Equivalent are:

1. PIT the Prime Ideal Theorem: every Boolean lattice has a maximal
filter50.

2. In a Boolean lattice, every filter can be enlarged to a maximal one.
3. UFT, the Ultrafilter Theorem.
4. Products of compact Hausdorff spaces are compact.
5. Products of finite discrete spaces are compact.

Proof. (1) ⇒ (2) Let F be a filter in a Boolean lattice B. Let f : B → B/F
the natural map from B onto the corresponding quotient space of B, with
f−1(1) = F . By (1), there exists a maximal filter G in B/F . Then f−1[G] is
a maximal filter in B that enlarges F .

(2) ⇒ (3) Immediate, since (3) is the restriction of (2) to powerset–
lattices.

49 [RuSc54], [LoRy55], [Ban79].
50 Since the concept of Boolean lattice is self–dual, and since in Boolean lattices

the concepts of maximal and prime filters coincide, the above formulation is
obviously equivalent to the one given in Section 2.2.
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(3) ⇒ (4) By Theorem 3.22, (3) implies that a topological space X is
compact iff every ultrafilter in X converges. Let (Xi)i∈I be a family of compact
Hausdorff spaces, let X =

∏

i∈I

Xi be their product, and let U be an ultrafilter

on X. Then, for each i ∈ I, the set Ui = {A ⊆ Xi | π−1
i [A] ∈ U} is an

ultrafilter on Xi (where πi denotes the i–th projection). Since Xi is compact
and Hausdorff, Ui converges to a unique element xi in Xi. Thus U converges
to x = (xi)i∈I .

(4) ⇒ (5) Trivial.
(5) ⇒ (1) Let B be a Boolean lattice. Consider the set A of all finite

Boolean subalgebras of B. For A ∈ A the set XA of all Boolean homomor-
phisms from A to 2 is non–empty (since obviously each finite Boolean lattice
has a maximal filter). Consider each XA as a discrete topological space. By
(5), the product space X =

∏

A∈A
XA is compact and non–empty51. For any

pair (A,B) of elements of A with A ⊆ B the set

C(A,B) = {(xC) ∈ X | xA is the restriction of xB to A}
is closed in X, and the sets C(A,B) have the finite intersection property.
Since X is compact, there exists an element x = (xC) in the intersection
of all C(A,B)’s. For a ∈ B, let B(a) be the finite subalgebra of B gener-
ated by a. Then the map f : B → 2, defined by f(a) = xB(a) is a Boolean
homomorphism. Thus f−1(1) is a maximal filter in B.

Finally, let us investigate the question whether or not every set can be
nicely ordered. We know already that it may not be possible to well–order
some set X. But it is easily seen that each set can be partially ordered, even
lattice–ordered, provided it has at least 2 elements (see Exercise E 7). Can it
be linearly ordered?

Disaster 4.38. It can happen that certain sets cannot be linearly ordered.

The next result provides some indication of what may go wrong.

Proposition 4.39. 52 Each of the following conditions implies all subsequent
ones:

1. UFT.
2. OEP, the Order Extension Principle: for each partially ordered set

(X,R) there exists a linear order relation S on X with R ⊆ S.
3. OP, the Ordering Principle: each set can be linearly ordered.
4. AC(fin): Products of non–empty, finite sets are non–empty.

51 The non–emptiness follows immediately from the fact that the product
∏

A∈A
YA

of the discrete spaces YA = XA ∪ {∞} is compact.
52 D. Scott, as quoted from [Jec73].
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Proof. (1) ⇒ (2) Let (X,R) be an partially ordered set. For each finite subset
F of X let XF be the set of all linear order relation S on F with (R∩F 2) ⊆ S.
Then each XF , with F ∈ Pfin(X), is a non–empty finite set (cf. Exercise E
9.(2)). Consider it as a discrete topological space. Then, by (1), the space
Y =

∏

F∈Pfin(X)

XF is — according to Theorem 4.37 — a non–empty compact

space. For any pair (E,F ) of finite subsets of X define a set

A(E,F ) = {(SG)G∈Pfin(X) | SE ∩ (E ∩ F )2 = SF ∩ (E ∩ F )2}.

Then the sets A(E,F ) are non–empty and closed in Y ; and they have the
finite–intersection property. Thus their intersection contains an element
(SG)G∈Pfin(X), which implies that S =

⋃

G∈Pfin(X)

SG is a linear order relation

on X with R ⊆ S.
(2) ⇒ (3) By (2), the partial order relation on X defined by x ≤ y ⇔ x = y

can be extended to a linear order relation on X.
(3) ⇒ (4) Let (Xi)i∈I be a family of non–empty, finite sets. By (3),

X =
⋃

i∈I

Xi can be linearly ordered. Thus each Xi has a smallest element xi

in X. Consequently (xi) ∈
∏

i∈I

Xi.

Proposition 4.40. 53 The Kinna–Wagner Selection Principle, KW, implies
the Ordering Principle, OP.

Proof. Let X be a set. Consider the collection P2(X) of all subsets A of X
with |A| ≥ 2. By KW, there exists a family (AY )Y ∈P2(X) of non–empty,
proper subsets AY of X. Denote X \ AY by BY . Consider the set Z of all
linear preorder relations R on X. For each R in Z and each x in X consider
the component [x]R = {y ∈ X | xRy and yRx} of x in (X,R). Let KR be the
set of all components [x]R of (X,R) with at least two elements. Let ℵ be the
Hartogs–number of Z, and define, via transfinite recursion, a map f : ℵ → Z
by

1. f(0) = X × X,
2. f(α + 1) = f(α) \

⋃
{BK × AK | K ∈ Kf(α)},

3. f(α) =
⋂

β<α

f(β), if α is a limit ordinal.

Since ℵ � |Z|, f cannot be injective. Thus there exists some α ∈ ℵ with
f(α + 1) = f(α). For this α, Kf(α) must be empty, i.e., f(α) is a linear order
relation on X.

The following self–explanatory table summarizes some of the results of this
section.

53 [KiWa55]
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Table 4.41. 54

Filters Ideals

maxim. prime maxim. prime maxim. prime maxim. prime

exist exist extens. extens. exist exist extens. extens.

lattice AC False AC False AC False AC False

distributive AC PIT AC PIT AC PIT AC PIT

Boolean PIT PIT PIT PIT PIT PIT PIT PIT

frame55 PIT PIT PIT PIT AC PIT AC PIT

open PIT True PIT PIT AC True AC PIT

closed AC True AC PIT PIT True PIT PIT

zero56 True True PIT PIT True True ? PIT

powerset True True PIT PIT True True PIT PIT

Exercises to Section 4.3:

E 1. Consider the following conditions:
(1) Each non–empty linearly ordered set without a largest element has an

increasing sequence.
(2) Each linearly ordered set without a decreasing sequence is well–

ordered.
(3) Each infinite linearly ordered set contains an increasing or a decreasing

sequence.
(4) Each linearly ordered D–finite set is finite.

Show that (1) ⇔ (2) ⇒ (3) ⇔ (4).

E 2. Show that UFT(N) implies that there are precisely 22ℵ0 ultrafilters on
N.
[Hint: Observe that the Cantor cube 2R is a separable Hausdorff space.]

E 3. Show that WUF(N) guarantees the existence of at least 2ℵ0 free ultra-
filters on N.
[Hint: Use the fact (see the proof of Theorem 7.21(3)) that there exists
a set X of infinite subsets of N such that |X| = 2ℵ0 and the intersection
of any two members of X is finite.]

54 Cf. [Her2005]
55 See Exercise E 13.
56 See Exercise E 6.
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E 4. Let X be an amorphous set (see Exercises to Section 4.1, E 11). Show
that:

(1) There is precisely one free ultrafilter on X.
(2) There are precisely n free ultrafilters on X × {0, 1, . . . , n − 1}.
(3) For each Hausdorff topology τ on X, the space (X, τ) has at most one

non–isolated point.

E 5. Show the equivalence of the conditions:
(1) Each distributive lattice contains a prime filter.
(2) For distributive lattices each filter is contained in a prime one.
(3) UFT.

[Hint: For the implication (3) ⇒ (2) proceed as in the proof of Theorem
4.37, (4) ⇒ (1).]

E 6. (1) Show that, for a non–empty topological space X the set Z(X) of all
zero–sets (i.e., of all preimages f−1(0) of 0 under some continuous
map f : X → R) forms a lattice.

(2) Call a lattice a zero–lattice provided it is isomorphic to Z(X) for
some non–empty topological space X, and show the equivalence of
the following conditions:

(a) In a zero–lattice, each filter can be enlarged to a maximal one.
(b) In a zero–lattice, each filter can be enlarged to a prime one.
(c) UFT.

E 7. Show that each set X with |X| ≥ 2 can be lattice–ordered.

E 8. Can each set be ordered as a distributive lattice?

E 9. Show that:
(1) Every finite set can be linearly ordered.
(2) For each finite partially ordered set (F,R) there exists a linear order

relation S on F with R ⊆ S.

E 10. A complete lattice L is called completely distributive iff for every family
(Ai)i∈I and every function

x :
⋃

i∈I

({i} × Ai) → L

the following equation holds:
∧

i∈I

∨

a∈Ai

x(i, a) =
∨

(ai)∈
∏

i∈I

Ai

∧

i∈I

x(i, ai).

Show the equivalence of:
(a) AC.
(b) The chain 2 = {0, 1} is completely distributive.



66 4 Disasters without Choice

(c) Every complete chain is completely distributive.
(d) Every powerset–lattice is completely distributive.

E 11. 57 Construct a chain in PN that is order–isomorphic to R.
[Hint: Observe that PN and PQ are order–isomorphic.]

E 12. 58 Let A be a subset of a partially ordered set X. An upper bound s of
A is called a constructive supremum of A provided that there exists a
function f : X → A such that

s ≤ x ⇔ f(x) ≤ x for each x ∈ X.

Show the equivalence of:
(1) All suprema are constructive.
(2) AC.

E 13. A complete lattice L, satisfying the equation

x ∧ supA = sup{x ∧ a | a ∈ A}

for all x ∈ L and A ⊂ L is called a frame. Show that
a) Each open lattice is a frame.
b) Each frame L is pseudocomplement, i.e., for each x ∈ L the set {y ∈

L | x ∧ y = 0} has a largest member.

4.4 Disasters in Algebra I: Vector Spaces

In ZFC every vector space is uniquely determined, up to isomorphism, by a
single cardinal number, its dimension. Each of the two fundamental results
which together enable us to associate dimension with a given vector space fail
badly in ZF.

Disaster 4.42. 59 The following can happen:

1. Vector spaces may have no bases60.
2. Vector spaces may have two bases with different cardinalities.

Even stranger phenomena may haunt us:

57 [Sie58, p. 78]
58 [Ern2001]
59 [Laeu62/63]
60 Observe, however, that the existence of a basis for every vector space may,

besides desirable consequences, also have some rather ugly ones. See Section
5.1.
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Disaster 4.43. 61 The following can happen:

1. In a vector space no non–trivial linear subspace need have a complement.
2. A vector space may have only finite–dimensional proper subspaces, but

fail to be finite–dimensional itself.

Theorem 4.44. 62 Equivalent are:

1. Every vector space has a basis.
2. AC.

Proof. (1) ⇒ (2) In view of Theorem 2.4 it suffices to show that (1) implies
AMC. Let (Xi)i∈I be a family of pairwise disjoint non–empty sets. Consider
an arbitrary field k and let k(X) be the field of rational functions in the
variables x ∈ X =

⋃

i∈I

Xi over k. For monomials, i.e., elements of k(X) which

have the form p = α ·xn1
1 ·xn2

2 · · ·xnm
m , we define, for each i ∈ I, the i–degree of

p as di(p) =
∑

xk∈Xi

nk. An element of k(X), α = p1+···+pn

q1+···+qm
where the pk and qk

are monomials, will be called i–homogeneous of degree d provided that all qk

have the same i–degree, say d1, and all pk have the same i–degree d2 = d1 +d.
Then K = {a ∈ k(X) | a is i–homogeneous of degree 0 for each i ∈ I} is a
subfield of k(X). Thus k(X) is a vector space over K. By (1), k(X) has a basis
B. For each x ∈ X the monomial x can be expressed uniquely in the form
x =

∑

b∈B(x)

ab(x)·b, where B(x) is a finite subset of B and each ab(x) ∈ K\{0}.

Let x and y be elements of the same Xi. Then

y =
y

x
· x =

∑

b∈B(x)

y

x
· ab(x) · b =

∑

b∈B(y)

ab(y) · b.

Since y
x ∈ K, this implies B(x) = B(y) and ab(y)

y = ab(x)
x for each b ∈ B(x).

Thus the sets B(x) and the elements ab(x)
x depend only on i, and not on the

particular x in Xi. Let us call them Bi resp. α(b, i). Since the ab(x) are i–
homogeneous of degree 0, the α(b, i) = ab(x)

x are i–homogeneous of degree −1.
Thus, if α(b, i) is written as a quotient of polynomials in reduced form, some
x ∈ Xi must occur in the denominator. Hence the set Fi, consisting of all
x ∈ Xi that occur in the denominator of α(b, i) in its reduced form for some
b ∈ Bi, is a non–empty, finite subset of Xi. This establishes AMC.

(2) ⇒ (1) is well known.

Theorem 4.45. 63 For each field k, the following are equivalent:

1. Every subspace S of a vector space V over k has a linear complement S′

(i.e., S ∩ S′ = {0} and S + S′ = V ).
2. AC.

61 [Laeu62/63]. See also Exercise E 1.
62 [Blass84]
63 [Blei64]
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Proof. (1) ⇒ (2) In view of Theorem 2.4 it suffices to show that (1) implies
AMC. Let (Xi)i∈I be a family of pairwise disjoint non–empty sets. For each
i ∈ I let Vi = k(Xi) be the direct sum of Xi copies of k, with the canonical base
(ex)x∈Xi

. Let Si be the linear subspace of Vi, consisting of all v =
∑

x∈Xi

αxex

in Vi with
∑

x∈Xi

αx = 0.

Consider the direct sum S =
⊕

i∈I

Si as a linear subspace of the direct sum

V =
⊕

i∈I

Vi. By (1), there exists a linear subspace S′ of V with S ∩ S′ = {0}

and S + S′ = V For any x ∈ Xi consider the element ex from the canonical
base of Vi as an element of V . Then there exist unique elements s(x) in S and
s′(x) in S′ with ex = s(x) + s′(x). If x and y belong to the same Xi, then
s′(x) − s′(y) = (ex − s(x)) − (ey − s(y)) = (ex − ey) + (s(y) − s(x)) belongs
to S′ and to S, since (ex − ey) ∈ Si. Therefore s′(x) = s′(y). This element
depends only on i and not on the particular x in Xi. Let us call it s′i.

Let s′i =
∑

j∈I

vj with vj ∈ Vj , and vi =
∑

x∈Xi

αxex with αx ∈ k be the

canonical expressions. Then Fi = {x ∈ Xi | αx �= 0} is finite. Since for
x ∈ Xi, s(x) = ex − s′i = ex −

∑

j∈I

vj = (ex − vi) −
∑

j �=i

vj ∈ S, we conclude

(ex − vi) ∈ Si, hence 1 −
∑

x∈Xi

αx = 0, hence Fi �= ∅. This establishes AMC.

(2) ⇒ (1) is well known.

We may ask whether, like in Theorem 4.45, we can restrict attention in
Theorem 4.44 to vector spaces over R resp. Q. The answer to these questions
is unknown. However, there is a slightly weaker result in the case of Q.

Lemma 4.46. Let k be a field. If for every vector space V over k every gen-
erating set contains a basis, then for each family (Vi)i∈I of vector spaces over
k and each family (Gi)i∈I of generating sets Gi of Vi there exists a family
(Bi)i∈I of bases Bi of Vi with Bi ⊆ Gi for each i ∈ I.

Proof. Let V =
⊕

i∈I

Vi be the direct sum of the Vi’s, with canonical inclusion

maps ji : Vi → V . Then G =
⋃

i∈I

ji[Gi] is a generating set for V . Let B ⊆ G be

a basis for V . Then Bi = {x ∈ Vi | ji(x) ∈ B} is a basis for Vi with Bi ⊆ Gi

for each i ∈ I.

Theorem 4.47. 64 Equivalent are:

1. In every vector space over Q each generating set contains a basis.
2. AC.

64 [Ker98]
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Proof. (1) ⇒ (2) Again by Theorem 2.4 it suffices to show that (1) implies
AMC. Let (Xi)i∈I be a family of non–empty sets. Assume w.l.o.g. that each
Xi contains at least two elements. For each i ∈ I, let Vi be the linear subspace
of the product space Q

Xi , consisting of all (αx)x∈Xi
that are almost constant,

i.e., for which there exists a finite subset F of Xi such that (αx)x∈(Xi\F ) is a
constant family. Each Vi is generated by the set Gi, consisting of all elements
v = (αx)x∈Xi

of Vi such that there exists exactly one element x = x(v) in Xi

such that (αy)y∈(Xi\{x}) is a constant family.
By (1) and Lemma 4.46 there exists a family (Bi)i∈I of bases Bi of Vi

with Bi ⊆ Gi. For each i ∈ I consider the element ai = (αx)x∈Xi
with each

αx = 1.
Then there exists a unique non–empty, finite subset B′

i of Bi such that ai

is expressible as a linear combination

ai =
∑

b∈B′
i

αbb with each αb ∈ (Q \ {0}).

Thus Fi = {x(b) | b ∈ B′
i} is a non–empty finite subset of Xi. This establishes

AMC.
(2) ⇒ (1) is well known.

Returning to statement (2) of Disaster 4.42, no choice principle is known
that is equivalent to the statement that any two bases of a vector space have
the same cardinality. However, the latter fact follows already from PIT65.

In ZFC every vector space is injective66 and projective67. Since projectivity
of V follows from V being free (i.e., V has a basis), Theorem 4.44 casts doubt
on the idea that in ZF every vector space is projective. The situation is even
worse:

Disaster 4.48. 1. Vector spaces may fail to be injective.
2. Vector spaces, even free ones, may fail to be projective.

Theorem 4.49. For each field k, the following are equivalent:

1. Every vector space over k is injective.
2. Every vector space over k is projective.
3. Every free vector space over k is projective.
4. AC.

65 [Hal66]
66 V is called injective iff every linear map f : U → V from a linear subspace U

of a vector space W can be extended to a linear map f̄ : W → V .
67 V is called projective iff for every linear map f : V → U and every linear

surjection g : W → U there exists a linear map f̄ : V → W with f = g ◦ f̄ .
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Proof. Since clearly (4) ⇒ (1), (4) ⇒ (2), and (2) ⇒ (3) it suffices to show
that
(1) ⇒ (4) and (3) ⇒ (4).

(1) ⇒ (4) By Theorem 4.45 it suffices to show that every subspace A of
a vector space V has a linear complement. Since A, by (1), is injective there
exists a k–linear map f : V → A such that the diagram

A

idA
���

��
��

��
��

� � �� V

f
���

�
�

�
�

A

commutes. Then B = {x ∈ V | f(x) = 0} = {x − f(x) | x ∈ V } is a subspace
of V with A ∩B = {0} and A + B = V , since x = f(x) + (x− f(x)). Thus B
is a linear complement of A in V .

(3) ⇒ (4) Let (Xi)i∈I be a family of non–empty sets. Let X = {(i, x) |
i ∈ I and x ∈ Xi} be the disjoint union of the Xi’s. Let F (I) = k(I) resp.
F (X) = k(X) be the direct sums of I resp. X copies of k (i.e., the canonical
free k–vector spaces over I resp. X). Then the map f : X → I, defined by
f(i, x) = i, induces a linear map f̄ : F (X) → F (I). Since f is surjective, so
is f̄ . Thus, by projectivity of the free vector space F (I), there exists a linear
map g : F (I) → F (X) such that the diagram

F (I)

g

���
�

�
�

�

idF (I)

��
F (X)

f̄

�� F (I)

commutes. For each i ∈ I consider ei = (δij)j∈I . Then g(ei) = (k(j, x))(j,x)∈X

and ei = f̄(g(i)) =
(

∑

x∈Xj

k(j, x)
)

j∈I

. The set Fi = {x ∈ Xi | k(i, x) �= 0} is,

by definition of k(X), finite. Moreover, the equation

1 = δii =
∑

x∈Xi

k(i, x) implies that Fi �= ∅.

Thus (Fi)i∈I is a family of non–empty, finite subsets Fi of Xi. Consequently
AMC, holds, and so does AC via Theorem 2.4.

Exercises to Section 4.4:

E 1. 68 Let p be a prime and let X be a vector space over Zp with amorphous69

underlying set70. Show that:
68 [Hic76, III.1]
69 See Exercises to Section 4.1, E 11.
70 Such X exist; see [Hic76, II.2].
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(1) Each finitely generated linear subspace of X is finite.
(2) Every proper linear subspace of X is finite.
(3) X has no basis.

4.5 Disasters in Algebra II: Categories

Category theory heavily depends on choice principles. In ZF, already the basic
Adjoint Functor Theorems fail dramatically:

Disaster 4.50. 71

1. The Adjoint Functor Theorem fails, i.e., there exists a limit–preserving
functor G : A → B with complete domain which satisfies the solution–
set–condition, but has no coadjoint.

2. The Special Adjoint Functor Theorem fails, i.e., there exists a strongly
complete category A with a coseparator and a functor G : A → B that
preserves strong limits, but has no coadjoint.

3. There exists a functor G : A → B such that each B–object has a G–
universal arrow, carried by a B–identity, but which has no coadjoint, not
even a right inverse.

How can these disasters be prevented? Only by the Axiom of Choice:

Theorem 4.51. 72 Equivalent are:

1. The Adjoint Functor Theorem holds.
2. The Special Adjoint Functor Theorem holds.
3. Every functor G : A → B, such that each B–object has a G–universal

arrow, has a coadjoint.
4. AC for classes.

Proof. That (4) implies (1), (2), and (3) is well known. See, e.g., [AHS2004,
18.12, 18.17, and 19.1]

To show that each of the conditions (1), (2), and (3) imply (4), consider
a family (Xi)i∈I of non–empty sets, indexed by some class I. Construct a
functor G : A → B as follows:

A and B are the categories naturally associated with the preordered classes
(A,≤) and (B,≤), where

B = I � {0, 1} is obtained from the discretely ordered class I by adding a
first element 0 and a last element 1,
A = {(x, i) | i ∈ I and x ∈ Xi} � {0, 1} is preordered by having 0 as first
element, 1 as last element and

(x, i) ≤ (y, j) iff i = j.

71 [Den2003]
72 [Den2003]
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G : A → B is defined by G(0) = 0, G(1) = 1, and G(x, i) = i. Then the
premisses of each of the conditions (1), (2), (3) are satisfied. In particular
the G–universal arrows for B–objects have the form idi : i → G(x, i) with
x ∈ Xi. Thus there exists a coadjoint F : B → A for G. For each B–object i,
F (i) = (xi, i) for a unique element xi of Xi. Thus (xi) ∈

∏

i∈I

Xi.

Exercises to Section 4.5:

E 1. Show that AC holds iff every epimorphism in Set is a retraction.

E 2. 73 Show that for a set I the following conditions are equivalent:
(1) I is projective.
(2) Every epimorphism with codomain I is a retraction.
(3)

∏

i∈I

Xi �= ∅ for every family (Xi)i∈I of non–empty sets.

4.6 Disasters in Elementary Analysis: The Reals
and Continuity

Elementary analysis in ZF suffers from various defects. Before we analyze
these, let us first point out several basic properties of the reals and of real
functions in ZFC that remain valid in the ZF–setting:

Theorem 4.52. 1. R and all its subspaces are metrizable, hence normal.
2. R and all its subspaces are second countable, i.e., have at most countable

bases.
3. R is separable, i.e., R has an at most countable, dense subset.
4. A subspace of R is connected iff it is an interval, i.e., contains with any

elements x and y each element between x and y.
5. A subspace of R is compact iff it is bounded and closed in R.
6. For each bounded, infinite subset of R there exists an accumulation point

in R.
7. R is σ–compact, i.e., a countable union of compact subspaces.
8. A function f : R → R is continuous iff it is sequentially continuous.
9. A function f : [0, 1] → R is continuous iff it is uniformly continuous.

Proof. In most cases the ZFC–proof carries over to the ZF–setting. However,
see Proposition 3.30 for (5), Theorem 3.15 for (8), and Proposition 3.14 for
(9).

Unfortunately, however, the close and useful ties that exist in ZFC be-
tween static (ε–δ–definitions) and dynamic (use of sequences) aspects break

73 Cf. Exercises to Section 2.1, E 4.
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apart in the ZF–setting, where the construction of sequences — resp. more
generally: of countable sets — with specified properties in most cases relies
heavily on the condition CC(R). In fact, CC(R) turns out to be equivalent
to a surprising number of familiar statements in elementary analysis.

Disaster 4.53. 74 The following can happen:

1. R may fail to be Fréchet, i.e., not every accumulation point x of a subset
A may be reachable75 by a sequence (an) in A.

2. R may fail to be sequential, i.e., there may be non–closed, sequentially
closed76 subsets of R.

3. R may fail to be Lindelöf.
4. All Lindelöf spaces of R may be compact.
5. Subspaces of R may fail to be separable.
6. Complete subspaces of R may fail to be closed in R.
7. Sequentially compact subspaces of R may fail to be bounded or to be

closed in R.
8. 77 Functions f : R → R may be sequentially continuous at some point x,

but fail to be continuous at x.
9. 78 Functions f : X → R, defined on some subspace X of R, may be se-

quentially continuous, but fail to be continuous.
10. Infinite subsets of R may be D–finite.

Proof. First, consider a model79 of ZF with an infinite D–finite subset X of
R. Assume, without loss of generality, that X is bounded. By Theorem 4.52(6)
there exists an accumulation point a of X in R. Assume further, without loss
of generality, that a is not contained in X. Then X is sequentially closed,
but not closed in R. Thus (1) and (2) may occur. Furthermore, the subspace
X of R is complete and sequentially compact, but fails to be separable or to
be closed in R. Thus (5), (6), and (7) may occur. The function f : R → R,

defined by f(x) =
{

1, if x ∈ X
0, otherwise , is sequentially continuous at a but fails to

be continuous at a. Its restriction to A = X ∪ {a} is sequentially continuous,
but not continuous. Thus (8) and (9) may occur.

That (3) may occur, follows from Theorem 3.8, since with R also its closed
subspace N would be Lindelöf. Finally, the possible occurrence of (4) will be
shown in Section 7.1. (See Theorem 7.2.)

How much choice is needed to eliminate the above disasters?

74 [Jae65], [Jec68], [Bru82], [Her2002], [Gut2003].
75 i.e., (an) → x.
76 A is sequentially closed in R iff no point outside A is reachable by a sequence

in A.
77 Cf. this disaster with Theorem 3.15.
78 Cf. this disaster with Theorem 3.15.
79 Such models exist, e.g., Cohen’s First Model A4 (M1 in [HoRu98]).
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Theorem 4.54. 80 Equivalent are:

1. R is Fréchet.
2. Each subspace of R is sequential.
3. R is Lindelöf.
4. Each subspace of R is Lindelöf.
5. Each second countable topological space is Lindelöf.
6. Each subspace of R is separable.
7. Each second countable topological space is separable.
8. A function f : R → R is continuous at some point x iff it is sequentially

continuous at x.
9. A function f : X → R, defined on some subspace X of R, is continuous

iff it is sequentially continuous.
10. CC(R).

Proof. (1) ⇒ (2) With R each subspace of R is Fréchet, and thus sequential.
(2) ⇒ (9) If f : X → R is sequentially continuous then the f–preimage

of each closed set in R is sequentially closed in X, thus, by (2), closed in X.
Consequently f is continuous. The inverse implication holds trivially in ZF.

(9) ⇒ (10) By Theorem 3.8 it suffices to show that under (9) every un-
bounded subset A of R contains an unbounded sequence. Let h : R → (0, 1) be
a homeomorphism. Without loss of generality, 0 is an accumulation point of

h[A]. Define X = h[A]∪ {0} and f : X → R by f(x) =
{

0, if x ∈ h[A]
1, if x = 0 . Then

f is not continuous, thus, by (9), not sequentially continuous. Thus there ex-
ists a sequence (bn) in h[A] that converges to 0. Consequently (h−1(bn)) is an
unbounded sequence in A.

(10) ⇒ (5) Since R and P(N) have the same cardinal number 2ℵ0 , CC(R)
implies CC(P(N)), i.e., countable products

∏

m∈M

Um of non–empty subset Um

of P(N) are non–empty. Let X be a second countable topological space with
a basis B = {Bn | n ∈ N}, and let C be an open cover of X. For each n ∈ N,
define Un = {C ∈ C | Bn ⊆ C}. Consider M = {m ∈ N | Um �= ∅}. Then
there exists an element (Cm)m∈M in

∏

m∈M

Um. Consequently {Cm | m ∈ M}

is an at most countable subcover of C.
(5) ⇒ (4) ⇒ (3) Immediate.
(3) ⇒ (10) By (3), N as a closed subspace of R must be Lindelöf. Thus,

by Theorem 3.8, (10) holds.
(10) ⇒ (7) ⇒ (6) Immediate.
(6) ⇒ (1) Let a be an accumulation point of some subset X of R. X, being

separable, contains a countable dense subset C. Consequently a is an accumu-
lation point of C. Thus C, being countable, contains a sequence converging
to a.

80 [HeSt97]
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(10) ⇒ (8) Immediate.
(8) ⇒ (1) Let a be an accumulation point of some subset X of R. If no

sequence in X converges to a, then a �∈ X and the function f : R → R, defined

by f(x) =
{

1, if x ∈ X
0, otherwise , is sequentially continuous at a, but not continuous

at a. This contradicts condition (8).

Theorem 4.55. 81 Equivalent are:

1. R is sequential,
2. Complete = closed in R, for subspaces of R.
3. Compact = complete and bounded, for subspaces of R.
4. Compact = sequentially compact, for subspaces of R.
5. Complete subspaces of R are separable.
6. Complete, unbounded subspaces of R contain unbounded sequences.
7. CC(cR), i.e.,

∏

n∈N

Xn �= ∅ for every sequence of non–empty, complete sub-

spaces Xn of R.
8. AC(cR), i.e.,

∏

i∈I

Xi �= ∅ for every family of non–empty, complete sub-

spaces Xi of R.

Proof. (1) ⇒ (2) Immediate, since every complete subspace of R is sequen-
tially closed in R.

(2) ⇒ (8) Immediate in view of Exercises to Section 1.1, E 2(5).
(8) ⇒ (7) Obvious.
(7) ⇒ (5) Let X be a complete subspace of R. Consider the set M of all

pairs (p, q) ∈ Q
2 for which the set C(p,q) = [p, q] ∩ X is not empty. By (7),

there exists an element (xm)m∈M ∈
∏

m∈M

Cm. Consequently {xm | m ∈ M} is

an at most countable, dense subset of X.
(5) ⇒ (6) Immediate.
(6) ⇒ (1) Let X be sequentially closed in R. Assume that there exists

an accumulation point of X in R with a �∈ X. Without loss of generality
we may assume that X ⊆ (0, 1) and a = 1. Let h : (0, 1) → R be an order–
preserving homeomorphism with |x− y| ≤ |h(x)−h(y)| for each pair (x, y) in
(0, 1)2. Then h[X] is complete and unbounded. Thus, by (6), there exists an
unbounded sequence (yn) in h[X]. Without loss of generality we may assume
that (yn) is monotone increasing. Thus the sequence (h−1(yn)) converges to
1, contradicting the stipulation that X is sequentially closed in R.

(2) ⇒ (3) Immediate in view of Theorem 4.52(5).
(3) ⇒ (2) Let X be a complete subspace of R. Then, for each n ∈ N, the

space X ∩ [−n, n] is complete and bounded, thus by (3) compact, thus closed
in R. Consequently, X is closed in R.

(3) ⇒ (4) Let X be a sequentially compact subspace of R. Then X is
complete. Thus, by (3), it suffices to show that X is bounded. Assume that X

81 [Gut2003]
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is unbounded, then by (6) — which is implied by (3), as shown above — X
contains an unbounded sequence, and consequently a sequence without con-
vergent subsequence. This contradicts the stipulation that X is sequentially
compact.

(4) ⇒ (3) Immediate since each complete and bounded subspace of R is
sequentially compact.

If R is Fréchet, then R is sequential. Does the converse implication hold?
The answer is no, as we will see below.

Definition 4.56. 82 ω–CC(R) states that for every sequence (Xn)n∈N of non–
empty subsets of R, there exists a sequence (Cn)n∈N of non–empty, at most
countable subsets Cn of Xn.

Proposition 4.57. 83 Each of the following statements implies the succeeding
ones:

1. R is the countable union of countable sets.
2. ω–CC(R).
3. R is sequential.
4. Fin(R).

Proof. (1) ⇒ (2) Let (Xn)n∈N be a sequence of non–empty subsets of R and
let R be the union of the sequence (Am)m∈N of countable sets Am. For each
n ∈ N, define

m(n) = min{m ∈ N | (Xn ∩ Am �= ∅}
Then, for each n ∈ N, Cn = Xn ∩ Am(n) is a non–empty at most countable
subset of Xn.

(2) ⇒ (3) Let a be an accumulation point of some sequentially closed
subset X of R. Then, for each n ∈ N, the set

Xn = X ∩ [a − 1
n + 1

, a +
1

n + 1
]

is non–empty. Thus, by (2), there exists a sequence (Cn)n∈N of non–empty,
at most countable subsets Cn of Xn. Since X is sequentially closed, each
xn = inf Cn belongs to X, and thus a, the limit of (xn), belongs to X as well.
Consequently X is closed in R.

(3) ⇒ (4) Immediate, since all infinite, D–finite subsets of R are sequen-
tially closed but not closed in R.

Thus we get the following diagram:

82 [KeTa2001], [Gut2003].
83 [Gut2003]
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Diagram 4.58.

Fin(R)

R is sequential

ω–CC(R)

CC(R) R is the countable
union of countable sets

�

�

�
�

��

�
�

��

Remark 4.59. 84 There are models85 of ZF, in which R is the countable
union of countable sets86 but CC(R) fails. Thus in these models R is sequen-
tial87, but not Fréchet. It is not known whether Fin(R) implies that R is
sequential.

Exercises to Section 4.6:

E 1. Show that:
(1) Every open subspace of R is separable.
(2) Every closed subspace of R is separable.
(3) Ever Lindelöf subspace of R is separable.

E 2. Every infinite, closed subset of R is D–infinite.

E 3. 88 Show that, besides the conditions exhibited in Theorems 3.8 and 4.54,
each of the following conditions is equivalent to CC(R):

84 [Gut2003]
85 E.g., the Feferman–Levy Model A8 (M9 in [HoRu98]).
86 I.e., the negation of Form 38 in [HoRu98].
87 Form 74 in [HoRu98].
88 [BeHe98], [Ker98], [Gut2004], [GiHe2004].
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(1) Each subspace of the Cantor Discontinuum is separable.
(2) Each subspace of the space of irrational numbers is separable.
(3) Each subspace of S

N is separable (where S is the Sierpiński space).
(4) All second countable metric spaces are separable.
(5) All subspaces of separable metric spaces are separable.
(6) All separable metric spaces are Lindelöf.
(7) All second countable metric spaces are Lindelöf.
(8) The Sorgenfrey line (i.e., the topological space with underlying set R

and with a base consisting of all half–open intervals [a, b)), is Lindelöf.
(9) Every second countable T0–space is Fréchet.

(10) Every base of R contains a countable base.
(11) Every base of a second countable topological space contains an at

most countable base.
(12) λ2

X = λX for subspaces X of R,
where λX(A) = {x ∈ X | ∃(an) ∈ AN with (an) → x}.

(13) Every subset of R contains a maximal dispersed set (where X is dis-
persed if any two of its points have a distance of at least 1).

(14) Suprema in R are constructive89.

E 4. 90 Show that, besides the conditions exhibited in Theorem 4.55, each of
the following conditions is equivalent to R being sequential:

(1) Every sequentially compact subspace of R is closed in R.
(2) Every sequentially compact subspace of R is bounded.
(3) Every sequentially compact subspace of R is Lindelöf.
(4) Every sequentially compact subspace of R is separable.
(5) Every complete subspace of R is separable.
(6) In every complete subspace of R each Cauchy filter converges.
(7) No proper dense subspace of R is complete.

E 5. 91 Show that the following conditions are equivalent.
(1) Fin(R).
(2) For every sequence (Xn)n∈N of non–empty, D–finite subsets of R, the

product
∏

n∈N

Xn is non–empty.

(3) For every family (Xi)i∈I of non–empty, D–finite subsets of R, the
product

∏

i∈I

Xi is non–empty.

(4) Every bounded infinite subset of R contains a convergent injective
sequence.

(5) Every D–finite subset of R is bounded.
(6) R has no dense D–finite subset.

89 [Ern2001]. Cf. Exercises to Section 4.3, E 12.
90 [Gut2003], [Gut2004].
91 [Bru82], [Gut2004].



4.7 Disasters in Topology I: Countable Sums 79

4.7 Disasters in Topology I: Countable Sums

Our result vividly demonstrates the hor-
rors of topology without AC.

E.K. van Douwen92

Even the most innocent of topological ques-
tions may be undecidable from the Zermelo–
Fraenkel axioms alone.

Good, Tree, and Watson93

The formation of countable sums is one of the simplest constructions in
topology. In ZFC it preserves most of the familiar properties of topological
spaces, in particular:

1. metrizability,
2. normality,
3. separability,
4. second countability,
5. the Lindelöf property,
6. dimension zero.

However in ZF — though countable sums of metric spaces are still metrizable
(see Exercise E 1) — none of the above 6 properties is necessarily preserved
under the formation of countable sums. Let us stress in particular that those
mathematicians, who have the dangerous habit of not distinguishing between
the notions of metric space and metrizable space, live in an inconsistent world,
where countable sums of such spaces are metrizable (Exercise E 1) and at the
same time are not necessarily metrizable (Disaster 4.60).

E.K. van Douwen [vDou85] has constructed a model94 of ZF which fails
to have the following property:

CC(Z): For each sequence ((Xn,≤n))n∈N of ordered sets, each of which is
order–isomorphic to the set Z of integers with its natural order,
we have

∏

n
Xn �= ∅.

Disaster 4.60. 95 If CC(Z) fails there exists a sequence of separable, metriz-
able, compact spaces (Yn) with dim Yn = 0, such that

∑

n
Yn is neither

92 [vDou85]
93 [GoTrWa98]
94 Called (N2(LO))in [HoRu98]. See also [HaMo90].
95 [vDou85]
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metrizable, nor normal, nor separable, nor second countable, nor Lindelöf,
nor with dimension 0.

Proof. Let (Xn) be a sequence of ordered sets, each order isomorphic to the
integers with their natural order, such that

∏
Xn = ∅. For each n, obtain a

set Yn by adding to Xn a first element an and a last element bn, and supply Yn

with the corresponding order–topology. Then the Yn are all order–isomorphic
and thus homeomorphic to the subspace of R determined by the set

S = {0} ∪
{

1
n
| n ∈ N

+

}

∪
{

2 − 1
n
| n ∈ N

+

}

∪ {2}.

Thus each Yn is a separable, metrizable, compact space with dimension 0,
hence also normal, second countable, and Lindelöf.

Next, consider the sum Y =
∑

n
Yn of the Yn’s. Assume, for simplicity that

the Yn’s are pairwise disjoint so that the underlying set of Y is just the union
of the Yn’s.

Claim 1: Y is not normal, hence is neither metrizable nor of
dimension 0.

Proof of Claim 1: The sets A = {an | n ∈ N} and B = {bn | n ∈ N} are
disjoint closed subsets of Y . If U and V would be disjoint neighborhoods of
A and B in Y , then, for each n ∈ N, the set U ∩ Xn would be a non–empty,
upper–bounded subset of Xn, and would thus contain a largest element xn.
Hence (xn) would be an element of

∏

n
Xn, contrary to the assumption.

Claim 2: Y is neither separable nor second countable.

Proof of Claim 2: Since every dense subset of Y contains every x in
⋃

n
Xn,

and since every base of Y contains each set {x} with x ∈
⋃

n
Xn, separability

resp. second countability of Y would imply that
⋃

n
Xn is countable which in

turn would imply
∏

n
Xn �= ∅.

Claim 3: Y is not Lindelöf.

Proof of Claim 3: Consider the open cover

U = {Yn \ {x} | n ∈ N, x ∈ Xn}

of Y . If U would have a countable subcover

V = {Yn(m) \ {xm} | m ∈ N},

then, for each n ∈ N, there would exist a smallest m = m(n) with n(m) = n.
Thus (xm(n))n∈N would be an element of

∏

n
Xn, contrary to the assumption.
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Observe that the spaces Yn, entering in the above construction, are pair-
wise isomorphic, but not identical. What happens if we form the sum of count-
ably many copies of a fixed space Z, equivalently: the product of Z with a
countable discrete space N? It is easy to see that metrizability, separability,
and second countability are being preserved under this construction. But the
remaining 3 of the above 6 properties may still fail to hold:

Disaster 4.61. If CC(Z) fails there exists a compact Hausdorff space Z with
dim Z = 0 such that Z ×N, the sum of countably many copies of Z, is neither
normal, nor Lindelöf nor has dimension 0.

Proof. Consider the space Y , constructed in the proof of Disaster 4.60. Being
locally compact, Y has a 1–point Hausdorff compactification Z = Y ∪ {∞}.
Obviously dimZ = 0. Consider the first projection πZ : Z × N → Z. If Z × N

would be normal, then the disjoint closed sets A∗ = {(an, n) | n ∈ N} and
B∗ = {(bn, n) | n ∈ N} would have disjoint neighborhoods U∗ and V ∗ in Z×N.
Consequently the sets U =

⋃

n
πZ [(Yn×{n})∩U∗] and V =

⋃

n
πZ [(Yn×{n})∩

V ∗] would be disjoint neighborhoods of A = {an | n ∈ N} and B = {bn |
n ∈ N} in Y , which — according to Claim 1 in the proof of Disaster 4.60 —
cannot happen. Thus Z × N fails to be normal, hence also to have dimension
0. Moreover, Z × N fails to be Lindelöf since the open cover

{(Z\Yn) × {n} | n ∈ N} ∪ {(Yn\{x}) × {n} | n ∈ N and x ∈ Xn}

has no countable subcover.

In Theorem 3.8 we have shown that the sum of countably many copies of
a one–point space, i.e., a countable discrete space, is Lindelöf if and only if
CC(R) holds. Thus the Lindelöf property can get destroyed by this process.
The following result describes the general situation:

Theorem 4.62. 96 Equivalent are:

1. Countable sums of Lindelöf spaces are Lindelöf.
2. The sum of countably many copies of a compact Hausdorff space is Lin-

delöf.
3. The sum of a compact Hausdorff space with a countable discrete space is

Lindelöf.
4. CC.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3) Let X be a compact Hausdorff space and let N be a countable
discrete space. Then the sum X +N is homeomorphic to a closed subspace of

96 [Bru82], [Her2002], [Ker200?].
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the sum of countably many copies of the compact Hausdorff space X + {0},
the sum of X with a one–point space. Thus (3) follows from (2).

(3) ⇒ (4) Let (Xn) be a sequence of non–empty sets. Let X =
⋃

n
Xn∪{∞}

be the one–point compactification of the discrete space
⋃

n
Xn, and let N be

the discrete space of natural numbers. By (3), the sum X + N is Lindelöf.
Thus the open cover

U = {X} ∪ {{n, x} | n ∈ N and x ∈ Xn}

contains a countable subcover {Un | n ∈ N}.
For each n ∈ N define

n∗ = min{m ∈ N | n ∈ Um}.

Then Un∗ = {n, xn} for a unique element xn of Xn. Thus (xn) ∈
∏

n
Xn.

(4) ⇒ (1) Let X =
∑

n
Xn be a countable sum of (pairwise disjoint) Lindelöf

spaces, and let U be an open cover of X. For each n, Vn = {U ∩Xn | U ∈ U}
is an open cover of Xn, thus it contains a countable subcover {Vm | m ∈ N} of
Xn. For each m ∈ N the set Um = {U ∈ U | U ∩ Xn = Vm} is not empty. So,
by CC, there exists a sequence (Um)m∈N in U with Um∩Xn = Vm, hence with
Xn ⊆

⋃

m
Um. Using CC again, we obtain a sequence (Un) of countable subsets

of U with Xn ⊆
⋃

Un. Using CC a third time, we conclude that V =
⋃

n
Un is

a countable subset of U that covers X =
⋃

n
Xn.

Remark 4.63. Observe, that by the above result, even the sum of two Lin-
delöf spaces may fail to be Lindelöf. In fact, if CC(R) holds, but CC fails97,
then there exists a compact Hausdorff space (even a one–point compactifi-
cation of a discrete space) whose sum with the discrete Lindelöf space N of
natural numbers fails to be Lindelöf.

Theorem 4.64. 98 Equivalent are:

1. Countable sums of separable spaces are separable.
2. CC.

Proof. (1) ⇒ (2) Let (Xn) be a sequence of non–empty sets. Assume w.l.o.g.
that the Xn’s are pairwise disjoint. Consider each Xn as an indiscrete, hence
separable, topological space. By (1), there exists a sequence (dn) in

⋃

n∈N

Xn

such that {dn | n ∈ N} is dense in
∑

n∈N

Xn. Define

xn = dmin{m∈N|dm∈Xn}.

97 E.g., in Fraenkel’s First Model A7 (N1 in [HoRu98]).
98 [Ker200?], [KeTa2004].
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Then (xn) ∈
∏

n∈N

Xn.

(2) ⇒ (1) Let (Xn) be a sequence of (non-empty and pairwise disjoint)
separable spaces. Then, for each n ∈ N, the set Dn of all maps f : N → Xn

such that f [N] is dense in Xn, is non–empty. By (2), there exists some (fn) ∈∏

n∈N

Dn. Thus
⋃

n∈N

fn[N] is a countable, dense subset of
∑

n∈N

Xn.

For a corresponding result about countable sums of normal spaces we need
the following lemma whose interesting combinatorial proof is too long to be
included here:

Lemma 4.65. 99 Let (Xi)i∈I be a family of infinite sets. Let P0
finXi be the

set of all non–empty, finite subsets of Xi, and let Mi be the set consisting of
all pairs (A,B) in (P0

finXi)2 with A �= ∅ �= B and A ∩ B = ∅ for each A ∈ A

and B ∈ B. Then there exists a family (fi)i∈I of functions fi : Mi → P0
finXi.

Theorem 4.66. 100 Equivalent are

1. Countable sums of normal spaces are normal.
2. CMC.

Proof. (1) ⇒ (2) Let (Xn)n∈N be a sequence of non–empty sets. To estab-
lish CMC we may assume w.l.o.g. that all the Xn’s are infinite. For each n
construct a normal topological space (Yn, τn) as follows:

Yn the disjoint union of P0
finXn and a 2–element set {an, bn}.

τn consists of all subsets A of Yn which satisfy the following two properties:

1. If an ∈ A, then there exists some F ∈ P0
finXn such that

F ↑ = {G ∈ P0
finXn | F ⊆ G} ⊆ A.

2. If bn ∈ A, then there exists some F ∈ P0
finXn such that

F ∗ = {G ∈ P0
finXn | G ∩ F = ∅} ⊆ A.

Assume w.l.o.g. that the Yn’s are pairwise disjoint and form the sum Y =∑

n∈N

Yn. By (1), Y is normal. Thus the disjoint closed sets A = {an | n ∈ N}

and B = {bn | n ∈ N} have disjoint open neighborhoods U and V .
Define An = {F ∈ P0

finXn | F ↑ ⊆ U} and
Bn = {F ∈ P0

finXn | F ∗ ⊆ V }.
Then the An’s and Bn’s are non–empty and satisfy F ∩ G �= ∅ for each

F ∈ An and G ∈ Bn. Thus, for each n ∈ N, the pair (An,Bn) belongs
to Mn, as defined in Lemma 4.65. Let (fn)n∈N be a sequence of functions
fn : Mn → P0

finXn. Then, for each n, Fn = fn(An,Bn) is a non–empty, finite
subset of Xn. This establishes CMC.

(2) ⇒ (1) Let X =
∑

n∈N

Xn be a countable sum of (pairwise disjoint)

normal spaces and let A and B be disjoint closed subsets of X. Then, for each
99 [HKRR98]
100 [HKRR98], [HKRR98a].
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n ∈ N, the sets An = A ∩ Xn and Bn = B ∩ Xn are disjoint closed subsets
of Xn. Thus, by normality of the Xn’s, for each n ∈ N the set Pn, consisting
of all pairs (U, V ) of disjoint open neighborhoods of An and Bn in Xn, is not
empty. Denote the first and second projection of fn by π1

n resp. π2
n. By CMC

there exists a sequence (fn)n∈N of non–empty, finite subsets Fn of Pn. Thus,
for each n ∈ N, the sets Un =

⋂
π1

n[fn] and Vn =
⋂

π2
n[fn] are disjoint open

neighborhoods of An and Bn in Xn. Consequently U =
⋃

n∈N

Un and V =
⋃

n∈N

Vn

are disjoint open neighborhoods of A and B in X. Thus X is normal.

Exercises to Section 4.7:

E 1. Show that countable sums and countable products of metric spaces are
metrizable.

E 2. Show the equivalence of the following conditions:
(1) Countable sums of metrizable spaces are metrizable.
(2) Countable products of metrizable spaces are metrizable.

E 3. Show that the product
∏

n
Yn of the Yn’s, constructed in the proof of

Disaster 4.60, is not metrizable.

E 4. Show that the spaces
∑

n
Yn and Z × N, constructed in the proof of Dis-

aster 4.60, respectively 4.61, are orderable101.

E 5. 102 Show that, whenever OP holds and KW fails103, there exists an
orderable topological space that is a sum of normal spaces but fails to
be normal itself.

E 6. Show the equivalence of:
(1) Finite sums of indiscrete spaces are Alexandroff–Urysohn–compact.
(2) Finite sums of Alexandroff–Urysohn–compact spaces are Alexandroff–

Urysohn–compact.
(3) AC.

E 7. 104 Show the equivalence of the following conditions:
(1) Sums of normal spaces are normal.
(2) AC.

[Hint: Proceed as in the proof of Theorem 4.66 by using Lemma 4.65,
and use Theorem 2.4.]

101 A topological space (X, τ) is called orderable iff there exists a linear order (=
chain) on X that induces the topology τ .

102 [Kro86]
103 E.g., in Howard–Rubin’s First Model A3 (N38 in [HoRu98]).
104 [HKRR98], [HKRR98a].
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E 8. 105 Show the equivalence of the following conditions:
(1) Countable sums of Lindelöf metric spaces are separable.
(2) Countable products of Lindelöf metric spaces are separable.

E 9. 106 Show the equivalence of the following conditions:
(1) Countable sums of compact metric spaces are separable.
(2) Countable products of compact metric spaces are separable.
(3) Countable products of compact metric spaces are compact.
(4) Compact metric spaces are separable.
(5) Countable products of non–empty compact metric spaces are non–

empty.

E 10. 107 Show the equivalence of the following conditions:
(1) Countable sums of Lindelöf metric spaces are Lindelöf.
(2) Countable sums of Lindelöf metric spaces are hereditarily Lindelöf.
(3) Countable products of Lindelöf metric spaces are hereditarily Lindelöf.

4.8 Disasters in Topology II: Products
(The Tychonoff and the Čech–Stone Theorem)

The theorem just proved [the Tychonoff
Theorem] can lay good claim to being
the most important theorem in general
(nongeometric) topology.

S. Willard108

The next theorem [the Tychonoff Theorem] is fun-
damental in this context and is also one of the most
important theorems of general topology.

R. Engelking109

The Tychonoff Product Theorem concerning the stabil-
ity of compactness under formation of topological prod-
ucts may well be regarded as the single most important
theorem of general topology.

H. Herrlich and G.E. Strecker110

105 [KeTa2005]
106 [KeTa2005]
107 [KeTa2005]
108 [Wil70]
109 [Eng89]
110 [HeSt97a]
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Alas, disaster strikes again:

Disaster 4.67. Products of compact spaces may fail to be compact.

In fact, nothing less than AC itself is needed to prove the Tychonoff The-
orem:

Theorem 4.68. 111 Equivalent are:

1. The Tychonoff Theorem: Products of compact spaces are compact.
2. AC.

Proof. (1) ⇒ (2) Let (Xi)i∈I be a family of non–empty sets and let ∞ be an
element, not contained in

⋃

i∈I

Xi. Define compact topological spaces (Yi, τi) by

Yi = Xi ∪ {∞} and τi = {∅, Yi, {∞}}. By (1), the space P =
∏

i∈I

(Yi, τi) is

compact. For each i ∈ I, the set Ai = π−1
i [Xi] is a non–empty, closed subset of

P (where πi denotes the i–th projection). The collection A = {Ai | i ∈ I} has
the finite intersection property. Thus

⋂

i∈I

Ai �= ∅ by compactness of P . Since
⋂

i∈I

Ai =
∏

i∈I

Xi, AC follows.

(2) ⇒ (1) See any book on general topology.

The situation gets only slightly more pleasant, if we restrict attention to
Hausdorff spaces or even further to Hilbert cubes, i.e., products of the form
[0, 1]I , or to Cantor cubes, i.e., products of the form 2I , where 2 is the discrete
space with underlying set {0, 1}. Still, disasters cannot be avoided. Recall,
however, that [0, 1]N and 2N are compact (see Theorem 3.13).

Disaster 4.69. 1. Products of compact Hausdorff spaces may fail to be com-
pact.

2. Hilbert cubes [0, 1]I may fail to be compact.
3. Cantor cubes 2I may fail to be compact.

Theorem 4.70. 112 Equivalent are:

1. Products of compact Hausdorff spaces are compact.
2. Products of finite discrete spaces are compact.
3. Products of finite spaces are compact.
4. Hilbert cubes [0, 1]I are compact.
5. Cantor cubes 2I are compact.
6. PIT.
7. UFT.

111 [Kel50]
112 [RuSc54], [LoRy55], [Myc64a], [Her96].
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Proof. By Theorem 4.37, the conditions (1), (2), (6), and (7) are equivalent.
Moreover the implications (1) ⇒ (4) ⇒ (5) and (3) ⇒ (2) are straight-

forward.
(5) ⇒ (2) Let (Xi)i∈I be a family of finite discrete spaces. For each i ∈ I

let
fi : Xi → 2C(Xi,2) be the canonical map. Then each fi and thus

∏
fi :

∏

i∈I

Xi →
∏

i∈I

2C(Xi,2) ∼= 2
⊎

C(Xi,2)

are closed embeddings. Thus compactness of
∏

i∈I

Xi follows from that of

2
⊎

C(Xi,2).
(2) ⇒ (3) Let (Xi)i∈I be a family of finite spaces. For each i ∈ I, let Yi

be the discrete space with the same underlying set as Xi. Then each Xi is a
continuous image of Yi, and thus

∏

i∈I

Xi is a continuous image of
∏

i∈I

Yi. Thus

compactness of the latter implies compactness of the former.

What happens if we restrict the number of factors and consider only count-
able products?

Disaster 4.71. Countable products of compact spaces may fail to be com-
pact.

Proposition 4.72. 113 Each of the following conditions implies the subse-
quent ones:

1. DC.
2. Countable products of compact spaces are compact.
3. CC.

Proof. (1) ⇒ (2) Let (Xn)n∈N be a sequence of compact spaces and let F be
a filter on X =

∏

n∈N

Xn. A cluster point x = (xn)n∈N of F can be constructed

as in the proof of Theorem 3.13, using DC on (Y, �), where:

1. Y is the set of all triples (n, (x0, x1, . . . , xn),G), consisting of an element

n of N, an element (x0, x1, . . . , xn) of
n∏

i=0

Xi and a filter G on X such that

F ⊆ G and π−1
i [U ] ∈ G for each i ∈ {0, 1, . . . , n} and each neighborhood

U of xi in Xi (where πi denotes the i–th projection).
2. � is defined by:

(n, (x0, . . . , xn),G) � (m, (y0, . . . , ym),H) iff m = n + 1, (x0, . . . , xn) =
(y0, . . . , yn), ym is a cluster point of the filter {G ⊆ Xm | π−1

m [G] ∈ G},
and H is the filter, generated by the set G∪{π−1

m [U ] | U is a neighborhood
of ym in Xm}.

113 [GoTr95]
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(2) ⇒ (3) Analogous to the proof of the corresponding implication in Theorem
4.68.

Remark 4.73. The implication (1) ⇒ (2) of Proposition 4.72 is a proper
one, since there exists a ZF–model114 in which PIT and CC, and thus con-
dition (2) hold (see Exercise E 4), but DC fails. It is not known whether the
implication (2) ⇒ (3) is also proper.

What happens, if we restrict things further by considering only countable
products of finite (discrete) spaces?

Disaster 4.74. Countable products of finite spaces may fail to be compact.

Theorem 4.75. 115 Equivalent are:

1. Countable products of finite spaces are compact.
2. Countable products of finite discrete spaces are compact.
3. CC(fin).

Proof. (1) ⇔ (2) Straightforward.
(2) ⇒ (3) Analogous to the proof of the corresponding implication in

Theorem 4.68.
(3) ⇒ (2) Let P =

∏

n∈N

Xn be the product of a sequence (Xn)n∈N of finite

discrete spaces, and let F be a filter on P . Then (3) implies, via Proposition
3.5, that

⋃

n∈N

Xn is at most countable, thus well–orderable. Now proceed as

in the proof of Theorem 3.13, by choosing x0 and each xn+1 as the smallest
point with the desired properties.

Let us go even further and restrict attention, for a given natural number
n, to countable products of spaces with n points each. Then for n ∈ {0, 1}
we are on safe and trivial ground, and even for n = 2 we remain safe: see
Theorem 3.17. Moreover, Theorem 3.13 immediately implies, that for each
n ∈ N the space nN is compact (where n is the discrete space with underlying
set {0, 1, . . . , n − 1}116. However:

Disaster 4.76. Countable products of 3–element spaces may fail to be com-
pact.

Theorem 4.77. 117 For each n ∈ N the following conditions are equivalent:

1. Countable products of (discrete) spaces with at most n+1 points are com-
pact.

114 Howard–Rubin’s First Model A3 (N38 in [HoRu98]). See also [HoRu96].
115 [Kro81]
116 See also [Bru84].
117 [HeKe2000]
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2. CC(≤ n).
3. CUT(n).

Proof. (2) ⇔ (3) See Exercises to Section 3.1, E 1.
(1) ⇒ (2) Analogous to the proof of the corresponding implication in

Theorem 4.68.
(2) ⇒ (1) Let P =

∏

m∈N

Xm be the product of a sequence of spaces Xm

with at most n + 1 points each.
Case 1: P = ∅. Then P is compact.
Case 2: P �= ∅. Let (xm)m∈N be an element of P . Then, for each m ∈ N,

the set Ym = Xm \ {xm} contains at most n elements. Thus, by (3), the set
Y =

⋃

m∈N

Ym is at most countable. Consequently,
⋃

m∈N

Xm = Y ∪{xm | m ∈ N}

is at most countable, thus well–orderable. Now proceed as in the proof of
Theorem 3.13 resp. Theorem 4.75.

Remark 4.78. Observe that CC(2) may fail in ZF118.

Conclusion: In ZF the Tychonoff Theorem breaks down completely. How-
ever, there is still hope: As we have seen in Section 3.2, the compactness con-
cept splits in ZF in various, no longer equivalent, variants. Do some of these
variants behave any better?

Disaster 4.79. Products of ultrafilter–compact spaces may fail to be ultra-
filter–compact.

In fact, the Tychonoff Theorem for ultrafilter–compact spaces holds if and
only if either AC holds or AC fails badly. In between these extremes it fails:

Theorem 4.80. 119 Equivalent are:

1. Products of ultrafilter–compact spaces are ultrafilter–compact.
2. Either AC holds or WUF(?) fails, i.e., there are no free ultrafilters120.

Let us postpone the proof of Theorem 4.80 until after Remark 4.83 and
first consider the Hausdorff case. Here the sky brightens:

4.81. Tychonoff Theorem for ultrafilter–compact Hausdorff spaces:
Products of ultrafilter compact Hausdorff spaces are ultrafilter–compact.

Proof. Let P =
∏

i∈I

Xi be the product of a family of ultrafilter–compact Haus-

dorff spaces, and let U be an ultrafilter on P . Then, for each i ∈ I, the set
{A ⊆ Xi | π−1

i [A] ∈ U} is an ultrafilter on Xi, and thus converges to a unique
point xi in Xi. Consequently U converges to the point (xi)i∈I in P .
118 E.g., in Cohen’s Second Model (M7 in [HoRu98]) and in Fraenkel’s Second

Model (N2(2) in [HoRu98]).
119 [Her96]
120 WUF(?) fails, e.g., in the Feferman–Blass Model (M15 in [HoRu98]) and in

Pincus–Solovay’s Model A6 (M27 in [HoRu98]). See also [Blass77].
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4.82. Čech–Stone Theorem for ultrafilter–compact Hausdorff spaces:
121 The ultrafilter–compact Hausdorff spaces form an epireflective subcategory
of the category Haus of Hausdorff spaces and continuous maps.

Proof. Immediate from the fact that a full subcategory A of Haus is epire-
flective in Haus if (and only if) A is closed under the formation of products
and closed subspaces. For details see, e.g., [Her68] or [AHS2004].

Remark 4.83. Even though the Čech–Stone Theorem holds for ultrafilter–
compact Hausdorff spaces, the situation is not quite as satisfactory as in the
ZFC–setting. In the latter there exist many detailed descriptions122 of the
Čech–Stone compactification βX (= the compact Hausdorff reflection) of X,
at least for completely regular spaces, whereas in the ZF setting no detailed
description of the ultrafilter–compact Hausdorff reflection is known — an
exception being the discrete case. If X is a discrete space, then its Wallman
extension ωX is an ultrafilter–compact Hausdorff reflection of X. Here follows
a simple description of ωX: For each free ultrafilter U on X, add to X a point
pU . Thus the underlying set of ωX has the form X∪{pU | U is a free ultrafilter
on X}.

For each subset A of X, define

A∗ = A ∪ {pU | A ∈ U}.

Then {A∗ | A ⊆ X} is a base for the topology of ωX.

Now we are ready to present a
Proof of Theorem 4.80: (1) ⇒ (2) Assume that there exists a free ultrafilter U
on some set X. To show that AC holds, let (Xi)i∈I be a family of non–empty
sets. Let ωX be the Wallman extension of the discrete space with underlying
set X. Assume for simplicity that the underlying set of ωX is disjoint from
each Xi. For each i ∈ I, consider space Yi; obtained from ωX via replacement
of the point pU by the set Xi, considered as an indiscrete subspace of Yi. Then
each Yi is ultrafilter–compact and the ultrafilter Ui, generated by U , has Xi

as its set of limit points. By (1), the product space Y =
∏

i∈I

Yi is ultrafilter

compact. Let ∆ : X → Y be the diagonal embedding. Then in Y the filter
V, generated by ∆[U ], is an ultrafilter, and thus converges to some point y.
Consequently, for each i ∈ I, the filter Ui = {A ⊆ Xi | π−1

i [A] ∈ V} converges
in Yi to πi(y). This implies πi(y) ∈ Xi, thus y ∈

∏

i∈I

Xi. So AC holds.

(2) ⇒ (1) If AC holds, then (1) follows as in the proof of Theorem 4.81.
If WUF(?) fails, then every space is ultrafilter–compact, and thus (1) holds
trivially.

Next, let us turn our attention to Tychonoff–compactness. As we will see,
here the situation concerning the Tychonoff Theorem and the Čech–Stone
121 [Her96]
122 See, e.g., [HeSt97], where 25 different constructions of βX are exhibited.



4.8 Disasters in Topology II: Products 91

Theorem (and also the theory of rings of continuous functions) is as pleasant
as in the ZFC–setting123.

4.84. Tychonoff Theorem for Tychonoff–compact spaces:124

Products of Tychonoff–compact spaces are Tychonoff–compact.

Proof. Let (Xi)i∈I be a family of Tychonoff–compact spaces. Then, for each
i ∈ I, the canonical map

ji : Xi → [0, 1]C(Xi,[0,1]),

defined by πf ◦ ji = f for each f ∈ C(Xi, [0, 1]), is a closed embedding (see
Exercises to Section 3.3, E 4). Consequently, the product map

∏

i∈I

ji :
∏

i∈I

Xi −→
∏

i∈I

[0, 1]C(Xi,[0,1]) ∼= [0, 1]
⊎

C(Xi,[0,1])

is a closed embedding, too, and thus
∏

i∈I

Xi is Tychonoff–compact.

Observe that the above theorem could have been included into Section 3.2,
since among all the closed embeddings of a Tychnonoff–compact space into
powers [0, 1]I of [0, 1] there exists (according to Exercises to Section 3.3, E 4)
a distinguished one.

4.85. Čech–Stone Theorem for Tychonoff–compact spaces125

Tychonoff–compact spaces form an epireflective subcategory of the category
Tych of completely regular spaces and continuous maps. In particular, every
completely regular space X can be densely embedded into a Tychonoff–
compact space βX (its Čech–Stone compactification) such that the following
equivalent properties are satisfied:

1. Every continuous map X → [0, 1] can be extended to a continuous map
βX → [0, 1].

2. Every bounded, continuous map X → R can be extended to a continuous
map βX → R.

3. Every continuous map X → C from X into some Tychonoff–compact
space C can be extended to a continuous map βX → C.

Proof. Let X be a completely regular space. Then the canonical map

j : X → [0, 1]C(X,[0,1])

is an embedding. Factor j through the closure βX = cl[j[X]] of its image j[X]
in [0, 1]

X
j→ [0, 1]C(X,[0,1]) = X

β→ βX ↪→ [0, 1]C(X,[0,1]).

Then the dense embedding β : X → βX has the desired properties126.
123 See [Com68], [Sal74], [Her96], [BeHe99].
124 [Com68], [Sal74].
125 [Com68], [Sal74]
126 See, e.g., [Her68] for details.



92 4 Disasters without Choice

Remark 4.86. Alternative constructions of the Tychonoff–compact reflection
X → βX can be found in [Com68] (via rings of continuous functions), in
[Cha72] and in [Sal74] (via zero ultrafilters and the Wallman construction).

Theorem 4.87. 127 The Tychonoff–compact spaces form the epireflective
hull128 of the completely regular compact spaces in the category Tych.

Proof. Let A, resp. B, be the class of all completely regular compact, resp. all
Tychonoff–compact, spaces and let C be the epireflective hull of A in Tych.
For each X in A the canonical map

j : X → [0, 1]C(X,[0,1])

is a closed embedding. (Complete regularity implies that j is an embedding,
compactness implies that j[X] is closed in [0, 1]C(X,[0,1]), see Exercises to Sec-
tion 3.3, E 2). Thus A ⊆ B and thus C ⊆ B. Since [0, 1] belongs to A, all
closed subspaces of powers of [0, 1], i.e., all elements of B, belong to C. Thus
B ⊆ C. Consequently B = C.

Finally, let us turn our attention to Alexandroff–Urysohn–compact spaces.
Here the Tychonoff Theorem breaks down completely.

Disaster 4.88. Even finite products of Alexandroff–Urysohn–compact spaces
may fail to be Alexandroff–Urysohn–compact.

Theorem 4.89. 129 Equivalent are:

1. Products of Alexandroff–Urysohn–compact spaces are Alexandroff–Urysohn–
compact.

2. Finite products of Alexandroff–Urysohn–compact spaces are Alexandroff–
Urysohn–compact.

3. Cantor cubes 2I are Alexandroff–Urysohn compact.
4. AC.

Proof. Obviously (1) implies (2) and (3).
(2) ⇒ (4) By Theorem 4.20 it suffices to show that any two cardinals are

comparable w.r.t. ≤. Let A and B be infinite sets with cardinals |A| = a and
|B| = b. Then the indiscrete space X with underlying set A ∪ B, and the
discrete space 2 (with underlying set {0, 1}) are both Alexandroff–Urysohn–
compact, and thus — by (2) — so is their product X × 2. Thus the set
C = (A×{0})∪ (B×{1}) has a complete accumulation point (x, y) in X ×2.
If y = 0, then (A ∪ B) × {0} is a neighborhood of (x, y) that meets C in

127 [Her96]
128 The epireflective hull of A in B is the smallest epireflective subcategory of B

that contains A (provided that such an entity exists).
129 [Her68]
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A× {0}. Thus a = |A| = |A× {0}| = |C| = |A ∪B| = a + b, and hence b ≤ a.
Likewise y = 1 implies a ≤ b. Consequently a and b are comparable.

(3) ⇒ (4) As above, consider arbitrary infinite sets A and B and let ∞
be not contained in A ∪ B. Form I = {∞} ∪ A ∪ B and consider the Cantor
cube 2I . For a subset C of I, let χC : I → 2 be the associated characteristic

function, defined by χC(i) =
{

1, if i ∈ C
0, if i �∈ C

.

By (3) the
{χ{a} | a ∈ A} ∪ {χ{∞,b} | b ∈ B}

has a complete accumulation point in 2I . As above, this implies that the
cardinal numbers of A and B are comparable with respect to ≤.

(4) ⇒ (1) is well–known.

Exercises to Section 4.8:

E 1. Show that finite products of compact spaces are compact.
[Hint: Proceed as in the proof of Theorem 3.13].

E 2. Show that finite products of ultrafilter–compact spaces are ultrafilter–
compact.

E 3. Show that CC implies that countable products of ultrafilter–compact
spaces are ultrafilter–compact.

E 4. Show that CC and PIT together imply that countable products of com-
pact spaces are compact.

E 5. 130 Let X be a dense subspace of a Tychonoff–compact space Y . Show
that the following conditions are equivalent:

(1) Y is (up to homeomorphism) the Tychonoff–compact reflection βX of
X.

(2) Any two disjoint zero sets in X have disjoint closures in Y .
(3) For any two zero sets A and B in X, we have clY (A∩B) = clY A∩clY B.
(4) Every point of Y is the limit of a unique zero–ultrafilter in X.

E 6. 131 Show the equivalence of the following conditions:
(1) Countable products of compact pseudometric spaces are compact.
(2) XN is compact for each compact pseudometric space X.
(3) CC.

E 7. Show the equivalence of the following conditions:
(1) Products of 2–element spaces are compact
(2) Products of non–empty compact Hausdorff spaces are non–empty and

compact.
(3) PIT.

130 [Sal74]
131 [HeKe2000a]
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E 8. Show the equivalence of the following conditions:
(1) Hilbert cubes [0, 1]I are Alexandroff–Urysohn–compact.
(2) Tychonoff–compact spaces are Alexandroff–Urysohn–compact.
(3) AC.

E 9. Show that PIT implies AC(fin).
[Hint: Use Theorem 4.70 and the proof of Theorem 4.68.]

E 10. 132 A topological space X is called supercompact iff there exists some
x ∈ X whose only neighborhood is X itself. Prove that:

(1) Every product of supercompact T0–spaces is supercompact.
(2) AC holds iff every product of supercompact spaces is supercompact.

E 11. Show the equivalence of the following conditions:
(1) Products of compact T1–spaces are compact.
(2) AC.

[Hint: For (1) ⇒ (2) proceed as in the proof of Theorem 4.68 but enrich
the topologies of the spaces (Yi, τi) by substituting σi = τi ∪{Yi \F | F
finite } for τi.]

E 12. 133 Show the equivalence of the following conditions:
(1) In the product topology the closure cl(

∏

i∈I

Ai) of a product of subsets

Ai of Xi is equal to the product
∏

i∈I

cliAi of the closures of the Ai in

Xi.
(2) AC.

[Hint: For (1) ⇒ (2) proceed as in the proof of Theorem 4.68, but use
indiscrete topologies τi = {∅, Yi}.]

E 13. 134 Show the equivalence of the following conditions:
(1) [0, 1]R is compact.
(2) 2R is compact.
(3) Products of finite subspaces of R are compact.
(4) UFT(N).

132 [Ban93]
133 [Sch92]
134 [Ker2005]
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4.9 Disasters in Topology III: Function Spaces
(The Ascoli Theorem)

Mathematics is the art of deduction
rather than a list of facts.

V.W. Marek and J. Mycielski135

The Tychonoff Theorem provides the foundation for several important
results in topology and in functional analysis. One of these is the Čech–Stone
Theorem, which has been treated in the previous section. Another one is
the Ascoli Theorem, which will be analyzed in this section. It concerns the
characterization of compactness among certain spaces of continuous functions.

Unfortunately — even in ZFC — the category Top of topological spaces
and continuous maps as well as all its topological subcategories that are closed
under the formation of squares and contain the Sierpiński–space136, fail to be
cartesian closed137, i.e., none of these categories has function spaces which
have all the categorically desirable properties. However, the set C(X,Y ) of all
continuous functions from X to Y carries several canonical topologies. The
weak topology, i.e., the one induced by the product topology on the space Y X ,
is for many applications too coarse. A finer and more useful topology, coming
close to satisfying the categorically desirable properties, is the compact–open
topology τco which has as canonical subbase the set of all sets of the form

[K,U ] = {f ∈ C(X,Y ) | f [K] ⊆ U},

where K is compact in X and U is open in Y . The space Cco(X,Y ) =
(C(X,Y ), τco) coincides, for discrete spaces X, with the product space Y X .

The Ascoli Theorem takes on various forms. For our purpose the following
version seems appropriate.

Definition 4.90. The Ascoli Theorem states that for every locally compact
Hausdorff space X, for every metric space Y , and for every subspace F of
Cco(X,Y ), the following conditions are equivalent:

(a) F is compact.
(b) (α) For each x ∈ X the set F (x) = {f(x) | f ∈ F} is compact in Y .

(β) F is closed in the product space Y X .
(γ) F is equicontinuous, i.e.

∀x ∈ X ∀ε > 0 ∃U ∈ U(x) ∀f ∈ F ∀y ∈ U d(f(x), f(y)) < ε,

135 [MaMy2001]
136 The Sierpiński space is the space with underlying set 2 = {0, 1} and open sets

∅, {0}, and 2.
137 See, e.g., [Her83].
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where U(x) is the neighborhood–filter of x in X and d is the distance–
function of Y .

Theorem 4.91. 138 Equivalent are:

1. The Ascoli Theorem.
2. PIT.

Proof. (1) ⇒ (2) Let X be a set and let 2 be the discrete space with under-
lying set {0, 1}. Consider X as a discrete space and 2 as a metric space with
distance–function d determined by d(0, 1) = 1. Let F be C(X,2) = 2X . Then
condition (b) of the Ascoli Theorem is satisfied. Thus (1) implies that 2X is
compact. Hence, by Theorem 4.70, PIT holds.

(2) ⇒ (1) Let X,Y , and F be as specified in the Ascoli Theorem.
(a) → (b, α) Since F is compact in Cco(X,Y ), it is compact in Y X .

Thus, for each x ∈ X, its image πx[F ] = F (x) under the projection map
πx : Y X → Y is compact.

(a) → (b, β) Again, F is compact in the Hausdorff space Y X , and thus
(by Exercises to Section 3.3, E 2) closed in Y X .

(a) → (b, γ) Choose x ∈ X and ε > 0. Then, for each f ∈ F , the set
Bf = {y ∈ Y | d(f(x), y) < ε

2} is open in Y . Thus, by continuity of f and
local compactness of X, there exists a compact neighborhood Kf of x with
f [Kf ] ⊆ Bf . Thus

Uf = F ∩ [Kf , Bf ] = {g ∈ F | g[Kf ] ⊆ Bf}

is an open neighborhood of f in F . Consider the evaluation map ω : X ×F →
Y , defined by ω(y, g) = g(y). Then the above implies ω[Kf × Uf ] ⊆ Bf .
Consider the collection C of all triples (f,K,U) with f ∈ F , K a neighborhood
of x in X, and U an open neighborhood of f in F with ω[K×U ] ⊆ Bf . Then,
by the above

U = {U ⊆ F | ∃f ∈ F ∃K ⊆ X (f,K,U) ∈ C}

is an open cover of F . Thus, by (a), there exist finitely many members
U1, . . . , Un of U which cover F . For each i ∈ {1, . . . , n}, select fi ∈ F and

Ki ⊆ X with (fi,Ki, Ui) ∈ C. Then U =
n⋂

i=1

Ki is a neighborhood of x in X.

Claim: ∀f ∈ F ∀y ∈ U d(f(x), f(y)) < ε.

Proof. For f ∈ F there exists some i ∈ {1, . . . , n} with f ∈ Ui. Thus y ∈ U
implies:

f(y) = ω(y, f) ⊆ ω[U × Ui] ⊆ ω[Ki × Ui] ⊆ Bfi
,

i.e., d(fi(x), f(y)) < ε
2 . In particular, x ∈ U implies d(fi(x), f(x)) < ε

2 . Thus

138 [Her97]
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d(f(x), f(y)) ≤ d(f(x), fi(x)) + d(fi(x), f(y)) < ε.

Consequently F is equicontinuous.

(b) → (a) By (b, α), each F (x) is a compact Hausdorff space. Thus, by
condition (2) and Theorem 4.70,

∏

x∈X

F (x) is compact. By (b, β), F is closed

in Y X and thus in
∏

x∈X

F (x). Consequently F is compact with respect to the

weak topology τ , i.e., when considered as a subspace of Y X . So it remains to
be shown that (b, γ) implies that τ equals the (generally finer) compact–open
topology σ on F . For this purpose consider an element V = [K,U ]∩F of the
canonical subbase of σ, and let f be an element of V . It remains to be shown
that V is a neighborhood of f in the weak topology. Since f [K] ⊆ U and U
is open in Y , we obtain for each x ∈ K

rx = inf{d(f(x), y) | y ∈ (Y \ U)} > 0.

Then Ux = {z ∈ X | d(f(x), f(z)) < rx

2 } is an open neighborhood of x in X,
and U = {Ux | x ∈ K} is an open cover of K. By compactness of K there

exist finitely many members x1, . . . , xn of K such that K ⊆
n⋃

i=1

Uxi
. Thus

r = min{rx1 , . . . , rxn
} > 0, and for each x ∈ K and each y ∈ (Y \ U) the

inequality d(f(x), y) ≥ r
2 follows; in other words:

x ∈ K and d(f(x), y) < r
2 imply y ∈ U . By equicontinuity of F there

exists, for each x ∈ X, some neighborhood W of x in X such that:

(*) ∀g ∈ F ∀z ∈ W d(g(x), g(z)) < r
4 .

Consider the set C of all pairs (x,W ) with x ∈ X and W an open neigh-
borhood of x in X such that (*) holds. Then

U = {W ⊆ X | ∃x ∈ K (x,W ) ∈ C}

is an open cover of K. By compactness of K there exist finitely many members
W1, . . . ,Wm in U which cover K. For each i ∈ {1, . . . ,m} select some xi with
(xi,Wi) ∈ C. Then

B = {g ∈ F | d(f(xi), g(xi)) <
r

4
for i = 1, . . . , n}

is a neighborhood of f in the weak topology τ .

Claim: B ⊆ V .

Proof. Consider g ∈ B. For each x ∈ K there exists some i ∈ {1, . . . , m} with
x ∈ Wi. This implies d(g(xi), g(x)) < r

4 by (*). Since g ∈ B, the inequality
d(f(xi), g(xi)) < r

4 holds. Thus:
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d(f(xi), g(x)) ≤ d(f(xi), g(xi)) + d(g(xi), g(x)) <
r

2
.

Consequently, g(x) ∈ U ; hence g[K] ⊆ U ; hence g ∈ V .
This completes the proof.

Observe that the implication (a) ⇒ (b) of the Ascoli Theorem holds in
ZF, and that for the reverse implication (b) ⇒ (a) the only non–ZF require-
ment is that products of compact Hausdorff spaces are compact. Since prod-
ucts of ultrafilter–compact Hausdorff space are always ultrafilter–compact,
we may conjecture that the Ascoli Theorem holds, if we replace the notion
of compactness, wherever it occurs (hence particularly in the definition of the
compact–open topology), by that of ultrafilter–compactness. Alas:

Theorem 4.92. 139 Equivalent are:

1. The Ascoli Theorem w.r.t. ultrafilter–compactness.
2. PIT.

Proof. (1) ⇒ (2) By Theorem 4.70 it suffices to show that condition (1)
implies that all Cantor cubes 2I are compact. Assume that, for some set
I, the space P = 2I fails to be compact. Consider I as a discrete space
and 2 as a metric space with d(0, 1) = 1. Then there exists a filter F on P
without a cluster point. Thus the set X of all clopen140 members of F has
the finite–intersection–property, but empty intersection. For each A ∈ X, the

map fA : P → 2, defined by fA(x) =
{

1, if x ∈ A
0, if x �∈ A

, is continuous. Thus the

family (fA)A∈X induces a continuous map f : P → 2X . Let F = f [P ] be the
image of P under f . A simple computation shows that f is an embedding. So
F is homeomorphic to P and thus, by Theorem 4.81, F is ultrafilter–compact.
Apply the Ascoli Theorem w.r.t. ultrafilter–compactness to X, considered as
a discrete space, Y = 2, and F . Then condition (a) is satisfied. However
condition (b β) fails, since the point p = (1)A∈X of 2X whose coordinates are
all 1, belongs to the closure of F in 2X , since X has the finite–intersection–
property, but not to F , since X has empty intersection. Thus (1) fails, a
contradiction.

(2) ⇒ (1) By Theorems 3.22 and 4.37, PIT implies that compact =
ultrafilter–compact. Thus (1) follows from Theorem 4.91.

Since for Tychonoff–compact spaces the Tychonoff Theorem and the Čech–
Stone Theorem hold, we may expect the Ascoli Theorem for Tychonoff–
compact spaces to hold as well. Alas:

139 [Her97a]
140 Clopen means closed and open.



4.9 Disasters in Topology III: Function Spaces (The Ascoli Theorem) 99

Theorem 4.93. 141 Equivalent are:

1. The Ascoli Theorem w.r.t. Tychonoff–compactness.
2. PIT.

Proof. Since the proof of Theorem 4.93 parallels that of Theorem 4.92 it is
left as an exercise (see Exercise E 1).

In view of the above facts the following result is no longer surprising:

Theorem 4.94. 142 Equivalent are:

1. The Ascoli Theorem w.r.t. Alexandroff–Urysohn–compactness.
2. AC.

Proof. (1) ⇒ (2) By Theorem 4.89 it suffices to show that all Cantor–cubes
2I are Alexandroff–Urysohn–compact. Let X be the discrete space with un-
derlying set I, Y be the space 2, considered as a metric space with d(0, 1) = 1,
and F = 2X . Then condition (b) of the Ascoli–Theorem w.r.t. Alexandroff–
Urysohn–compactness is trivially satisfied. Thus, by condition (1), condition
(a) holds as well, i.e., 2I is Alexandroff–Urysohn–compact.

(2) ⇒ (1) Under AC, Alexandroff–Urysohn–compactness agrees with com-
pactness. Thus (1) follows from Theorem 4.91.

Sadly enough our resumé of the above results is this:

Disaster 4.95. The Ascoli Theorem may fail under each of the interpreta-
tions of compactness given above.

So there seems no hope left to salvage the Ascoli Theorem. Recall however
that the classical form of the Ascoli Theorem is more restricted than the one
formulated in 4.90. Can the former perhaps be saved?

Definition 4.96. The Classical Ascoli Theorem states that for any set F
of continuous maps f : R → R the following conditions are equivalent:

(a) Each sequence (fn) in F has a subsequence f(ν(n)) that converges con-
tinuously143 to some map g (not necessarily in F ), i.e.,

141 [Her97a]
142 [Her97a]
143 Observe:

a) If (fn) converges continuously to g, then g is continuous.

b) If (fn) converges locally uniformly to g, then (fn) converges continuously
to g.

c) If (fn) converges continuously to g, then (fn) converges pointwise to g.
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∀x ∈ R ∀(xn) ∈ R
N ((xn) → x ⇒ (fν(n)(xn)) → g(x)).

(b) (α) For each x ∈ R the set F (x) = {f(x) | f ∈ F} is bounded.
(β) F is equicontinuous.

Disaster strikes even here:

Theorem 4.97. 144 Equivalent are:

1. The Classical Ascoli Theorem.
2. CC(R).

Proof. (1) ⇒ (2) By Theorem 3.8 it suffices to show that each unbounded
subset B of R contains an unbounded sequence. For this purpose, consider
for each b ∈ B the constant map fb : R → R with value b. Then the set
F = {fb | b ∈ B} violates condition (b, α) of the Classical Ascoli Theorem.
So, by (1) it violates condition (a) as well. Thus there exists a sequence (fbn

)
in F that has no continuously convergent subsequence. This fact implies that
the sequence (bn) is unbounded.

(2) ⇒ (1) Observe first that every continuous map f : R → R is determined
by its restriction f |Q : Q → R to the rationals. This implies that there are only
|RQ| = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = |R| continuous functions f : R → R. Hence
CC(R) implies that for every sequence (Fn) of non–empty sets of continuous
functions f : R → R there exists some choice–sequence (fn) ∈

∏

n∈N

Fn.

With this fact in mind let us turn to the proof of the Classical Ascoli
Theorem: Let F be a set of continuous maps f : R → R.

(a) ⇒ (b, α) Assume that (b, α) fails. Then there exists some x ∈ R such
that F (x) is unbounded. Thus, for each n ∈ N, the set Fn = {f ∈ F | |f(x)| ≥
n} is not empty. Consequently there exists (fn) ∈

∏

n∈N

Fn. Obviously (fn) has

no continuously convergent subsequence. This contradicts condition (a).
(a) ⇒ (b, β) Assume that (b, β) fails. Then there exists some x ∈ R and

some ε > 0 such that, for each n ∈ N, the set

Fn = {f ∈ F | ∃y ∈ R |x − y| <
1

n + 1
and |f(x) − f(y)| ≥ ε}

is non–empty. Consequently there exists (fn) ∈
∏

n∈N

Fn.

Obviously (fn) has no continuously convergent subsequence. This contra-
dicts condition (a).

(b) ⇒ (a) Let (fn) be a sequence in F . Express the rationals as a sequence
(rn) and define, by induction, a sequence of pairs (an, sn) with an ∈ R and
sn = (gn

m)m∈N a sequence in F as follows:

144 [Rhi2001]
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1. Let a0 be the smallest cluster point of the sequence (fn(r0)).
Define s0 = (g0

n)n∈N by induction as a subsequence (fν(n)) of (fn) as
follows:

a) ν(0) = min{m ∈ N | fm(r0) − a0| < 1}
b) ν(n + 1) = min{m ∈ N | ν(n) < m and |fm(r0) − a0| < 1

n+1}.

Then s0 = (g0
n) = (fν(n)) is a subsequence of (fn), and (g0

n(r0)) → a0.
2. Let an and sn = (gn

m)m∈N be defined. Let an+1 be the smallest cluster
point of the sequence (gn

m(rn+1))m∈N.
Define, as above via induction, (sn+1) = (gn+1

m )m∈N as a subsequence of
(sn) = (gn

m)m∈N such that (gn+1
m (rn+1))m∈N → an+1.

Next, consider the diagonal sequence s = (gn
n)n∈N. Then s is a subsequence

of (fn) and is cofinal with each of the sequences sn. Thus, for each n ∈ N,
the sequence (s(rn)) =

(
gm

m(rn)
)
m∈N

converges to an. Hence, for each
x ∈ Q, the sequence s(x) = (gm

m(x))m∈N converges in R. Since Q is dense
in R, G = {gm

m | m ∈ N} is equicontinuous, and R is complete, the familiar
arguments imply that s converges locally uniformly and thus continuously
to some map g : R → R with g(rn) = an for each n ∈ N. Consequently (a)
holds.

Thus disaster struck again. However, a simple analysis of the above proof
immediately yields the following salvaged form of the Classical Ascoli Theo-
rem:

4.98. Modified Ascoli Theorem145 For sets F of continuous maps
f : R → R the following conditions are equivalent:

(a) Each sequence in F has a subsequence that converges continuously to
some map g (not necessarily in F ).

(b) (α) For each x ∈ R and each countable subset G of F the set G(x) =
{g(x) | g ∈ G} is bounded.

(β) Each countable subset of F is equicontinuous.

Exercises to Section 4.9:

E 1. Prove Theorem 4.93.

E 2. Prove Theorem 4.98.

145 [Rhi2001]
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4.10 Disasters in Topology IV: The Baire Category
Theorem

The applications of topology to analysis are usually manifested in
the form of an “existence theorem” of some sort and the major
share of the work in this direction is born, directly or indirectly,
by two theorems: the Tychonoff theorem and the Baire category
theorem.

S. Willard146

The category theorem, given by R. Baire in 1899 is
one of the principal avenues through which applica-
tions of completeness are made in classical and func-
tional analysis.

A. Wilansky147

The relevance of the Baire Category theorem to the
fundamental metalogical principle of deductive com-
pleteness has long been known.

R. Goldblatt148

The above quotes indicate the usefulness of the Baire Category Theorem
in different areas of mathematics. Like the Ascoli Theorem it comes in many
different forms. We will restrict our attention to the more elementary forms
given below.

Definition 4.99. A topological space X is called Baire iff in X each countable
intersection of dense, open subsets is dense.

Definition 4.100. The Baire Category Theorem states that all com-
pletely149 metrizable spaces and all compact Hausdorff spaces are Baire.

Disaster 4.101. 1. There may exist completely metrizable spaces that fail
to be Baire.

2. There may exist compact Hausdorff spaces that fail to be Baire.

We will start by presenting classes of topological spaces that are Baire in
ZF and continue by widening these classes by stepwise adding set theoretical
conditions of increasing strength.
146 [Wil70, p. 185]
147 [Wila70, p. 178]
148 [Gol85]
149 A pseudometric space is called complete iff in X every Cauchy sequence con-

verges. For a completeness concept based on Cauchy filters see Exercise E 4.
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Theorem 4.102. 150 Separable completely metrizable spaces are Baire.

Proof. Let X be a topological space with a compatible complete metric d. Let
(Bn) be a sequence of dense, open sets in X, let B be a non–empty open set
in X, and let {xn | n ∈ N} be dense in X. For each n ∈ N

+ and each x ∈ X,
define S(x, n) = {y ∈ X | d(x, y) < 1

n} and T (x, y) = {y ∈ X | d(x, y) ≤ 1
n}.

Construct, via recursion, a sequence (yn, rn) of pairs, with yn ∈ X and rn > 0
as follows:

y0 = xmin{m∈N|xm∈(B∩B0)}
r0 = (min{m ∈ N

+ | T (y0,m) ⊆ (B ∩ B0)})−1
.

yn+1 = xmin{m∈N|xm∈(S(yn,rn)∩Bn+1)}.

rn+1 = min
{

1
n+1 , 1

min{m∈N+|T (yn+1,m)⊆(S(yn,rn)∩Bn+1)}

}
.

Then (yn) is a Cauchy–sequence, which thus converges to some point y.
By construction,
y ∈ (B ∩

⋂

n∈N

Bn). Thus
⋂

n∈N

Bn is dense in X.

Theorem 4.103. 151 Countably compact pseudometrizable spaces are Baire.

Proof. Let X be a countably compact space with a compatible pseudometric
d. Let (Bn), B, S(x, n), and T (x, n) be as in the previous proof. Construct,
via recursion, a sequence of pairs (kn, An), consisting of positive integers kn

and non–empty, open subsets An of X, as follows:

k0 = min{m ∈ N
+ | ∃x ∈ X T (x,m) ⊆ (B ∩ B0)}.

A0 =
⋃
{S(x, k0) | T (x, k0) ⊆ (B ∩ B0)}.

kn+1 = min{m ∈ N
+ | ∃x ∈ X T (x,m) ⊆ (An ∩ Bn+1)}.

An+1 =
⋃
{S(x, kn+1) | T (x, kn+1) ⊆ (An ∩ Bn+1)}.

Then An+1 ⊆ (An ∩ Bn ∩ B). Thus, by countable compactness of X,

∅ �=
⋂

n∈N

clAn =
⋂

n∈N

An ⊆ (B ∩
⋂

n∈N

Bn)

. Consequently
⋂

n∈N

Bn is dense in X.

Theorem 4.104. 152 Equivalent are:

1. CC.
2. Totally bounded, complete pseudometric spaces are Baire.
3. Second countable, complete pseudometric spaces are Baire.

150 [Bru83]
151 [HeKe2000a]
152 [BeHe98]
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Proof. (1) ⇒ (2) By Proposition 3.26, (1) implies that every totally bounded,
complete pseudometric space is compact. Thus (2) follows from Theorem
4.103.

(2) ⇒ (3) Immediate via Exercise E 3.
(3) ⇒ (1) Assume that CC fails. Then, by Theorem 2.12 resp. by Exercises

to Section 2.2, E 4, there exists a sequence (Xn) of non–empty sets such that
each sequence meets only finitely many Xn’s. Let ϕ : N → {r ∈ Q | 0 ≤ r ≤ 1}
be a bijection. Then the space (X, d), defined by:

X =
⋃

n∈N

(Xn × {n})

d
(
(x, n), (y,m)

)
=

{
|ϕ(n) − ϕ(m)|, if n �= m

0, if n = m,

is a second countable complete pseudometric space that fails to be Baire, since
each Bn = X \ (Xn × {n}) is dense and open in (X, d), but

⋂

n∈N

Bn = ∅.

Theorem 4.105. 153 Equivalent are:

1. CC.
2. Countable products of compact pseudometric spaces are Baire.
3. XN is Baire for each compact pseudometric space X.

Proof. (1) ⇒ (2) Let
(
(Xn, dn)

)
be a sequence of compact pseudometric

spaces. Then d
(
(xn), (yn)

)
= max{min{2−n, dn(xn, yn)} | n ∈ N} defines

a compatible pseudometric on the topological product space X =
∏

n∈N

Xn.

Since each (Xn, dn) is complete and totally bounded, so is (X, d). Thus, by
(1) and Proposition 3.26, X is compact. Consequently Theorem 4.103 implies
that X is Baire.

(2) ⇒ (3) Obvious.
(3) ⇒ (1) Let (Xn)n∈N be a sequence of non–empty sets. Define a compact

pseudometric space (X, d) by:

X = {(0, 0)} ∪
⋃

n∈N+

(Xn × {n})

d
(
(x, n), (y,m)

)
=






0, if n + m = 0
1

n+m , if n + m �= 0 and n · m = 0
| 1n − 1

m |, if n · m �= 0.

In the product space (X, d)N, for each n ∈ N
+, the set Bn =

⋃

m∈N+
π−1

m

[
Xn ×

{n}
]

(where πm denotes the m–th projection) is dense and open. Thus, by (3),
there exists an element (dn) in

⋂

n∈N+
Bn. Each dn has the form (yk(n), l(n)).

153 [HeKe2000a]
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Thus (dn) ∈ Bm implies that there exists some n ∈ N
+ with (yk(n), l(n)) ∈(

Xm × {m}
)
. Therefore the sequence (yk(n))n∈N+ meets each Xm. Conse-

quently the sequence (xm)m∈N+ , defined by xm = yk(min{n∈N|yk(n)∈Xm}) is an
element of

∏

m∈N+
Xm.

Theorem 4.106. 154 Equivalent are:

1. DC.
2. Complete pseudometric spaces are Baire.
3. a) Compact Hausdorff spaces are Baire

and
(b) Countable products of compact (Hausdorff) spaces are compact.

4. Countable products of compact Hausdorff spaces are Baire.
5. Countable products of discrete spaces are Baire.
6. XN is Baire, for each discrete space X.
7. (αX)N is Baire, for the 1–point–compactification αX of each discrete space

X.

Proof. (1) ⇒ (2) Let X be a complete pseudometric space with pseudometric
d. For x ∈ X and r > 0, define S(x, r) = {y ∈ X | d(x, y) < r} and
T (x, r) = {y ∈ X | d(x, y) ≤ r}. Let (Bn) be a sequence of dense, open sets
in X.

Consider:
Y = {(n, x, r) ∈ N × X × R | 0 < r < 2−n and T (x, r) ⊆ (B ∩

⋂

m≤n

Bm)}.

Define a binary relation � on Y by:

(n, x, r)�(n̄, x̄, r̄) ⇔
(
n < n̄ and T (x̄, r̄) ⊆ S(x, r)

)
.

Then, for each y ∈ Y , there exists some ȳ ∈ Y with y�ȳ. Thus, by (1), there
exists a sequence (yn) in Y with yn�yn+1 for each n. This implies that, for
yn = (mn, xn, rn), the sequence (xn) is Cauchy and thus converges to some
point x in

⋂

n∈N

T (xn, rn) ⊆ (B ∩
⋂

m∈N

Bm).

(1) ⇒ (3) (b) follows from Proposition 4.72. For (a), consider a compact
Hausdorff space X, let (Bn) be a sequence of dense, open sets in X, and
let B be a non–empty open set in X. Consider the set Y of all pairs (n,A),
consisting of n ∈ N and non–empty, open subsets A of X such that clA, the
closure of A, is contained in B ∩

⋂

m≤n

Bm. Define a binary relation � on Y by:

(n,A)�(n̄, Ā) ⇔ (n < n̄ and clĀ ⊆ A).

Then, for each y ∈ Y , there exists ȳ ∈ Y with y�ȳ. Thus, by (1), there
exists a sequence (yn) in Y with yn�yn+1 for each n. This implies that, for
yn = (mn, An), we obtain
154 [Bla77], [Bru83], [HeKe2000a].
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· · · clAn+1 ⊆ An ⊆ · · · clA1 ⊆ A0 ⊆ clA0.

Thus there exists some point x ∈
⋂

n∈N

clAn ⊆ (B ∩
⋂

m∈N

Bm).

(2) ⇒ (5) Immediate, since countable products X =
∏

n∈N

Xn of discrete

spaces Xn are completely metrizable, e.g., by the metric

d
(
(xn), (yn)

)
=

{
0, if (xn) = (yn)

2−min{n∈N|xn �=yn}, otherwise.

(5) ⇒ (6) Obvious.
(6) ⇒ (1) Let X be a non–empty set and � a relation on X that satisfies:

∀x ∈ X ∃y ∈ X x�y.

Consider X as a discrete space. Then, by (6), the product space Y = XN is
Baire. For each n ∈ N, define

Bm = {(xn) ∈ Y | ∃n ∈ N xm�xn}.

Then the Bm’s are dense and open in the non–empty space Y . Thus there
exists some point (xn) in

⋂

m∈N

Bm. By construction:

∀n ∈ N ∃m ∈ N xn�xm.

Define, via recursion, a sequence (x̄n) as follows:

x̄0 = x0

x̄n+1 = xmin{m∈N|x̄n�xm}
.

Then x̄�x̄n+1 for each n ∈ N.
(3) ⇒ (4) ⇒ (7) Obvious.
(7) ⇒ (1) Follows precisely as in the above proof of the implication (6) ⇒

(1).

Remark 4.107. By the above theorem the complete metric version of the
Baire Category Theorem is equivalent to DC. Whether the compact Hausdorff
version is not only implied by DC, but also equivalent to DC (resp., whether
condition (3a) implies (3b) — and thus DC) remains an open question, cf.
Exercises E 5. However, it is known that condition (3b) does not imply (3a)
— and hence DC, as pointed out in Remark 4.73.

Further variants of the Baire Category Theorem can be obtained by mod-
ifying the concept of completeness. For a completeness concept, obtained by
means of Cauchy filters instead of Cauchy sequences see Exercises E 4. Discus-
sions of more complicated completeness concepts such as Čech–completeness,
pseudo–completeness, regular–closedness or pseudocompactness are beyond the
scope of this book. See in particular [Oxt61], [Gol85], [HeKe99].
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Let us finally turn to another variant of the compactness concept, namely
to ultrafilter–compactness, in order to demonstrate that even DC may not
always suffice to obtain a suitable variant of the Baire Category Theorem.

Theorem 4.108. 155 Equivalent are:

1. DC and WUF.
2. DC and WUF(N)
3. Regular, ultrafilter–compact spaces are Baire.

Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (1) Let X be an infinite set. By Theorems 2.12 and 2.14, X is

D–infinite, i.e., there exists an injection f : N → X: Let U be a free ultrafilter
on N. Then {V ⊆ X | f−1[V ] ∈ U} is a free ultrafilter on X.

(2) ⇒ (3) Let X be a regular ultrafilter–compact space, let (Bn) be a
sequence of dense, open sets in X, and let B be a non–empty open set in
X. Construct — as in the proof of the implication (1) ⇒ (3) of Theorem
4.106 — a sequence (An) of non–empty open sets in X with clAn+1 ⊆ An for
each n ∈ N, and

⋂

n∈N

An =
⋂

n∈N

clAn ⊆ (B ∩
⋂

m∈N

Bm). By Theorem 2.12 there

exists an element (an) in
∏

n∈N

An. If A = {an | n ∈ N} is finite, there exists

some a ∈ A that is contained in infinitely many and thus in all Am’s, and
consequently in B ∩

⋂

m∈N

Bm. Otherwise, A is countable, thus there exists a

free ultrafilter U on A. Consequently W = {V ⊆ X | (V ∩ A) ∈ U} is a free
ultrafilter on X, and hence converges to some point x. As a cluster point of
W, x belongs to clAn for each n ∈ N, and thus to B ∩

⋂

m∈N

Bm.

(3) ⇒ (2) Let X be a discrete space, let αX be the 1–point–compacti-
fication of X, and let Y = (αX)N be the corresponding product. Then Y
is a regular, ultrafilter–compact space, thus, by (3), Baire. Hence DC holds
by Theorem 4.106. If there would be no free ultrafilter on N, then the space
Q would be a regular, ultrafilter–compact space which fails to be Baire —
contradicting condition (3).

Note that the conditions DC and WUF are independent of each other.
There exist models156 of ZF that satisfy PIT and hence WUF but not DC;
and vice versa, there exist models157 of ZF that satisfy DC, but fail to satisfy
even WUF(?).

Exercises to Section 4.10:

E 1. Show that finite intersections of dense, open sets are dense and open.

155 [HeKe2000a]
156 E.g., Cohen’s First Model A4 (M1 in [HoRu98]).
157 E.g., Pincus–Solovay’s Model A6 (M27 in [HoRu98]).
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E 2. 158 Show that, under CC, totally bounded pseudometric spaces are sep-
arable.

E 3. 159 Show that if a second countable space X is pseudometrizable there
exists a compatible totally bounded pseudometric for X.

E 4. 160 A pseudometric space X is called filter–complete iff in X every
Cauchy filter converges. Show that:
a) Every filter–complete pseudometric space is complete.
b) Every complete pseudometric space is filter–complete iff CC holds.
c) Second countable, filter–complete pseudometric spaces are Baire.

E 5. 161Show the equivalence of:
a) Compact Hausdorff spaces are Baire.
b) DMC, the Principle of Dependent Multiple Choices, stating that for

every non–empty set X and every relation � on X satisfying

∀x ∈ X ∃y ∈ X x�y

there exists a sequence (Fn) of non–empty finite subsets Fn of X,
satisfying

∀n ∀x ∈ Fn ∃y ∈ Fn+1 x�y.

E 6. 162 Show that CC(R) implies that separable, compact Hausdorff spaces
are Baire.

E 7. 163 Show the equivalence of:

a) DC.
b) Products of compact Hausdorff spaces are Baire.
c) Compact Hausdorff spaces and Cantor–cubes 2I are Baire.

E 8. 164 Show the equivalence of:
a) CC.
b) Sequentially compact pseudometric spaces are Baire.

E 9. 165 Show the equivalence of:
a) CC(fin).
b) Countable products of finite Hausdorff spaces are Baire.

158 [BeHe98]
159 [BeHe98]
160 [HeKe2000a]
161 [FoMo98]
162 [Ker2003]
163 [HeKe99], [HeKe99a].
164 [HeKe2000a]
165 [HeKe2000]
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E 10. 166 Show that, for each n ∈ N, the following conditions are equivalent:
a) CC(≤ n) [see Exercises to Section 3.1, E 1].
b) Countable products of Hausdorff spaces with at most n+1 points each

are Baire.

E 11. 167 Show that the Baire property for Cantor–cubes 2I implies each of
the following conditions:

a) PX is D–infinite, for each infinite set X.
b) CC(fin).
c) There are no amorphous sets. [See Exercises to Section 4.1, E 11.]

4.11 Disasters in Graph Theory: Coloring Problems

I am sure that a2 > 4 but cannot prove it.
P. Erdös168

To investigate coloring problems in graph theory we need to build up some
terminology first:

Terminology 4.109. A graph is a pair (X, �), consisting of a set X, whose
elements are called vertices, and a symmetric, antireflexive binary relation �
on X (i.e., x�y ⇒ (y�x and x �= y)), whose elements (x, y) are called edges.

A homomorphism f : (X, �) → (Y, σ) between graphs is a map f : X → Y
satisfying

x�y ⇒ f(x)σf(y).

A graph (X, �) is called a subgraph of a graph (Y, σ) provided that X is a
subset of Y and � = σX is the restriction of σ to X × X.

A graph (X, �) is called complete provided that

� = {(x, y) ∈ X × X | x �= y}.

n denotes the complete graph with n = {0, 1, . . . , n− 1} as set of vertices;
the elements of n being called colors.

An n–coloration of the graph G is a homomorphism f : G → n.
A graph G is called n–colorable provided there exists some n–coloration of

G.
A graph (X, �) is called connected provided that for any two distinct ele-

ments x and y of X there exists some tuple (x0, x1, . . . , xn) with

x0 = x, xn = y, and xi�xi+1 for each i = 0, . . . , n − 1.

166 [HeKe2000]
167 [HeKe99a]
168 [Erd80]. Here a2 is the chromatic number χ(G) of the graph G, described in

Exercise E 9.
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The problem we are concerned with is whether a given graph is n–
colorable, where n is some natural number. Obviously, n + 1 is not n–
colorable. A necessary condition for the n–colorability of a graph G is that
each of its finite subgraphs is n–colorable. In ZFC this condition is also suf-
ficient:

Theorem 4.110. In ZFC, for each n, the following conditions on a graph G
are equivalent:

1. G is n–colorable.
2. Each finite subgraph of G is n–colorable.

Proof. See Theorems 4.113 and 4.115 below.

The above result remains true in ZF only for n = 0 or n = 1.

Disaster 4.111. It may happen that every finite subgraph of some graph G
is 2–colorable, but G fails to be n–colorable for any n.

Proof. Let (Xn)n∈N be a sequence of 2–element sets with
∏

n∈N

Xn = ∅. Consider

the graph G = (X, �) defined by

{
X =

⋃

n∈N

(Xn × {n})

� ={
(
(x, n), (y,m)

)
∈X2 | n=m and x �=y}

.

Then every finite subgraph of G is 2–colorable, but G is n–colorable for no
n ∈ N.

For connected graphs and n = 2, Theorem 4.110 can be salvaged however:

Proposition 4.112. For connected graphs G, the following conditions are
equivalent:

1. G is 2–colorable.
2. Every finite subgraph of G is 2–colorable.

Proof. Let every finite subgraph of the connected graph G = (X, �) be 2–
colorable. If G is empty, nothing more need be said. Otherwise select an
element a in x, and define, for each x ∈ X, n(x) to be the smallest n ∈ N such
that there exists some (n+1)–tuple (x0, x1, . . . , xn) in X with x0 = a, xn = x,
and xi�xi+1 for i = 0, . . . , n − 1. Then the function f : G → 2, defined by

f(x) =
{

0, if n(x) is even
1, if n(x) is odd,

is a 2–coloration of G. (Cf. Exercise E 1).

Combining the ideas that enter into the proofs of the results 4.111 and
4.112, we obtain:
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Theorem 4.113. 169 Equivalent are:

1. If every finite subgraph of a graph G is 2–colorable, then so is G.
2. AC(2).

Proof. (1) ⇒ (2) Let (Xi)i∈I be a family of 2–element sets. Consider the

graph G = (X, �), defined by

{
X =

⋃

i∈I

(Xi × {i})

� = {
(
(x, i), (y, j)

)
∈ X2 | i = j and x �= y}.

Then every finite subgraph of G is 2–colorable. Thus, by (1), G itself is
2–colorable. Let f : G → 2 be a 2–coloration of G. Then, for each i ∈ I, there
exists precisely one element xi of Xi with f(xi, i) = 0. Thus (xi)i∈I ∈

∏

i∈I

Xi.

(2) ⇒ (1) Let G = (X, �) be a non–empty graph, such that all of its finite
subgraphs are 2–colorable. Call a subset C of X a component of G provided
that the subgraph (C, �C) of G, determined by C, is a maximal connected
subgraph of G. Let I be the set of all components of G. Then for each C in I,
the graph (C, �C) is connected and hence by Proposition 4.112, 2–colorable.
Moreover, as can be seen easily (cf. Exercise E 2) for each C in I, the set
XC of all 2–colorations of (C, �C) contains precisely 2 elements. Thus, by (2),
there exists a family (fC)C∈I of 2–colorations fC : (C, �C) → 2. Consequently
the function f : G → 2, defined by

f(x) = fC(x), if x ∈ C

is a 2–coloration of G.

As can be seen easily (cf. Exercise E 3), the implication (1) ⇒ (2) of the
above Theorem 4.113 remains valid if the number 2 is replaced by any natural
number n ≥ 3. However, the inverse implication (2) ⇒ (1) may fail.

Disaster 4.114. Even under AC(3), there may exist graphs that fail to be
3–colorable even though all their finite subgraphs are 3–colorable.

Proof. This follows from the next theorem and the fact 170 that AC(3) does
not imply PIT.

Theorem 4.115. 171 Equivalent are:

1. If every finite subgraph of a graph G is 3–colorable, then so is G.
2. PIT.

Proof. (1) ⇒ (2) Let B be a Boolean algebra with 0 �= 1. We will construct
a graph G = (X, �) such that

169 [Myc61]
170 Pincus’ Model (M43 in [HoRu98]) satisfies AC(fin), but fails to satisfy PIT.
171 [BrEr51], [Laeu71].
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(a) Each finite subgraph of G is 3–colorable.
(b) If G is 3–colorable, then B has a maximal ideal.

This then, together with (1), will imply (2).
G will be constructed in 3 steps.

Step 1: G1 = (X1, �1) with X1 = B and �1 = {(x, x∗) | x ∈ B}, where x∗

is the complement of x in B.
Step 2: G2 = (X2, �2) with X2 = X1 ∪ {a}, where a is some element not

contained in X1 and �2 = �1 ∪ ({a} × X1) ∪ (X1 × {a}).
Step 3: Let P be the set of all subsets {x, y} of B such that x and y are

neither comparable nor dual to each other. Associate with each {x, y} ∈ P a
graph G(x, y) =

(
A(x, y), �(x, y)

)
as depicted:

a(x, y)
���

b(x, y)

x ∨ y
���

G(x, y)

x y

Define the graph G = (X, �) by:

X = X2 ∪
⋃

{x,y}∈P

A(x, y)

� = �2 ∪
⋃

{x,y}∈P

�(x, y).

Step 1 guarantees that any 3–coloration f of G satisfies f(x) �= f(x∗) for
each x ∈ B.

Step 2 guarantees that every 3–coloration f of G induces a 2–coloration
of G1 and that every 2–coloration of G1 can be extended to a 3–coloration of
G2.

Step 3 guarantees that, for each {x, y} ∈ P , a map f : {x, y, x ∨ y} → 3
can be extended to a 3–coloration f̃ of G(x, y) if and only if f satisfies the
condition:

(*) If f(x) = f(y) then f is constant.
Now we can prove (a) and (b):

Proof of (a): Let H = (Z, �Z) be a finite subgraph of G. Then there exists a
finite subalgebra K of B with Z ⊆

(
K ∪ {a} ∪

⋃

{x,y}∈(P∩PK)

A(x, y)
)
.

As a finite Boolean algebra with 0 �= 1, K has a maximal ideal I. Its
complement F = K\I has the form F = {x ∈ K | x∗ ∈ I}. We construct a
3–coloration G : H → 3 in 3 steps:

Step 1: For x ∈ (Z ∩ X1), define G(x) =
{

0, if x ∈ I
1, if x ∈ F

.

Step 2: If a ∈ Z, define G(a) = 2.
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Step 3: If z ∈
(
Z∩A(x, y)

)
for some {x, y} ∈ (P∩PK), define g(z) = f̃(z),

where f is the restriction of g to the set {x, y, x ∨ y} and f̃ is a 3–coloration
extension to G(x, y), which exists since f satisfies the condition (*).
Proof of (b): Let f : G → 3 be a 3–coloration of G. Assume w.l.o.g. that
f(a) = 2 and f(0) = 0. Define I = B ∩ f−1(0). Then F = B ∩ f−1(1) is the
complement B\I of I in B. Moreover, �1 ⊆ � implies that F = {x∗ | x ∈ I}.
Furthermore, for {x, y} ∈ (P ∩PI) we must have (x∨ y) ∈ I, since otherwise
the restriction of f to {x, y, x∨y} would violate the above condition (*). Thus
I is closed under joins x∨y. Analogously F is closed under joins x∨y. Hence,
by Exercise E 5, I is a maximal ideal in B.

(2) ⇒ (1) Let G = (X, �) be a graph such that each finite subgraph of G
is 3–colorable. Let I be the set of all finite subgraphs of G. For each K ∈ I
let CK be the set of all 3–colorations of K. Consider each CK as a finite,
discrete topological space. Then, by (2) and Exercises to Section 4.8, E 7,
the product space C =

∏

K∈I

CK is compact and non–empty. For every pair

(L,R) of elements of I with L ⊆ R, the set A(L,R) = {(fK) ∈ C | f |L
is the restriction fR to L} is closed in C. Moreover, the sets A(L,R) have
the finite intersection property. Thus compactness of C implies that there
exists some element (fK)K∈I in the intersection of all the A(L,R)’s. For each
x ∈ X consider the subgraph Kx = ({x}, ∅) of G, and define f : X → 3 by
f(x) = fKx

(x). Then f : G → 3 is a 3–coloration of G.

Exercises to Section 4.11:

E 1. Define, for graphs G, the concept of cycles in G, and show that for
connected graphs G the following conditions are equivalent:

(1) G is 2–colorable.
(2) G has no odd–numbered cycles.

E 2. Show that a connected graph G has either precisely two 2–colorations or
none at all.

E 3. Show that, for every natural number n ≥ 2, AC(n) is implied by the
assumption that a graph is n colorable whenever all its finite subgraphs
are so.

E 4. Let n be a natural number ≥ 4. Show the equivalence of:

(1) If every finite subgraph of a graph G is n–colorable, then so is G.
(2) PIT.

[Hint: Use Step 2 in the proof of Theorem 4.115.]

E 5. Let I be a subset of a Boolean algebra B, and F = B\I. Show the
equivalence of:

(1) I is a maximal ideal in B.
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(2) I is a prime ideal in B.
(3) F is a maximal filter in B.
(4) F is a prime filter in B.
(5) The following conditions hold:

(a) 0 ∈ I.
(b) x ∈ I ⇔ x∗ ∈ F (where x∗ is the complement of x in B).
(c) (x ∈ I and y ∈ I) ⇒ (x ∨ y) ∈ I.
(d) (x ∈ F and y ∈ F ) ⇒ (x ∨ y) ∈ F .

(6) The map f : B → 2, where 2 is the 2–element Boolean algebra, defined
by

f(x) =
{

0, if x ∈ I
1, if x ∈ F,

is a Boolean homomorphism.

E 6. Consider the category Grph of graphs and homomorphisms. Show that:
(1) Grph has products of non–empty families.
(2) Grph has no terminal object.
(3) Grph has coproducts (called sums).
(4) Grph has equalizers but not coequalizers.
(5) If (Gi)i∈I is a family of graphs, such that at least one member Gi0 is

n–colorable, then so is their product
∏

i∈I

Gi.

[Hint: If f : Gi0 → n is an n–coloration of Gi0 and πi0 :
∏

i∈I

Gi → Gi0

is the i0–th projection, then f0 ◦ πi0 :
∏

i∈I

Gi → n is an n–coloration.]

(6) For each n ≥ 2, let Cn = (n, σn) be defined by

mσnk ⇔ (|m − k| = 1 or {m, k} = {0, n − 1}).

Then:
(a) For odd n ≥ 3 the graph Cn is not 2–colorable.
(b) Under AC(2) or AC(R), the product

∏

n∈N

C2n+3 is 2–colorable.

(7) Equivalent are:
(a) Sums of 2–colorable graphs are 2–colorable.
(b) AC(2).

(8) Let f : G → H be a homomorphism. If H is n–colorable, then so is G.
(9) Every graph G = (X, �) is a quotient of a 2–colorable graph H =

(Y, σ), i.e., there exists a surjective homomorphism f : H → G such
that for any pair (x1, x2) ∈ � there exists some pair (y1, y2) ∈ σ with
f(y1) = x1 and f(y2) = x2.
[Hint: Define Y = X � (� × {0, 1}),
σ =

{((
(x, y), i

)
,
(
(x, y), j

))
| (x, y) ∈ � and {i, j} = {0, 1}

}

,
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f : Y → X by f(a) =






a, if a ∈ X
x, if a =

(
(x, y), 0

)

y, if a =
(
(x, y), 1

)
,

and g : H → 2 by g(a) =
{

0, if a ∈ X
i, if a =

(
(x, y), i

)
.

]

E 7. For each set X, embed the graph G(X) = (PX, {(A,X\A) | A ⊆ X})
into a graph H(X) such that for each filter F on X the following condi-
tions are equivalent:

(1) There exists a 3–coloration of H(X) that is constant on F .
(2) F can be enlarged to an ultrafilter on X.

E 8. Show that a graph G = (X, �) is
(1) 0–colorable iff X = ∅.
(2) 1–colorable iff � = ∅.

E 9. 172 For any graph G, that is n–colorable for some n, its chromatic number
χ(G) is the smallest n for which G is n–colorable.
Consider the graph G = (R2, �), defined by x�y iff the distance between
x and y is one. Show that:

(1) 4 ≤ χ(G).
(2) χ(G) ≤ 7.
(3) If χ(G) = 4 and DC holds, then there exist non–Lebesgue–measurable

subsets of R.
Further:

(4) Investigate whether χ(G) depends on some choice–principle.
[Hints: For (1) consider the Moser Spindle
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•D • G

•
A

•E • C

•B • F

as a finite subgraph of G. For (2) tile the plane by regular hexagons of
suitable size].

172 [Soi2003], [Fal81].
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E 10. 173 Consider the Shelah–Soifer graph G = (R, �), defined by
x�y ⇔ ∃r ∈ Q ∃ξ ∈ {

√
2,−

√
2} y = x + r + ξ.

Show that:
(1) G has no odd–numbered cycles.
(2) Under AC(R) or AC(2), G is 2–colorable.
(3) If f : G → 2 is a 2–coloration of G, then the sets f−1(0) and f−1(1)

are non–Lebesgue–measurable.
(4) If f : G → n is an n–coloration of G, then at least one of the coloring

sets f−1(i) is non–Lebesgue–measurable.

Non–Lebesgue–measurable subsets

of R exist

Shelah–Soifer Graph

is 2–colorable

AC(R) AC(2)

�

� �

[Hint: For (3): Use the Exercises to Section 5.1, E 14 and the fact that
the sets f−1(0) and f−1(1) are congruent to each other via arbitrary
small shifts.]

E 11. 174

(1) Define, for arbitrary cardinals c, the concepts of c–colorability and of
chromatic number for graphs.

(2) Show that X is well–orderable iff the graph (X ×ℵ, �), where ℵ is the
Hartogs–number of X and (x, α)�(y, β) iff x �= y and α �= β, has a
chromatic number.

(3) Show that it every graph has a chromatic number iff AC holds.
(4) Show that CC(R) holds and the graph G, defined in E 10. above, is

ℵ0–colorable, then there exist non–Lebesgue–measurable subsets of R.
(5) Is the graph G, defined in Exercise E 10, ℵ1–colorable? Does G have

a chromatic number in each model of ZF?

173 [ShSo2003], [HeRh2005].
174 [GaKo91], [ShSo2003], [HeRh2005].
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Disasters with Choice

As is well known there are just as many (Lebesgue–) measurable
sets as there are non–measurable ones: namely 2ℵ [where ℵ = |R|].
This is peculiar since we are used to the fact that in real analysis
the pathologies predominate.

J. von Neumann1

However, as von Neumann points out, the above anomaly is only appar-
ent — caused by the fact that there are so many sets of measure zero (namely
2ℵ). If sets A and B are called equivalent provided that their symmetric
difference A∆B is of measure zero, the normal pathology of real analysis in
the ZFC–setting is restored: there are still 2ℵ equivalence classes consisting of
non–measurable sets (equivalently: containing a non–measurable set) but only
ℵ equivalence classes consisting of measurable sets (equivalently: containing a
measurable set).

Observe further that not even complex analysis is devoid of pathologies.
See, e.g., Exercises to Section 5.1, E 7.

5.1 Disasters in Elementary Analysis

Logic sometimes breeds monsters. For half a century there has
been springing up a host of weird functions which seems to strive
to have as little resemblance as possible to honest functions that
are of some use . . . They are invented on purpose to show our
ancestor’s reasonings at fault, and we shall never get anything
more out of them.

H. Poincaré2

1 [vNeu29, p. 86]
2 Mathematical definitions and education (1906). Taken from [Fef2000].
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Though the Axiom of Choice is responsible for many beautiful results, it
is equally responsible for the existence of several dreadful monstrosities —
unwelcome and unneeded.

Definition 5.1. The equation f(x + y) = f(x) + f(y) is called the Cauchy–
equation.

Consider a function f : R → R that satisfies the Cauchy–equation for all real
x and y. Then it is easily seen that

• f(r · x) = r · f(x) for all rational r and real x, i.e., f is Q–linear.

In particular:

• f(r) = f(1) · r for all rational r.

So continuity of f would imply:

• f(x) = f(1) · x for all x ∈ R.

Are there solutions of the Cauchy–equation that fail to be continuous?
None has ever been constructed and in ZF none will ever be, since there
are ZF–models without non–continuous solutions of the Cauchy–equation3.
However the Axiom of Choice guarantees the existence of such monsters4;
even worse, under AC there are far more undesirable solutions of the Cauchy–
equation than there are desirable ones:

Disaster 5.2. In ZFC there are

1. 2ℵ0 continuous solutions f : R → R, and
2. 2(2ℵ0 ) non–continuous solutions f : R → R of the Cauchy–equation.

Proof. (1) For each r ∈ R the function f : R → R, defined by f(x) = r · x is a
continuous solution of the equation (1). There are no others, as noted above.

(2) In ZFC, R, considered as a vector space over Q, has a basis B, also
called a Hamel basis. Moreover, a simple computation shows that |B| = 2ℵ0 .
Since any map B → R can be extended uniquely to a linear map R → R,
there are precisely

|RB | = |R||B| = (2ℵ0)2
ℵ0 = 2ℵ0·2ℵ0 = 2(2ℵ0 )

solutions to be Cauchy–equation. Since only 2ℵ0 of these are continuous, there
are 2(2ℵ0 ) non–continuous ones.

Moreover, the non–continuous solutions of the Cauchy–equation have
rather strange and unwanted features.

3 E.g., Shelah’s Second Model A2 (M38 in [HoRu98]).
4 Observe, however that, although AC is the culprit in the present case, similar

monsters can be constructed in ZF. See Exercise E 9.
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Definition 5.3. Non–continuous solutions of the Cauchy–equation are called
ugly.

Theorem 5.4. 5 If f : R → R is ugly, then its graph
G(f) = {

(
x, f(x)

)
| x ∈ R} is dense in R

2.

Proof. Let (x, y) be an element of R
2 and let U be a neighborhood of (x, y)

in R
2. Since f is ugly there exist real numbers a �= 0 and b �= 0 such that the

quotients α = f(a)
a and β = f(b)

b are different. Consequently, u =
(
a, f(a)

)

and v =
(
b, f(b)

)
are linearly independent vectors in the real vector space R

2,
and thus form a basis of R

2. Consequently, there exist real numbers6 p and q
with (x, y) = p ·u+ q ·v. Since Q

2 is dense in R
2 and the expression p ·u+ q ·v

depends continuously on p and q, there exist rational numbers p̄ and q̄ with
(p̄ · u + q̄ · v) ∈ U . However

p̄ · u + q̄ · v =
(
p̄ · a + q̄ · b, p̄ · f(a) + q̄ · f(b)

)
=

(
p̄ · a + q̄ · b, f(p̄ · a + q̄ · b)

)
.

Thus (p̄ · u + q̄ · v) ∈
(
U ∩ G(f)

)
.

Theorem 5.5. 7 Ugly functions are non–measurable.

Proof. Let f be ugly. Assume8 w.l.o.g. that there exist real numbers a �= 0
and b �= 0 with f(a) = 1 and f(b) = 0. For n ∈ Z, define An = f−1[n, n + 1)
and choose qn ∈ Q with |n · a − qn · b| < 1

2 . Define B0 = A0 ∩ [− 1
2 , 3

2 ] and

Bn = B0 + n · a − qn · b = {x + n · a − qn · b | x ∈ B0} for n �= 0.

Then x ∈ (An ∩ [0, 1]) implies that y = x − (n · a − qn · b) ∈ (A0 ∩ [− 1
2 , 3

2 ]),
i.e., y ∈ B0, and thus x = y + (n · a − qn · b) ∈ Bn. Consequently

(An ∩ [0, 1]) ⊆ Bn ⊆ [−1, 2].

Thus:

[0, 1] = [0, 1] ∩
⋃

n∈Z

An =
⋃

n∈N

([0, 1] ∩ An) ⊆
⋃

n∈Z

Bn ⊆ [−1, 2].

This implies that B0 (and hence A0) are non–measurable, since otherwise
the Bn’s, being pairwise disjoint and pairwise congruent, would have the same
measure µ(Bn) = µ(B0) and thus9

5 [Ham05]
6 namely p = y−βx

a·(α−β)
and q = α·x−y

b·(α−β)
.

7 [Sie20], [Bana20], [Kac36/37], [AlOr45], [Halp51].
8 If necessary, choose real numbers a 	= 0 and b 	= 0 with f(a)

a
	= f(b)

b
and replace

f by the function g, defined by g(x) = (b · f(a)− a · f(b))−1 · (b · f(x)− f(b) ·x).
9 Here we use σ–additivity of Lebesgue–measure (which requires some choice prin-

ciple, cf. Exercise E 13.). However, our use of choice principles can be avoided.
See Exercise E 14.
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1 = µ
(
[0, 1]

)
=

∑

n∈Z

µ(B0) ≤ µ
(
[−1, 2]

)
= 3,

which is impossible. Consequently f is not measurable.

This result guarantees the existence of some further monsters:

Disaster 5.6. In ZFC there are

1. 2(2ℵ0 ) non–measurable functions f that satisfy the Cauchy–equation,
2. 2(2ℵ0 ) non–measurable subsets of R.

Proof. (1) Immediate from Disaster 5.2 and Theorem 5.5.
(2) The existence of non–measurable subsets of R follows immediately

from (1). Their number is computed easily via the following “construction”
of the Vitali monsters.

5.7. The Vitali Monsters10 V
Let � be the equivalence relation on R, defined by

x�y ⇔ (x − y) ∈ Q.

Then each of the equivalence classes w.r.t. � is dense in R, thus meets the
interval [0, 1]. By AC(R), there exists a subset V of [0, 1] that contains pre-
cisely one element of each of these equivalence classes. The set I = Q∩ [−1, 1]
is countable. For each r ∈ I define Vr = {v + r | v ∈ V }. Then A =

⋃

r∈I

Vr is

a countable union of pairwise disjoint sets satisfying [0, 1] ⊆ A ⊆ [−1, 2]. If V
would be measurable then each of the Vr’s would be measurable and would
have the same measure as V . Thus A would be measurable and its measure
would be 0, in case V would have measure 0, and ∞, otherwise. The former is
not possible, since [0, 1] ⊆ A; and the latter is not possible, since A ⊆ [−1, 2].
Consequently, V is not measurable. Since there are precisely 2ℵ0 equivalence
classes w.r.t. �, there exist precisely ℵ(2ℵ0 )

0 = 2(2ℵ0 ) Vitali Monsters.

Here follow some different monster productions in ZFC:

5.8. The Bernstein Monsters11 B
Since the space of reals has a countable base, it has precisely 2ℵ0 open

sets, and thus precisely 2ℵ0 closed sets. By means of AC(R) it is easily de-
duced that each uncountable closed subset of R contains at least two complete
accumulation points, thus a Cantor set, and thus has cardinality 2ℵ0 . Let A

be the set of all uncountable closed subsets of [0, 1]. Then |A| = |R| = 2ℵ0 .
By AC(R), 2ℵ0 = ℵ for some Aleph ℵ. Thus A can be expressed in the form
A = {Aα | α < ℵ}. Let f : P0(R) → R be a map that satisfies f(X) ∈ X

10 [Vit05]
11 [Ber08]. Cf. also [Oxt80].
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for each non–empty subset X of R. Construct, via transfinite recursion, a
transfinite sequence (xα, yα)α<ℵ in [0, 1]2 as follows:

Assume that α < ℵ, and that (xβ , yβ)β<α have been defined already. Then
the set F = {xβ | β < α} ∪ {yβ | β < α} has cardinality less than ℵ. Thus
Aα \ F is not empty, and is in fact of cardinality ℵ. Define:

xα = f [Aα \ F ]
yα = f [Aα \ (F ∪ {xα})].

Then the sets B = {xα | α < ℵ} and C = [0, 1] \ B form a partition of [0, 1],
and each member of A meets each of the sets B and C. In other words: no
member of A is contained in B or in C. Hence every closed subset of B resp.
of C is at most countable, and thus has Lebesgue–measure zero. Thus, if B
would be Lebesgue measurable, then so would be C and both would have
Lebesgue measure zero, which is impossible since their union B ∪ C = [0, 1]
has Lebesgue measure one.

5.9. The Sierpiński Monsters12 S
Consider a free ultrafilter U on N. Then the following hold:

1. A ∈ U ⇔ (N \ A) �∈ U for each A ⊆ N.
2. (A ∈ U and F ⊆ N finite) ⇒ (A∆F ) ∈ U .13

For each A ⊆ N, let χA : N → {0, 1} be the characteristic function of A, i.e.,
A = χ−1

A (1). Consider X = {0, 1}N. Define, for x = (xn)n∈N, the element
x∗ = (1 − xn)n∈N. With S = {χU | U ∈ U} the above conditions (1) and (2)
translate into

(1*) X \ S = {x∗ | x ∈ S},

(2*)






(xn)n∈N ∈ S
(yn)n∈N ∈ X
{n | xn �= yn} finite





⇒ (yn)n∈N ∈ S.

Consider the normed product measure µ on X, invariant under the oper-
ation ∗. If S would be µ–measurable, then so would be X \ S and, by (1*),
µ(S) = µ(X \ S) would hold. Thus µ(S) = µ(X \ S) = 1

2 .
But by (2*), Kolmogoroff’s Zero–One–Law14 would imply that either

µ(S) = 0 or µ(S) = 1; a contradiction. From these observations it follows
that g[S] is not Lebesgue measurable, where g : X → [0, 1] is defined by
g(xn) =

∑

n∈N

xn

2n+1 .

The following diagram illustrates which choice principles suffice to create
certain monsters. For details not covered by the main text see the exercises.

12 [Sie38]
13 A∆F = (A ∪ F ) \ (A ∩ F ) = (A \ F ) ∪ (F \ A)
14 cf. [HewSt69, Theorem 22.21].
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In Shelah’s ZF–model15 none of these principles holds, since it contains
none of the above monsters — even though it satisfies a “reasonable” choice
principle, namely DC, the Principle of Dependent Choices.

Diagram 5.10.

Non–Lebesgue–measurable subsets of R exist

�

Ugly functions exist

R � C as

vector–spaces

over Q

�

R � Q ⊕ R as

vector–spaces

over Q

�

Non–continuous

field automorphisms

of C exist

�

WUF(N)

�

AC(2)

�

Hamel bases

of R exist

�

DC and

ℵ1≤2ℵ0

�

AC(R) ⇔ R is well–orderable

�

�

�
�

PIT

�

�
�

�
�

�
���

Besides monstrosities the Axiom of Choice produces also some harmless
but somewhat bizarre curiosities. Here an example:

Curiosity 5.11. 16 In ZFC there exists a subset of the plane that meets
every straight line, lying in the plane, in exactly two points.

Proof. The set L of all straight lines l in the plane P has cardinality 2ℵ0 , and
so has each of the lines l. By AC, 2ℵ0 is an aleph ℵ. So L can be written in the
form L = {lα | α < ℵ}. Also by AC, there exists a function f : P0(P ) → P
with f(A) ∈ A for each non–empty subset A of P . Via transfinite recursion
we define a transfinite sequence (Cα)α<ℵ of subsets of P such that |Cα| < ℵ
and |Cα ∩ lβ | ≤ 2 for each α < ℵ and β < ℵ.

Consider α < ℵ, assume that Cβ is defined for all β < α. Let α′ be the
smallest of all γ < ℵ such that |lγ ∩

⋃

β<α

Cβ | ≤ 1. Since |
⋃

γ<α′
(lγ ∩ lα′)| < ℵ, the

set Bα = lα′ \ (
⋃

γ<α′
lγ ∪

⋃

β<α

Cβ) is non–empty. Define Cα =
⋃

β<α

Cβ ∪ f(Bα).

Then C =
⋃

α<ℵ
Cα meets every l ∈ L in exactly 2 points.

15 A2 (M38 in [HoRu98])
16 S. Mazurkiewicz 1914; taken from [Sie58].
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Exercises to Section 5.1:

E 1. 17 Show that AC(2) implies that there exist non–Lebesgue–measurable
subsets of R.
[Hint: With the notation of 5.9 define an equivalence relation � on X
by (xn)�(yn) ⇔ {n ∈ N | xn �= yn} finite. Let [x]� be the equivalence
class of x ∈ X. Consider the set M =

{
{[x]�, [x∗]�} | x ∈ X

}
of 2-

element sets. By AC(2), there exists a set C of equivalence classes that
contains exactly one element from each of the sets {[x]�, [x∗]�}. Then
S =

⋃

[x]�∈C

[x]� satisfies (1*) and (2*). Proceed as in 5.9.

Alternatively, assume that there exists a set S that contains for each
function f : R → R exactly one member of the set {f,−f}. Define for
each irrational number p a function

fp : R → R by fp(x) =






1, if (x − p) ∈ Q

−1, if (x + p) ∈ Q

0, otherwise
and show that X = {p ∈ (R\Q) | fp ∈ S} is non Lebesgue–measurable.]

E 2. 18 Show that AC(R) implies that R � C, i.e., the sets R of all real and
C of all complex numbers, considered as additive groups (equivalently
as vector spaces over Q), are isomorphic.
[Hint: Observe that C � R⊕R and that, by AC(R), for any Hamel basis
(bi)i∈I we have |I| = 2ℵ0 = 2ℵ0 + 2ℵ0 = |I| + |I|.]

E 3. Show that for any Hamel basis (bi)I the indexing set I is D–infinite.
[Hint: Since the algebraic reals are countable, there exist a transcendental
real t. Thus (tn)n∈N is linearly independent. Consider tn =

∑

i∈I

α(n, i)bi

with
Fn = {i ∈ I | α(n, i) �= 0} finite. Then

⋃

n∈N

Fn is infinite. Define

f : N → N by f(n) = min{k ∈ N | (Fk \
⋃

i<f(n)

Fi) �= ∅} and

g : N → I by g(n) = min(Ff(n) \
⋃

i<f(n)

Fi). Then g is injective.]

E 4. 19 Show that the existence of a Hamel basis implies that R and R ⊕ Q

are isomorphic as vector spaces over Q (equivalently: as additive groups),
i.e., R � R ⊕ Q.
[Hint: Apply E 3. above.]

E 5. Show that each of the conditions
(1) R � C,
(2) R � R ⊕ Q,

17 [Sie27], [Oxt80].
18 [Ash75]
19 [Ash75]
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implies the existence of ugly functions.
[Hint:

(1) Let h : R → C be an isomorphism. Define f : C → R by f(x+ iy) = x.
Consider f ◦ h.

(2) Let h : R → R ⊕ Q be an isomorphism. Define f : R ⊕ Q → R by
f(x, q) = x. Consider f ◦ h.]

E 6. Discuss whether it is
(1) desirable,
(2) undesirable

that there exists a Hamel basis for the reals. Present arguments for (a)
and for (b).

E 7. 20 Consider R and C as fields. Show that:
(1) There exists precisely one automorphism of R.
(2) There exist precisely two continuous automorphisms of C.
(3) Under AC(R) there exist 22ℵ0 non–continuous automorphisms of C.
(4) If there exist non–continuous automorphisms of C, there exist non–

Lebesgue–measurable subsets of R.
[Hint for (1): Observe that, in view of the equation f(x2) =

(
f(x)

)2, any
automorphism of R preserves order. For (4): Observe that whenever f a
is non–continuous automorphism of C, then the map g : R → R, defined
by21 f(x) = �

(
f(x)

)
is ugly.]

E 8. Show that in ZFC there exist isomorphisms f : R → R of the vector
space R over Q into itself whose graphs are dense in R

2.

E 9. Define V = {p + q · π | (p, q) ∈ Q
2},

j : Q
2 → V by j(p, q) = p + q · π,

f : Q
2 → Q

2 by f(p, q) = (2p, q),
f̄ : V → V by f̄(p + q · π) = 2p + q · π. Show that:

(1) The diagram

Q
2

j ��

f
��

V

f̄

��
Q

2
j

�� V

commutes.

(2) j, f and f̄ are Q–linear isomorphims.
(3) j is continuous and f is a homeomorphism.
(4) The graph of f̄ , G(f̄) = {(v, f̄(v) | v ∈ V } is dense in V 2 hence also

in R
2.

[Hint: Cf. the proof of Theorem 5.4.]

E 10. Show that in ZF the vector space Q
(N) can be embedded as a Q–linear

subspace of R. [Hint: Cf. the hint for E 3.)

20 [Kes51], [Sie58, p. 443].
21 Here 
 is defined by 
(a + b · i) = b.
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E 11. Show that (1) ⇒ (2) ⇒ (3):
(1) AC(R).
(2) Each linear subspace of the vector space Q

(2ℵ0 ) has a linear comple-
ment.

(3)
∏

i∈I

Xi �= ∅ for each family (Xi)i∈I of pairwise disjoint, non–empty

subsets of R.

E 12. 22 Show that, under DC and ℵ1 ≤ 2ℵ0 , there exist non–Lebesgue–
measurable subsets of R.

E 13. 23 Show that each of the following conditions implies the subsequent
ones:

(1) CC(R).
(2) Lebesgue measure is σ–additive.
(3) R is not a countable union of countable sets.

[ Hint: For the implication (1) ⇒ (2) consult the proof of Proposition
7.14.]

E 14. 24 Show that:
(1) If X and Y are subsets of R with positive Lebesgue–measure each,

then there exist x ∈ X and y ∈ Y with (x − y) ∈ Q.
(2) Ugly functions are non–measurable.

[Hint: Use (1) to prove (2).]

E 15. Show that under each of the following conditions there exist non–
Lebesgue–measurable subsets of R:

(1) CC(R) holds and the Cantor cube 2R is Weierstrass–compact.
(2) The Cantor cube 2R is compact. [Hint: Exercises to Section 4.13, E 8

and E 9 above.]

E 16. 25 Show that:
(1) Under AC(R) there exist ugly functions with connected graphs.
(2) Graphs of ugly functins are never locally connected.
(3) Graphs of ugly isomorphisms are zerodimensional.
(4) Removal of any non–vertical straight line from the graph of an ugly

function produces a totally disconnected remainder.

22 [Rai84]
23 In the Feferman–Levy Model A8 (M9 in [HoRu98]) R is a countable union of

countable sets.
24 [Sie20]
25 [Jon42]
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5.2 Disasters in Geometry: Paradoxical Decompositions

At first glance, the Banach–Tarski Decomposition seems prepos-
terous. It blatantly contradicts our intuition about the conservation
of mass or volume.

E. Schechter26

It certainly does seem to be folly to claim that a billiard ball can
be chopped into pieces which can be put back together to form a
life-size statue of Banach.

K. Stromberg27

I think there is still something very disturbing about the Banach–
Tarski paradox.

S. Fefermann28

Intuition is an important guide for mathematicians. However, it is not al-
ways a safe one. There exist mathematical results that are counterintuitive.
In many of these cases, a culprit can be isolated: the Axiom of Choice, i.e.,
many paradoxical results are demonstrable in ZFC, but not in ZF. The most
stunning of these is the so called Banach–Tarski Paradox which establishes
the existence of rather bizarre decompositions of the unit ball and of other
heavenly bodies. The construction of these paradoxical decompositions is mo-
tivated by measure theoretic considerations. As we have seen in the previous
section, the axiom of choice allows the construction of non–measurable sub-
sets of the reals. The main obstacle — besides AC — turned out to be the
requirement that the measure–function be σ–additive. What happens, if we re-
lax this condition by requiring just additivity, but add the natural requirement
that congruent (i.e., isometric) sets have the same measure? The paradoxi-
cal decompositions, unearthed by Hausdorff29and by Banach and Tarski30 by
means of the Axiom of Choice, demonstrate that in R

3, the 3–dimensional
space, even such functions, describing the volume of bounded bodies, do not
exist. For n = 1 and n = 2 such measures do exist, as shown by Banach31 —
however (as we will point out later) they have some rather bizarre properties,
as shown by von Neumann32.

26 [Sch97, p. 142]
27 [Str79]
28 [Fef2000]
29 [Hau14]
30 [BaTa24]
31 [Bana23]
32 [vNeu29]
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To prove these results is beyond the scope of this monograph. However,
we will outline the main ideas, referring the interested reader for the more
technical details to the elegant and “strictly elementary account” given in
[Str79] or to the comprehensive book [Wag86], “where this striking theorem
[the Banach–Tarski Paradox] and many related results in geometry and mea-
sure theory, and the underlying tools of group theory, are presented with care
and enthusiasm.”33

To describe the measure–theoretic results, concerning the spaces R
n, we

will use (in this section) the following terminology:

Definition 5.12. For n ∈ N
+, an n–dimensional measure is a function

µn : PbR
n → R

+, defined on the set PbR
n of bounded subsets of R

n, satis-
fying the following conditions:

(M1) µn is additive, i.e., µ(A∪B) = µ(A)+µ(B) for disjoint elements
A and B of PbR

n.
(M2) µ is invariant, i.e., A ≈ B implies µn(A) = µn(B), where A

and B are called congruent, shortly A ≈ B, iff there exists an
isometry34f : R

n → R
n with f [A] = B.

(M3) µn is normed, i.e., µn([0, 1]n) = 1.

NOTE: In this section we work — unless stated otherwise — in ZFC

Hausdorff’s Paradoxical Decomposition of the Sphere

Hausdorff35 was the first to show that 3–dimensional measures (and hence
n–dimensional measures for any n ≥ 3; see Exercise E 1) do not exist. He
obtained this result by exhibiting a paradoxical decomposition of the sphere:

5.13. Hausdorff’s Decomposition Theorem for the Unit Sphere36

There exists a partition {A,B,C,D} of the unit sphere
S2 = {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1} such that:

1. A ≈ B ≈ C.
2. A ≈ (B ∪ C).
3. D is countable.

Later we will indicate the idea of the proof of the above Theorem. First,
however, some consequences.
33 [Wag86]. From the Foreword by Jan Mycielski.
34 In fact, one could restrict attention to orientation–preserving isometries without

changing any of the results in this section.
35 [Hau14]
36 [Hau14]
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Corollary 5.14. 37 There is no function µ : PbS
2 → R

+ which satisfies (M1),
(M2) and (M3’) µ(S2) > 0.

Proof. Assume that a function µ, satisfying (M1), (M2), and (M3’), exists.
The countability of D implies that there exists an isometry f of the sphere S2

(in fact a rotation) such that D and f [D] are disjoint. Hence D1 = (D∪f [D]) is
a countable subset of S2 with µ(D1) = 2 ·µ(D). By repeating this process one
obtains, for each n ∈ N

+, a countable subset Dn of S2 with µ(Dn) = 2n ·µ(D).
Since µ(Dn) ≤ µ(S2) for each n, this implies µ(D) = 0. Consequently: µ(S2) =
µ(A)+µ(B)+µ(C) = 3 ·µ(A) and µ(S2) = µ(B∪C)+µ(B)+µ(C) = 4 ·µ(A).
Therefore µA = 0, hence µ(S) = 0, a contradiction.

Corollary 5.15. 38 There is no 3–dimensional measure.

Proof. If µ3 would be a 3–dimensional measure, then the function
µ : PbS

2 → R
+, defined by

µ(A) = µ3

(
{(λx, λy, λz) | (x, y, z) ∈ A and 0 < λ ≤ 1}

)

would satisfy (M1), (M2), and (M3’), contradicting Corollary 5.14.

Looking back at Hausdorff’s Theorem 5.13 one observes that the existence
of the countable set D somewhat reduces its elegance. Is there a smoother
result? Sierpiński39 showed that there are partitions

P1 = {A1, . . . , A6, B1, . . . , B4},
P2 = {C1, . . . , C6} and
P3 = {D1, . . . , D4}
of the sphere such that

1. Ai ≈ Ci for i = 1, . . . , 6,
2. Bi ≈ Di for i = 1, . . . , 4.

Though here the countable set is avoided, the number of pieces is unnec-
essary large as shown by Robinson:

5.16. Robinson’s Decomposition Theorem for the Unit Sphere40

There exists a partition {A1, A2, B1, B2} of the unit sphere into con-
nected and locally connected pieces such that A1 ≈ A2 ≈ A1 ∪ A2 and
B1 ≈ B2 ≈ B1 ∪ B2.

This is, in a way, the best (or worst?) possible result. As Robinson himself
formulates41:

37 [Hau14]
38 [Hau14]
39 [Sie48]. See also [BrCe75] and [Str79].
40 [Rob47], [DekGr56].
41 [Rob47]
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“Thus we may cut S2 into four pieces, and reassemble them in pairs
to form two copies of S2. We cannot use fewer than four pieces, since
we cannot form a copy of S2 out of a single piece which is not all of
S2. Thus for the surface problem, the minimum number of pieces in
which to cut S2 is four.”

Bad Groups

After Banach and Tarski42 had improved Hausdorff’s construction to obtain
simpler and more striking decompositions of 3–dimensional bodies (see be-
low), von Neumann43 showed that — besides AC — the structure of the
group of isometries of R

3 is responsible for the possibility of such paradoxical
decompositions and thus the non-existence of 3–dimensional measures. This
group contains a free group on two generators — and this fact causes all the
trouble. In von Neumann’s own words44:

Der Euklidische Raum scheint danach beim Erreichen der Dimensions-
zahl 3 jäh seinen Charakter zu ändern: für n < 3 läßt er einen allge-
meinen Maßbegriff noch zu, für n ≥ 3 nicht mehr!
Daß dem nicht so ist, daß vielmehr der innere Grund dieses son-
derbaren Phänomens eine gewisse gruppentheoretische Eigenheit der
n–dimensionalen Drehgruppe ist, dies zu zeigen, ist der Hauptzweck
der vorliegenden Arbeit.
. . .
Der plötzliche Charakterwechsel des Euklidischen Raumes beim Erre-
ichen und Überschreiten der Dimensionszahl 3 liegt einfach daran, daß
die — bisher allein berücksichtigte — Gruppe On der längentreuen Ab-
bildungen für n = 1, 2 “auflösbar” ist, für n = 3, 4, . . . hingegen eine
freie Untergruppe mit zwei Erzeugenden σ, τ hat.”

42 [BaTa24]
43 [vNeu29]
44 Translation: “Apparently Euclidean space changes its character abruptly when

reaching dimension 3: for n < 3 it allows a general concept of measure, for
n ≥ 3 this is no longer the case!

To show that this is not so, that rather the deeper reason for this strange phe-
nomenon is a specific group theoretic peculiarity of the n–dimensional isometry
group, is the main purpose of the present article.

. . .

The abrupt change of character of Euclidean space when reaching and passing
dimension 3 is simply caused by the fact that the group On of isometries —
the only one that has been considered so far — is “solvable” for n = 1, 2, but
contains a free group with two generators σ, τ for n = 3, 4, . . . .”
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Definition 5.17. 1. The free group F2 on two generators a and b is the set
of all words x1x2 . . . xn with letters a, b, a−1, and b−1 such that a and a−1

are never adjacent and neither are b and b−1; supplied with the following
multiplication: If w = x1 . . . xn and v = y1 . . . ym are elements of F2, then
w · v is obtained in several steps:
Step 1: Concatenate w and v to obtain x1 . . . xny1 . . . ym.
Step 2: Remove xn and y1 provided that {xn, y1} = {a, a−1} or {xn, y1}

= {b, b−1}.
Step 3: Repeat step 2 as often as necessary until an element of F2 is ob-

tained.
The empty word, i.e., the word with no letters, denoted sometimes by Λ,
is the neutral element of F2.

2. x · Y = {xy | y ∈ Y } for x ∈ F2 and Y ⊆ F2.
3. Subsets X and Y of F2 are called congruent, in symbols X ≈ Y , provided

that there exists some z ∈ F2 with Y = z · X.

Theorem 5.18. 45 There exists a partition {A,B,C,D} of the free group F2

such that:

1. A ≈ (A ∪ C ∪ D).
2. C ≈ (A ∪ B ∪ C).

Proof. To demonstrate simultaneously the main idea of the proof and the
technical difficulty that has to be overcome, we present first an argument that
almost works, next a complete proof.

Attempt: Define
A = {x1 . . . xn ∈ F2 | x1 = a},
B = {x1 . . . xn ∈ F2 | x1 = a−1},
C = {x1 . . . xn ∈ F2 | x1 = b},
D = {x1 . . . xn ∈ F2 | x1 = b−1}.
Then {A,B,C,D} is almost a partition of F2. Just the empty word Λ is

missing. Moreover:
A ≈ a−1 · A = A ∪ C ∪ D ∪ {Λ},
C ≈ b−1 · C = A ∪ B ∪ C ∪ {Λ}.
So, the empty word muddles things up and causes a correct proof to be

slightly less symmetric, hence less elegant:

Proof. Define A and B as above, but redefine C and D as follows:
C = {x1 . . . xn ∈ F2 | x1 = b} ∪ {b−n | n ∈ N}46,
D = F2\(A ∪ B ∪ C) = {x1 . . . xn ∈ F2 | x1 = b−1}\{b−n | n ∈ N}.
Then {A,B,C,D} is a partition of F2, and:
A ≈ a−1 · A = A ∪ C ∪ D,
C ≈ b−1 · C = A ∪ B ∪ C.

45 [vNeu29]
46 Here b0 = Λ.
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Bad groups G that act fixpoint–free (i.e., only the neutral element has
fixpoints) on a set X lead to paradoxical decompositions of X — where A ≈ B
for subsets of X iff there exists g ∈ G with g[A] = B:

Theorem 5.19. 47 If F2 acts fixpoint–free on X, then there exists a partition
{A,B,C,D} of X with

1. A ≈ (A ∪ C ∪ D).
2. C ≈ (A ∪ B ∪ C).

Proof. Let {A,B,C,D} be a partition of F2 with A ≈ (A ∪ C ∪ D) and
(C ≈ A∪B ∪C). For each x ∈ X let orb(x) = {g(x) | g ∈ F2} be the orbit of
x. Then {orb(x) | x ∈ X} is a partition of X. By AC there exists a subset S
of X that contains exactly one element from each orbit. Define

A∗ = {g(x) | g ∈ A and x ∈ S}

and analogously B∗, C∗, and D∗. Since F2 acts fixpoint–free on X, the set
{A∗, B∗, C∗,D∗} is a partition of X. Obviously:

A∗ ≈ (A∗ ∪ C∗ ∪ D∗) and C∗ ≈ (A∗ ∪ B∗ ∪ C∗}.

Paradoxical Decompositions of the Unit Ball

The above observations lead naturally to the following considerations: The
group of all isometries of R

3 contains a subgroup that is isomorphic to F2 and
acts on the unit ball B3 = {(x, y, z) ∈ R

3 | x2 + y2 + z2 ≤ 1}48.
If this acting would be fixpoint–free, then the above results would imme-

diately lead to a paradoxical decomposition of B3 into 4 pieces. The fact,
however, that rotations do have fixpoints — fortunately, not too many —
causes complications. In fact, a paradoxical decomposition of B3 in 4 pieces
is impossible49. However, Banach and Tarski have been able to demonstrate
the following:

47 [vNeu29]
48 Hausdorff, in his proof of the Decomposition Theorem 5.13, did not use a free

subgroup of the isometry group of S2, but rather one that is almost free, by
showing that there exist rotations α and β of S2 such that α2 = id = β3 are
the only relations in the group G generated by {α, β}. Each element g of G has
precisely two fixpoints. The union of these fixpoint–sets is Haudorff’s countable
set D. Then Hausdorff constructs judiciously a partition {A, B, C} of G such
that βA = B, β2A = C, and αA = B ∪ C. If X is a set obtained by selecting
exactly one element from the orbit of each point x ∈ (S2\D), then the partition
{A · X, B · X, C · X} of S2 \ D has the required properties.

49 [Rob47]
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Theorem 5.20. 50 There exist partitions
P1 = {A1, . . . , An, B1, . . . , Bm},
P2 = {C1, . . . , Cn}, and
P3 = {D1, . . . , Dm} of the unit ball such that:

1. Ai ≈ Ci for i = 1, . . . , n.
2. Bi ≈ Di for i = 1, . . . ,m.

How many pieces n + m are needed to “double” a ball?

• Stromberg51 showed that 40 = 24 + 16 suffice,
• Bruckner and Ceder52 used 30 = 18 + 12,
• von Neumann53 used 9 = 5 + 4,
• Sierpiński54 used 8 = 5 + 3 = 6 + 2, and
• Robinson55 supplied the ultimate answer 5 = 3 + 2 :

5.21. Robinson’s Decomposition Theorem for the Unit Ball56

There exist partitions
P1 = {A1, A2, A3, B1, B2},
P2 = {C1, C2, C3} and
P3 = {D1,D2}
of the unit ball into connected and locally connected pieces such that

1. Ai ≈ Ci for i = 1, 2, 3.
2. Bi ≈ Di for i = 1, 2.

Moreover, Robinson showed that 4 pieces do not suffice.

The Banach–Tarski Paradox

Since, by the last two theorems, any ball in 3–dimensional space can be “dou-
bled”, it follows easily that for any bounded subset A of R

3 and any ball B
in R

3 there exist a partition {A1, . . . , An} of A and a partition {B1, . . . , Bn}
of some subset of B such that Ai ≈ Bi for each i = 1, . . . , n (see Exercise E
2). Thus for subsets A and B of R

3 that are bounded and contain some ball
each, it is possible to decompose each into a finite number of pieces and to
“reassemble” these pieces to form a subset of the other set.

The Banach–Tarski Paradox says even more. To state it properly, a defi-
nition first:

50 [BaTa24]
51 [Str79]
52 [BrCe75]. See also [Sie48].
53 [vNeu29]
54 [Sie45]
55 [Rob47]
56 [Rob47], [DekGr56].
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Definition 5.22. 57 Subsets A and B of R
3 are called equidecomposable in

symbols, A ∼e B, iff there exist partitions {A1, . . . , An} of A and {B1, . . . , Bn}
of B with Ai ≈ Bi for i = 1, . . . , n.

5.23. The Banach–Tarski Paradox58 Any two bounded subsets A and B
of R

3, that contain some ball each, are equidecomposable.

Proof. By the above remarks, each of the sets A and B is equidecomposable
to some subset of the other. Thus the result follows immediately from the
next theorem.

Theorem 5.24. 59 If subsets A and B of R
3 are each equidecomposable to

some subset of the other, then A and B are equidecomposable.

Proof. Let {A1, . . . , An} be a partition of A and let {B1, . . . , Bn} be a parti-
tion of a subset B′ of B with Ai ≈ Bi for each i. Then for each i = 1, . . . , n
there exists an isometry fi : Ai → Bi. Thus the map f : A → B′, defined by
f(a) = fi(a) for a ∈ Ai, is a bijection satisfying the condition:

(A) C ∼e f [C] for each subset C of A.
Likewise there exists a bijection g : B → A′ from B to some subset A′ of

A, satisfying the condition
(B) D ∼e g[D] for each subset D of B.

Define, via recursion, a sequence (Cn) of subsets Cn of A by
{

C0 = A \ A′

Cn+1 = g
[
f [Cn]

]
.

Consider C =
⋃

n∈N

Cn. Then a simple computation shows that

A\C = g
[
B\f [C]

]
. Thus condition (B) implies (A\C) ∼e (B\f [C]). Since (A)

implies C ∼e f [C], it follows that A = (A \C)∪C ∼e (B \ f [C])∪ f [C] = B.

AC as the Culprit

As we have seen above, in ZFC one can prove the existence of rather coun-
terintuitive and undesirable decompositions of balls and other bodies in 3–
dimensional space. Is AC really the culprit or are similar decompositions also
constructible in ZF? Since Lebesgue–measure in R

3 is additive, invariant and
normed, the above paradoxes imply that there are bounded subsets of R

3 that
are not Lebesgue–measurable. So the fact that there exist models60 of ZF in
which all bounded subsets of R

3 are Lebesgue–measurable, shows that here
again AC is the villain.
57 [BaTa24]
58 [BaTa24]
59 [Bana23]. Observe that this result holds in ZF.
60 E.g., Shelah’s Second Model A2 (M38 in [HoRu98]).
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The following diagram shows how the existence of paradoxical decomposi-
tions is related to other axioms, including HBT, the Hahn–Banach Theorem,
considered to be “The Crown Jewel of Functional Analysis”:

Diagram 5.25. 61 In ZF the following implications hold:

AC(R)
On every Boolean algebra
there exists an additive,
normed {0, 1}-valued measure

←→ PIT

On every Boolean algebra
there exists an additive,
normed [0, 1]–valued measure

(1)←→
HBT
Hahn–Banach
Theorem

BTP:
Banach–Tarski Paradox

There exist non–Lebesgue–
measurable sets

�

(2)�

�
�
�
�
�
�
�
�
���

(3)

All implications with the possible exception of the penultimate one (2) are
proper.

Bizarre Decomposition Paradoxes in Dimensions 1 and 2

Although — as Banach62 has shown — there exist measures on R
2 (invari-

ant under isometries) — even different ones, some agreeing on all Lebesgue–
measurable sets with the Lebesgue measure, others failing to do that; there
do exist paradoxical decompositions — as von Neumann63 has shown — pro-
vided we enlarge the isometry group to the group A2 of all area–preserving
affine maps (i.e., those with determinant 1):

5.26. Von Neumann–Lemma A2 contains a subgroup that is free on two
generators.

61 For (1) see [Lux69]. For (2) see [Paw91] and [FoWe91]. For (3) see [LoRy51].
For detailed accounts of the Hahn–Banach Theorem see [Bus93] and [NaBe97].

62 [Bana23]
63 [vNeu29]



5.2 Disasters in Geometry: Paradoxical Decompositions 135

5.27. Decomposition Paradox for the Plane Any two bounded planar
sets A and B with non–empty interiors are A2–equidecomposable, i.e., there
exist partitions {A1, . . . , An} of A and {B1, . . . , Bn} of B such that for each i ∈
{1, . . . , n} there exists an affine transformation Ti : R

2 → R
2 with determinant

1 such that ti[Ai] = Bi.

Even though in R
1, i.e., on the real line, the only continuous transforma-

tions that preserve distances are the translations and the reflections, which
do not give rise to paradoxical decompositions, von Neumann has been able
to unearth the following linear decomposition paradox:

5.28. Von Neumann’s Decomposition Paradox for the Real Line64

For any two bounded linear sets A and B with non–empty interiors there
exist partitions {A1, . . . , An} of A and {B1, . . . , Bn} of B such that for each
i ∈ {1, . . . , n} there exists a bijection fi : Ai → Bi such that for any two points
x and y of Ai we have |x − y| < |f(x) − f(y)|.

Corollary 5.29. 65 For any 1–dimensional measure µ there exist bounded
linear sets A and B and a bijection f : A → B that increases the distances of
any two points of A, but such that µ(B) < µ(A).

5.30. Sierpiński’s Decomposition Paradox for Disks66

For any pair (r, s) of positive reals there exist partitions {A1, . . . , An} of
{(x, y) ∈ R

2 | x2 + y2 ≤ r2} and {B1, . . . , Bn} of {(x, y) ∈ R
1 | x2 + y2 ≤ s2}

such that for each i ∈ {1, . . . , n} there exists a bijection fi : Ai → Bi such
that for any two points a and b of Ai we have d(a, b) < d

(
f(a), f(b)

)
.

Exercises to Section 5.2:

E 1. Show that, if n ≤ m, then the existence of an m–dimensional measure
implies the existence of an n–dimensional measure in ZF.

E 2. Let A be a bounded subset of R
3 and B be a subset of R

3 that contains
some ball. Show that A is equidecomposable with some subset of B.

E 3. Show that Banach’s Theorem 5.24 holds in ZF.

E 4. 67 Some Non–paradoxical but peculiar decomposition in ZF.
Let P (resp. T) be the set of all irrational (resp. transcendental) real
numbers. Show that:

(1) There exist partitions
{R1, R2} of R and {P1, P2} of P with R1 ≈ P1 and R2 ≈ P2.

64 [vNeu29]
65 [vNeu29]
66 [Sie48]
67 [Sie48]
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(2) There exist partitions
{P1, P2} of P and {T1, T2} of T with P1 ≈ T1 and P2 ≈ T2.

(3) There do not exist partitions
{Q1, Q2, . . . , Qn} of Q and {A1, A2, . . . , An} of R\T such that Qi ≈ Ai

for i ∈ {1, 2, . . . , n}.
[Hint: For a ∈ R let ta : R → R be defined by ta(x) = a + x.
Re (1): Observe that for a ∈ R and X =

⋃

n∈N

tna [Q] we get ta[X] = X \Q.

Re (2): Observe that for a ∈ T and X =
⋃

n∈N

tna [R \ (T ∪ Q)] we get

ta[X] = X \
(
R \ (T ∪ Q)

)
.

Re (3): Observe that |x−y| ∈ Q for x and y in Q, but |n ·
√

2−m ·
√

2 |�∈ Q

for n and m different natural numbers.]



6

Disasters either way

There are two kinds of truth. To the one kind belong statements
so simple and clear that the opposite assertions obviously could
not be defended. The other kind, the so-called “deep truths”, are
statements in which the opposite also contains deep truth.

Niels Bohr1

6.1 Disasters in Game Theory

The axiom of choice may well be regarded as such a “deep truth”. Its Janus–
faced nature is dramatically revealed by the theory of games. On one hand
AC guarantees the existence of winning strategies for certain deterministic
2–person games with complete information; on the other hand AC allows the
“construction” of similar deterministic 2–person games with complete infor-
mation that lack winning strategies.

Let us start by introducing the relevant concepts via the description of the
following simple games:

Definition 6.1. The 2–player game

G = G
(
n, (X1, . . . , Xn), (Y1, . . . Yn), A

)

where

• n is a positive integer, the number of moves of each of the two players.
• (X1, . . . , Xn) (resp. (Y1, . . . , Yn)) is an n–tuple of non–empty sets Xi (resp.

Yi) whose elements are the possible i–th moves of the first (resp. second)
player.

• A is a subset of
n∏

i=1

(Xi × Yi), called the winning set for the second player.

1 [Boh49]. See also [Myc66].
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The game G is played as follows: The players choose successively elements

x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, . . . , yn ∈ Yn

at each step knowing all the previous steps. The 2n–tuple (x1, y1, x2, . . . , yn)
is called the outcome of the game.

The second player wins if the outcome belongs to A; otherwise the first
player wins.

A strategy for the first player is an n–tuple σ = (σ1, . . . , σn) of functions2

σi :
∏

j<i

(Xj × Yj) → Xi.

A strategy σ is called a winning strategy for the first player provided that for

any n–tuple (y1, . . . , yn) ∈
n∏

i=1

Yi the 2n–tuple (x1, y1, x2, . . . , yn), defined by

x1 = σ(∅) and xi+1 = σ(x1, y1, x2, . . . , yi) for all i = 1, . . . , n − 1, does not
belong to A, i.e., that the first player wins the game provided that he uses the
strategy σ, no matter what the second player does.

Similarly strategies and winning strategies are defined for the second
player.

The game G is called determinate provided that one of the players has a
winning strategy.

For finite games of the above form3 all is well:

Theorem 6.2. The game G = G
(
n, (X1, . . . , Xn), (Y1, . . . , Yn), A

)
is deter-

minate if all the Xi’s and Yi’s are finite.

Proof. We proceed by induction.
Step 1: n = 1.
Two cases are possible:
Case 1: There exists x1 ∈ X1 with ({x1} × Y1) ∩ A = ∅. Then the first

player has a winning strategy by choosing such an x1.
Case 2: For each x1 ∈ X1 there exists some y1 ∈ Y1 with (x1, y1) ∈ A.

Since X1 is finite, there exists a function σ : X1 → Y1 such that
(x, σ(x)) ∈ A for each x ∈ X. Such σ provides a winning strategy
for the second player.

Step 2: Assume that each game G = G(n, . . .) with n ≤ k is determi-
nate. Consider a game G = G(k + 1, (X1, . . . , Xk+1), (Y1, . . . , Yk+1), A).
Then for each pair (x, y) ∈ (X1 × Y1) we get a new game G(x, y) =
G
(
k, (X2, . . . , Xk+1), (Y2, . . . , Yk+1), A(x, y)

)
, where

2 {∅} is the empty product.
3 Many familiar deterministic 2–person games with complete information can be

represented in the above form. If ties are possible, like in chess, minor adjust-
ments are needed. See Exercise E 3.
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A(x, y) =
{(

(x2, y2), . . . , (xk+1, yk+1)
)
∈

k+1∏

i=2

(Xi × Yi) |
(
(x, y), (x2, y2), . . . , (xk+1, yk+1)

)
∈ A

}

Then two cases are possible:
Case 1: There exists x1 ∈ X1 such that for each y ∈ Y1 the first player

has a winning strategy σ(y) for the game G(x1, y).
Since Y1 is finite, this implies that the first player has a winning
strategy for the original game G.

Case 2: For each x ∈ X1 there exists some y ∈ Y1 such that the second
player has a winning strategy σ(x, y) for the game G(x, y).
Since X1 × Y1 is finite, this implies that the second player has a
winning strategy of the original game G.

Problems arise when we pass from finite to infinite games. There are two
natural ways to do this. We may allow, for each player, ω moves instead of a
finite number n only or we may allow the players an infinite number of options
for some of their moves, i.e., we may allow the Xi’s and Yi’s to be infinite. In
both cases the games may loose their determinateness:

Disaster 6.3. Infinite games of the form

G
(
ω, (Xn)n∈ω, (Yn)n∈ω, A

)
resp. G

(
n, (Xi)i≤n, (Yi)i≤n, A

)

may fail to be determinate.

The reasons for the disaster concerning the two types of infinite games
described above are decidedly complementary to each other.

Theorem 6.4. Equivalent are:

1. Each game of the form G
(
n, (X1, . . . , Xn), (Y1, . . . , Yn), A

)
is determi-

nate.
2. Each game of the form G

(
1, (X1), (Y1), A

)
is determinate.

3. AC.

Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) Let (Xi)i∈I be a family of non–empty sets. Consider X =

⋃

i∈I

Xi

and A = {(i, x) | i ∈ I and x ∈ Xi}. Then the game G = G
(
1, (I), (X), A

)
is

determinate, by (2). Since for every i ∈ I there exists x ∈ X with (i, x) ∈ A,
the first player can have no winning strategy. Thus the second player must
have a winning strategy, i.e., a function σ : I → X such that

(
i, σ(i)

)
∈ A for

each i ∈ I, — in other words: σ ∈
∏

i∈I

Xi. Thus AC holds.

(3) ⇒ (1) This implication is verified as in the proof of Theorem 6.2, since
in the presence of AC the finiteness–assumptions are not needed.
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Theorem 6.5. 4 In ZFC there exists a subset A of ({0, 1}2)N such that the
game
GA = (ω, {0, 1}N, {0, 1}N, A) is not determinate.

Proof. 5 Independently of A, each player has at each step precisely 2 options
to play, namely 0 and 1, thus altogether 2ℵ0 options. Since (2ℵ0)ℵ0 = 2ℵ0 ,
a simple computation shows that each player has — independently of A —
precisely 2ℵ0 possible strategies to play the game. By AC, 2ℵ0 = ℵγ for some
ordinal γ. Thus the possible strategies for the first (resp. second) player can
be arranged in the form (σα)α<ℵγ

(resp. (τα)α<ℵγ
). By transfinite recursion

we will construct, for α < ℵγ , subsets Aα and Bα of ({0, 1}2)N such that

1. α < β ⇒ (Aα ⊆ Aβ and Bα ⊆ Bβ),
2. |Aα| ≤ |α| and |Bα| ≤ α,
3. Aα ∩ Bα = ∅,

such that the game GA with A =
⋃

α<ℵγ

Aα is not determinate.

Let us assume that the Aα’s and Bα’s are constructed for α < β according
to the above restrictions:

Case 1: β = 0
Choose A0 = B0 = ∅

Case 2: β is a limit ordinal.
Choose Aβ =

⋃

α<β

Aα and Bβ =
⋃

α<β

Bα.

Case 3: β = α + 1 for some α.
If the first player plays according to the strategy σα and the second
player plays y = (y1, y2, . . .) for some y ∈ {0, 1}N the outcome will
be of the form 0(σα, y) = (x1, y1, x2, y2, . . .). Since |{0, 1}N| =
2ℵ0 and |Bα| < 2ℵ0 , there exist some y(σα) in {0, 1}N such that
0
(
σα, y(σα)

)
�∈ Bα. Select such an element y(σα) and define Aβ =

Aα∪{0
(
σα, y(σα)

)
}. This implies that σα is not a winning strategy

of the first player for the game GAβ
, and thus also not for the

original game GA. Similarly there exists some x(τα) in {0, 1}N

such that, if the first player plays x(τA) and the second player
plays according to the strategy τα, the outcome 0

(
x(τα), τα

)
will

not belong to Aβ . Define Bβ = Bα ∪
{
0
(
x(τα), τα

)}
. This implies

that τα is not a winning strategy of the second player for the game
G({0,1}2)N\Bβ

, and thus also not for the game GA. Consequently
the game GA is not determinate.

The Axiom of Determinateness, AD, stating that the above game GA is de-
terminate for each A, will be investigated further in Section 7.2.

4 [Myc64]
5 [Jec73]
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Exercises to section 6.1:

E 1. Show that if in a game of the form G
(
1, (X1), (Y1), A

)
the first player

has no winning strategy, then the second player can always win, even
though he may not have a winning strategy.

E 2. Show the equivalence of:
(1) The game G(1, (N), (R), A) is determinate for each set A ⊆ (N × R).
(2) CC(R).

E 3. Consider the following modifications of the game
G
(
n, (X1, . . . , Xn), (Y1, . . . , Yn), A

)
: Replace A by a partition (A,B,C)

of the set
n∏

i=1

(Xi × Yi), and stipulate that

• the second player wins, if the outcome of a game belongs to A,
• the first player wins, if the outcome of a game belongs to B,
• there is a tie, if the outcome of the game belongs to C.
Show that for this game:

(1) The second player has a winning strategy iff he has a winning strategy
for the game G

(
n, (X1, . . . , Xn), (Y1, . . . , Yn), A

)
.

(2) The first player has a winning strategy iff he has a winning strategy
for the game G

(
n, (X1, . . . , Xn), (Y1, . . . , Yn), A ∪ C

)
.

(3) Both players have strategies guaranteeing at least a tie iff the second
player has a winning strategy for the game
G
(
n, (X1, . . . , Xn), (Y1, . . . , Yn), A ∪ C

)
and the first player has a

winning strategy for the game G
(
n, (X1, . . . , Xn), (Y1, . . . , Yn), A

)
.

E 4. Consider the constant sequence (0) with value 0 and the set
A = {(xn, yn) ∈

(
{0, 1}2)N | ∀n yn = xn

}
. Show that:

(1) The second player has a winning strategy for the game(
ω, {0, 1}N, {0, 1}N , A

)
.

(2) The first player has a winning strategy for the game(
ω, {0, 1}N, {0, 1}N, A ∪ {(0)}

)
.

E 5. Consider the following 2–person game HA, where A is a subset of the
interval [0, 2]: Both players choose successively elements x0, y0, x1, y1, x2,

y2, . . . of {0, 1}. The second player wins, if
∞∑

n=0

(
xn

22n + yn

22n+1

)
belongs to

A; otherwise the first player wins. Use Theorem 6.5 to show that in ZFC
there exist subsets A of [0, 2] such that HA is not determinate.

E 6. Discuss, whether a game of the form G(ω, (Xn)n∈N, (Yn)n∈N, A) “can
be played” in ZF if

∏

n∈N

Xn or
∏

n∈N

Yn happens to be empty.
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Beauty without Choice

It seems that the well–known arguments against the
axiom of choice have been exploited until today only
in a negative sense.

J. Mycielski and H. Steinhaus1

The analogy with Geometry, . . . , suggests the question: what shape
will analysis and set theory assume by accepting a principle con-
tradicting the axiom of choice? Such a “non–Zermelian” theory
in some sense corresponds to non–Euclidean geometry.

A.A. Fraenkel, Y. Bar–Hillel and A. Levy2

7.1 Lindelöf = Compact

For me the proof of a theorem by means of Zermelo’s axiom is
valuable only as an indication that it is useless to waste time on
an exact proof of the falsity of the theorem in question.

N. Lusin3

Aber hier, wie überhaupt, kommt es an-
ders, als man glaubt.

Wilhelm Busch4

1 [MySt62]
2 [FrBaLe73, p. 85/86]
3 Cited after [Sie58, p. 95].
4 From: Plisch und Plum.
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You have only to show that a thing is impossible and some math-
ematician will go and do it.

A saying5

In this section will be demonstrated that Lusin’s verdict above is false,
when reformulated as follows:

The proof of the falsity of some statement by means of the Axiom of
Choice is valuable only as an indication that it is useless to waste time
on an exact proof of the statement itself.

In fact, it will be shown that the following statements, each being false
in ZFC, will become true theorems under the assumption that AC is badly
false:

Disaster 7.1. The following statements are false in ZFC:

1. Products of Lindelöf T2–spaces are Lindelöf.
2. Finite products of Lindelöf T1–spaces are Lindelöf.
3. Lindelöf T2–spaces are regular.
4. Totally disconnected Lindelöf T2–spaces are zerodimensional.

Proof. See [Eng89] or the Theorems 7.4, 7.6, 7.7, 7.8 below.

The above failures of the Lindelöf property to behave nicely are partic-
ularly unfortunate in view of the fact that the Lindelöf property occupies a
prominent place in ZFC–topology, in particular6

(a) All compact spaces (more generally: all σ–compact spaces7) and all sec-
ond countable spaces in particular, all separable metrizable spaces (more
generally: all separable, paracompact spaces) are Lindelöf.

(b) All regular Lindelöf spaces are paracompact and realcompact.
(c) Every locally compact, paracompact space is a sum of locally compact,

Lindelöf T2–spaces, and vice versa.
(d) For metrizable spaces: Lindelöf = separable.
(e) Continuous images, closed subspaces and countable sums of Lindelöf

spaces are Lindelöf.

As the above observations indicate, the Lindelöf property behaves almost
as compactness, one of the main differences being that compactness behaves
much better than the Lindelöf property with respect to the formation of prod-
ucts.

Here now a big surprise:
5 Taken from [Saw82, p. 167].
6 See, e.g., [Eng89].
7 See Exercise E 1.
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Theorem 7.2. 8 Equivalent are:

1. For T1–spaces: Lindelöf = compact.
2. For subspaces of R: Lindelöf = compact.
3. CC(R) fails.

Proof. (1) ⇒ (2) Trivial.
(2) ⇒ (3) If (2) holds, then N is not Lindelöf. Thus, by Theorem 3.8,

CC(R) fails.
(3) ⇒ (1) We need only show that failure of (1) implies CC(R). So let X

be a non–compact, Lindelöf T1–space. Let C be an open cover of X that has
no finite subcover. Since X is Lindelöf we may assume C to be countable. By
forming finite unions and deleting superfluous members we obtain an open
cover L = {Bn | n ∈ N} of X such that

• Bn ⊆ Bm for n ≤ m and
• Cn = (Bn \

⋃

m<n
Bm) �= ∅ for each n ∈ N.

Define, for each n ∈ N and each x ∈ Cn, the set

A(n, x) = Bn \ {x}

and consider the open cover

A = {A(n, x) | n ∈ N and x ∈ Cn}

of X. Then there exist unique maps α : A → N and β : A → X such that
A = A

(
α(A), β(A)

)
for each A ∈ A.

Since X is Lindelöf, A has a countable subcover {An | n ∈ N}. The set
M = {α[An] | n ∈ N} is an unbounded, thus countable subset of N. For each
m ∈ M define xm = β(Amin{n∈N|α(An)=m}). Then xm ∈ Cm. The subspace Y
of X with underlying set {xm | m ∈ M} is countable and discrete, since for
each m ∈ N

(a) the set {xn | n ≤ m} = Bm ∩ Y is open in Y ,
(b) the set {xn | n < m} is closed in Y as a finite subset of a T1–space,

and thus

(c) {xm} is open in Y .

Consequently Y is homeomorphic to the discrete space N. Moreover, each
element x of X is contained in some Bn, and thus has a neighborhood that
meets Y in a finite set. Hence the T1–property of X implies that Y is closed
in X and thus Lindelöf (cf. Exercises to Section 3.2, E 1). Consequently N is
Lindelöf, and Theorem 3.8 implies that CC(R) holds.

8 [Her2002]
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Corollary 7.3. 9 Every ZF–model satisfies exactly one of the following two
alternatives:

1. Every subspace of R is Lindelöf.
2. For subspaces of R: Lindelöf = compact = closed and bounded.

Proof. If CC(R) holds then, by Theorems 4.54, condition (1) holds true.
If CC(R) fails then, by Theorems 7.2 and 4.52, condition (2) holds true.

As pointed out earlier each of the two above cases can occur.

Theorem 7.4. 10 Equivalent are:

1. Products of Lindelöf T2–spaces are Lindelöf.
2. PIT holds and CC(R) fails.

Proof. (1) ⇒ (2) Consider the space N
R. Let P2R be the set of all subsets of

R with exactly two elements. For D = {a, b} in P2R define

C(D) = {(nx) ∈ N
R | na = nb}.

Since R is uncountable, the set C = {C(D) | D ∈ P2R} is an open cover
of N

R. However C has no countable subcover of N
R. To see this, consider a

sequence (Dn) in P2R. Then D =
⋃

n∈N

Dn is at most countable. Thus there

exists an injective map f : D → N. Consequently the point (nx) of N
R, defined

by nx =
{

f(x), if x ∈ D
0, otherwise does not belong to

⋃

n∈N

C(Dn). This fact implies

that N
R fails to be Lindelöf. Thus (1) implies that N fails to be Lindelöf.

So, by Theorem 3.8, CC(R) fails. Consequently, by Theorem 7.2, the equality
Lindelöf = compact holds for T1–spaces and thus in particular for T2–spaces.
So, by (1) products of compact T2–spaces are compact. Thus Theorem 4.70
implies that PIT holds.

(2) ⇒ (1) If CC(R) fails, Theorem 7.2 implies, as above, that Lindelöf =
compact for T2–spaces. Thus PIT implies, via Theorem 4.70, that products
of Lindelöf T2–spaces are Lindelöf.

Remark 7.5. 11

1. Observe that there exist models12 of ZF in which PIT holds but CC(R)
fails. Thus in these models the theorem

Products of Lindelöf T2–spaces are Lindelöf
holds true. Since the Lindelöf–property is closed–hereditary (cf. Exercises
to Section 3.2, E 1), in the above models the Lindelöf T2–spaces form an

9 [Her2002]
10 [Her2002]
11 [Her2002]
12 Cohen’s First Model A4 (M1 in [HoRu98]).
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epireflective subcategory, i.e., — besides a Tychonoff Theorem — there
is also a Čech–Stone Theorem for Lindelöf spaces. In particular, in these
models, the familiar Čech–Stone compactification N ↪→ βN of N is the
Lindelöf–T2–reflection of N — somewhat surprising, perhaps.

2. Note further that there is no model of ZF in which products of Lindelöf
T1–spaces are always Lindelöf. This can be seen as follows: By Theorem
7.4, in such a model CC(R) must fail and products of compact T1–spaces
must be compact. Hence (see Exercises to Section 4.8, E 11) AC must
hold. But if AC holds, then CC(R) cannot fail, a contradiction.

The situation is even worse for T0–spaces. See Exercise E 2.

What about finite products?

Theorem 7.6. Equivalent are:

1. Finite products of Lindelöf T1–spaces are Lindelöf.
2. CC(R) fails.

Proof. (1) ⇒ (2) Consider the Sorgenfrey line S = (R, σ), i.e., the topological
space that has R as underlying set and the collection of all intervals of the
form

[a, b) = {x ∈ R | a ≤ x < b}
as a base for the topology σ. Then σ is finer than the canonical topology τ on
R. In particular S is a T1–space. Moreover, the space S2 fails to be Lindelöf,
since the uncountable open cover C = {C} ∪ {Ca | a ∈ R} of S2, where
C = {(x, y) ∈ R

2 | x + y < 0} and Ca = {(x, y) ∈ R
2 | a ≤ x and −a ≤ y},

contains no proper subcover of S2. (Draw a picture to see this.) Thus, by (1),
S is not Lindelöf. To show that (2) holds it suffices to demonstrate that under
CC(R) S is Lindelöf. For this purpose we will show first that:
(A) |σ| ≤ |R|
Since (R, τ) is second countable it follows immediately that
(B) |τ | ≤ 2ℵ0 .
Moreover the set D of all at most countable subsets of R satisfies
(C) |D| ≤ |RN| = |R|N = (2ℵ0)ℵ0 = 2ℵ

2
0 = 2ℵ0 .

Every A ∈ σ can be decomposed in the form
A = intτA∪(A\intτA), where A\intτA is easily seen to be at most countable.
Thus (B) and (C) imply:

|σ| ≤ |τ | · |D| ≤ 2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0 = |R|.

Hence (A) holds. This fact implies, via CC(R), that:
CC(σ) :

∏

n∈N

Un �= ∅ for every sequence of non–empty subsets Un of σ.

Finally let us consider an open cover U of S. Then W = {intτU | U ∈ U}
is an open cover of the open subspace X =

⋃
W of (R, τ). Since X is second

countable, Theorem 4.54 implies that there exists a subset {Vn | n ∈ N}
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of W that covers X. By CC(σ) there exists a sequence (Un)n∈N in U with
Vn = intτUn for each n ∈ N. Again it is easily seen that R \ X is at most
countable. Thus, by CC(σ), there exists a subset {Wn | n ∈ N} of U that
covers R \ X. Consequently {Un | n ∈ N} ∪ {Wn | n ∈ N} is an at most
countable subcover of U. Thus S is a Lindelöf space.

(2) ⇒ (1) Immediate from Theorem 7.2 and the fact that finite products
of compact spaces are compact (see Exercises to Section 4.8, E 1).

Theorem 7.7. Equivalent are:

1. Every Lindelöf T2–space is paracompact.
2. Every Lindelöf T2–space is normal.
3. Every Lindelöf T2–space is regular.
4. CC(R) fails.

Proof. (1) ⇒ (2) ⇒ (3) Immediate.
(3) ⇒ (4) Enrich the canonical topology τ of the reals by adding the set

B = R \ { 1
n | n ∈ N

+} as an open set, i.e., by considering the topology σ
generated by τ ∪{B}. Then the space (R, σ) is a non–regular T2–space. Thus,
by (3), (R, σ) fails to be Lindelöf. Since (R, σ) is second countable, Theorem
4.54, implies that CC(R) fails.

(4) ⇒ (1) By Theorem 7.2, (4) implies that Lindelöf T2–spaces are com-
pact, thus paracompact.

Theorem 7.8. 13 Equivalent are:

1. Every totally disconnected Lindelöf T2–space is zerodimensional.
2. CC(R) fails.

Proof. (1) ⇒ (2) Consider the topological space (X, τ), whose underlying set
is defined by

X = {(xn) ∈ Q
N |

∑

n∈N

x2
n < ∞}

and whose topology τ is induced by the metric d, defined by

d
(
(xn), (yn)

)
=

√∑

n∈N

(xn − yn)2.

Then (X, τ) is easily seen to be a totally disconnected, second countable T2–
space. However, (X, τ) fails to be zerodimensional. To see this, consider the
point x = (0, 0, 0, . . .) and its neighborhood

U = {y ∈ X | d(x, y) < 1}.

We will show that there is no clopen neighborhood V of x with V ⊆ U . Let
V be a neighborhood of x with V ⊆ U . Via recursion we will construct an
13 [Erd40], [Her2002].
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element x = (xn) of X with the following property:

(P) ∀n∈N yn = (x0, x1, . . . , xn, 0, 0, . . .) ∈ V and dist(yn,X \ V ) < 1
2n

as follows:

1. x0 = 0
2. Let (x0, . . . , xn) be defined such that the corresponding point yn =

(x0, . . . , xn, 0, 0, . . .) satisfies condition P . Define xn+1 to be the small-
est element of the set, consisting of all fractions m

2n+1 such that:
a) m ∈ {0, 1, . . . , 2n+1}.
b) (x0, . . . , xn, m

2n+1 , 0, 0, . . .) ∈ V .
c) (x0, . . . , xn, m+1

2n+1 , 0, 0, . . .) �∈ V .

Then x is an element of X that belongs to the closure of V and to the closure
of (X \ V ). Thus V is not clopen.

By (1), the above implies that (X, τ) is not Lindelöf. Thus, by Theorem
4.54, CC(R) fails.

(2) ⇒ (1) If CC(R) fails then, by Theorem 7.2, every totally disconnected
Lindelöf T2–space is compact and thus zerodimensional.

Exercises to Section 7.1:

E 1. 14 Show the equivalence of the following statements:
(1) All σ–compact spaces, (i.e., spaces that are countable unions of com-

pact spaces) are Lindelöf.
(2) CC.

E 2. 15 Let Nl be the space of natural numbers with the lower topology (i.e.,
A ⊆ N is open in Nl iff m ≤ n ∈ A implies m ∈ A). Show that

(1) Nl is a Lindelöf T0–space.
(2) N

R

l fails to be Lindelöf.

E 3. 16 Show the equivalence of the following conditions:
(1) Finite sums of Lindelöf T1–spaces are Lindelöf.
(2) Products of Lindelöf T1–spaces with compact T1–spaces are Lindelöf.
(3) CC(R) implies CC.

E 4. 17 Show that every unbounded Lindelöf subspace of R contains an un-
bounded sequence. (Contrast this with Theorem 3.8.)

14 [Bru82]
15 [Boer2002]
16 [Her2002]
17 [Gut2003]
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7.2 Measurability (The Axiom of Determinateness)

Why were set theorists so drawn to study this ax-
iom [of determinateness], drawn, in fact, to the point
where it became the key area of research for all but a
few of the best in the field?

E.M. Kleinberg18

If a model of ZF satisfies AD, then this model is
closer to physical reality than any model of ZFC.
For example, the Banach–Tarski paradoxical decom-
position of a ball is impossible.

V.W. Marek and J. Mycielski19

Among all alternatives to the axiom of choice AC
the axiom of determinateness AD undoubtedly is the
most interesting.

U. Felgner and K. Schulz20

As we have seen in previous sections the Axiom of Choice is not only
responsible for some beautiful theorems but also for the creation of some
unwelcome monsters, like non–measurable sets of reals. “It was felt that these
choice–generated oddities should not appear among the simpler sets, that they
should probably not be definable at all.”21

In 1962 Mycielski and Steinhaus22 introduced a new axiom, the Axiom of
Determinateness, AD, which stipulated that certain infinite, deterministic
2–person games with complete information (cf. Section 6.1) are determinate,
i.e., that one of the players has a winning strategy. The authors did not claim
this new axiom to be intuitively true, but stated that the purpose of their
paper is “only to propose another theory which seems very interesting although
its consistency is problematic.”23 The consistency problem (i.e., the question
whether ZF + AD is consistent, provided ZF is) is still unsettled24. But set
theorists are fairly convinced that AD is relatively consistent. In fact they
have shown that ZF + AD is consistent iff ZFC and the assumption that
infinitely many Woodin cardinals exist, is consistent; and the existence of such
large cardinals is one of set theorists’ pet beliefs. Though AD is incompatible
18 [Kle77]
19 [MaMy2001]
20 [FeSch84]
21 [Mad88a]
22 [MySt62]
23 [MySt62]
24 However consistency of ZF+AD is known to imply consistency of ZF+AD+

DC as well as of ZF + AD+ not CC. See [Kec84] and Model A1.
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with AC, as Theorem 6.5 shows, its consequences are amazing. There are
highly desirable results, e.g., the theorem that all sets of real numbers are
Lebesgue–measurable. Moreover, there are deep and surprising connections
between determinateness of games and the theory of large cardinals. It is
the “richness and internal harmony of these consequences”25 that caused the
axiom of determinateness “to have an extraordinary impact on modern set
theory”26 and has led to a “very rich and intriguing theory.”27 Naturally, this
theory cannot be presented here. We restrict our attention to outlining the
basics and stating some of the consequences without proofs.

Definition 7.9. Let X be a non–empty set and A a subset of XN. The game
G(X,A) is played as follows:

Two players choose alternately consecutive elements x0, x1, x2, . . . in X,
such that each player knows, (besides X and A), whenever it is his term, the
tuple of previously choosen elements. The first player (i.e., the one choosing
x0, x2, x4, . . .) wins if the resulting sequence (xn) belongs to A. Otherwise the
second player (i.e., the one choosing x1, x3, x5, . . .) wins.

The game G(X,A) is called determinate provided that one of the players
has a winning strategy (see Definition 6.1).

Recall that 2 = {0, 1}.

Definition 7.10. Let A be a subset of the unit interval [0, 1]. The game G(A)
is played the same way as the game G(2, A). However, the first player wins if∑

n∈N

xn

2n+1 ∈ A. Otherwise the second player wins.

The game G(A) is determinate provided that one of the players has a
winning strategy.

Proposition 7.11. 28 Equivalent are:

1. For each subset A of N
N, the game G(N, A) is determinate.

2. For each subset A of 2N, the game G(2, A) is determinate.
3. For each subset A of [0, 1], the game G(A) is determinate.

Proof. (1) ⇒ (2) Let A be a subset of 2N. Define
B = {(xn) ∈ N

N | (xn) ∈ A or ∃n x2n+1 �∈ 2}. Then — for either player — a
winning strategy for the game G(N, B) provides easily a wining strategy for
G(2, A).

(2) ⇒ (3) Let A be a subset of [0, 1]. Consider the map f : 2N → [0, 1],
defined by f(xn) =

∑

n∈N

xn

2n+1 . Then — for either player — a winning strategy

for the game G(2, f−1[A]) is a winning strategy for G(A).
25 Cited from [Mad88a].
26 [Kle77]
27 [Jen98]
28 [Myc64]
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(3) ⇒ (2) Since the map f , defined above, is not injective, we need to
apply a small trick. Let A be a subset of 2N. Consider the set M = {(xn) ∈
2N | ∀n x6n = 0 and x6n+3 = 1}. Then the map g : M → 2N, defined by

g
(
(xn

)
= (yn) with

{
y2n = x3n+1

y2n+1 = x3n+2

}

,

is a bijection. Consider the set
B = g−1[A] ∪ {(xn) ∈ 2N | (xn) is not finally constant and

∃m ∀k ≤ m x6k = x6m+3 = 0}.
As can be seen easily, determinateness of the game G(2, B) implies deter-

minateness of the original game G(2, A). So it suffices to verify the former.
This follows immediately from the fact that B is saturated with respect to
the map f : 2N → [0, 1] defined above (i.e., from the equation f−1[f [B]] = B)
and the fact that, by (2), the game G(f(B)) is determinate.

(2) ⇒ (1) Let A be a subset of N
N. Consider the following partition

{X,Y,Z} of 2N:
X = {(xn) ∈ 2N | {n ∈ N | x2n = 0} is finite},
Y = {(xn) ∈ (2N \ X) | {n ∈ N | x2n+1 = 0} is finite},
Z = 2N \ (X ∪ Y ).

Consider further the bijection g : Z → N
N, defined as follows:

y0 = min{k ∈ N | x2k = 0}, i.e., y0 is the number of consecutive choices
of 1’s by the first player at the beginning of the game.

y1 = min{k ∈ N | x2y0+2k+1 = 0}, i.e., y1 is the number of consecutive
choices of 1’s by the second player after the first choice of 0 by
the first player.

y2 = min{k ∈ N | x2y0+2y1+2(k+1) = 0},
etc.
Define B = (g−1[A] ∪ Y ) \ X. Then it is seen easily that — for either player
— a winning strategy for the game G(2, B) provides a winning strategy for
the game G(N, A).

Definition 7.12. AD, the Axiom of Determinateness, states that the equiv-
alent conditions of the preceding proposition are satisfied.

An impressive consequence of the Axiom of Determinateness is the follow-
ing result that we present without proof:

Theorem 7.13. 29 Under AD every subset of R is Lebesgue–measurable.

The above results indicates that Lebesgue measure for subsets of R is
better behaved under AD than under AC. However, it is known that in ZF
Lebesgue measure may fail to be σ–additive. So immediately the question
pops up whether by gaining something (the measurability of all subsets of R)
one looses something else (the σ–additivity of Lebesgue measure). Fortunately
this is not so:

29 [MySw64]. For improved proofs see, e.g., [Jec73], [Kle77] or [Mar2003].
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Proposition 7.14. 30 Under AD Lebesgue measure is σ–additive.

Proof. The familiar proof of σ–additivity of the Lebesgue measure uses, in
several places, the following weak choice principle, where τ denotes the topol-
ogy of R

n:

CC(τ): For each sequence (Xn) of non–empty subsets Xn of τ , the product∏

n∈N

Xn is not empty.

The fact that τ has a countable base immediately implies |τ | = 2ℵ0 = |R|.
Thus CC(τ) is equivalent to CC(R). Thus CC(τ), and hence the σ–additivity
of Lebesgue measure follows from AD via the next proposition.

Proposition 7.15. 31 Under AD

1. CC(R) holds,
2. AC(R) fails.

Proof. (1) Consider M = {2n + 1 | n ∈ N}. Then |NM | = 2ℵ0 = |R| implies
that it suffices to show that

∏

n∈N

An �= ∅ for each sequence (An) of non–empty

subsets An of N
M . Consider the game G(N, A), where A = {(xn) ∈ N

N | ∀n ∈
N (x2n+1) �∈ Ax0}. Since the sets An are non–empty the first player has no
winning strategy. Thus, by AD, the second player has a winning strategy.
This provides him with a function that associates with each strategy σm of
the first player, of the form play “x0 = m and x2n = 0 for n ≥ 1”, a sequence
sm = (x2n+1) in Am. Thus (sm) ∈

∏

m∈N

Am.

(2) In Theorem 6.5 it has been shown that AC implies the existence of a
subset A of 2N such that the game G(2, A) is not determinate. A straightfor-
ward analysis of the proof reveals that only AC(R) is needed. Thus AC(R)
implies the failure of AD. By contraposition AD implies the failure of AC(R).
An alternative proof can be obtained by means of theorem 7.13 via the con-
struction 5.7 of non–measurable Vitali Monster.

Proposition 7.16. 32 Under AD there is no free ultrafilter on N.

Proof. This follows immediately from Theorem 7.13 via the construction 5.9
of non–measurable Sierpiński Monsters by means of WUT(N).

30 [Myc64]
31 [Myc64]
32 [Myc64]. Note, however, that there are even σ–complete free ultrafilters on ℵ1.

[Mig81], [Ver94].
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Corollary 7.17. Under AD the discrete space of natural numbers is ultra-
filter–compact and Tychonoff–compact.

Proof. Immediate from Proposition 7.16 and Theorem 3.32(2).

Proposition 7.18. Under AD all solutions of the Cauchy–equation are con-
tinuous.

Proof. Immediate from Theorems 7.13 and 5.5 in view of Exercises to Section
5.1, E 7.

Corollary 7.19. 33 Under AD the additive group R has no non–trivial direct
summand.

Proof. Assume that R can be expressed as a direct sum A⊕B of two non–zero
subgroups. Then the map f : R → R, defined by f(a + b) = a for a ∈ A and
b = B, is a non–continuous solution of the equation f(x + y) = f(x) + f(y),
contradicting Proposition 7.18.

Corollary 7.20. 34 Under AD, R considered as vector space over the field Q

has no basis.

Proof. If B would be a basis of the vector space R over Q, then for any b ∈ B
the set Q · b = {r · b | r ∈ Q} would be a non–trivial direct summand of the
additive group of R, contradicting Corollary 7.19.

Theorem 7.21. 35 Consider K = X/� where X = {0, 1}N and � is the equiv-
alence relation on X, defined by

(xn)�(yn) iff {n ∈ N | xn �= yn} is finite.

Under AD the following hold:

1. There exists a family (Fi)i∈I of 2–element subsets Fi of K with
∏

i∈I

Fi = ∅.

2. K is not linearly orderable.
3. |R| < |K| and |K| <∗ |R|.

Proof. (1) For each x = (xn) in X define x∗ = (1 − xn). Denote further,
for each x in X, its equivalence class with respect to � by [x]�. Then the

33 [FeSch84]
34 [Sie27], [Sie30], [Sie58, p. 77], [Myc64]. Observe also that under AD the factor

group R/Q of the additive group R fails to be linearly orderable. See [FeSch84].
35 [Myc64]
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set
{
{[x]�, [x∗]�} | x ∈ X

}
of 2–element subsets of K, considered as family

indexed by itself, has an empty product, since otherwise (see Exercises to
Section 5.1, E 1) there would exist a non–measurable subset of R, contradicting
Theorem 7.13.

(2) Immediate from (1) and Exercises to Section 1.1, E 2 (8).
(3) Observe first that |K| �= |R|, since R is linearly orderable but, by (2), K

fails to be linearly orderable. Observe next that |K| ≤∗ |R|, since there exists
a bijection b : R → X, and a surjection p : X → K, defined by p(x) = [x]�.
Thus it remains to be shown that |R| ≤ |K|. Here the crucial observation,
due to Sierpiński36, is the fact that the function f : (0, 1) → P(N2), defined
by f(x) = {

(
n, int(n · x)

)
| n ∈ N}, where

int(a) = max{n ∈ N | n ≤ a},

has the following property:

(•) If x �= y, then f(x) ∩ f(y) is finite.

To see this, let x and y be different elements of (0, 1), and let
(
n, int(nx)

)
=(

m, int(my)
)

be an element of f(x)∩f(y). Then n = m and int(nx) = int(ny).
The latter implies |nx − ny |< 1 and thus n < 1

|x−y| . Thus f(x) ∩ f(y) has
at most int

(
1

|x−y|
)

members. Let g : R → (0, 1) and h : N
2 → N be arbitrary

bijections and let χ : P(N) → X be the map associating with any A ⊆ N its
characteristic function χA. Then the map k = χ ◦ P(h) ◦ f ◦ g : R → X has
the property (•) and thus the map p ◦ k : R → K is injective.

Finally, let us mention without proof the following remarkable results con-
cerning the Continuum Hypothesis.

Theorem 7.22. 37 Under AC the following hold:

1. 2ℵ0 and ℵ1 are w.r.t. ≤ incomparable minimal successors of ℵ0. Thus
• CH, the Continuum Hypothesis, holds.
• AH(0), the Special Aleph–Hypothesis, fails.

2. ℵ0 <∗ ℵ1 <∗ 2ℵ0 .
Thus, w.r.t. ≤∗ the Continuum Hypothesis fails.

3. W.r.t. ≤ there are at least 3 cardinals between 2ℵ0 and 2(2ℵ0 ):
2ℵ0 < (2ℵ0 + ℵ1) < 2ℵ1 < (2ℵ1 + |K|) < 2(2ℵ0 )

(where K is defined in Theorem 7.21).

36 [Sie58, p. 77]
37 [Myc64]
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The following diagram summarizes results from Sections 4.11 to 7.2 con-
cerning the production of mathematical monsters:

Diagram 7.23.

∃ non–determinate games G(A)

∃ non–Lebesgue–measurable setsℵ1 ≤ 2ℵ0

∃ non–continuous f : R → R

with f(x + y) = f(x) + f(y)

R � C

∃ non–conti–
nuous automor–
phisms for C

Shelah–Soifer
graph is
2–colorable

R � R ⊕ Q
∃ free ultra–
filters on N

2R compact

AC(2)

Banach–Tarski
Paradox

∃ Hamel–bases
for R

Hahn–Banach
Theorem

Boolean Prime
Ideal Theorem

R is well–orderable
DC and
ℵ1 ≤ 2ℵ0

Axiom of Choice
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Exercises to Section 7.2:

E 1. Show that, for every countable (resp. cocountable) subset A of 2N, the
second (resp. first) player has a winning strategy for G(2, A).

E 2. Consider A = {(xn) ∈ 2N | ∀n x2n+1 = x2n} and the constant sequence
(0). Show that:

(1) The second player has a winning strategy for G(2, A).
(2) The first player has a winning strategy for G(2, A ∪ {(0)}).

E 3. Consider A = {(xn) ∈ 2N | x0 = 0}. Show that the first player has
winning strategies for G(2, A) and for G(2, 2N \ A).

E 4. Construct a subset A of 2N such that the second player has winning
strategies for G(2, A) and for G(2, 2N \ A).

E 5. Let X be a non–empty subset of Y . Show that determinateness of all
games of the form G(Y,A) implies determinateness of all games of the
form G(X,B).

E 6. 38 Show that the following condition (1) implies the conditions (2) and
(3):

(1) For cardinals a and b the inequalities a ≤ b and b ≤∗ a imply a = b.
(2) ℵ1 ≤ 2ℵ0 .
(3) There exist non–Lebesgue–measurable subset of R.

E 7. 39 Show that under AD, the Shelah–Soifer Graph G defined in Exercises
to Section 4.11, E 10, is not ℵ0–colorable.

E 8. Show that, under AD, the Cantor cube 2R fails to be Weierstrass–
compact.
[Hint: Consult Exercises to Section 5.1, E 15.]

38 [Sie47a]
39 [HeRh2005]



Appendix: Models

In the main text several ZF–models and some of their properties have been
mentioned. In this Appendix we illustrate properties of some of these models
by means of diagrams, where for a model M

• P means that M has property P .

• P means that M fails to satisfy P .

• P means that we do not know whether M satisfies P .

Most of the data presented here are taken from [HoRu98] where these and
many other models are described and analyzed most thoroughly and in great
detail.

A.1 AD and DC
Though no models for AD have been constructed so far, it is known40

that if there exists a ZF–model that satisfies AD, then there also exists
a ZF–model that satisfies AD and DC. For properties of any such model
see Diagram A.1.
Note in particular that DC ensures the validity of
• most results from elementary analysis (Section 4.6),
• σ–additivity of Lebesgue–measure (Exercises to Section 5.1, E 13 resp.

Proposition 7.14),
• the Baire Category Theorem for complete metric and for compact

Hausdorff spaces (Theorem 4.106).
Moreover, AD implies that
• all subsets of R (resp. of R

n) are Lebesgue–measurable (Theorem 7.13),
• all real solutions of the Cauchy–equation f(x + y) = f(x) + f(y) are

continuous (Proposition 7.18),
• no paradoxical decompositions exist (Section 5.2).
On the other hand:

40 see [Kec84]
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• WUF(N) fails (Proposition 7.16), hence
– the discrete space N is ultrafilter–compact and Tychonoff compact

(Theorem 3.32),
– the Baire Category Theorem fails for ultrafilter–compact T3–spaces

(Theorem 4.108).
• PIT fails, thus

– the Tychonoff Theorem fails even for Cantor cubes 2I (Theorem
4.70); moreover 2R fails to be Weierstrass–compact (Exercises to
Section 7.2, E 8),

– the Ascoli Theorem fails (Theorem 4.91).
• AC(2) fails (Exercises to Section 5.1, E 1), thus

– for every natural number n ≥ 2 there exists a graph that fails to
be n–colorable, though each of its finite subgraphs is n–colorable
(Theorems 4.113 and 4.115),

– R, considered as a vector space over Q, has no basis (Proof of
Disaster 5.2 (2)).

– The Adjoint Functor Theorem fails (Theorem 4.51).
Finally, since AC fails but WUF(?) holds:

• The Tychonoff Theorem fails even for ultrafilter–compact spaces (The-
orem 4.80).

A.2 Shelah’s Second Model41

In this model, DC holds and any subset of R is Lebesgue–measurable. As
Diagram A.2 shows this model shares many of the features of A.1–models.

A.3 Howard–Rubin’s First Model42

In this model, AC(R), CC, and PIT hold, but DC and KW fail. See
Diagram A.3. Note in particular that here:
• Most results from elementary analysis are valid (Section 4.6)
• The Tychonoff Theorem holds for Hausdorff spaces (Theorem 4.70),

and for countable products (Exercises to Section 4.8, E 4), but not in
full generality (Theorem 4.68).

• The Čech–Stone Theorem holds (Theorems 3.22 and 4.8).
• The Ascoli Theorem holds (Theorem 4.91).
• The Baire Category Theorem holds for totally bounded or second

countable complete metric spaces (Theorem 4.104) and for countable
products of compact metric spaces (Theorem 4.105), but fails for com-
plete metric spaces and for compact Hausdorff spaces (Theorem 4.106).

• The Hahn–Banach–Theorem holds (Diagram 5.25).
• Every open lattice has a maximal filter (Theorem 4.36), but not every

closed lattice has a maximal filter (Theorem 4.32).

41 M 38 in [HoRu98]. A similar model has been constructed earlier by Solovay
[Sol65]. These constructions assume that in some ZF–models, inaccessible car-
dinals exist.

42 N 38 in [HoRu98].
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• For every n, a graph is n–colorable provided that each of its finite sub-
graphs is n–colorable (Theorems 4.113, 4.115 and Exercises to Section
4.11, E 4).

• Countable sums of normal spaces are normal (Theorem 4.66); however
there exists an orderable space that is a sum of normal spaces but fails
to be normal itself (Exercises to Section 4.7, E 5).

A.4 Cohen’s First Model43

In this model PIT holds, but Fin(R) and thus CC(R) fail. See Diagram
A.4.
Note in particular that here:
• Lindelöf = compact for T1–spaces (Theorem 7.2).
• Finite products of Lindelöf T1–spaces are Lindelöf (Theorem 7.6).
• Arbitrary products of Lindelöf T2–spaces are Lindelöf (Theorem 7.4).
• The Čech–Stone Theorem for Lindelöf spaces holds: Lindelöf T2–spaces

form an epireflective subcategory of the category of T2–spaces (Remark
7.5).

• Lindelöf T2–spaces are normal (Theorem 7.7).
• Totally disconnected Lindelöf T2–spaces are zerodimensional (Theo-

rem 7.8).
Moreover, due to PIT alone:
• The Tychonoff Theorem holds for Hausdorff spaces (Theorem 4.70).
• The Čech–Stone Theorem holds (Theorems 3.22 and 4.8).
• The Hahn–Banach theorem holds (Diagram 5.25).
• Every open lattice has a maximal filter (Theorem 4.36).
• For every n a graph is n–colorable provided each of its finite subgraphs

is n–colorable (Theorems 4.113, 4.115, and Exercises to Section 4.11,
E 4).

However, since Fin(R) fails:
• Many results in elementary analysis fail (Section 4.6).
• [0, 1] fails to be Alexandroff–Urysohn compact (Theorem 3.32).
• There exist infinite subsets of R without any decreasing or increasing

sequences (Disaster 4.25).

A.5 Fraenkel’s Second Model44

In this model AC(R) holds, but AC(2), CC(2), and even PCC(2) fail.
See Diagram A.5.
Observe in particular that here
• The discrete space N is Lindelöf, but the sum of N with a suitable

compact T2–space fails to be Lindelöf (Remark 4.63).
• A countable union of pairwise disjoint 2–element sets can fail to be

countable, even D–infinite (Proposition 3.6).
• D–finite unions of D–finite sets can be D–infinite (Disaster 4.3).

43 M1 in [HoRu98].
44 N2(2) in [HoRu98].
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• Images of D–finite sets can be D–infinite (Disaster 4.3).
• The power set of a D–finite set can be D–infinite (Disaster 4.3).
• Countable products of 3–element spaces can fail to be compact (The-

orem 4.77) or Baire (Exercises to Section 4.10, E 10).

A.6 Pincus–Solovay’s First Model45

In this model there are no free ultrafilters (i.e., WUF(?) fails), but DC
holds. See Diagram A.6.
So here:
• The Tychonoff Theorem holds for ultrafilter–compact spaces (Theorem

4.80),
and for countable products of compact spaces (Proposition 4.72),
but fails for compact Hausdorff spaces (Theorem 4.70).

• The Ascoli Theorem fails (Theorem 4.91).
• The Baire Category Theorem holds for complete metric and for

compact Hausdorff spaces (Theorem 4.106), but fails for ultrafilter–
compact T3–spaces (Theorem 4.108).

A.7 Fraenkel’s First Model46

In this model, there exist amorphous sets. See Exercises to Section 4.1, E
11; Section 4.3, E 4 and Section 4.10, E 11.

A.8 Feferman–Levy Model47

In this model, R is the countable union of countable sets.
Consequently here:
• R is a sequential space (Proposition 4.57).
• R is neither Fréchet nor Lindelöf (Theorem 4.54).
• Lebesgue measure fails to be σ–additive (Exercises to Section 5.1, E

13).

A.9 Howard–Rubin’s Second Model48

In this model, AC(R), DC and PIT hold, but KW fails.

45 M27 in [HoRu98].
46 N1 in [HoRu98].
47 M9 in [HoRu98].
48 N40 in [HoRu98].
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Diagram A.1: ZF-Models satisfying AD and DC
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Diagram A.2: Shelah’s Second Model
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Diagram A.3: Howard–Rubin’s First Model
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Diagram A.4: Cohen’s First Model
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Diagram A.5: Fraenkel’s Second Model
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Diagram A.6: Pincus–Solovay’s First Model
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of ZF . Comment. Math. Univ. Carolinae, 43:319–333, 2002.

[Her2003] H. Herrlich. The axiom of choice holds iff maximal closed filters exist.
Math. Logic Quart. 3:323–324, 2003.

[Her2005] H. Herrlich. Zur Existenz maximaler Filter und Ideale. Seminarberichte
Fb. Math. Univ. Hagen, 76:31–42, 2005.

[HeKe99] H. Herrlich and K. Keremedis. Products, the Baire category, and the
axiom of dependent choice. Comment. Math. Univ. Carolinae, 40:771–775, 1999.

[HeKe99a] H. Herrlich and K. Keremedis. Powers of 2. Notre Dame Journal of
Formal Logic, 40:346–351, 1999.

[HeKe2000] H. Herrlich and K. Keremedis. On countable products of finite Haus-
dorff spaces. Math. Logic Quart., 46:537–542, 2000.

[HeKe2000a] H. Herrlich and K. Keremedis. The Baire category theorem and choice.
Topology Appl., 108:157–167, 2000.

[HeKeTa2002] H. Herrlich, K. Keremedis and E. Tachtsis. Striking differences
between ZF and ZF + weak choice in view of metric spaces. Quaest. Math,
25:405–420, 2002.



174 References

[HeKeTa2005] H. Herrlich, K. Keremedis and E. Tachtsis. Countable sums and
products of Loeb and selective metric spaces. Comment. Math. Univ. Carolinae,
46:373–384, 2005.

[HeRh2005] H. Herrlich and Y.T. Rhineghost. Graph–Coloring and Choice. A Note
on a Note by Shelah and Soifer. Quaest. Math, 28:317–319, 2005.

[HeSt97] H. Herrlich and G.E. Strecker. When is N Lindelöf ? Comment. Math.
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[MySw64] J. Mycielski and S. Świerczkowski. On the Lebesgue measurability and
the axiom of determinateness. Fund. Math., 54:67–71, 1964.

[NaBe97] L. Narici and E. Beckenstein. The Hahn–Banach theorem: its life and
times. Topology Appl., 77:193–211, 1997.

[Oxt61] J.C. Oxtoby. Cartesian products of Baire spaces. Fund. Math., 49:157–166,
1961.

[Oxt80] J.C. Oxtoby. Measure and Category. Second Edition. Springer Graduate
Texts in Math. 2, 1980.

[Paw91] J. Pawlikowski. The Hahn–Banach Theorem implies the Banach–Tarski
Paradox. Fund. Math., 138:21–22, 1991.

[Pin72] D. Pincus. Independence of the Prime Ideal Theorem from the Hahn Banach
Theorem. Bull. Amer. Math. Soc., 78:766–770, 1972.

[Pin77] D. Pincus. Adding Dependent Choice. Ann. Math. Logic, 11:105, 1977.
[Pot90] M.D. Potter. Sets. Clarendon Press, 1990.
[Qui48] W.V.O. Quine. On what there ist. Review of Metaphysics, 2:21–38, 1948.
[Rai84] J. Raisonnier. A mathematical proof of Shelah’s theorem on the measure

problem and related results. Israel J. Math., 48:48–56, 1984.
[Rhi2001] Y.T. Rhineghost. The naturals are Lindelöf iff Ascoli holds. In: Categori-
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[Sie21] W. Sierpiński. Les exemples effectives et l’axiome de choix. Fund. Math.,
2:112–118, 1921.
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[Sie29] V. Sierpiński. Sur un paradoxe de M.J. von Neumann. Fund. Math., 35:203–
207, 1948.
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[Tar38a] A. Tarski. Über das absolute Maß linearer Punktmengen. Fund. Math.,
30:218–234, 1938.

[Tar39] A. Tarski. On well–ordered subsets of any set. Fund. Math., 32:176–183,
1939.

[Tar54] A. Tarski. Theorems on the existence of successors of cardinals, and the
Axiom of Choice. Indag. Math., 16:26–32, 1954.

[Tar65] A. Tarski. On the existence of large sets of Dedekind cardinals. Notices
Amer. Math. Soc., 12:719, 1965.

[Tru74] J.K. Truss. Classes of Dedekind finite cardinals. Fund. Math., 84:187–208,
1974.

[Tru95] J.K. Truss. The structure of amorphous sets. Ann. Pure Appl. Logic,73:191–
233, 1995.

[vDou85] E. K. van Douwen. Horrors of topology without AC: A nonnormal order-
able space. Proc. AMS, 95:101–105, 1985.

[vNeu25] J. von Neumann. Eine Axiomatisierung der Mengenlehre. J. Math.,
154:219–240, 1925.

[vNeu29] J. von Neumann. Zur allgemeinen Theorie des Maßes. Fund. Math., 30:73–
116, 1929.

[Ver94] M. Vervoort. An elementary construction of an ultrafilter on ℵ1 using the
Axiom of Determinateness.
http://staff.science.uva.nl/∼vervoort/ultrafilter.pdf.

[Vit05] G. Vitali. Sul Problema della misure dei gruppi di punti di una retta.
Bologna, 1905.

[Wag86] S. Wagon. The Banach–Tarski Paradox. Cambr. Univ. Press. Encyl.
Mathem. and its Appl. 24, 1986.

[War62] L.E. Ward. A weak Tychonoff Theorem and the Axiom of Choice. Proc.
Amer. Math. Soc., 13:757–758, 1962.

[Wila70] A. Wilansky. Topology for Analysts. Ginn and Co., 1970.
[Wil70] S. Willard. General Topology. Addison–Wesley Publ. Co., 1970.
[Zer04] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann. Math.

Annalen, 59:514–516, 1904.
[Zer08] E. Zermelo. Neuer Beweis der Möglichkeit einer Wohlordnung. Math. An-
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|X| cardinality of the set X
Ordering of cardinals:
|X| = |Y | ⇔ ∃f : X → Y bijective
|X| ≤ |Y | ⇔ ∃f : X → Y injective
|X| < |Y | ⇔ |X| ≤ |Y | and |X| �= |Y |
|X| ≤∗ |Y | ⇔ X = ∅ or ∃f : Y → X surjective
etc.

ℵ Aleph (cardinal of a well–orderable infinite set)
ℵ0 = |N|
Ord = Class of all ordinals
α = {β ∈ Ord | β < α} for ordinals α
2 = {0, 1}
2 is the discrete topological space (or, sometimes, the lattice) with

underlying set 2.

Special sets:
N = set of natural numbers 0, 1, 2, ...
N

+ = N\{0}
Z = set of integers
Q = set of rational numbers
R = set of real numbers
C = set of complex numbers

[a, b] = {x ∈ R | a ≤ x ≤ b}
[a, b) = {x ∈ R | a ≤ x < b}
(a, b) = {x ∈ R | a < x < b}
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PX = {A | A ⊆ X} powerset of X
P0X = PX\{∅}
PfinX = {A ∈ PX | A finite}
X ∩ Y = {z | z ∈ X and z ∈ Y } intersection
X ∪ Y = {z | z ∈ X or z ∈ Y } union
X

⊎
Y = (X × {0}) ∪ (Y × {1}) disjoint union

X\Y = {z | z ∈ X and z �∈ Y } different
X∆Y = (X\Y ) ∪ (Y \X) symmetric difference⋃

i∈I

Xi = {z | ∃i ∈ I z ∈ Xi} union
⊎

i∈I

Xi =
⋃

i∈I

(Xi × {i}) disjoint union, sum
∏

i∈I

Xi = {f : I →
⋃

i∈I

Xi | ∀i ∈ I f(i) ∈ Xi} product

[0, 1]I = Hilbert cubes
2I = Cantor cubes
C(X,Y ) = {f : X → Y | f continuous}
Cco(X,Y ) = (C(X,Y ), τco)
C(X) = C(X, R)
C∗(X) = {f ∈ C(X) | f bounded}
τco compact open topology on C(X,Y )
A ≈ B A congruent with B
A ∼e B A equidecomposable with B
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In brackets the corresponding form numbers in [HoRu98]. Diagrams showing
implications between some of the axioms can be found in 2.21, 3.4, 4.58, 5.10,
5.25, and in A1 – A6.

AC Axiom of Choice 1.1 [1]
AC(cR) 4.55
AC(fin) 2.6 [62]
AC(n) 2.6 [45]
AC(R) E 1.Sec.1.1 [79]
AC(X) E 1.Sec.1.1
AD Axiom of Determinateness 7.12
AH Aleph–Hypothesis 2.19
AH(0) Special Aleph–Hypothesis 2.19
AMC Axiom of Multiple Choice 2.4 and 2.7 [67]
BTP Banach–Tarski Paradox 5.23 [309]
BP Baire Property for subsets of R, Preface

(footnote 15) [-142]
CC Axiom of Countable Choice 2.5 [8]
CC(cR) 4.55
CC(fin) 2.9 [10]
CC(n) 2.9 [288]
CC(≤ n) E 1.Sec. 3.1 [374]
CC(R) 2.9 [94]
CC(Z) 2.9 and Sec. 4.7 [119]
CC(2) 3.4 [80]
CH Continuum Hypothesis 2.19
CMC Axiom of Countable Multiple

Choice
2.10 [126]

CUT Countable Union Theorem 3.2 [31]
CUT(fin) 3.2 [10]
CUT(n) E 1.Sec.3.1 [374]
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CUT(≤ n) E 1.Sec.3.1
CUT(R) 3.2 [6]
CUT(2) 3.2 [80]
DC Principle of Dependent Choices 2.11 [43]
DMC Principle of Dependent Multiple

Choices E 2.Sec.2.2
and E 5.Sec.4.10 [106]

EAC Axiom of Even Choice E 1.Sec.2.1
Existence of a Hamel bases for R Section 5.1 [367]
Existence of non–measurable sets Section 5.1 [93]
Existence of ugly functions Section 5.1 [366]

Fin finite = D–finite 2.13 [9]
Fin(lin) 2.13 [185]
Fin(R) 2.13 [13]
GCH Generalized Continuum Hypoth-

esis
2.19

HBT Hahn–Banach Theorem 5.25 [52]
Hausdorff’s Maximal Chain
Condition

2.2 [1]

Kurepa’s Maximal Antichain
Condition

2.4 [1]

KW Kinna–Wagner Selection Princi-
ple

2.8 [15]

Lebesgue–measure is σ–additive E 3.Sec.5.1 [37]
m = 2m for infinite cardinals E 7.Sec.4.1,

E 3.Sec.4.2 [3]
No amorphous sets exist E 11.Sec.4.1 [64]

OAC Axiom of Odd Choice E 1.Sec.2.1
OEP Order Extension Principle 2.17 [49]
OP Ordering Principle 2.17 [30]
ω − CC(R) 4.56
PCC Axiom of Partial Countable

Choice
2.11 [8]

PCC(fin) E 5.Sec.2.2 [10]
PCC(R) E 5.Sec.2.2 [94]
PCC(2) E 2.Sec.3.1 [373(2)]
PCMC E 5.Sec.2.2 [126]
PIT Boolean Prime Ideal Theorem 2.15 [14]

R is not a countable union of
countable sets 4.58 [38]
R ∼= C 5.1 [251]
R ∼= R ⊕ Q 5.10 [252]
R is sequential 4.55 [74]
Teichmüller–Tukey Lemma 2.2 [1]

UFT Ultrafilter Theorem 2.15 [14]
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