UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 2017/1 Prof. Zeca Eidam

Lista 2

☆ Funções reais de duas e três variáveis

1. Ache e esboce o domínio das funções:

(a)
$$f(x, y) = \sqrt{x - y}$$
 (b) $f(x, y) = \arctan \frac{y}{x}$ (c) $f(x, y) = \frac{1}{\sqrt{x^2 + y^2 - 1}}$ (d) $f(x, y) = \frac{x}{y^x}$ (e) $f(x, y) = \tan(x - y)$ (f) $f(x, y) = \ln(xy^2 - x^3)$ (g) $f(x, y) = \ln(16 - 4x^2 - y^2)$

2. Esboce uma família de curvas de nível de:

(a)
$$f(x, y) = \frac{x + y}{x - y}$$
 (b) $f(x, y) = x - \sqrt{1 - y^2}$
(c) $f(x, y) = \frac{x^2}{x^2 - y^2}$ (d) $f(x, y) = \frac{2xy^2}{x^2 + y^4}$

3. Esboce os gráficos de:

(a)
$$f(x,y) = 1 - x - y$$
 (b) $f(x,y) = \frac{x}{x^2 + 1}$ (c) $f(x,y) = \sqrt{x^2 + 9y^2}$ (d) $f(x,y) = 4x^2 + y^2$ (e) $f(x,y) = y^2 - x^2$ (f) $f(x,y) = y^2 + 1$ (g) $f(x,y) = y^2 + x$ (h) $f(x,y) = xy$ (i) $f(x,y) = e^{\sqrt{x^2 + y^2}}$ (j) $f(x,y) = \frac{1}{4x^2 + 9y^2}$ (k) $f(x,y) = (x - y)^2$ (l) $f(x,y) = x^2 + y^2 + 2y + 3$ (m) $f(x,y) = \frac{1}{(x^2 + 2y^2)^2}$ (n) $f(x,y) = \ln(9x^2 + y^2)$ (o) $f(x,y) = 2 - \sqrt[4]{x^2 + 4y^2}$ (p) $f(x,y) = \sqrt{x^2 + y^2 - 9}$ (q) $f(x,y) = \sqrt{x^2 + y^2 + 1}$

4. Seja $\gamma(t) = (e^t + 1, e^{-t})$, para $t \in \mathbb{R}$.

① Desenhe a imagem de γ indicando o sentido de percurso.

② Verifique se a imagem de γ está contida em alguma curva de nível de $f:\mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = x^2y^2 - 2y - y^2 + 4.$$

Em caso afirmativo, em qual nível?

5. Em cada caso, esboce a superfície formada pelo conjunto dos pontos $(x, y, z) \in \mathbb{R}^3$ tais que:

(a) x + 2y + 3z = 1 (b) $x^2 + 2y^2 + 3z^2 = 1$ (c) $x^2 + y^2 - z^2 = 0$ (d) $x^2 + y^2 - z^2 = -1$ (e) $x^2 + y^2 - z^2 = 1$ (f) $x^2 - y^2 = 1$ (g) $x^2 - y^2 + z^2 = 1$

Alguma dessas superfícies é o gráfico de uma função $f:D\subset\mathbb{R}^2\to\mathbb{R}$?

- 6. Verifique que a imagem da curva $\gamma(t) = (\cos t, \cos t, \sqrt{2}\sin t), t \in [0, \pi[$, está contida numa esfera com centro em (0,0,0) e esboce a imagem de γ .
- 7. Seja $\gamma(t)=(\sqrt{t^2+1}\cos t,\sqrt{t^2+1}\sin t,t),\ t\in\mathbb{R}.$ Verifique que a imagem de γ está contida na superfície $x^2+y^2-z^2=1.$ Esboce a imagem de γ .
- 8. Seja $f(x, y) = \sqrt{x^2 + y^2 + 4}$ e seja $\gamma(t) = (t \cos t, t \sin t, \sqrt{t^2 + 4}), t \ge 0$.
 - (a) Mostre que a imagem de γ está contida no gráfico de f.
 - (b) Façaa um esboço do traço de γ .
- 9. Encontre uma parametrização para a curva de nível no nível c de f nos casos:
 - ① f(x, y) = x + 2y 3, c = -2;
 - ② $f(x, y) = x \sqrt{1 2y^2}$, c = 5;
 - ③ $f(x,y) = \frac{1}{x^2 v^2}$, c = 1.

Encontre a reta tangente às curvas dos itens (a), (b) e (c) acima nos pontos $\left(\frac{1}{2}, \frac{1}{4}\right)$, (6,0) e ($\sqrt{2}$, 1), respectivamente.

- 10. Encontre uma parametrização para as curvas *C* abaixo:
 - ① *C* é a intersecção do parabolóide hiperbólico $z = y^2 x^2$ com o cilindro $x^2 + y^2 = 1$.
 - ② C é a intersecção da superfície $x^2 + y^2 2z^2 = 1$ com o plano y = 2z + 1.
 - ③ *C* é a intersecção do plano x = z com o parabolóide $x^2 + y^2 = z$.
 - ① *C* é a intersecção do cone $z = \sqrt{4x^2 + y^2}$ com o plano z = 2x + 1.
 - ⑤ $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \text{ e } z = x + 1\}.$
 - **6** $C = \{(x, y, z) \in \mathbb{R}^3 \mid z = \sqrt{x^2 + y^2} \text{ e } z = x + 1\}.$
- 11. Seja $f(x, y) = \frac{2x^2 + 4y^2}{x^2 + y^2 + 1}$.
 - ① Esboce as curvas de nível de f dos níveis c = 1, c = 2 e c = 3.
 - ② Encontre uma curva diferenciável γ cuja imagem seja a curva de nível de f do nível c = 1.
 - ③ Determine o vetor tangente à curva γ do item anterior no ponto (-1,0).
 - contida no gráfico de f, encontre o vetor tangente a γ em $\gamma(\frac{\pi}{3})$.

12. Combine as equações com os esboços das imagens. Justifique a sua escolha:

(a)
$$\gamma(t) = (\cos 4t, t, \sin 4t)$$

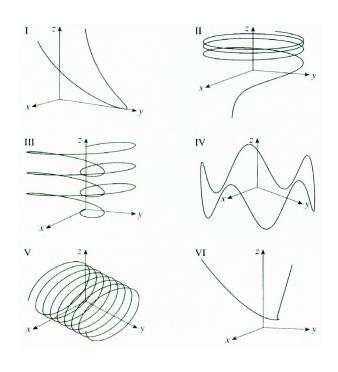
(b)
$$\gamma(t) = (t^2 - 2, t^3, t^4 + 1)$$

(c)
$$\gamma(t) = (t, \frac{1}{1+t^2}, t^2)$$

(d)
$$\gamma(t) = (\sin 3t \cos t, \sin 3t \sin t, t)$$

(e)
$$\gamma(t) = (\cos t, \sin t, \ln t)$$

(f)
$$\gamma(t) = (\cos t, \sin t, \sin 5t)$$



☆ Limites e continuidade

13. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y\cos(x^2+y^2)}{x^2+y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{2x^4 + x^2 y + y^2}$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{2x^2 + 3xy + 4y^2}{3x^2 + 5y^2}$$

(f)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$

(g)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^3-y}$$

(h)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 \sin(x^2 + y^2)}{x^4 + y^2}$$

(i)
$$\lim_{(x,y)\to(0,0)} \frac{(x+y)^3}{x^2+y^2}$$

(j)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + y^2} \sin\left(\frac{xy}{\sqrt{x^2 + y^2}}\right)$$

(k)
$$\lim_{(x,y)\to(0,0)} \frac{x^3y + y^4 + x^4}{x^3y - xy^3}$$

(l)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + \sin(x^2 + y^2)}{y^4 + \sin(x^2 + y^2)}$$

(m)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

(n)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$

(o)
$$\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$$

(p)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2 y}{x^2 + 2y^2}$$

3

14. Determine o conjunto dos pontos de continuidade das funções abaixo:

(a)
$$f(x, y) = \frac{\sin(xy)}{e^x - y^2}$$
 (b)

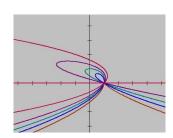
(b)
$$f(x, y) = \frac{\sqrt{x - y^3}}{1 - x^2 - y^2}$$

(c)
$$f(x, y) = \arctan(x + \sqrt{1/y})$$
 (d) $f(x, y) = \arcsin(x^2 + y^2)$

(a)
$$f(x,y) = \frac{\sin(xy)}{e^x - y^2}$$
 (b) $f(x,y) = \frac{\sqrt{x - y^3}}{1 - x^2 - y^2}$ (c) $f(x,y) = \arctan(x + \sqrt{1/y})$ (d) $f(x,y) = \arcsin(x^2 + y^2)$ (e) $f(x,y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^3} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$

(f)
$$f(x,y) = \begin{cases} \frac{(x^2 - y^2)(x - 1)^2}{(x^2 + y^2)((x - 1)^2 + (y - 1)^2)} & \text{, se } (x,y) \neq (0,0) \text{ e } (x,y) \neq (1,1) \\ 1 & \text{, se } (x,y) = (0,0) \text{ ou } (x,y) = (1,1) \end{cases}$$

15. O domínio de uma função f é o conjunto $\{(x, y) \in \mathbb{R}^2 | (x, y) \neq (1, 0)\}$. A figura abaixo mostra as curvas de nível de *f* nos níveis k = 0, k = 0, 3, k = 0, 5, k = 0, 7 e k = 1. Existe $\lim_{(x,y)\to(1,0)} f(x,y)$? Justifique.



☆ Derivadas parciais, gradiente e diferenciabilidade

16. Ache as derivadas parciais de primeira ordem das funções:

(a)
$$f(x, y) = \arctan(y/x)$$
 (b) $f(x, y) = \ln(1 + \cos^2(xy^3))$ (c) $f(x, y) = \frac{1 - xy}{1 + x^2 + y^2}$

17. Seja $f:\mathbb{R} \to \mathbb{R}$ uma função diferenciável. Calcule as derivadas parciais de primeira ordem de:

(a)
$$u(x, y) = f\left(\frac{x}{y}\right)$$

(a) $u(x, y) = f\left(\frac{x}{y}\right)$ (b) u(x, y) = f(ax + by), onde $a \in b$ são constantes. (c) $u(x, y) = f(xy^2 - 2x)$ (d) $u(x, y) = f(e^{x^2 + y^2})$

(c)
$$u(x, y) = f(xy^2 - 2x)$$

- 18. Dada a função $f(x,y) = x(x^2 + y^2)^{-\frac{3}{2}}e^{\sin(x^2y)}$, ache $\frac{\partial f}{\partial x}(1,0)$. (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.)
- 19. Verifique que a função $u(x, y) = \ln \sqrt{x^2 + y^2}$ é solução da equação de Laplace bidimensional $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$

- 20. Sejam $f, g : \mathbb{R} \to \mathbb{R}$, deriváveis até 2a. ordem.
 - (a) Mostre que u(x, t) = f(x + ct) + g(x ct) satisfaz a equação $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.

(b) Mostre que u(x, y) = x f(x + y) + yg(x + y) é solução da equação

$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0.$$

- 21. Sejam $f(x, y) = (x^2 + y^2)^{\frac{2}{3}}$ e $g(x, y) = |xy|^{\frac{5}{4}}$. Mostre que f e g são de classe C^1 em \mathbb{R}^2 .
- 22. Calcule $\frac{\partial w}{\partial t}$ e $\frac{\partial w}{\partial u}$ pela regra da cadeia e confira os resultados por meio de substituição seguida de aplicação das regras de derivação parcial.

(a)
$$w = x^2 + y^2$$
; $x = t^2 + u^2$, $y = 2tu$.

(b)
$$w = \frac{x}{x^2 + v^2}$$
; $x = t \cos u$, $y = t \sin u$.

(c)
$$w = x^2 + y^2 + z$$
; $x = tu$, $y = t + u$, $z = t^2 + u^2$.

23. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^2 . Calcule g_u, g_v , em função de f_x, f_y nos seguintes casos:

(a)
$$g(u, v) = f(u^2, v^3)$$

(b)
$$g(u, v) = \sin u - f(2u - 3v^2, u - \cos v)$$

(c)
$$g(u, v) = f(\sin(u + v), \cos(u - v))$$
 (d) $g(u, v) = f(e^{u^2}, \ln(u + v))$

(d)
$$g(u, v) = f(e^{u^2}, \ln(u + v))$$

- 24. Uma função $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ é **homogênea de grau** λ se satisfaz $f(tx,ty) = t^{\lambda} f(x,y)$ para todos t > 0 e $(x, y) \neq (0, 0)$, para um certo $\lambda \in \mathbb{R}$ fixo. Supondo que f é uma função de classe \mathbb{C}^2 homogênea de grau λ , verifique que:
 - (a) $xf_x + yf_y = \lambda f$; (Relação de Euler)
 - (b) As funções f_x e f_y são homogêneas de grau $\lambda 1$.
- 25. Verifique que as funções abaixo são homogêneas e determine o grau:

(a)
$$f(x, y) = 5x^2 + 2xy - y^2$$
 (b) $f(x, y) = \frac{xe^{\frac{x}{y}}}{x^2 + y^2}$
(b) $f(x, y) = \frac{1}{\sqrt{x^3 + y^3}}$ (c) $f(x, y) = \frac{xy\sin(y/x)}{x^4 + y^4}$

(b)
$$f(x, y) = \frac{1}{\sqrt{x^3 + y^3}}$$

(c)
$$f(x, y) = \frac{xy\sin(y/x)}{x^4 + y^4}$$

26. Seja
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} + \sin(x+3y) & \text{se} \quad (x,y) \neq (0,0), \\ 0 & \text{se} \quad (x,y) = (0,0). \end{cases}$$

(a) Mostre que as derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ existem em todos os pontos.

5

- (b) f é contínua em (0,0)?
- (c) f é diferenciável em (0,0)?

27. Seja
$$f(x, y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0). \end{cases}$$

(a) Mostre que f é contínua em (0,0).

- (b) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (c) f é diferenciável em (0,0)?
- (d) São $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ contínuas em (0,0)?
- 28. Considere $f(x, y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0). \end{cases}$
 - (a) Mostre que f é diferenciável em (0,0).
 - (b) As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em (0,0)?

29. Seja
$$f(x, y) = \begin{cases} \frac{x^2 \sin((x^2 + y^2)^2)}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0). \end{cases}$$

- (a) Verifique que f é contínua em (0,0).
- (b) Determine $\frac{\partial f}{\partial y}(x, y), (x, y) \in \mathbb{R}^2$.
- (c) A função $\frac{\partial f}{\partial y}$ é contínua em (0,0)? Justifique sua resposta.
- (d) A função f é diferenciável em (0,0)? Justifique sua resposta.

30. Seja
$$f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0). \end{cases}$$

- (a) Verifique que $\frac{\partial f}{\partial x}(0, y) = -y$ para todo y, e que $\frac{\partial f}{\partial y}(x, 0) = x$, para todo x.
- (b) Verifique que $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$ e que $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$.
- 31. Determine o conjunto de pontos de \mathbb{R}^2 onde f é diferenciável, sendo:

(a)
$$f(x, y) = \sqrt[3]{x^3 + y^3}$$

(b)
$$f(x, y) = x|y|$$

(c)
$$f(x, y) = e^{\sqrt{x^4 + y^4}}$$

(d)
$$f(x, y) = \cos(\sqrt{x^2 + y^2})$$

- 32. Mostre que não existe nenhuma função diferenciável $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $\nabla f(x, y) = (x^2 y, y^2)$ para todo $(x, y) \in \mathbb{R}^2$.
- 33. O raio de um cilindro circular está decrescendo à taxa de 1,2cm/s enquanto sua altura está crescendo à taxa de 3cm/s. A que taxa o volume do cilindro está variando quando o raio vale 80 cm e a altura vale 150 cm?

34. Sejam $f: \mathbb{R}^2 \to \mathbb{R}$, diferenciável em \mathbb{R}^2 , com $\nabla f(-2, -2) = (a, -4)$ e

$$g(t) = f(2t^3 - 4t, t^4 - 3t).$$

Determine a para que a reta tangente ao gráfico de g no ponto de abscissa 1 seja paralela à reta y = 2x + 3.

35. Seja u = u(x, y) função de classe C^2 em \mathbb{R}^2 e defina $v(r, \theta) = u(r \cos \theta, r \sin \theta)$. Verifique que

$$\frac{\partial^2 v}{\partial r^2}(r,\theta) + \frac{1}{r} \frac{\partial v}{\partial r}(r,\theta) + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2}(r,\theta) = \Delta u(r\cos\theta, r\sin\theta),$$

onde, por definição, $\Delta u = u_{xx} + u_{yy}$.

- 36. Seja f = f(x, y) uma função de classe C^2 e seja $g : \mathbb{R}^2 \to \mathbb{R}$ dada por $g(u, v) = uf(u^2 v, u + 2v)$.
 - (a) Determine $\frac{\partial^2 g}{\partial u \partial u}$ em função das derivadas parciais de f.
 - (b) Sabendo que 3x + 5y = z + 26 é o plano tangente ao gráfico de f, $\frac{\partial^2 f}{\partial x \partial y}(1,4) = \frac{\partial^2 f}{\partial x^2}(1,4) = 1$ $e^{\frac{\partial^2 f}{\partial v^2}}(1,4) = -1$, calcule $\frac{\partial^2 g}{\partial u \partial v}(-2,3)$.
- 37. Seja $F(r,s) = G(e^{rs}, r^3\cos(s))$, onde G = G(x, y) é uma função de classe C^2 em \mathbb{R}^2 .
 - (a) Calcule $\frac{\partial^2 F}{\partial x^2}(r, s)$ em função das derivadas parciais de G.
 - (b) Determine $\frac{\partial^2 F}{\partial r^2}(1,0)$ sabendo que $\frac{\partial G}{\partial v}(t^2+1,t+1) = t^2-2t+3$.
- 38. Ache a equação do plano tangente e a equação da reta normal a cada superfície no ponto indicado:
- (a) $z = e^{x^2 + y^2}$, no ponto (0, 0, 1) (b) $z = \ln(2x + y)$, no ponto (-1, 3, 0) (c) $z = x^2 y^2$, no ponto (-3, -2, 5). (d) $z = e^x \ln y$, no ponto (3, 1, 0).
- 39. Determine a equação do plano que passa pelos pontos (0,1,5) e (0,0,6) e é tangente ao gráfico $de g(x, y) = x^3 y.$
- 40. Determine $k \in \mathbb{R}$ para que o plano tangente ao gráfico de $f(x, y) = \ln(x^2 + ky^2)$ no ponto (2, 1, f(2, 1))seja perpendicular ao plano 3x + z = 0.
- 41. Seja $f:\mathbb{R} \to \mathbb{R}$ uma função derivável. Mostre que todos os planos tangentes à superfície z= $xf\left(\frac{x}{y}\right)$ passam pela origem.
- 42. Seja $f: \mathbb{R}^2 \to \mathbb{R}$, f com derivadas parciais contínuas em \mathbb{R}^2 e tal que 2x + y + z = 7 é o plano tangente ao gráfico de f no ponto (0,2, f(0,2)). Seja

$$g(u, v) = u f(\text{sen}(u^2 - v^3), 2u^2v).$$

Determine $a \in \mathbb{R}$ para que o plano tangente ao gráfico de g no ponto (1,1,g(1,1)) seja paralelo ao vetor (4, 2, a).

- 43. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável tal que as imagens das curvas $\gamma(t) = (2, t, 2t^2)$ e $\mu(t) =$ $(2t^2, t, 2t^4)$ estejam contidas no gráfico de f. Determine o gradiente de f no ponto (2,1).
- 44. O gradiente de $f(x, y) = x^2 + y^4$ é tangente à imagem da curva $\gamma(t) = (t^2, t), t > 0$ em um ponto P. Encontre a equação da reta tangente à curva de nível de f que contém P, no ponto P.
- 45. Ache a derivada direcional máxima de f no ponto dado e dê a direção em que ela ocorre.
 - (a) $f(x, y) = xe^{-y} + 3y$, (1, 0);
- (b) $f(x, y) = \ln(x^2 + y^2)$, (1, 2);
- 46. Mostre que $f(x, y) = \sqrt[3]{x^2 y}$ é contínua em (0,0) e tem todas as derivadas direcionais em (0,0). É f diferenciável em (0,0)?
- 47. Seja f uma função diferenciável em \mathbb{R}^2 tal que $\gamma(t)=(t+1,-t^2),\ t\in\mathbb{R}$, é uma curva de nível de f. Sabendo que $\frac{\partial f}{\partial x}(-1, -4) = 2$, determine a derivada direcional de f no ponto (-1, -4) e na direção e sentido do vetor $\vec{u} = (3,4)$.
- 48. Seja $f(x, y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0). \end{cases}$
 - (a) Calcule o gradiente de f no ponto (0,0).
 - (b) Mostre que $\frac{d}{dt}f(\gamma(t)) \neq \nabla f(\gamma(t)) \cdot \gamma'(t)$ em t = 0, onde $\gamma(t) = (-t, -t)$.
 - (c) Seja $\vec{u} = (a, b)$ um vetor unitário (isto é, $a^2 + b^2 = 1$). Use a definição de derivada direcional para calcular $\frac{\partial f}{\partial \vec{u}}(0,0)$.
 - (d) f é diferenciável em (0,0)? Justifique.
- 49. Seja a > 0 e considere o plano tangente à superfície xyz = a num ponto do primeiro octante. Mostre que o tetraedro formado por este plano e os planos coordenados tem volume independente do ponto de tangência.
- 50. Ache os pontos do hiperbolóide $x^2 y^2 + 2z^2 = 1$ onde a reta normal é paralela à reta que une os pontos (3, -1, 0) e (5, 3, 6).

☆ Máximos e mínimos

- 51. Determine os pontos críticos das funções abaixo e classifique-os:
 - (a) $z = 2x^2 + xy + 3y^2 + 10x 9y + 11$ (b) $z = 3xy^2 + y^2 3x 6y + 7$ (c) $z = x^2y^2$ (d) $z = x^3y^3$ (e) $z = y\sqrt{x} y^2 x + 6y$ (f) $z = y\cos x$ (g) $z = (2x x^2)(2y y^2)$ (h) $z = y^4 + 4x^2y 4x^2 8y^2$ (i) $z = xye^{-x^2 y^2}$ (j) $z = \ln(3x^2 + 4y^2 2x + 7)$ (k) $z = (x 1)^3 + (y 2)^3 3x 3y$

- 52. Encontre uma parametrização para C e use esta parametrização para encontrar, caso existam, os valores máximo e mínimo de f em C, bem como os pontos onde estes valores são assumidos, onde:
 - (a) $C = \{(x, y) \in \mathbb{R}^2 : x^2 + 2y^2 = 1\} \text{ e } f(x, y) = x^3y.$
 - (b) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z e z = 2y\} e f(x, y, z) = x z.$

- (c) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1 e(x 1)^2 + y^2 + (z 1)^2 = 1\} e f(x, y, z) = xz + y.$
- (d) $C = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1 e x y + 3z = 3\} e f(x, y, z) = x^2 + y^2 + z^2$.
- 53. Ache a derivada direcional máxima de f no ponto dado e dê a direção em que ela ocorre.

(a)
$$f(x, y, z) = xe^z + sen(y)$$
, $P = (2, 0, 0)$ (b) $f(x, y, z) = -\frac{4}{y} + z ln(x)$, $P = (1, 2, -1)$

54. Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por

$$V(x, y, z) = 5x^2 - 3xy + xyz.$$

- (a) Ache a taxa de variação do potencial em P(3,4,5) na direção do vetor $\vec{v} = \vec{i} + \vec{j} \vec{k}$.
- (b) Em que direção V muda mais rapidamente em P?
- (c) Qual é a maior taxa de variação em P?
- 55. Ache o máximo e o mínimo absolutos da função na região *D* indicada.
 - (a) f(x, y) = 5 3x + 4y; D é o triângulo (com interior e bordas) cujos vértices são (0,0), (4,0) e (4,5)

(b)
$$f(x, y) = xye^{-x^2-y^2}$$
; $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, x \le 0, y \ge 0\}$

(c)
$$f(x, y) = 2x^3 + y^4$$
; $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$

(d)
$$f(x, y) = 2x^2 - xy + y^2 + 7x$$
; $D = \{(x, y) \in \mathbb{R}^2 / -3 \le x \le 3, -3 \le y \le 3\}$.

(e)
$$f(x, y) = (4x - x^2)\cos y$$
; $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 3, -\frac{\pi}{4} \le y \le \frac{\pi}{4}\}$

56. Determine o valor máximo e o valor mínimo da função f sujeita às restrições explicitadas:

(a)
$$f(x, y) = xy$$
; $5x^2 + 5y^2 + 6xy - 64 = 0$

(b)
$$f(x, y, z) = xyz$$
; $x^2 + 2y^2 + 3z^2 = 6$

(c)
$$f(x, y, z) = x^2 y^2 z^2$$
; $x^2 + y^2 + z^2 = 1$

(d)
$$f(x, y, z) = x^2 + y^2 + z^2$$
; $x^4 + y^4 + z^4 = 1$

57. Determine o valor máximo e o valor mínimo de f em R sendo

(a)
$$f(x, y, z) = x^2 - 2x + y^2 - 4y + z^2 - 6z$$
 e $R = \{(x, y, z) : x^2 + y^2 + z^2 \le 56\}$

(b)
$$f(x, y, z) = x^2 + y^2 + 2z^2 - 4xy - 4z + 3x$$
 e $R = \{(x, y, z) : x \ge 0, y \ge 0, z \ge 0, x + y + z \le 4\}$

58. Encontre o máximo e o mínimo absolutos de f(x, y) em D sendo:

(a)
$$f(x, y) = xy$$
; $D = \{(x, y) : x^2 - y^2 = 1, x \in [1, 2]\}$

(b)
$$f(x,y) = 2x^3 + y^4$$
; $D = \{(x,y) : x^2 + y^2 = 1, x \in [0,1/4], y \ge 0\}$

- 59. Encontre os pontos da elipse $x^2 + xy + y^2 = 3$ mais próximos de (0,0).
- 60. Qual o ponto do plano x + 2y z + 4 = 0 que está mais próximo do ponto (1, 1, 1)?
- 61. Determine o maior produto de 3 números reais positivos cuja soma é 100. Exiba tais números.

62. Determine a distância entre as retas de equação

$$X = (-2,3,-1) + \alpha(4,1,5), \ \alpha \in \mathbb{R} \text{ e } X = (-1,0,3) + \mu(-2,3,1), \ \mu \in \mathbb{R}.$$

63. Qual é o ponto da superfície $z^2 = xy + 1$ que está mais próximo da origem?

64. Seja
$$b \neq 0$$
 e $f(x, y) = \frac{y^4}{4} + bx^2y - bx^2 - 2y^2$.

- (a) Determine, em função de b, o número de pontos críticos de f e classifique-os.
- (b) Faça b = 3 e ache os extremos de f no triângulo (fronteira e interior) de vértices (0,0), (3,3) e (-3,3).
- 65. Seja $f(x, y) = a(x^2 + y^2) 2xy$, onde a é uma constante.
 - (a) Verifique que, para todo $a \in \mathbb{R}$, o par (0,0) é um ponto crítico de f.
 - (b) Para cada valor de *a*, classifique o ponto crítico (0,0) com relação a máximos e mínimos locais e sela. Existem valores de *a* para os quais podemos afirmar que (0,0) é extremo global (absoluto) de *f*?
- 66. A temperatura num ponto (x, y, z) do espaço é dada por T(x, y, z) = xy + yz. Determine os pontos da esfera $x^2 + y^2 + z^2 = 1$ onde a temperatura é mais alta e onde é mais baixa. Justifique.
- 67. Determine as dimensões de um paralelepípedo de volume máximo, com faces paralelas aos planos coordenados, de modo que uma das faces está contida no plano z = 0 e a correspondente face oposta tem os seus vértices no parabolóide $z = 4 x^2 y^2$, z > 0.
- 68. Um pentágono de 12 cm de perímetro é construído colocando-se um triângulo isósceles sobre um retângulo. Dentre esses pentágonos, determine as medidas dos lados daquele que tem área máxima.
- 69. Determine a equação do plano que passa por (2, 2, 1) e que delimita no primeiro octante o tetraedro de menor volume.
- 70. Dentre todos os planos que são tangentes à superfície $xy^2z^2=1$ encontre aqueles mais distantes da origem.
- 71. Dê as dimensões da caixa retangular sem tampa de maior volume que pode ser construída com $27cm^2$ de papelão.

☆ Respostas

(16) (a)
$$\frac{\partial f}{\partial x}(x, y) = -\frac{y}{x^2 + y^2}$$
; $\frac{\partial f}{\partial y}(x, y) = \frac{x}{x^2 + y^2}$; (b) $\frac{\partial f}{\partial x}(x, y) = \frac{-y^3 \sin(2xy^3)}{1 + \cos^2(xy^3)}$, $\frac{\partial f}{\partial y}(x, y) = \frac{3xy^2 \sin(2xy^3)}{1 + \cos^2(xy^3)}$; (c) $\frac{\partial f}{\partial x}(x, y) = \frac{x^2y - y^3 - y - 2x}{(1 + x^2 + y^2)^2}$, $\frac{\partial f}{\partial y}(x, y) = \frac{xy^2 - x^3 - x - 2y}{(1 + x^2 + y^2)^2}$;

(17) (a)
$$\frac{\partial u}{\partial x}(x, y) = \frac{1}{y} f'\left(\frac{x}{y}\right); \frac{\partial u}{\partial y}(x, y) = -\frac{x}{y^2} f'\left(\frac{x}{y}\right); \text{ (b)} \frac{\partial u}{\partial x}(x, y) = af'(ax+by); \frac{\partial u}{\partial y}(x, y) = bf'(ax+by);$$

(c)
$$\frac{\partial u}{\partial x}(x,y) = (y-2)f'(xy^2-2x); \frac{\partial u}{\partial y}(x,y) = xf'(xy^2-2x);$$
 (d) $\frac{\partial u}{\partial x}(x,y) = 2xf(e^{x^2+y^2}); \frac{\partial u}{\partial y}(x,y) = 2xf(e^{x^2+y^2});$ (3) -2 ;

(20) (a)
$$g_u = 2uf_x(u^2, v^3)$$
; $g_v = 3v^2f_y(u^2, v^3)$; (b) $g_u = \cos u - 2f_x(2u - 3v^2, u - \cos v) - f_y(2u - 3v^2, u - \cos v)$; $g_v = -6vf_x(2u - 3v^2, u - \cos v) + \sin vf_y(2u - 3v^2, u - \cos v)$;

(c)
$$g_u = \cos(u+v) f_x(\sin(u+v), \cos(u-v)) - \sin(u-v) f_y(\sin(u+v), \cos(u-v));$$

 $g_v = \cos(u+v) f_x(\sin(u+v), \cos(u-v)) + \sin(u-v) f_y(\sin(u+v), \cos(u-v));$

$$g_{v} = \cos(u+v)f_{x}(\sin(u+v),\cos(u-v)) + \sin(u-v)f_{y}(\sin(u+v),\cos(u-v))$$
(d) $g_{u} = 2ue^{u^{2}}f_{x}(e^{u^{2}},\ln(u+v)) + \frac{f_{y}(e^{u^{2}},\ln(u+v))}{u+v}; g_{v} = \frac{f_{y}(e^{u^{2}},\ln(u+v))}{u+v};$

(25) (a)
$$\lambda = 2$$
; (b) $\lambda = -1$; (c) $\lambda = -1/3$; (d) $\lambda = -2$

(26) (b) Não é contínua em (0,0); (c) Não é diferenciável em (0,0);

(27) (b) $\frac{\partial f}{\partial x}(0,0) = 1$ e $\frac{\partial f}{\partial y}(0,0) = 0$.; (c) Não; (d)Nenhuma das derivadas parciais é contínua em (0,0).

(29) (b) Não; (14) (b)
$$\frac{\partial f}{\partial y}(x, y) = \begin{cases} \frac{4x^2y(x^2 + y^2)^2\cos((x^2 + y^2)^2) - 2x^2y\sin((x^2 + y^2)^2)}{(x^2 + y^2)^2} & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0). \end{cases}$$

(c) Sim; (d) Sim.

(30) (a) f não é diferenciável em nenhum ponto da reta y = -x; (b) f não é diferenciável nos pontos da forma (a,0) com $a \neq 0$; (c) f é diferenciável em \mathbb{R}^2 pois é de classe \mathbb{C}^1 ; (d) Idem ao item (c).

 $(33) - 9600\pi \text{ cm}^3/\text{s}; (34) \ a = 3; (36) \ \text{(b)} \ 21.$

(37) (a)
$$\frac{\partial^2 F}{\partial r^2} = s^2 e^{2rs} \frac{\partial^2 G}{\partial x^2} + 6r^2 e^{rs} s \cos s \frac{\partial^2 G}{\partial x \partial y} + 9r^4 \cos^2 s \frac{\partial^2 G}{\partial y^2} + s^2 e^{rs} \frac{\partial G}{\partial x} + 6r \cos s \frac{\partial G}{\partial y}; \text{ (b)0};$$

(38) (a) $z = 1; X = (0,0,1) + \lambda(0,0,1), \lambda \in \mathbb{R}$; (b) $2x + y - z - 1 = 0; X = (-1,3,0) + \lambda(2,1,-1), \lambda \in \mathbb{R}$; (c) $6x - 4y + z + 5 = 0; X = (-3,-2,5) + \lambda(6,-4,1), \lambda \in \mathbb{R}$; (d) $e^3y - z - e^3 = 0; X = (3,1,0) + \lambda(0,e^3,-1), \lambda \in \mathbb{R}$;

$$(39) 6x - y - z + 6 = 0; (40) k = 8;$$

(42)
$$a = -4$$
; (28) (1,4); (29) $X = (\frac{1}{4}, \frac{1}{2}) + \lambda(-1, 1), \ \lambda \in \mathbb{R}$;

(51) (a) (-3,2) mínimo; (b) (2/3,1), (-4/3,-1) selas; (c) $(0,\lambda)$ e $(\lambda,0)$ com $\lambda \in \mathbb{R}$ mínimos; (d) $(0,\lambda)$ e $(\lambda,0)$ com $\lambda \in \mathbb{R}$ selas; (e) (4,4) máximo; (f) $(\pi/2+k\pi,0)$ com $k \in \mathbb{Z}$ selas; (g) (1,1) máximo, (0,0), (2,0), (0,2), (2,2) selas; (h) (0,0) máximo, (0,2) mínimo, (0,-2), $(\sqrt{3},1)$, $(-\sqrt{3},1)$ selas; (i) (0,0) sela, $\pm (1/\sqrt{2},1/\sqrt{2})$ máximos, $\pm (-1/\sqrt{2},1/\sqrt{2})$ mínimos; (j) (1/3,0) mínimo; (k) (2,1) e (0,3) sela; (2,3) mínimo e (0,1) máximo;

- (52) (a) pontos de máximo: $(\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{2}})$ e $(-\frac{\sqrt{3}}{2}, -\frac{1}{2\sqrt{2}})$; pontos de mínimo: $(-\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{2}})$ e $(\frac{\sqrt{3}}{2}, -\frac{1}{2\sqrt{2}})$. (b) ponto de máximo: $(\frac{1}{\sqrt{5}}, 1 \frac{2}{\sqrt{5}}, 2 \frac{4}{\sqrt{5}})$; ponto de mínimo: $(-\frac{1}{\sqrt{5}}, 1 + \frac{2}{\sqrt{5}}, 2 + \frac{4}{\sqrt{5}})$. (c) ponto de máximo: $(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2})$; ponto de mínimo: $(\frac{1}{2}, -\frac{1}{\sqrt{2}}, \frac{1}{2})$. (d) ponto de mínimo: $(\frac{1}{3}, -\frac{1}{6}, \frac{5}{6})$; não tem ponto de máximo.
- (53) a) $\sqrt{6}$; (1,1,2); (b) $\sqrt{2}$; (-1,1,0); (39) (a) $\frac{32}{\sqrt{3}}$; (b) (38,6,12); (c) $2\sqrt{406}$;
- (56) (a) máximo: f(4,5) = 13, mínimo: f(4,0) = -7; (b) máximo: f(0,0) = 0, mínimo: $f(-1/\sqrt{2},1/\sqrt{2}) = -\frac{1}{2e}$; (c) máximo: f(1,0) = 2, mínimo: f(-1,0) = -2; (d) máximo: f(2,0) = 4, mínimo: $f(3,-\frac{\pi}{4}) = f(3,\frac{\pi}{4}) = f(1,-\frac{\pi}{4}) = f(1,\frac{\pi}{4}) = \frac{3\sqrt{2}}{2}$.
- (57) (a) max: f(2,2) = f(-2,-2) = 4; min f(4,-4) = f(-4,4) = -16; (b) max $2/\sqrt{3}$, min $-2/\sqrt{3}$; (c) max 1/27, min 0; (d) max $\sqrt{3}$, min 1.
- (58) (a) mínimo: $-2\sqrt{3}$ e máximo $2\sqrt{3}$; (b) mínimo: $\frac{1}{32} + \left(\frac{15}{16}\right)^2$ e máximo 1.
- (59) (a) (1,1) e (-1,-1); (60) (0,-1,2); (61) $n_1 = n_2 = n_3 = \frac{100}{3}$; (62) $\sqrt{12}$; (63) (0,0,1) ou (0,0,-1);
- (64) (a) Se b > 0, temos 5 pontos críticos: $\left(\pm\sqrt{\frac{3}{b}},1\right)$ e (0,-2) pontos de sela; (0,-2) máximo local e (0,2) mínimo local; e se b < 0, temos 3 pontos críticos: (0,0) e (0,2) pontos de sela; (0,-2) mínimo local; (b) Pontos de máximo: (-3,3) e (3,3); ponto de mínimo. (0,2);
- (65) (b) a > 1: mínimo local; -1 < a < 1: sela; a < -1: máximo local; $a \ge 1$: (0,0) é ponto de mínimo global; $a \le -1$: (0,0) é ponto de máximo global;
- (66) Mais quentes: $\left(\frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2}\right), \left(\frac{-1}{2}, \frac{-\sqrt{2}}{2}, \frac{-1}{2}\right);$ Mais frios : $\left(\frac{1}{2}, \frac{-\sqrt{2}}{2}, \frac{1}{2}\right), \left(\frac{-1}{2}, \frac{\sqrt{2}}{2}, \frac{-1}{2}\right);$
- (67) O paralelepípedo tem vértices em $(\pm 1, \pm 1, 0)$ e $(\pm 1, \pm 1, 2)$;
- (68) $12(2-\sqrt{3})$, $2(3-\sqrt{3})$, $4(2\sqrt{3}-3)$; (69) x+y+2z-6=0;
- (70) $2^{2/5}x + 2^{9/10}y + 2^{9/10}z = 5$; $2^{2/5}x 2^{9/10}y + 2^{9/10}z = 5$; (71) base $3cm \times 3cm$ e altura 1,5cm.