UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CMM222 - Análise III - Período de retomada 2020 Prof. Zeca Eidam

Lista 3

- 1. Verifique se as equações abaixo definem implicitamente uma das variáveis em função das outras duas em uma vizinhança da solução P dada e calcule as derivadas parciais da função definida implicitamente:
 - (a) $e^{x+y-z^2} \cos(1-xz^4) = 0$, P = (1,0,1)
 - (b) $xy^5 + x^3z^7 + y^2z^3 = 3, P = (1, 1, 1)$
 - (c) $\ln(x + y + \sin z) + 2^{(x-1)y+2z} 1 = 0, P = (1,0,0)$
 - (d) $(1+x^2)^{y+z} + (1+y^2)^{x+z} + (1+z^2)^{x+y} = 3 \sin(x+y+z), P = (0,0,0)$
 - (e) $\pi x e^{yz} + y e^{xz} + z e^{xy} = 4 \arctan(x + y^2 3z), P = (1, 0, 0)$
 - (f) $x^{y+z} + y^{x+z} + z^{x+y} = 6, P = (2, 1, 1)$
- 2. Seja f uma função real que satisfaz a equação

$$xe^{f(x)} + \text{sen}(f(x) + \pi) + 1 = 0.$$

Admitindo que f(0)=0, mostre que f é de classe \mathbb{C}^{∞} numa vizinhança de zero.

- 3. Seja $T \in \mathcal{L}(\mathbb{R}^n)$. Um autovalor de T é um número real λ_0 que é raiz do polinômio real $p_T(\lambda) \doteq \det(T \lambda I)$. A *multiplicidade algébrica de* λ_0 é a multiplicidade de λ_0 como raiz de $p_T(\lambda)$. Quando a multiplicidade algébrica de λ_0 é igual a 1, dizemos que λ_0 é um autovalor simples.
 - Supondo que λ_0 é um autovalor simples de T, mostre que existe uma vizinhança W de T em $\mathscr{L}(\mathbb{R}^n)$ e uma função $\varphi:W\to\mathbb{R}$ de classe C^∞ tal que $\varphi(T)=\lambda_0$ e $\varphi(S)$ é um autovalor de S para cada $S\in W$.