UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CMM042 - Cálculo III - Período Especial 2/2020 Prof. Zeca Eidam

Lista 3

☆ Integrais de linha

1. Calcule as seguintes integrais de linha ao longo da curva indicada:

(a)
$$\int_{\gamma} x \, ds, \, \gamma(t) = (t^3, t), \, 0 \le t \le 1.$$

(b)
$$\int_{\gamma} xy^4 ds$$
, γ é a semi-circunferência $x^2 + y^2 = 1$, $x \ge 0$.

(c)
$$\int_{\gamma} xyz \, ds$$
, $\gamma(t) = (2t, 3\sin t, 3\cos t)$, $0 \le t \le \pi/2$.

(d)
$$\int_{\gamma} xy^2z \, ds$$
, γ é o segmento de reta de (1,0,1) a (0,3,6).

(e)
$$\int_{\gamma} (x - 2y^2) \, dy$$
, γ é o arco da parábola $y = x^2$ de (-2,4) a (1,1).

(f)
$$\int_{\gamma} xy \, dx + (x-y) \, dy$$
, γ consiste dos segmentos de reta de $(0,0)$ a $(2,0)$ e de $(2,0)$ a $(3,2)$.

(g)
$$\int_{\gamma} x^3 y^2 z \, dz$$
, $\gamma(t) = (2t, t^2, t^2)$, $0 \le t \le 1$.

(h)
$$\int_{\gamma} z^2 dx - z dy + 2y dz$$
, γ consiste dos segmentos de reta de $(0,0,0)$ a $(0,1,1)$, de $(0,1,1)$ a $(1,2,3)$ e de $(1,2,3)$ a $(1,2,4)$.

(i)
$$\int_{\gamma} 2x \, dx + (z^2 - y^2) \, dz$$
, onde γ é o arco circular dado por $x = 0$, $y^2 + z^2 = 4$, de $(0, 2, 0)$ a $(0, 0, 2)$ $y \ge 0$;

2. Calcule as seguintes integrais de linha:

- (a) $\oint_{\gamma} x^2 y \, dx + xy^3 \, dy$, onde γ é o quadrado com vértices (0,0), (1,0), (1,1) e (0,1), orientado positivamente;
- (b) $\oint_{\gamma} (x+2y) dx + (x-2y) dy$, onde γ consiste do arco da parábola $y = x^2$ de (0,0) a (1,1) e do segmento de reta de (1,1) a (0,0).
- (c) $\oint_{\gamma} (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, onde γ é a fronteira da região limitada pelas parábolas $y = x^2$ e $x = y^2$ percorrida no sentido anti-horário.
- (d) $\oint_{\gamma} x^2 dx + y^2 dy$, γ é a curva $x^6 + y^6 = 1$, sentido anti-horário.

- (e) $\oint_{\gamma} xy \, dx + (2x^2 + x) \, dy$, γ consiste do segmento de reta unindo (-2,0) a (2,0) e da semicircunferência $x^2 + y^2 = 4$, $y \ge 0$, orientada positivamente.
- (f) $\oint_{\gamma} 2xy \, dx + (x^2 + x) \, dy$, γ é a cardióide $\rho = 1 + \cos\theta$ orientada positivamente.
- (g) $\oint_{\gamma} (xy + e^{x^2}) dx + (x^2 \ln(1+y)) dy$, γ consiste do segmento de reta de (0,0) a $(\pi,0)$ e do arco da curva y = sen x, orientada positivamente.
- (h) $\oint_{\gamma} (y^2 x^2 y) dx + xy^2 dy, \gamma \text{ consiste do arco de circunferência } x^2 + y^2 = 4 \text{ de } (2,0) \text{ a } (\sqrt{2},\sqrt{2}),$ e dos segmentos de reta de $(\sqrt{2},\sqrt{2})$ a (0,0) e de (0,0) a (2,0).
- (i) $\int_{\gamma} 5x^2y dx + (7x^3 + e^y) dy$, sendo γ a elipse $16x^2 + 25y^2 = 100$, percorrida de (0, -2) até (0, 2), x > 0.
- (j) $\int_{\gamma} \left(2xe^y x^2y \frac{y^3}{3} \right) dx + (x^2e^y + \sin y) dy$, sendo γ a circunferência de equação $x^2 + y^2 2x = 0$, percorrida de (0,0) até (2,0) com y > 0.
- (k) $\oint_{\gamma} \frac{(x+y) dx (x-y) dy}{x^2 + y^2}$, onde γ é a circunferência $x^2 + y^2 = a^2$, percorrida uma vez no sentido horário;
- (l) $\oint_{\gamma} \sqrt{y} \, dx + \sqrt{x} \, dy$, sendo γ a fronteira da região limitada por x = 0, y = 1 e $y = x^2$, percorrida uma vez no sentido horário;
- 3. Calcule $\int_{\gamma} \vec{F} \cdot d\vec{r}$ para:
 - (a) $\vec{F}(x, y) = y\vec{i} + (x^2 + y^2)\vec{j}$, onde γ é o arco de circunferência $\gamma(t) = (t, \sqrt{4 t^2})$, ligando (-2, 0) a (2, 0);
 - (b) $\vec{F}(x,y) = 2(x+y)\vec{i} + (x-y)\vec{j}$, onde γ é a elipse de equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, percorrida uma vez em sentido anti-horário.
 - (c) $\vec{F}(x,y) = 2\arctan\frac{y}{x}\vec{i} + [\ln(x^2 + y^2) + 2x]\vec{j}$ onde γ é a fronteira do retângulo $[1,2] \times [-1,1]$ percorrida uma vez no sentido anti-horário.
- 4. Determine o trabalho realizado pelo campo $\vec{F}(x, y) = (x, y + 2)$ ao mover um ponto ao longo da ciclóide $\gamma(t) = (t \sin t, 1 \cos t), 0 \le t \le 2\pi$.
- 5. Seja D uma região de \mathbb{R}^2 com D e ∂D satisfazendo as hipóteses do Teorema de Green. Mostre que a área de D coincide com a integral $\int_{\partial D} x \, dy = \int_{\partial D} -y \, dx$.

Use este fato para calcular a área dos subconjuntos abaixo:

(a)
$$D = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\};$$

(b)
$$D = \{(x, y) \in \mathbb{R}^2 : x^{2/3} + y^{2/3} \le a^{2/3} \}.$$

- 6. Determine a área da região limitada pela hipociclóide dada por $\gamma(t) = (\cos^3 t, \sin^3 t), 0 \le t \le 2\pi$.
- 7. Neste exercício, vamos mostrar como calcular a área de um polígono irregular.
 - (a) Se γ é o segmento de reta ligando o ponto (x_1, y_1) ao ponto (x_2, y_2) , mostre que

$$\int_{\gamma} x \, dy - y \, dx = x_1 y_2 - x_2 y_1.$$

(b) Em ordem anti-horária, os vértices de um polígono são (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) . Mostre que sua área é dada por

$$A = \frac{1}{2}[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_{N-1}y_N - x_Ny_{N-1}) + (x_Ny_1 - x_1y_N)].$$

- (c) Determine a área do pentágono de vértices (0,0), (2,1), (1,3), (0,2) e (-1,2).
- 8. Calcule
 - (a) $\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2}$ sendo γ a curva fronteira da região determinada pelas curvas $y^2 = 2(x+2)$ e x = 2, orientada no sentido horário.
 - (b) $\int_{\gamma} \frac{x \, dx + y \, dy}{x^2 + y^2}$ sendo γ a curva $y = x^2 + 1$, $-1 \le x \le 2$, percorrida do ponto (-1,2) a (2,5).
 - (c) $\int_{\gamma} \frac{y \, dx (x 1) \, dy}{(x 1)^2 + y^2}$ sendo γ a circunferência $x^2 + y^2 = 4$, percorrida no sentido horário.
 - (d) $\int_{\gamma} \frac{x^2 y \, dx x^3 \, dy}{(x^2 + y^2)^2}$ sendo γ a fronteira da região $D = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}$, orientada no sentido horário.
- 9. Verifique que a integral

$$\int_{\gamma} 2x \sin y \, dx + (x^2 \cos y - 3y^2) \, dy,$$

onde γ é uma curva ligando (-1,0) a (5,1), é independente do caminho e calcule o seu valor.

10. Seja γ uma curva plana simples, fechada e lisa por partes percorrida uma vez no sentido horário. Encontre todos os valores possíveis para

(a)
$$\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2}$$

(b)
$$\int_{\gamma} \frac{-y \, dx + x \, dy}{4x^2 + 9y^2}$$

- 11. Calcule $\int_{\gamma} \vec{F} \cdot d\vec{r}$, onde $\vec{F}(x, y, z) = (x^2 + y)\vec{i} 7yz\vec{j} + 2xz^2\vec{k}$ e γ é a curva ligando o ponto (0, 0, 0) a (1, 1, 1) nos seguintes casos:
 - (a) $\gamma(t) = (t, t^2, t^3);$
 - (b) γ é composta dos segmentos de reta de (0,0,0) a (1,0,0), depois a (1,1,0) e depois a (1,1,1);

3

12. Sejam as curvas γ_1 a circunferência $x^2 + y^2 = \frac{1}{16}$ percorrida no sentido anti-horário, γ_2 a circunferência $x^2 + y^2 = 4$, percorrida no sentido anti-horário e γ_3 a curva formada pela união das três seguintes circunferências: $(x-1)^2 + y^2 = \frac{1}{9}$, $(x+1)^2 + y^2 = \frac{1}{9}$, ambas percorridas no sentido horário e $x^2 + y^2 = \frac{1}{9}$ percorrida no sentido anti-horário. Se $I_k = \int_{\gamma_k} P \, dx + Q \, dy$ onde

$$P(x,y) = -y\left(\frac{1}{(x-1)^2 + y^2} + \frac{1}{x^2 + y^2} + \frac{1}{(x+1)^2 + y^2}\right)$$

e

$$Q(x,y) = \frac{x-1}{(x-1)^2 + v^2} + \frac{x}{x^2 + v^2} + \frac{x+1}{(x+1)^2 + v^2}$$

então calcule I_1 , I_2 e I_3 .

13. Calcule $\int_{\gamma} F d\vec{r}$ onde

$$\vec{F} = \left(\frac{-y}{x^2 + \frac{y^2}{9}} + y, \frac{x}{x^2 + \frac{y^2}{9}} + 3x\right)$$

nos seguintes casos:

- (a) γ é a curva $(x-1)^2 + (y-2)^2 = 4$, percorrida uma vez no sentido horário.
- (b) γ é a curva $(x-1)^2 + y^2 = 4$, percorrida uma vez no sentido horário.
- 14. Determine todos os valores possíveis da integral

$$\int_{(1,0)}^{(2,2)} \frac{-y \, dx + x \, dy}{x^2 + y^2}$$

sobre um caminho que não passe pela origem.

15. Em cada caso abaixo, determine se \vec{F} é ou não campo gradiente no domínio indicado. Em caso afirmativo, determine o potencial de \vec{F} .

(a)
$$\vec{F}(x, y) = x\vec{i} + x\vec{j} \text{ em } \mathbb{R}^2$$

(b)
$$\vec{F}(x, y) = (2xe^y + y)\vec{i} + (x^2e^y + x - 2y)\vec{j} \text{ em } \mathbb{R}^2$$

(c)
$$\vec{F}(x, y, z) = (2x^2 + 8xy^2)\vec{i} + (3x^3y - 3xy)\vec{j} + -(4z^2y^2 + 2x^3z)\vec{k}$$
 em \mathbb{R}^3

(d)
$$\vec{F}(x, y, z) = (x + z)\vec{i} - (y + z)\vec{j} + (x - y)\vec{k} \text{ em } \mathbb{R}^3$$

(e)
$$\vec{F}(x, y, z) = (y^2 \cos x + z^3) \vec{i} - (4 + 2y \sin x) \vec{j} + (3xz^2 + 2) \vec{k} \text{ em } \mathbb{R}^3$$

(f)
$$\vec{F}(x, y) = \frac{-y\vec{i} + x\vec{j}}{x^2 + y^2}$$
, em $\mathbb{R}^2 - \{(0, 0)\}$

(g)
$$\vec{F}(x, y) = \frac{-y\vec{i} + x\vec{j}}{x^2 + y^2}$$
, em $\Omega = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ se } y = 0\}$

(h)
$$\vec{F}(x, y) = \frac{x\vec{i} + y\vec{j}}{x^2 + y^2}$$
, em $\mathbb{R}^2 - \{(0, 0)\}$

- 16. Seja o campo $\vec{F}(x,y) = \frac{x\vec{i} + y\vec{j}}{x^2 + y^2}$ e γ a curva dada por $\gamma(t) = (e^t, \sin t)$ para $0 \le t \le \pi$. Calcule $\int_{\gamma} \vec{F} d\vec{r}$.
- 17. Calcule as integrais:

(a)
$$\int_{\gamma} 7x^6 y \, dx + x^7 \, dy$$
 sendo $\gamma(t) = (t, e^{t^2 - 1})$, onde $t \in [0, 1]$.

- (b) $\int_{\gamma} [\ln(x+y^2) y] \, dx + [2y \ln(x+y^2) x] \, dy \text{ sendo } \gamma \text{ a curva } (x-2)^2 + y^2 = 1 \text{ com } y \ge 0$ orientada no sentido horário.
- (c) $\int_{\gamma} \frac{y \, dx x \, dy}{x^2 + y^2}$ sendo γ a curva dada por $x(t) = \cos^3 t$ e $y(t) = \sin^3 t$ com $y \ge 0$ ligando os pontos (1,0) e (0,1), nessa ordem.

(d)
$$\int_{(1,1,2)}^{(3,5,0)} yz \, dx + xz \, dy + xy \, dz.$$

- (e) $\int_{\gamma} \sin(yz) \, dx + xz \cos(yz) \, dy + xy \cos(yz) \, dz, \text{ sendo } \gamma(t) = (\cos t, \sin t, t) \text{ para } t \in [0, \frac{\pi}{4}] .$
- 18. Mostre que as integrais abaixo independem do caminho e calcule-as.

(a) (a)
$$\int_{(1,1)}^{(a,b)} 2xy \, dx + (x^2 - y^2) \, dy$$
.

(b) (b)
$$\int_{(0,0)}^{(a,b)} \sin y \, dx + x \cos y \, dy$$
.

- 19. Calcule $\int_A^B \frac{x \, dx + y \, dy + z \, dz}{x^2 + y^2 + z^2}$, onde o ponto A pertence à esfera $x^2 + y^2 + z^2 = 1$ e o ponto B pertence a esfera $x^2 + y^2 + z^2 = 4$.
- 20. Um campo de vetores \vec{F} em \mathbb{R}^2 se diz *radial* (ou *central*) se existe uma função $g : \mathbb{R} \to \mathbb{R}$ tal que $\vec{F}(x,y) = g(|\vec{r}|)\vec{r}$, onde $\vec{r} = x\vec{i} + y\vec{j}$. Suponha que g é de classe C^1 . Mostre que \vec{F} é conservativo.

☆ Respostas

- (1) (a) $(10\sqrt{10}-1)/54$, (b) 2/5, (c) $9\sqrt{13}\pi/4$, (d) $3\sqrt{35}$, (e) 48, (f) 17/3, (g) 16/11, (h) 77/6; (i) -8/3,
- (2) (a) -1/12, (b) -1/6, (c) 1/3, (d) 0, (e) 2π , (f) $3\pi/2$, (g) π , (h) $\pi + (16/3)((1/\sqrt{2}) 1)$, (i) $e^{-2} e^2 + \frac{125}{2}\pi$, (j) $4 \frac{3\pi}{4}$, (k) 2π ;
- (3) (a) 2π , (b) πab ; (c) 4;
- (4) $2\pi^2$;
- **(5)** (a) πab ;
- **(6)** $3\pi/8$;
- (7) (c) 9/2;
- **(8)** (a) -2π ; (b) $(1/2)\ln(29/5)$; (c) 2π ; (d) π ;
- (9) $25 \sin 1 1$;
- (10) (a) 0 ou -2π ; b) 0 ou $-\pi/3$;

- **(11)** (a) -11/15, (b) 1;
- (12) $I_1 = 2\pi$; $I_2 = 6\pi$; $I_3 = -2\pi$;
- **(13)** (a) -8π ; (b) -14π ;
- (14) $2k\pi$, com k inteiro;
- (15) (a) não; (b) $\varphi = x^2 e^y + xy y^2 + c$; (c) não; (d) $\varphi = x^2/2 y^2/2 + zx zy + c$; (e) $\varphi = y^2 \sin x + xz^3 4y + 2z + c$; (f) não; (g) $\varphi = \arctan(y/x)$; (h) $\varphi = \ln(x^2 + y^2)/2 + c$;
- **(16)** π ;
- (17) (a) 1, (b) $3\ln 3 2$, (c) $\frac{-\pi}{2}$; (d) -2; (e) $(\sqrt{2}/2)\sin(\sqrt{2}\pi/8)$ (18) (a) $a^2b b^3/3 2/3$; (b) $a\sin b$;
- (19) ln 2.