1. Determine a equação do plano tangente à superfície

$$xy^2z^3 = 12$$

no ponto (3, -2, 1).

- 2. Seja $h: \mathbb{R} \to \mathbb{R}$ uma função derivável com h'(1) = 4. Considere $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = h\left(\frac{x}{2y}\right)$. Determine $\nabla f(4,2)$.
- 3. Considere $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(t^2, 2t) = t^3 3t$. Mostre que

$$\frac{\partial f}{\partial x}(1,2) = -\frac{\partial f}{\partial y}(1,2).$$

- 4. Considere $f: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe \mathcal{C}^1 e $\gamma: \mathbb{R} \to \mathbb{R}^2$ uma curva diferenciável cuja imagem está contida na curva de nível f(x,y) = 1. Pede-se:
 - (a) Mostre que $\nabla f(\gamma(t)).\gamma'(t) = 0.$
 - (b) Faça uma figura elucidativa com a interpretação geométrica do resultado do item anterior.
- 5. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável em $x_0 \in \mathbb{R}^n$, com $\nabla f(x_0) \neq \vec{0}$. Mostre que o valor máximo de $\frac{\partial f}{\partial \vec{u}}(x_0)$ ocorre quando \vec{u} é o versor do gradiente no ponto x_0 .
- 6. Utilizando a definição de diferenciabilidade, prove que $f:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = x^2 y$$

é diferenciável em todo ponto $(x, y) \in \mathbb{R}^2$.