
- 1. Considere $f: \mathbb{R}^2 \to \mathbb{R}$, $g: \mathbb{R}^2 \to \mathbb{R}^3$ e o conjunto viável $\Omega = \{x \in \mathbb{R}^2 \mid g(x) \leq 0\}$. Na figura estão representadas as curvas de nível da função objetivo f e a região viável Ω . Pede-se:
 - (a) Assinale na figura o minimizador x^* de f em Ω .
 - (b) Represente geometricamente a condição de otimalidade de KKT.
 - (c) Quais os multiplicadores de Lagrange associados a x^* que são nulos?
 - (d) Assinale na figura o maximizador \tilde{x} de f em Ω .

- 2. Considere o problema: minimizar $(x-3)^2 + (y-2)^2$ sujeito a x+y=3 . Pede-se:
 - (a) Determine uma direção viável a partir do ponto (3,0) que seja de descida em relação à função objetivo.
 - (b) Faça uma busca exata para minimização da função objetivo a partir do ponto (3,0) na direção obtida no item anterior.
 - (c) Verifique que o ponto obtido satisfaz as condições de KKT.
 - (d) Verifique que o ponto obtido satisfaz a condição de otimalidade de segunda ordem.
- 3. Considere $A \in \mathbb{R}^{n \times n}$ simétrica não singular, $b \in \mathbb{R}$ e o problema (P) de otimização:

minimizar
$$\frac{1}{2}||x||^2$$

sujeito a $x^T A x = b$.

Pede-se:

- (a) Escreva as condições de KKT para o problema.
- (b) Mostre que as soluções do problema são autovetores de A, determinando o autovalor correspondente.
- (c) Considerando

$$A = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{25} \end{pmatrix} \qquad e \qquad b = 1,$$

faça uma figura elucidativa do problema (P) e de suas soluções.

4. Deseja-se construir uma caixa, sem tampa, com $16 \, m^3$ de volume e com a forma de um paralelepípedo retângulo. O custo unitário do material a ser utilizado na confecção das **laterais é o dobro** do que será utilizado no fundo. Determine as dimensões da caixa que minimizam o custo
do material.

5. Considere o problema

- (a) Determine, graficamente, a solução do problema.
- (b) Escreva as condições de KKT do problema.
- (c) Verifique se existem os multiplicadores de Lagrange associados à solução do problema.
- (d) Isso contradiz o Teorema de KKT? Justifique sua resposta.