
1ª Avaliação de Geometria Analítica - Matemática Industrial - 04/04/2019

- 1. (20) Considere A(-2, -1) e B(10, 3). Determine a equação da reta que passa pelo ponto médio do segmento AB e é **perpendicular** à reta determinada pelos pontos A e B.
- 2. (15) Considere os vetores $\vec{u} = (1, 0, 2)$ e $\vec{v} = (0, 1, -1)$. Pede-se:
 - (a) A área do paralelogramo determinado pelos vetores \vec{u} e \vec{v} .
 - (b) O vetor \vec{w} de norma 2, ortogonal a \vec{u} e a \vec{v} , e que forma ângulo agudo com o vetor \vec{i} .
- 3. (15) Considere o cubo representado na figura abaixo, cujas arestas medem ${\bf 2}$ unidades de comprimento. Pede-se:

- (a) O vetor $\vec{EF} + \vec{BF} \vec{DB} + \vec{DA}$, com origem em A.
- (b) O valor do produto escalar $(\vec{AB} \cdot \vec{EG})$
- (c) O produto vetorial $(\vec{AB} \times \vec{CG})$ como múltiplo de um vetor com origem em A.
- 4. (15) Considere os vetores $\vec{u}=(1,2,0), \vec{v}=(2,-3,4)$ e $\vec{w}=(1,m,4)$. Determine valor(es) de m de modo que:
 - (a) os vetores \vec{u}, \vec{v} e \vec{w} sejam linearmente dependentes.
 - (b) os vetores \vec{v} e \vec{w} sejam ortogonais.
- 5. (20) Sejam $A(3,2,1),\,B(1,0,2)$ e C(4,3,-4) os vértices de um triângulo. Pede-se:
 - (a) O cosseno do ângulo relativo ao vértice B.
 - (b) O ponto H, pé da altura relativa ao vértice A.
 - (c) A medida da altura relativa ao vértice A.
- 6. (20) Considere \vec{u} e \vec{v} vetores não nulos. Pede-se:
 - (a) Mostre que se os vetores \vec{u} e \vec{v} são ortogonais, então, $\|\vec{u} + \vec{v}\| = \|\vec{u} \vec{v}\|$.
 - (b) Mostre que a recíproca é verdadeira, ou seja que se $\|\vec{u} + \vec{v}\| = \|\vec{u} \vec{v}\|$, então os vetores \vec{u} e \vec{v} são ortogonais.
 - (c) Interprete os resultados geometricamente.