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Abstract

The main goal of these notes is to introduce and present some properties of Julia
Sets for rational functions, based primarily in [2] and [5]. Inspired to follow the work of
[7], the notes are aimed at the undergraduate mathematics students, who are expected
to have some basic knowledge in Complex Analysis and Topology. If any difficulty
regarding these concepts may present, the reader may check [1] and [6]. These notes
are structured so that some basic concepts and tools are presented in the first section,
“Complex Analysis”. The reader who is familiar with these concepts may wish to skip
to the second section, “Iteration of Rational functions”, in which we define the Julia
sets for rational functions. We then define another family of sets related to the concept
of normality of the family of iterates of rational functions. We prove many interesting
properties about these sets and conclude by showing that they coincide with the Julia
sets. We also, we mention some techniques for “graphing” Julia sets and present some
examples.
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1 Complex Analysis

This first section is dedicated to some important results in Complex Analysis that will
be needed later on.

1.1 Extended Complex Plane

Definition 1.1. Taking an abstract point ∞ called infinity, we define the extended complex
plane as:

C = C ∪ {∞}

Definition 1.2. We say f : D ⊂ C → C is meromorphic in D if for all z0 ∈ D there exists
neighbourhood Vz0 ⊂ D such that f or 1/f is holomorphic at Vz0 . The poles of f holomorphic
are points such that 1/f is analytic around w, with 1/f(w) = 0.

Note that given any meromorphic function defined in a subset of the complex plane,
there’s a natural unique extension to the extended complex plane setting f(w) = ∞ where
w is a pole of f .

Definition 1.3. A function is said to be defined in some neighbourhood of∞ if it is defined
on some set {|z| > r} ∪ {∞}. In this case, it is holomorphic at ∞ if 1/f is meromorphic at
0.

Again, if a complex function f is defined such that limz→∞ f(z) makes sense and exists,
we may extend it uniquely by setting f(∞) = limz→∞ f(z).

Example 1.4. Let P (z) = anz
n + ... + a0, an 6= 0, n > 0 be a complex polynomial. Then

P is meromorphic in C and in fact, P (∞) = ∞. Clearly it is holomorphic at ∞ since
P (1/z) = an/z

n + ...+ a0 has a pole at the origin, because:

1

P (1/z)
=

zn

an + ...+ a0zn

is holomorphic at 0, with value 0 there.

Definition 1.5. We say U ⊂ C is bounded if there exists C such that |z| < C, for all z ∈ U
and ∞ 6∈ U .

Note: A more rigorous approach to dealing with the extended complex plane is achieved
by visualizing it as a Riemann surface, specifically the complex sphere, in which taking
another metric called the chordal metric, we may treat∞ as any other point. However, since
all calculus is done with local charts in the complex plane, we have no real necessity to deal
with this metric. For that reason, we chose to omit these definitions in these notes. The
interested reader may check [5].
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1.2 Roots of Analytic Functions

Definition 1.6. We say a meromorphic function f has n roots at z0 ∈ C, or that z0 is a root
of multiplicity n of f if, in a neighbourhood of z0:

f(z) = (z − z0)ng(z)

where g is analytic with g(z0) 6= 0. We say z0 ∈ C is a solution of multiplicity n for
f(z) = w, w ∈ C if z0 is a root of multiplicity n for the function f(z)− w.

Notice these definitions are motivated by the power series definition of f .

Proposition 1.7. The number z0 ∈ C is a solution of multiplicity n for the equation f(z) =
w, w ∈ C if and only if:

lim
z→z0

f(z)− w
(z − z0)n

exists and is different from 0 and ∞.

Proof. (⇐= ) Writing f(z)− w as a power series at z0, we have:

f(z)− w =
∞∑
k=0

ak(z − z0)k = (z − z0)n
∞∑
k=0

an(z − z0)k−n.

But then the above limit implies:

ai = lim
z→z0

f(z)− w
[z − z0]n

[z − z0]n−i = 0, i = 0, 1, ..., n− 1 =⇒ a0, ..., an−1 = 0

so that
f(z) = (z − z0)k

∑
k=n

ak−n(z − z0)k−n = (z − z0)ng(z)

where g(z0) 6= 0. The converse is immediate.

Corollary 1.8. If z0 ∈ C is a solution of multiplicity n for f(z)−w, w ∈ C, then f (i)(z0) = 0
for i = 1, ..., n− 1, f (n)(z0) 6= 0.

Example 1.9. Let f(z) = z2−2z. Then z0 = 1 is a solution of multiplicity 2 for the equation
f(z) = −1, since

f(z)− (−1) = 0 ⇐⇒ z2 − 2z + 1 = 0 ⇐⇒ (z − 1)2 = 0.

Note also that

lim
z→1

f(z)− (−1)

z − 1
= lim

z→1

(z − 1)2

z − 1
= 0

while

lim
z→1

f(z)− (−1)

(z − 1)2
= lim

z→1

(z − 1)2

(z − 1)2
= 1.

Finally, note that f ′(z) = 2z − 2, so that f ′(1) = 0, f ′′(1) = 2 6= 0.
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Definition 1.10. Let f be analytic, z0 ∈ C such that f ′(z0) = 0, then we say z0 is a critical
point of f

Proposition 1.11. Let f be analytic. Then f is injective at z0 ∈ C iff f ′(z0) 6= 0.

Proof. If z0 =∞, simply compose f with an injective map g that sends ∞ to a point z′0 ∈ C
such that g′(∞) 6= 0. So, in the following we will assume z0 ∈ C. Let f, z0 be such that
f ′(z0) 6= 0. Viewing C as R2 we can apply the Inverse Function Theorem. Alternatively, we
provide the following proof: Claim: There exists δ′ > 0 such that f(z) 6= f(z0), ∀z0 6= z ∈
B(z0, δ

′).
Suppose not. Then ∀δ′ = 1/n, there would exist z0 6= zn ∈ B(z0, 1/n), f(zn) − f(z0) = 0.
But then:

0 = lim
n→∞

f(zn)− f(z0)

zn − z0

= f ′(z0)

which is a contradiction.
If necessary, take δ′ smaller so that f has no poles at B(z0, δ

′). Denote C = S(z0, δ
′) and

Γ = f(C). Now, by the argument principle we have that:

1

2πi

∫
γ

f ′

f
= Z− P

Where Z =# zeros of f in λ, P =# poles of f inside γ. We have:

1 =
1

2πi

∫
S(z0,δ′)

f ′(z)

f(z)− f(z0)
dz =

1

2πi

∫
S(z0,δ′)

dw

w − α
=

1

2πi

∫
S(z0,δ′)

dw

w − β
.

For all β sufficiently close to α, i.e: β ∈ B(α, ε), since we claim the winding number

n(γ, a) :=
1

2πi

∫
γ

dz

z − a

is locally constant.
We will show that it is an integer valued continuous function, which implies the former. Let
γ be given by z(t), 0 ≤ t ≤ 1 and

F (s) =

∫ s

0

z′(t)

z(t)− a
dt, 0 ≤ s ≤ 1.

Then F (s) is given piecewise as branches of log, so that:

(z(s)− a)e−F (s) =
(z(s)− a)2

z(0)− a
. (1)

Therefore [
(z(s)− a)e−F (s)

]′
= z′(S)e−F (S) − (z(s)− a)e−F (s)F ′(s)

=
z′(s)(z(s)− a)

z(0)− a
− (z(s)− a)2z′(s)

(z(s)− a)(z(s)− a)
= 0.
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So that (1) is constant. But at s = 0 we have (z(s)− a)e−F (s) = z(0)− a. Thus

eF (s) =
z(s)− a
z(0)− a

.

Therefore

eF (1) =
z(1)− a
z(0)− a

= 1,

since z(1) = z(0). Hence, F (1) = 2πki, k ∈ Z and n(γ, a) = 1
2πi
F (1) = k. Notice that

F (s, a) varies continuously with a inside γ, so that n does too.
Therefore, ∃δ < δ′ such that z ∈ B(z0, δ) =⇒ f(z) = f(z0), it follows, for z1, z2 ∈ B(z0, δ),
C = S(z0, δ), Γ = f(C):

1 =
1

2πi

∫
Γ

dw

w − f(z1)
=

1

2πi

∫
Γ

dw

w − f(z2)

=
1

2πi

∫
C

f ′(z)dz

f(z)− f(z1)
=

1

2πi

∫
C

f ′(z)dz

f(z)− f(z2)
.

Such that f(z1) and f(z2) are both assumed only once inside f(C), that is, f(z1) 6= f(z2) if
z1 6= z2. And f is injective.

Now, let f be injective at z0 and without loss of generality, f(z0) = 0. Then:

f(z) = ak(z − z0)k + ak+1(z − z0)k+1 + . . .

= (z − z0)k[ak + ak+1(z − z0) + . . . ]

:= (z − z0)kg(z).

With ak = f (k)(z0)/k! 6= 0 the least coefficient corresponding to the non-null derivative
(notice that f(z0) = 0 =⇒ a0 = 0 so that k ≥ 1). Then (g(z0) 6= 0, so that there exists an
analytic k-th root branch for g in a disk B(z0, δ), g

1/k. Then

f(z) = [h(z)]k

where h is the analytic function defined by:

h(z) = (z − z0)g1/k(z)

Notice that h(z0) = 0 and h′(z0) = g1/k(z0) 6= 0, so that by the previous part h is injective.
But f = l◦h, where l(z) = zk. So that for ε < 1, B(0, ε ⊂ h(B(z0, δ), then l(B(0, ε)) ⊂ B(0, ε)
implies f(h−1(B(0, ε))) ⊂ B(0, ε). But since deg(l) = k and h injective this implies f(z) =
w, w ∈ B(0, ε) has k solutions counting multiplicities in B(0, ε) (with the only solution with
multiplicity greater than 1 being 0). So that f is “k to 1” in B(0, ε)\{0}. But since f is
injective, we must have k = 1, so that f ′(z0) 6= 0.

Definition 1.12. Let z0 ∈ C be a fixed point of an analytic function f . We say that f has
k-fixed points at z0 if z0 is a root of multiplicity k for the function f(z)− z.
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Lemma 1.13. Let z0 ∈ C be a fixed point of an analytic function f , φ be analytic, injective
and finite in a neighbourhood of z0. Then φ ◦ f ◦ φ−1 has the same number of fixed points at
φ(z0) as f has at z0.

Proof. Suppose f has k fixed points at z0. Since

φ ◦ f ◦ φ−1(z)− z
[z − φ(z0)]k

=

(
φ ◦ f ◦ φ−1(z)− φ ◦ φ−1(z)

f ◦ φ−1(z)− φ(z)

)(
f ◦ φ−1(z)− φ−1(z)

[φ−1(z)− z0]k

)
· (2)

·
(

[φ−1(z)− φ ◦ φ−1(z)]k

[z − φ(z0)]k

)
.

Now, φ(z0) is zero of multiplicity k of φ ◦ f ◦ φ−1 − z iff the right hand side of (2) tends to
a finite non-zero number, as z → φ(z0). Let f ◦ φ−1(z) = u and φ−1(z) = v. Then the first
term in the right hand side becomes:

φ(u)− φ(v)

u− v

And as z → φ(z0), u → z0, v → z0 and since φ is injective, u 6= v for z 6= z0, so that this
term is always finite and tends to φ′(z0) 6= 0 since φ is injective, by Proposition 1.11.
Next, setting, notice that the second term in (2) is:

f(v)− v
[v − z0]k

and as z → φ(z0), v → z0. Since z0 is fixed point of order k for f , the above limit is finite
and non-zero. Again, by injectivity of φ, the denominator never vanishes.
Finally, let φ(z0) = w. Then the last term of (2) becomes:[

φ−1(z)− φ−1(w)

z − w

]k
and as z → φ(z0) = w, the above expression tends to

[(φ−1)′(w)]k = [(φ−1)′(φ(z0)]k = [φ′(z0)]−k 6= 0

again by Proposition 1.11.

Motivated by this Lemma, we define:

Definition 1.14. A meromorphic map f has n fixed points at ∞ if φ ◦ f ◦ φ−1 has n fixed
points at φ(∞), where φ is any injective meromorphic function such that φ(∞) ∈ C.

Corollary 1.15. If z0 is a fixed point of f with multiplicity greater than 1, then f ′(z0) = 1.

Proof. Follows from Corollary 1.8 that g(z) = f(z)− z is such that 0 = g′(z0) = f ′(z0)− 1,
so that f ′(z0) = 1.

6



Example 1.16. The map f(z) = z2+1
z

has a fixed point at ∞. Taking φ(z) = 1/z, so that
φ(∞) = 0, we have that h(z) = φ ◦ f ◦ φ−1(z) = z

z2+1
. Then,

h(z) = z ⇐⇒ z

z2 + 1
− z = 0 ⇐⇒ z3 = 0.

It follows that 0 is a fixed point of multiplicity 3 for h, thus∞ is a fixed point of multiplicity
3 for f .

Theorem 1.17. Let f : U → C be meromorphic, f(0) = 0, f ′(0) = λ 6= 0, 1. Then
∃r > 0, φ : f(B(0, r))→ C, such that φ ◦ f(z) = λφ(z).

Proof. Suppose, without loss of generality, that |λ| < 1 (The case |λ| > 1 follows by applying
the same theorem to the the local inverse of f , whose existence is guaranteed since f ′(0) 6= 0).
Take c ∈ R such that c2 < |λ| < c < 1. Since f(0) = 0, |f ′(0)| = |λ| < c and f ′ is continuous,
there exists r > 0 such that |f ′(z)| < c,∀z ∈ B(0, r). Hence:

|f(z)− f(0)| < c|z − 0|
|f(z)| < c|z|, ∀z ∈ B(0, r).

Thus, given z0 ∈ B(0, r), it follows that:

|f 2(z)| = |f(f(z0))|
< c|f(z0)|
< c2|z0|.

By induction, it follows that

|fn(z0)| < cn|z0| < cnr < r (3)

Which implies fn(z0) ∈ B(0, r), ∀n, z, ∀z0 ∈ B(0, r), that is,

fn(B(0, r)) ⊂ B(0, r) (4)

By Taylor’s Theorem, we also have that:

f(z) = λ · z +
f ′′(ξ)

2!
z2

with ξ between z and 0. Therefore, since f ′′ is bounded in B(0, r), it follows that

|f(z)− λz| ≤ C|z|2,∀z ∈ B(0, r)

where C = supξ∈B(0,r) |f ′′(ξ)|. Then, by (3) and (4) we have that:

|fn+1(z)− λfn(z)| ≤ C|fn(z)|2 ≤ Cr2c2n. (5)

Now, consider the sequence of analytic functions φ : B(0, r)→ C:

φn(z) =
fn(z)

λn
.
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Then, from (5), we have that for all z ∈ B(0, r):

|φn+1(z)− φn(z)| =
∣∣∣∣fn+1(z)

λn+1
− fn(z)

λn

∣∣∣∣
=

1

|λ|n+1

∣∣fn+1(z)− λfn(z)
∣∣

≤ 1

|λ|n+1
Cr2c2n =

Cr2

|λ|

(
c2

|λ|

)n
.

Since c2/|λ| < 1, it follows that |φn+1(z)− φn(z)| → 0, as n→∞, uniformly on B(0, r). So
φn is Cauchy, therefore it converges to an analytic function φ. But then, note that:

φn(0) =
fn(0)

λn
= 0, ∀n.

So that φ(0) = 0 and

φn ◦ f(z)− λφn+1(z) =
fn+1(z)

λn
− λfn+1(z)

λn+1
= 0

for all z ∈ B(0, r), n ∈ N. Taking the limit as n→∞, it follows that:

φ ◦ f(z)− λφ(z) = 0

φ ◦ f(z) = λφ(z).

1.3 Rational Maps

Definition 1.18. A rational map is a function R : C→ C of the form

R(z) =
P (z)

Q(z)

where P and Q are both polynomials, not both being the zero polynomial. If P = 0, then
R = 0 and if Q = 0 then R =∞. We also assume that P and Q have no common zeros, that
is, they are coprime. Thus R determines P and Q uniquely up to a scalar multiple, and the
degree of R is

deg(R) = max{deg(P ), deg(Q)}

except in the degenerate cases where R is constant. In that case, deg(R) = 0.

Example 1.19. Take R(z) = z3+2z+3
z−1

. Then deg(R) = 3, R(1) =∞, R(∞) =∞.

Proposition 1.20. If R is a rational map, deg(R) = d > 0, then ∀w ∈ C the equation
R(z) = w has d solutions, counting multiplicities.
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Proof. Let R = P/Q, deg(P ) = n, deg(Q) = m, so that:

R(z) =
anz

n + ...+ a0

bmzm + ...+ b0

.

If n = m, then R(∞) ∈ C, so that all roots and poles of R are in C. Notice that there are
exactly n = m = d of each, being those the roots of P ad Q respectively. If n > m, then
R has n = d roots and m poles at the respective roots in C. Notice that there is also a
pole at ∞, whose multiplicity is by definition the multiplicity of 0 in 1/R(1/z). That is in
Q(1/z)/P (1/z) or:

bmz
n−m + ...+ b0z

n

an + ...+ a0zn

so that 0 has multiplicity n −m. There are, therefore, m + n −m = n = d poles in total.
Similarly, we show that the same holds for the case m > n (in this case there is a zero at ∞,
with multiplicity m− n).
Finally, if w 6= ∞the number of solutions of the equation R(z) = w is, by definition, the
number of roots of the equation R(z)− w = 0, that is:

R(z)− w =
P (z)− wQ(z)

Q(z)
.

Notice that since P and Q have no common zeros, P − wQ and Q have no common zeros.
Then R(z)−w and R(z) have the same degree, so that as we saw above they have the same
number of roots, that is, d. If w = ∞, then the number of solutions of R(z) = w is the
number of poles of R, which, as we saw, is also d. So that it holds for any w ∈ C.

Corollary 1.21. If R is a rational map and ∀w ∈ C the equation R(z) = w has exactly d
solutions, counting multiplicities, then deg(R) = d.

Proposition 1.22. If R, S are a rational maps, then:

deg(R ◦ S) = deg(R) · deg(S).

Proof. Notice that the composition of rational maps is a rational map. Now, let w ∈ C.
Then the equation R(z) = w has exactly deg(R) = d solutions, counting multiplicities. Let
ξ1, ..., ξd, not necessarily distinct be all those solutions. Then for each i = 1, ..., d, the equation
S(z) = ξi has exactly deg(S) solutions, counting multiplicity. So, the equation R(S(z)) = w
has, in total, exactly deg(R) ·deg(S) solutions, counting multiplicity, so that R ◦S has degree
deg(R) · deg(S) by the above result.

Corollary 1.23. If R is a rational map, then deg(Rn) = [deg(R)]n, where Rn = R ◦ ... ◦ R,
n times.

Definition 1.24. A rational map of the form:

g(z) =
az + b

cz + d
, ad− bc 6= 0

is said to be a Mobius map. We say two meromorphic functions f, h are conjugate if there
exists a Mobius map g such that h = g ◦ f ◦ g−1.
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Example 1.25. If f is a quadratic polynomial, then f is conjugate to hc(z) = z2 + c, for
some c ∈ C. In fact, taking g(z) = az + b, a 6= 0, then g−1(z) = z−b

a
so that:

(g ◦ hc ◦ g
−1)(z) = a

(
z2 − 2zb+ b2

a2
+ c

)
+ b =

1

a
z2 +

−2b

a
z +

b2

a
+ c+ b

So that if f(z) = αz2 + βz + γ, α 6= 0, then:

a =
1

α
, b =

−β
2α

and c = γ +
β

2α
− β2

4α

Proposition 1.26. If R, S are conjugate rational maps, S = g ◦R ◦ g−1 then:

1. deg(R) = deg(S).

2. Sn = g ◦Rn ◦ g−1 so that Sn and Gn are conjugate.

3. If R has n fixed points at z0, then, S also has n fixed points at g(z0), so that R and S
have the same number of fixed points, counting multiplicity.

4. R and S have the same number of critical points.

Proof. 1. Follows from Proposition 1.22.

2. Note that

S2 = g ◦R ◦ g−1 ◦ g ◦R ◦ g−1

= g ◦R2 ◦ g−1

so that it follows from induction

3. Follows from Lemma 1.13.

4. If z0 is critical point of R, R′(z0) = 0. But then

S ′(g(z0)) = g′(R(z0))R′(z0)(g−1)′(g(z0)) = 0

so that S has a critical point at g(z0).

Proposition 1.27. Let R be a rational map, deg(R) = d. Then R has at most 2d−2 critical
points.

Proof. Choose ξ ∈ C such that f ′(ξ) 6= 0, f(ξ) 6= ξ and f(z) = ξ has d = deg(R) distinct
solutions (that is, for z1, ..., zd, f(zi) = ξ, i = 1, ..., d it holds that f ′(zi) 6= 0, i = 1, ..., d).
Let g be the Mobius map:

g(z) =
R(ξ)− ξ
z − ξ

.

Then, if S = g ◦ f ◦ g−1, then S(∞) = 1, S ′(∞) 6= 0 and S(z) = ∞ has d distinct solutions,
g−1(z1) = y1, ..., g

−1(zd) = yd ∈ C, which must then be simple poles.
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Follows that all critical points of S must lie in C, so they must be the zeroes of S ′(z). Writing
S = P/Q , we have that

S ′(z) =
P ′(z)Q(z)− P (z)Q′(Z)

Q(z)2

where the denominator and nominator are coprime, for suppose not: Then the common zero
must be a yi, since Q(z)2 = 0 =⇒ Q(z) = 0 =⇒ S(z) = ∞. But then Q′(yi) 6= 0,
since they are simple poles, which implies P (yi) = 0 which is a contradiction since P,Q
are coprime. Since S(∞) 6= ∞, 0, S ′(∞) 6= ∞, 0, so that d = deg(Q) = deg(P ) and
deg(P ′Q − PQ′) = deg(Q2) and then deg(S ′(z)) = deg(Q(z)2S ′(z)), which is a polynomial,
so it’s degree can be computed by it’s growth rate as z tends to∞. First note that Q(z)2/z2d

tends to a finite non-zero value as z tends to ∞. Next, since S ′(∞) 6= 0, it is injective in a
neighbourhood of infinity, so that S(1/z) is injective in a neighbourhood of the origin and
then

S(1/z) = 1 + a1z + . . .

with a1 6= 0. Differentiating both sides yields:

−S ′(1/z)
1

z2
= a1 + · · ·+ o(z2)

for z near 0, implies S ′(z)z2 = −a1 + · · ·+ o(1/z2) for z near infinity, which means

lim
z→∞

S ′(z)z2 = −a1 6= 0.

It follows that
Q(z)2S ′(z)z2

z2d
=
Q(z)2S ′(z)

z2d−2

tends to a finite non-zero value as z tends to infinity and, therefore, deg(S ′) = 2d− 2 so the
result follows.

Example 1.28. Let

R(z) =
z2 + 1

z
.

Then deg(R) = 2, so by the previous proposition, R has at most 2 · 2− 2 = 2 critical points.
We see that is the case, since:

R′(z) = 0 ⇐⇒ z2 − 1

z2
= 0 ⇐⇒ z = 1 or z = −1.

Corollary 1.29. If R is a rational map, deg(R) ≥ 2, then by Proposition 1.8, for all w ∈ C,
but at most 2 · deg(R) − 2 exceptions, R−1(w) has d distinct elements, so that R is not
(globally) injective.
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Proposition 1.30. If R is a rational map, then R has exactly d + 1 fixed points, counting
multiplicity.

Proof. Since conjugation preserves the number of fixed points, we may assume ∞ is not a
fixed point of R. Then, the fixed points of R are given by:

R(z) = z
z 6=∞⇐⇒ R(z)− z = 0

Expressing R = P/Q, with deg(P ) ≤ deg(Q) = d by hypothesis, that is equivalent to:

P (z)

Q(z)
− z = 0 ⇐⇒ P (z)− zQ(z) = 0

But since deg(P (z)) < deg(zQ(z)), follows that deg(P (z) − zQ(z)) = d + 1, so the result
follows.
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2 Julia Sets of Rational functions

When not stated otherwise, all functions from now on will be considered f : U ⊂ C→ C
analytic, where U is open. Also fk := f ◦ f ◦ · · · ◦ f (k-times). We begin with a series of
definitions:

Definition 2.1. We say w ∈ C is a fixed point of f if f(w) = w and a periodic point of period p
if it is a fixed point for fp, p ≥ 1.

Definition 2.2. Given a function f , z ∈ U , we denote the forward, backwards and total
orbits of z, respectively, by:

O+(z) =
∞⋃
k=1

fk ({z}) , O−(z) =
∞⋃
k=1

f−k ({z}) ,O(z) = O+(z) ∪O−(z).

Definition 2.3. If w0 ∈ C is a periodic point of period p ≥ 1, we call the forward orbit of
w0: O+(w) = {w1, ..., wp−1, w0} a periodic cycle. Note that any two points in a periodic cycle
have the same periodic cycle.
The multiplier of a periodic cycle of period p is

λ = (fp)′(w)

where w is any point in the cycle. If p = 1, so that the cycle consists of a single fixed point,
we may interchange the words cycle and fixed point. We say a periodic cycle is:

a) super attractive if λ = 0;

b) attractive if 0 ≤ |λ| < 1;

c) indifferent if |λ| = 1;

d) repelling if |λ| > 1.

Notice that conjugation preserves multipliers: if fn(w) = w, (fn)′(w) = λ, then, for
g−1(z) = w we have:

(g ◦ fn ◦ g−1)′(z) = g′(fn(g−1(z))) · (fn)′(g−1(z)) · (g−1)′(z) = g′(g−1(z)) · λ · (g−1)′(z) = λ.

So we may define the multiplier of a periodic cycle at infinity as follows:

Definition 2.4. If w0 = ∞ is a periodic point of period p ≥ 1, we define the multiplier of
its cycle as (g ◦ fp ◦ g−1)(0), where g = 1/z. That is:

λ =
1

f ′(∞)
.

It is worthy to mention that, by Corollary 1.15, it follows that if w is a fixed point with
multiplicity greater than 1, then it is indifferent.

We justify these names with the following proposition:
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Proposition 2.5. Let z0 be a fixed point of f . There exists a neighbourhood U of z0 such
that for all z ∈ U :

1. fn(z)→ z0, if z0 is attractive or super attractive.

2. If z 6= z0, ∃N such that fn(z) 6∈ U , if z0 is repelling.

Proof. Since conjugation preserves iteration and multipliers, we may assume z0 6= ∞ We
first prove 1. Let |f ′(z0)| < c < 1. Then, by definition, there exists r > 0 such that
∀z ∈ B(z0, r)\{z0}:

|f(z)− f(z0)|
|z − z0|

< c =⇒ |f(z)− z0| < c|z − z0| < cr.

So that f(z) ∈ B(0, r), thus inductively it follows that:

|f(z)− z0| < cnr → 0

as claimed. Now, for 2, let 1 < c < |f ′(z0)|. Then, by definition, there exists r > 0 such that
∀z ∈ B(z0, r)\{z0}:

|f(z)− f(z0)|
|z − z0|

> c =⇒ |f(z)− z0| > c|z − z0|

Now, let z ∈ B(0, r)\{z0} and suppose said N does not exist. Then, ∀n ∈ N, fn(z) ∈ B(z0, r).
That is, |fn(z)− z0| < r. But then, we may apply the above inequality inductively so that:

r > |fn(z)− z0| > cn|z − z0|, ∀n

an absurd since the cn|z − z0| → +∞, so that said N does exist.

Definition 2.6. Given f : C→ C an analytic function, we call the Julia Set of f the closure
of the set of repelling periodic points of f , denoted by J(f). The Fatou Set of f is denoted
by F (f) and given by C\J(f).

Example 2.7. Let f(z) = z2. Then w is a periodic point if and only if:

fp(w) = w ⇐⇒ z2p = z
z 6=∞⇐⇒ z(z2p−1 − 1) = 0.

Thus w is periodic if and only if w = 0 or w =∞ or w = e
2πi

2p−1
q, q = 0, 1, ..., 2p− 2. Clearly,

(fp)′(0) = 0 and
1

(fp)′(∞)
= 0

so 0,∞ are super attractive, whereas otherwise

|((fp)′(w)| = |2p(w)2p−1| = 2p|w|2p−1 = 2p > 1

so that all other periodic cycles are repelling. We conclude that

J(f) =
{
e

2πi
2p−1

q|q = 0, ..., 2p− 2 ; p ≥ 1
}

= {the “odd” roots of unit}
= S1.
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Definition 2.8. If w ∈ C is an attractive fixed point of f , we call the basin of attraction of
w the set:

A(w) = {z ∈ C : fk(z)→ w, k →∞}.

And the immediate basin of attraction of w, A0(w) to be the connected component of A
which contains w. If O = {z0, ..., zp−1} is an attracting periodic orbit of period p (that is,
f(zi) = zi+1 mod p and |(fm)′(zi)| < 1, the basin of attraction of the orbit O, A(O) is the
union of the basins of attraction for each zi as fixed points of fm, and it’s immediate basin
of attraction A0(O) is the union of the immediate basins of attraction.

Example 2.9. In the case f(z) = z2, Then A(0) = B(0, 1) and A(∞) = C\B(0, 1).

Lemma 2.10. Let w ∈ C be an attractive fixed point of f analytic. Then A(w) is open.

Proof. Since w is attractive, there exists V neighbourhood of w, V ⊂ A(w). So, given
z ∈ A(w) =⇒ fk(z) ∈ V for some k. But then z ∈ f−k(V ) ⊂ A(w) open.

Corollary 2.11. Let A be the basin of attraction of a periodic point z0 of an analytic
function f , f ′(z0) = λ. Then ∃φ : A → C analytic such that φ ◦ f(z) = λφ(z),∀z ∈ A and φ
maps a neighbourhood of z0 into a neighbourhood of 0.

Proof. First, notice that taking g(z) = z + z0, then:

g−1 ◦ f ◦ g(0) = 0, (g−1 ◦ f ◦ g(0))′(0) = f ′(z0).

Since conjugation also preserves iteration, there’s no loss in generality in assuming z0 = 0.
By the Theorem 1.17, we know ∃r > 0 and φ : B(0, r)→ C such that φ ◦ f(z) = λφ(z), ∀z ∈
B(0, r). Now, we will extend φ by defining it as the limit of φn, but now φn : A → C.
It remains to prove the functions converge to an analytic function. Initially, notice that
∀z ∈ A, ∃Nz such that fNz(z) ∈ B(0, r), since fn(z)→ 0. But then φn(fNz(z)) converges to
φ(fNz(z)). So, given ε > 0, ∃N, n,m ≥ N implies:∣∣φn(fNz(z))− φm(fNz(z))

∣∣ < ε ·
∣∣λNz ∣∣∣∣∣∣fNz+n(z)

λn
− fNz+m(z)

λm

∣∣∣∣ < ε ·
∣∣λNz ∣∣∣∣∣∣fNz+n(z)

λNz+n
− fNz+m(z)

λNz+m

∣∣∣∣ < ε

|φNz+n(z)− φNz+m(z)| < ε

hence φn(z) is Cauchy and therefore converges. Now, let:

An = {z ∈ A|fn(z) ∈ B(0, r)}

which are all open. Notice that B(0, r) ⊂ A1, An ⊂ An+1, ∀n. Also,

∞⋃
n=1

An = A.
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Clearly, φn converges uniformly on each Am. I then claim that φn converges uniformly in
every compact subset of A. In fact, given K ⊂ A, ∃N, K ⊂ AN . We prove by contradiction:
suppose that is not the case. Then ∀n there would exist zn ∈ K such that zn 6∈ An, that is
fn(zn) 6∈ B(0, r). But then since K is compact, there would exist a subsequence znk such
that znk → z̄ ∈ K. But now z̄ ∈ A, so there exists N such that fN(z̄) ∈ B(0, r). Then, by
continuity, ∃δ, ∀z ∈ B(z̄, δ), fN(z) ∈ B(0, r). But znk → z̄ =⇒ ∃K, znK ∈ B(z̄, δ). But
then fN(znK ) ∈ B(0, r), ∀k ≥ K which leads to a contradiction, since eventually we would
have nk ≥ N and then fnk(znk) ∈ B(0, r).
Since A is open, every point admits a compact neighbourhood contained in A, so every points
admits a neighbourhood where φ is analytic. Follows that φ is analytic in A.

Theorem 2.12. Let f : C → C be a rational map, ẑ attractive fixed point of f (not super
attractive) with basin of attraction A. Let φ : A → C be such as in the previous corollary.
Then, ∃ψε : B(0, ε) → A0 analytic local inverse of φ, which extends to ψr defined in a
maximal ball B(0, r). Also, ψr extends to ∂B(0, r) and ψr(∂B(0, r)) ⊂ A0 contains a critical
point of f .

Proof. Again, we may assume ẑ = 0. Notice that f ′(0) = λ 6= 0 =⇒ φ′n(0) = λ, ∀n =⇒
φ(0) = λ 6= 0. Then, by the inverse function theorem, ∃ψε local inverse defined in a ball of
radius ε around 0. Now, suppose it was possible to extend ψ to an arbitrarily large ball, we
would then have ψ : C → C analytic. But then we could extend φ to each z ∈ C, by the
equality φ(ψ(z)) = z. But then ψ(C) = C. But note that f |ψ(C) is bijective over it’s image,
since if ψ(ξ1) 6= ψ(ξ2) =⇒ ξ1 6= ξ2, thus, since ψ is injective:

φ(f(ψ(ξ1)) = λξ1

f(ψ(ξ1)) = ψ(λξ1) 6= ψ(λξ2) = f(ψ(ξ2)).

But then that would imply f : C → C is bijective, a contradiction by Corollary 1.29. So
there exists r > 0 maximal such that ψε extends analytically to ψr = ψ : B(0, r) → U =
ψ(B(0, r)) ⊂ A0 ⊂ A, since B(0, r) is connected and ψ is continuous.

U f(U)

B(0, λr)B(0, r)

f

φψ

·λ
φψ

Now, note that U must be contained in A0, since λ · B(0, r) = B(0, λr) is contained in
the compact K = B(0, λr) ⊂ B(0, r), it follows by continuity that:

f(U) ⊂ f(U)

φ(f(U)) ⊂ φ(f(U)) = K

hence
φ(f(U)) = λU ⊂ K = λB(0, r).
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So that finally
U ⊂ B(0, r) ⊂ A0.

In particular, φ is defined in a neighbourhood of U . We will show that ∂U contains a
critical point of f , since otherwise we would be able to extend ψ analytically to a larger ball,
contradicting the maximality of r.
Given w0 ∈ ∂B(0, r), let z0 ∈ ∂U be the accumulation point of the curve γ : [0, 1) → C,
γ(t) = ψ(tw0), such that γ(t)→ z0 for t→ 1. Notice that it is well defined:
If z0 ∈ ∂U, ∃(zn)n ⊂ U, zn → z0. But then ∃(yn)n ⊂ B(0, r), ψ(yn) = zn ∴ ψ(yn)→ z0. But
then (yn)n ⊂ B(0, r) is a sequence in a compact, therefore admits convergent subsequence
ynk → y0 ∈ B(0, r). Now, since z0 ∈ ∂U and U is open since ψ is a diffeomorphism, z0 6∈ U
By continuity we have that ψ(y0) = z0 =⇒ y0 6∈ B(0, r). But then y0 ∈ ∂B(0, r), so that
taking w0 = y0 in the previous curve, we do in fact have that γ(t)→ z0 as t→ 1.
Suppose z0 is not a critical point for f . Then, by the inverse function theorem, there are
neighborhoods of Uz0 of z0 and Vz0 of f(z0) and g : Vz0 → Uz0 analytic such that f(g(z)) = z,
for z ∈ Vz0 . Let ε > 0 be such that λ · |w0 + ε| < r, so that for B(λw0, λε) ⊂ B(0, r) and
ψ(B(λw0, λε)) ⊂ Vz0 (which exists since ψ(λw) = f(ψ(w)). Then, by setting:

ψz0(w) = g(ψ(λ(w))), w ∈ B(w0, ε)

follows that ψz0 is analytic and coincides with ψ in B(0, r) ∩B(w0, ε), since, by definition:

(φ ◦ f)(ψ(w)) = λw

f(ψ(w)) = ψ(λw)

ψ(w) = g(ψ(λw))

it follows that ψz0 is analytic extension of ψ. Then, if there are no critical points in ∂U , we
may apply the same process and obtain an extension of ψ over the whole boundary into a
larger ball, contradicting the maximality of r.
It remains to show ψ extends to the boundary of B(0, r). But this is clear, since if w ∈
∂B(0, r), then λw ∈ B(0, λr) ⊂ B(0, r). But then ∃y ∈ f(U) such that φ(y) = λw. But
f(U) = f(ψ(B(0, r)), so that, as before, f is locally bijective and we may set

ψ(w) = g(ψ(λw))

as before and extend ψ. So finally, we may conclude that ∃z0 ∈ ψ(∂B(0, r)) ⊂ A such that
z0 is a critical point of f .

Example 2.13. Taking f(z) = z2 + 0.7iz, we have that f has an attractive fixed point at
0. The Julia Set for f , as will be proved, is the boundary for the basin of attraction of 0.
Therefore, in Figure 2, the region inside the Julia Set is the immediate basin of attraction
of 0, so that there we may calculate φ as in the theorem. Now, note that c = 0 − .35i is
the closest critical point of f in the immediate basin of attraction of 0, so that the inverse ψ
may only extend to a maximal radius r such that there is a point z0, |z0| = r and ψ(z0) =
c ⇐⇒ φ(c) = z0 =⇒ |φ(c)| = |z0| = r. Therefore, the subset U that φ maps bijectively
onto B(0, r) is such that ∂U = {z||φ(z)| = |φ(c)|}, as marked in Figure 2.
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Figure 1: Drawing illustrating the result

Corollary 2.14. If f is a rational map of degree at least 2, then for each periodic cycle,
there is at least one critical point of R in it’s immediate basin of attraction.

Proof. Let {z1, ..., zp} be a periodic cycle. If it is super attractive, then (fp)′(zi) = 0 =⇒
f ′(zj) = 0, for some j = 1, 2, ..., p, hence one of the points in the cycle is itself critical and
is obviously in the immediate basin. If it is not super attractive, then applying the previous
theorem to z1 as fixed point of fp, we have that there exists a critical point c of fp in the
immediate basin of attraction z1. But this implies (fp)′(c) = 0 =⇒ f ′(fm(c)) = 0, for some
m = 0, 1, ..., p − 1, that is, fm(c) is critical point of f . But since c was in the immediate
basin of attraction of z1, this implies fm(c) is in the immediate basin of z1+m, so that it is
the immediate basin of the cycle.

Corollary 2.15. If f is a rational map of degree d ≥ 2, there are at most 2d− 2 attractive
periodic cycles.

Proof. By the previous result, for each attractive periodic cycle there is a critical point in it’s
immediate basin of attraction. Since those are open and disjoint, these must all be different.
Since R has at most 2d− 2 critical points, the result follows.

Theorem 2.16. Let f be rational map of degree d ≥ 2. Then f has at most 4d−4 indifferent
cycles.

Proof. If f(z) = zd, for some d ∈ Z, then f has no indifferent cycles. Now, if f(z) 6= zd, let
f = p/q, with p, q coprime and define:

ft(z) =
p(z)− tzd

q(z)− t
, f0(z) = f(z), f∞(z) = zd

for t ∈ C. Notice that ft is a smooth function on t, except when at least one root of p(z)−tzd
coincides with a root of q(z) − t in a point T̂ , such that deg(ft) = d for t close to t̂, but
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0 (attractive fixed point)

c = 0− 35i (critical point)

|φ(z)| = |φ(c)|

Figure 2: Julia Set for f(z) = z2 + 0.7iz illustrating the result

deg(ft̂) < d. But when this happens, we have that:

p(z)− t̂zd = 0 = q(z)− t̂
=⇒ p(z) = t̂zd, q(z) = t̂

=⇒ f(z) =
p(z)

q(z)
=
t̂zd

t̂
= zd.

But since f(z) 6= zd, f(z) = zd ⇐⇒ f(z)− zd = 0 has a finite number of solutions. Hence,
there exists a finite number of t̂, since t̂ = q(z).
Now, since f = f0, there exists a neighbourhood U of 0 such that t 7→ ft is a smooth function
on t. Now, suppose f has at least k = 4d− 3 indifferent periodic orbits, O(0)j, j = 1, 2, ..., k.
Let zj(0) ∈ O(0)j and let lj be the period of zj(0), λj(0) = (f lj)′(zj(0)).

Note that |λj(0)| = 1 =⇒ (f
lj
0 )′(zj(0)) 6= 0, f lj(zj(0)) = zj(0) and since t 7→ ft is smooth

in U , by the Implicit Function Theorem, there exists U ′ ⊂ U neighbourhood of 0 such that
∀t ∈ U ′, ∃zj(t) such that

f
lj
t (zj(t)) = zj(t)

for j = 1, 2, ..., k. Similarly, for each j, define λ : U ′ → C

λj(t) = (f
lj
t )′(zj(t)).

Again, by the Implicit Function Theorem, we have that zj(t) and λj(t) are analytic, for
j = 1, ..., k.
Claim: None of the functions λj is constant in a neighbourhood around 0.
Suppose at least one of the functions λj0 = λ0 is constant in a neighbourhood around 0.
Choose θ ∈ [0, 2π) such that the ray R([0,∞]), given by R : [0,∞]→ C,

R(r) = reiθ
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does not intercept any one of the finitely many t̂.
We now claim it is possible to extend zj0(R(r)) = z0(R(r)) analytically along the ray up to
r =∞. Let

A = {r̂ | z0(R(r)) can be extended analytically up to r = r̂}.

Then by hypothesis A 6= ∅, so that we can define:

α = supA.

Now, clearly A is closed, since if (rn)n ⊂ A, rn → r̄, we can define z0(R(r̄)) = lim z0(R(rn)).
Then clearly this extends z0, since by continuity it still holds that f l0R(r̄)(z0(R(r̄)) = z0(R(r̄)).

So that α ∈ A. But then suppose α 6=∞. Since α ∈ A, we have that z0(R(α)) is a periodic
point of period l0. Note also that we may extend λ0(R(r)) up to α by the same formula. But
being constant in a neighbourhood of 0 and analytic implies λ0(R(r)) = λ0(R(0)), ∀r ∈ A,
hence λ0(R(α)) = λ0(R(0)) 6= 0. But λ0(R(α)) = (f l0R(α))

′(z0(R(α)), so that by the Implicit

Function Theorem there exists a neighbourhood (α − δ, α + δ) in which we can define r 7→
z̃0(R(r)) periodic point of f l0R(r). But by uniqueness of the Implicit Function, we have that z̃0

and z0 coincide in the open set (α−δ, α), so that we may extend z0 to [0, α+δ) contradicting
the fact that α = supA. Hence α = ∞. But then it is possible to extend z0 and λ0 up
to t = ∞, and by connectivity λ0(∞) = λ0(0). But for t = ∞, ft(z) = zd, which has
no indifferent points, a contradiction. Thus we may conclude all λj are not constant in a
neighbourhood of 0.
Now, for each j, since λj(0) 6= 0 and λj is not constant, we may write it as a power series
around 0:

λj(t)

λj(0)
= 1 + ajt

nj +
∞∑

k=nj+1

bkz
k

= 1 + ajz
nj + znj+1g(z)

where aj 6= 0, nj ≥ 1 and g(z) =
∑∞

i=0 ciz
i is bounded and analytic.

Then:

|λj(t)|2 = λj(t)λj(t)

= (1 + ajt
nj + tnj+1g(t))(1 + ajtnj + tnj+1g(t))

= 1 + 2<(ajt
nj) + |aj|2|t|2nj + 2<(tnj+1g(t)) + aj|t|2nj tg(t)+

+ aj|t|2nj tg(t) + |t|2nj+2|g(t)|2

= 1 + 2<(ajt
nj) + |aj|2|t|2nj + tnj+1G(t)

where

G(t) =
2<(tnj+1g(t)) + aj|t|2nj tg(t) + aj|t|2nj tg(t) + |t|2nj+2|g(t)|2

tnj+1

is bounded in a neighbourhood of 0. Now, since the power series for
√

1 + x (x real) in a
neighbourhood of 0, is given by:

√
1 + x = 1 + 1/2x+O(x2).
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We have that

|λj(t)| =
√

1 + 2<(ajtnj) + |aj|2|t|2nj + tnj+1G(t)

= 1 + <(ajt
nj) + 1/2(|aj|2|t|2nj + tnj+1G(t)) +O(|t|2nj)

= 1 + <(ajt
nj) +O(|t|nj+1).

Now, note that we may divide the complex plane into nj sectors where <(ajt
n2 > 0 and nj

sectors where <(ajt
nj < 0 (follows from the polar form of complex numbers) such that we

may define:
σj(θ) = sign(<(aje

iθnj)).

Notice that, for each j, σj is a stair function with values ±1 except at 2nj discontinuity
points where it is 0. Also, it’s average value is 0 in [0, 2pi).
Claim: ∃δ > 0 such that:

σj(θ) = 1 ⇐⇒ |λj(reiθ)| > 1

σj(θ) = −1 ⇐⇒ |λj(reiθ)| < 1

for all 0 < r < δ, for all j = 1, .., k.
It suffices to show the first implication, the proof of the second is analogous. Let |λj(t)| =
1 + <(ajt

nj) + h(t), where h(t) = O(|t|nj). First, assume σj(θ) = 1, that is, <(aje
iθnj) > 0,

and suppose the implication is false. Then, for each δ = 1/m, there would exist rm ∈ (0, δ)
such that:

g(rme
iθ) < −<(ajr

nj
m e

iθnj), ∀m.

But since:

lim
m→∞

−<(ajr
nj
m eiθnj)

r
nj+1
m

= −∞

it follows that

lim
m→∞

g(rme
iθ)

r
nj+1
m

=∞

so that g is not O(|t|nj+1), a contradiction. Since for each case we can find such a δ±j , we
may take δ to be the minimum of these and we’re done.
Let σ = σ + σ2 + ... + σk. Then, since σ is the sum of stair function with average 0, it’s
average too is 0. We claim ∃θ such that σj(θ) = −1 for at least (k+1)/2 of the σj’s. Suppose
not, then, ∀θ, at most (k + 1)/2 of the σj’s have the value −1. But then this would imply
that the average of δ would be greater then 0 in [0, 2π)., a contradiction. Let θ0 ∈ [0, 2π) be
this value. Then, taking r0 ∈ (0, δ), such that t0 = r0e

iθ0) is not one of the problem points
t̂, we have that |λj(t0)| < 1, for (k + 1)/2 values of j, so that ft0 has (k + 1)/2 attractive
periodic cycles. But

k = 4d− 3 =⇒ (k + 1)/2 = 2d− 1.

So that ft0 is a rational map of degree d and 2d − 1 attractive cycles, a contradiction with
Corollary 2.15. So we may conclude f has at most 4d− 4 indifferent periodic cycles.
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Corollary 2.17. If f is a rational map of degree d ≥ 2, then the number of non-repelling
periodic cycles of R is at most 6d− 6, so that the number of non-repelling periodic points of
R is finite.

Proof. Follows from Corollary 2.15 and Theorem 2.16 that the number of non-repelling cycles
is at most 2d−2 + 4d−4 = 6d−6. Then, let p ∈ N be the greatest period of all these cycles.
Then the number of non-repelling periodic points is at most (6d− 6)p.

Lemma 2.18. Let f be a rational map with degree at least 2, z0 be a fixed point of f with
multiplicity m and that it’s multiplier is either 1 or not a root of unity. Then, for all n ∈ N,
z0 is also a fixed point of fn with multiplicity k.

Proof. Since conjugation preserves fixed points, iterates and multiplicity, we may assume
z0 = 0, so that we may write f as a power series around 0:

f(z) = az + bzk + ...

with an 6= 1, n ≥ 2, b 6= 0 and k > 1, since degree(f) = d ≥ 2.
If a 6= 1, then z0 = 0 has multiplicity 1. Then:

fn(z) = anz + nbzk + ...

fn(z)− z = (an − 1)z + nbzk + ...

So that z0 = 0 is a simple root and therefore also has multiplicity one.
If a = 1, then k = m and:

fn(z) = z + nbzm + ...

fn(z)− z = nbzm + ...

Since nb 6= 0, follows that z0 = 0 is also a fixed point of multiplicity m.

Theorem 2.19. A rational map f of degree d ≥ 2 has infinitely many periodic points.

Proof. Suppose all fixed points of f have multipliers that are either 1 or not a root of unity.
Let p > 2 be a prime number. We claim that there fp has a fixed point different from those
of f . Suppose not, and let ξ be a fixed point of f . Since f can have at most d+1 fixed points,
counting multiplicity, ξ has multiplicity at most d+1. but by the previous lemma, ξ is also a
fixed point of fp with multiplicity at most d+ 1. Since f can have at most d+ 1 fixed points
in total, each with multiplicity at most d+ 1, fp can have at most (d+ 1)(d+ 1) = (d+ 1)2

fixed points, counting multiplicity. But since fp has exactly dp + 1 > (d+ 1)2 (for d, p > 2),
we have a contradiction. Hence fp must have a fixed point different from those of f , for all
p > 2 prime. That means f has at least one periodic cycle of every prime period greater
than 2. But since period cycles of different prime periods cannot have terms in common, this
means they must all be different and, therefore, f must have infinitely many periodic points.
Now, assume f does have fixed points that are root of unity. Suppose, by contradiction that
f has finitely many periodic points. Let ξ1, ..., ξm be all the periodic points of f such that
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their respective multipliers λ1, ...λm are all n1, ..., nm roots of unity, with period p1, ..., pn
(note that these may not all be distinct). Let

p =
n∏
i=1

pini

It follows that ξi is a fixed point of fp, for all i = 1, 2, ..., n. Moreover, by the chain rule:

(fp)′(ξi) =

p∏
j=1

f ′(ξij mod pi
) = (λi)

p/pi = 1p/(pini) = 1

where {ξij | j = 0, ..., pi − 1} ⊂ {ξi, | i = 1, ...,m} are the points in the same cycle. So that
all fixed points of fp have multiplier either 1 or not a root of unity. It follows we may apply
the previous result to fp and obtain infinitely many periodic points for fp, which are also
periodic points of f contradicting the assumption f has only finitely many periodic points.
Either way, f must have infinitely many periodic points.

Definition 2.20. Let U ⊂ C be an open set, {gk}k∈K be a family of holomorphic functions,
gk : U → C. Then {gk}k∈K is normal if, for every sequence in (gkn)n ⊂ {gk}k∈K , there
exists an uniformly converging subsequence in every compact subset of U , to either a finite
holomorphic function, or to f =∞. The family is said to be normal in z if there is exists a
neighbourhood of z where {gk}k∈K is normal.

Example 2.21. Every finite family F = {f1, f2, ..., fn} of complex functions is normal. In
fact, every sequence in F repeats at least one term infinitely often, so it has a constant (thus
uniformly converging) subsequence.

Example 2.22. By Arzelà-Ascoli Theorem (see ref. [6] p.206), if the family {gk}k∈K is
equicontinuous and uniformly bounded, then its closure is compact, hence every sequence
has converging subsequence. Therefore it is normal.

Example 2.23. If f is a contraction, then there exists z, such that for every z ∈ U , fk(z)→ z
(see ref. [6] p.215), so any sequence (hence any subsequence) of the family {fk}k converges
to the constant function h(z) = z. So {fk}k is normal.

Theorem 2.24. (Montel)
Let {gk}k∈K be a family of complex analytic functions defined in U ⊂ C an open set. If {gk}k
is not normal, then ∀w ∈ C, with at most 2 exceptions, ∃z ∈ U, k ∈ K such that: gk(z) = w

Proof. The proof of this theorem is beyond the scope of this book, hence it shall not be
covered. It can be found in [4]

Note that the converse is false: the family f , where f(z) = z is normal, but, ∀z ∈ C, ∃z =
z ∈ C, f(z) = z.

Definition 2.25. Let f : C→ C be a complex analytic function. Then

J0(f) := {z ∈ C : {fk}k is not normal at z}

F0(f) = C\J0(f).
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Note: it follows that F0(f) is open, since:

F0(f) =
⋃

z∈F0(f)

Vz, where Vz is a neighborhood of z on which f is normal.

So that J0(f) is always closed.

Example 2.26. If f(z) = z2, then J0(f) = S1:
Given z0 ∈ B(0, 1), there exists U neighbourhood of z0, U ⊂ B(0, 1). If z ∈ U, z = 0, then
fk(0) = 0. If z ∈ U, z 6= 0, then:

|fk(z)| = |z|2k = |z|2(k−1)||z|2 < |z|2(k−1) = |fk−1(z)|

so that fk(z) → 0. So {fk}k (and any subsequence) converges to the constant function
h(z) = 0 in U . Therefore, (fk)k is normal for every z ∈ B(0, 1). By a completely analogous
argument, for z0 ∈ C\B(0, 1), there exists U neighbourhood of z0 contained in C\B(0, 1),
and in such (fk)k (and any subsequence) converges to∞, so that it is normal. Meanwhile, for
any z0 ∈ S1, in every neighbourhood U of z0 there exists z1 ∈ B(0, 1)∩U, z2 ∈ C\B(0, 1)∩U
so that fk(z1) → 0 and fk(z2) → ∞, so the same holds for any subsequence, hence there is
no convergent subsequence and {fk}k is not normal.

We see that for f(z) = z2, J(f) = J0(f). A natural question to ask is if this is true or
not for any f . We shall prove it is true in case f is a rational map, but first, we need a few
propositions.

Proposition 2.27. If f is a polynomial of degree at least 2, then J0(f) is bounded.

Proof. Let
f(z) = anz

n + · · ·+ a2z
2 + a1z + a0, an 6= 0.

Define A := maxi=0,...,n−1{|ai|} Then, for z 6= 0:

|f(z)| = |anzn + an−1z
n−1 + · · ·+ a1z + a0|

= |zn|
∣∣∣an +

an−1

z
+ · · ·+ a1

zn−1
+
a0

zn

∣∣∣
≥ |zn|

(
|an| −

∣∣∣an−1

z
+ · · ·+ a1

zn−1
+
a0

zn

∣∣∣)
≥ |zn|

(
|an| −

(
|an−1|
|z|

+ · · ·+ |a1|
|z|n−1

+
|a0|
|z|n

))
≥ |zn|

(
|an| −

(
A

|z|
+ · · ·+ A

|z|n−1
+

A

|z|n

))
.

Consider M := max{2(n−1)A
|an| , 1}. So, for |z| > M :

|f(z)| ≥ |z|n
(
|an| −

(
|an|

2(n− 1)
+ · · ·+ |an|

2(n− 1)

))
≥ |an|

2
|z|n.
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So that for |z| > max{M, 4/|an|} = R, we have: |f(z)| > 2|z|, hence:

|fk(z)| > 2kR.

And fk(z)→∞, so f is normal for every z, |z| > R, hence J0(f) is bounded.

To prove that J0(f) isn’t empty for rational functions, is surprisingly more difficult than
the proof for polynomials. Reference [3] aided in that regard by presenting Theorem 2.19,
from which follows:

Proposition 2.28. If f is a rational map, then J(f) ⊂ J0(f) 6= ∅.

Proof. By Theorem 2.19, f has infinitely many periodic points. But by Corollary 2.17, f
has a finite number of non-repelling periodic points, thus there exists a periodic repelling
point and J(f) is not empty. Let w ∈ C be a repelling periodic point of f with period p,
such that g(w) := fp(w) = w. Without loss of generality we may assume w 6= ∞, since
conjugation preserves periodic points and multipliers. Suppose {gk}k is normal at w. Then
∃V neighbourhood of w in which there is a subsequence {gki} which converges to a finite
analytic function g0, since gk(w) = w, ∀k. Therefore it’s derivatives also converge in the
compact subsets of V to finite analytic functions, that is, (gki)′ → g′0. However, since w is
repulsive, |g′(w)| > 1, and since it is a fixed point of g, (gki)′(w) = g′(w)ki , so that:

|(gki)′(w)| = |g′(w)ki | = |g′(w)|ki →∞

hence g′0 cannot be finite, a contradiction. So {gk}k cannot be normal at w. Therefore,
w ∈ J0(g) = J0(f). So all repulsive periodic points belong to J0(f). Since J0(f) is closed, it
follows it’s closure, J(f) is also contained in it, that is: J(f) ⊂ J0(f).

Proposition 2.29. If f is a rational map, w attractive fixed point of f , then

∂A(w) = J0(f).

Proof. Let z ∈ J0(f). Then fk(z) ∈ J0(f), ∀k, so that z 6∈ A(w). Now let U be a neighbour-
hood of z. Then fk(U)∩A(w) 6= ∅, by Proposition 2.35. But then ∃z0 ∈ U ∩A(w) =⇒ z ∈
A(w) =⇒ z ∈ ∂A(w) so J0(f) ⊂ ∂A(w).
Now take z ∈ ∂A(w), and suppose z 6∈ J0(f). Then z has connected neighbourhood V in
which {fk}k converges to an analytic function or ∞. Taking a smaller neighbourhood if
necessary, we can assume the convergence is uniform. But then, ∀z ∈ A(w) ∩ V, fk(z)→ w
(A(w) ∩ V 6= ∅ since z ∈ ∂A(w)). But A(w) ∩ V ⊂ V is open. So we conclude fk → g,
where g is analytic and constant in an open subset, which implies g(z) = w, ∀z ∈ V . But
this implies fk(z)→ w, ∀z ∈ V =⇒ V ⊂ A(w) contradiction with the fact that z ∈ ∂A(w).
So ∂A(w) ⊂ J0(f).

From Proposition 2.29 the author derived two methods for illustrating Julia Sets. If one
considers a rational map with ∞ as an attractive point, one may select a mesh grid in the
complex plane, iterate all points there and color them by how many iterates it takes for their
absolute value to get above a certain threshold, that is, how fast they converge to infinity.
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This will give a rough idea of the basin of attraction of ∞, and therefore the Julia Set will
appear as it’s boundary. We will call this method 1. Finally, given a rational map f , if
one know that ξ1, ..., ξn are attractive periodic points, one may again take a mesh grid of
the complex plane, iterate all points there and color differently depending on which periodic
cycle they converge to. We shall call this method 2. Below are some examples of Julia Sets
computed by these methods, in the software MATLAB. The codes can be found in the end
of the paper.

 

 

(a) Julia Set around 0 for f(z) =
z2 − 0.2 + 075i

0.1z3 + 1

(b) Julia Set around 0 for f(z) =
z5 − 0.0001

z2

 

 

(c) Julia Set around 0 for f(z) = z2 + 0.7i

Figure 4: Method 1
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(a) Julia Set around 0 for f(z) =
2z3 + 1

3z2
(b) Julia Set around 0 for f(z) =

3z4 + 1

4z3 + iz

(c) Julia Set around 0 for f(z) =
3z4 + 1

4z3

Figure 5: Method 2

Figure 5(a) and 5(c) deserve a special mention: the corresponding rational map corre-
sponds to the application of the Newton Method [4, Cap.9] to obtain the cubic and quartic
roots of unity, respectively. Therefore, the super attractive fixed points correspond tho these,
and, in these cases, the Julia Sets, being the boundary of the basins of attraction, are the
set of points for which the method fails.
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Proposition 2.30. If f is a rational map, then J0(f) is invariant by f , that is, f(J0(f)) =
J0(f) = f−1(J0(f)).

Proof. We show that F0(f) is invariant by f (which is equivalent). Let V ⊂ C be open, {fk}k
normal at V . Since f is continuous, f−1(V ) is open. Let (fki)i be sequence in {fk}k. Then
(fki−1)i also is, so there is uniformly converging subsequence (fk

′
i−1)i in compact subsets of

V . Therefore, if D ⊂ f−1(V ) is compact, then (fk
′
i−1)i is uniformly convergent in f(D) ⊂ V

(also compact, since f is continuous). First, assume it converges to a bounded analytic
function. Then the subsequence is Cauchy, so that given ε > 0, there exists I ∈ N such that
∀i, j ≥ I:

|fk′i−1(y)− fk′j−1(y)| < ε, ∀y ∈ f(D)

|fk′i−1(f(x))− fk′j−1(f(x))| < ε, ∀x ∈ D
|fk′i(x)− fk′j(x)| < ε, ∀x ∈ D.

So that (fk
′
i)i is Cauchy, thus converges uniformly, in D and, therefore, is normal in f−1(V ).

If it converges uniformly to f =∞, then, given R > 0, there exists I ∈ N such that ∀i ≥ I:

|fk′i−1(y)| > R, ∀y ∈ f(D)

|fk′i−1(f(x))| > R, ∀x ∈ D
|fk′i(x)| > R, ∀x ∈ D.

So that (fk
′
i)i converges uniformly to ∞, in D and, therefore, is normal in f−1(V ). Since

V was arbitrary, this implies f−1(F0(f)) ⊂ F0(f). Since f is surjective, applying f to both
sides yields:F0(f) ⊂ f(F0(f))
Now taking an open V as above and (fki+1)i sequence,(fk

′
i+1)i converging subsequence. Since

f meromorphic, it is an open map, so that f(V ) is also open. Let D ⊂ f(V ) be compact.
Then f−1(D) ⊂ V is compact since f is proper, hence (fk

′
i+1)i converges uniformly. First,

assume it converges to a bounded analytic function. Then the subsequence is Cauchy, in
f−1(D), that is, given ε > 0, ∃I ∈ N, ∀i, j ≥ I:

|fk′i+1(x)− fk′j+1(x)| < ε, ∀x ∈ f−1(D)

|fk′i(f(x))− fk′j(f(x))| < ε, ∀x ∈ f−1(D)

|fk′i(y)− fk′j(y)| < ε, ∀y ∈ D.
With the last inequality valid since f is surjective. So that (fk

′
i)i is also Cauchy and converges

uniformly in D and, therefore, is normal in f−1(V ). If it converges uniformly to f = ∞,
then, given R > 0, there exists I ∈ N such that ∀i ≥ I:

|fk′i+1(x)| > R, ∀x ∈ f−1(D)

|fk′i(f(x))| > R, ∀x ∈ f−1(D)

|fk′i(y)| > R, ∀y ∈ D.
Again, with the last inequality valid since f is surjective. So that (fk

′
i)i is also Cauchy

and converges uniformly to ∞ in D and, therefore, is normal in f−1(V ). This now implies
f(F0(f)) ⊂ F0(f), so that F0(f) ⊂ f−1(F0(f)). Together with the previous inclusion, we
conclude that f−1(F0(f)) = F0(f) = f(F0(f))
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Example 2.31. In case f(z) = z2, J(f) = S1, it is clear that f(S1) = S1:
Let z ∈ S1, then z = eθi, θ ∈ R. Then, f(z) = e2θi ∈ S1. Also, if y ∈ S1, y = eθi. Then
clearly if z = eθ/2i ∈ S1, then f(z) = y.

Proposition 2.32. J0(fp) = J0(f), ∀p ∈ N.

Proof. We show that F0(fp) = F0(f). Clearly, if every subsequence of {fki} has converging
subsequence {fk′i} in an open subset of the plane, then the same is true for {(fp)ki}, since
{(fp)ki} = {fpki} and {fpk′i} is a subsequence of {fk′i}, so it is converging. Therefore F0(fp) ⊂
F0(f). Now, if D is compact, {gk} uniformly convergent in D, the same holds for {h ◦ gk} for
any continuous h (in fact, any continuous function). So, if {(fp)k} = {fpk} is normal in an
open subset, then {fpk+r}, r = 0, 1, ..., p − 1 also is. But any subsequence of {fk} contains
an infinite number of terms of the form {fpk+r} for at least some r, 0 ≤ r ≤ p− 1, which has
an uniformly convergent subsequence. Therefore {fk} is normal and F0(f) ⊂ F0(fp).

Example 2.33. In case f(z) = z2, J0(f) = S1, by analogous arguments, it is easy to see
that J0(fp) = J0(z2p) = S1

Proposition 2.34. If f is a rational map of degree d ≥ 2, then there are at most 2 points
with finite total orbits and none belong to J0(f).

Proof. Suppose z0 has finite grand orbit O(z0). Then f maps O(z0) bijectively into itself, so
that it must consist of a single periodic orbit, O(z0) = z0, z1, ..., zn−1. Now, since for each zi
it’s only pre-image is zi−1 mod n they all must be a critical points of f by Proposition 1.8. So
the number of finite total orbits must be finite. Since the points are periodic, it also means
they are are super attracting periodic cycle, and so are in F0(f). Suppose now that there are
at least 3 of those points. Then for any open set U such that none of these points belong to
U , {fn} is normal at U , so that f is normal at C and J0(f) is empty, a contradiction with
Proposition 2.28. So there can only be 2 points with finite total orbit.

Proposition 2.35. If f is a rational map, w ∈ J0(f) and U neighborhood of w, then:

W =
∞⋃
k=1

fk(U) = C\V

where V has at most 2 points, not in J0(f), independent on w and U .

Proof. By definition, {fk} is not normal at w,implying it is not normal in U , thus, by Montel
Theorem, ∀z ∈ C, ∃w ∈ U, f(w) = z, with at most 2 exceptions, call then v, w ∈ C. Suppose
f(z) = v, for some z ∈ C. Since f(W ) ⊂ W , this implies z 6∈ W , but then those points
must be periodic and their grand orbit finite, so that they are in the F0(f) by the previous
Proposition. Since v, w depend solely on f , they are independent of w and U as claimed.
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Corollary 2.36. For all z ∈ C, with at most two exceptions, if U ⊂ C is open, U∩J0(f) 6= ∅,
then there exists an infinite sequence of ki ∈ N such that f−ki(z)∩U 6= ∅. Also, if z ∈ J0(f),
then:

J0(f) = O−(z).

Proof. Suppose z ∈ C is not one of the exceptional points with finite total orbit. Then,
∃k1 > 0 such that z ∈ fk1(U) by Proposition 2.35. This implies that f−k1(z) ∩ U 6= ∅.
Take z 6= z1 ∈ f−k1(z) (it exists since otherwise it would imply z is the exceptional point,
contradicting the choice of z). Notice that z1 also is not the exceptional point, since that
would imply z to also be. But then ∃k′2 > 0, z1 ∈ fk

′
2(U), which then implies f−k

′
2(z1) ⊂

f−k
′
2(f−k1(z)) = f−(k1+k′2)(z) = f−k2(z) ∩ U 6= ∅. Proceeding in a similar fashion, we obtain

a sequence (k1, k2, ...), with ki 6= kj, i 6= j, such that f−ki(z) ∩ U 6= ∅.
Now, if z ∈ J0(f), then f−k(z) ⊂ J0(f), by proposition 2.30, therefore O−(z) ⊂ J0(f). On
the other hand, if U is a neighborhood of z ∈ J0(f), then f−k(z) ∩ U 6= ∅, for some k by
the above (z can not be the exceptional point since it is in J0(f)). Thus, O−(z) is dense in
J0(f), that is O−(z) = J0(f)

From Corollary 2.36 yet another method for illustrating the Julia Sets was derived. It
consists in calculating the pre-images from repulsive periodic points. This yields a precise a
list of points in fact in the Julia Set, though it may take many iterates to get a satisfactory
result. We will call this method 3. Below are some examples of Julia Sets computed by this
method, in the software MATLAB. The code can be found in the end of the paper.

(a) Julia Set around 0 for
z2 − 0.2 + 075i

0.1z3 + 1
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(b) Julia Set around 0 for
z5 − 0.0001

z2

(c) Julia Set around 0 for f(z) = z2 + 0.7i

Figure 6: Method 3

Example 2.37. Considering f(z) = z2, take 1 ∈ J0(f) = S1. Then clearly

O−(1) = {2n-roots of unity;n = 1, 2, ...} = S1.

Corollary 2.38. If f is a polynomial, then J0(f) has empty interior. If f is a rational map
and J0(f) has non-empty interior, then J0(f) = C.

Proof. Suppose U is open, U ⊂ J0(f). Then fk(U) ⊂ J0(f), ∀k by Proposition 2.30. If
U 6= ∅, then by Proposition 2.35,

⋃∞
k=1 f

k(U) = C ⊂ J0(f) or
⋃∞
k=1 f

k(U) = C\{0} ⊂ J0(f),
contradicting the fact that it is bounded (Proposition 2.27). So U = ∅, that is int(J0(f)) = ∅.
Now suppose f is a rational map and int(J0(f)) 6= ∅. Let ∅ 6= U ⊂ J0(f) be open. Then by
Proposition 2.35, W = C, where W =

⋃∞
k=1 f

k(U). But by Proposition 2.30 W ⊂ J0(f) ∴
W ⊂ J0(f)

Proposition 2.39. If f is a rational map, then J0(f) is a perfect set (that is, closed and
with not isolated points). Therefore it is uncountable.

Proof. Let v ∈ J0(f) and U neighborhood of v. We will show that U ∩ J0(f)\{v} 6= ∅., that
is, it is not an isolated point (since U was arbitrary). Consider the three possible cases:

1. If v is not a fixed nor periodic point, by Corollary 2.36, U ∩O−(v) 6= ∅. But v 6∈ O−(v),
since it is not periodic, so that U ∩ O−(v)\{v} 6= ∅. Since v ∈ J0(f), O−(v) ⊂ J0(f)
by Proposition 2.30, so that the result follows.
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2. If v is a fixed point, f(v) = v. Suppose f(z) = v has no other solutions, then, just as in
the proof of Proposition 2.35, v 6∈ J0(f), contradiction. So there exists w 6= v, f(w) = v.
Note that this implies w ∈ J0(f), by Proposition 2.30. By Corollary 2.36 applied to U ,
∃k ≥ 1, u ∈ C such that u ∈ f−k(w) ∩ U 6= ∅. This also implies u ∈ J0(f), and u 6= v,
since fk(u) = w 6= v = fk(v), so the result follows.

3. If v is a periodic point of period greater than 1, that is fp(v) = v, p > 1. By Proposition
2.32, J0(f) = J0(fp), so we may apply (2) to fp.

In any case, J0(f) has no isolated points. Since it is closed, it is perfect.

Theorem 2.40. If f is a rational map, then J(f) = J0(f).

Proof. We already have that J(f) ⊂ J0(f) by 2.28. Now let:

K := {w ∈ J0(f); , f(w) = w ∧ f ′(z0) = 0}.

Notice that K is a finite proper subset of J0(f), thus discrete. Suppose w ∈ J0(f)\K. Then
∃V neighbourhood of w such that ∃g1, g2 : V → C (g1, g2 two distinct branches of the local
inverse of f) by the inverse function theorem, so that g1(z0) = z1, g2(z0) = z2. Define the
family {hk}k in V :

hk(z) =
(fk(z)− g1(z))(z − g2(z))

(fk(z)− g2(z))(z − g1(z))
.

Let U be a neighbourhood of w, U ⊂ V . Since w ∈ J0(f) it follows that {fk}k and therefore
{hk}k are not normal at U . By Montel’s Theorem, hk(z) assumes at least 1 of the values
0, 1,∞ for some k ≥ 1 and some z ∈ U . But, if:

0 = hk(z̄) =⇒ fk(z̄) = g1(z̄) or g2(z̄) = z

so that fk+1(z̄) = z̄ or f(z̄) = z̄. And if:

∞ = hk(z̄) =⇒ fk(z̄) = g2(z̄) or g1(z̄) = z

so that fk+1(z̄) = z̄ or f(z̄) = z̄. And if:

1 = hk(z̄) =⇒ fk(z̄)− g1(z̄)

fk(z̄)− g2(z̄)
=
z̄ − g1(z̄)

z̄ − g2(z̄)

so that fk+(z̄) = z̄.
Either way, U contains a periodic point. Since the number of non-repelling periodic points is
finite, by Corollary 2.17, taking a smaller neighbourhood if necessary, we can guarantee it is
repelling, so that w ∈ J(f). Therefore J0(f)\K ⊂ J(f). Since J0(F ) has no isolated points,
J0(f)\K = J0(f) ⊂ J(f).

We conclude listing the properties of Julia sets for rational map:
If f is a rational map, then it’s Julia set is either the entire extended complex plane, or an
uncountable closed set with empty interior and no isolated points. It is also the boundary of
any basin of attraction of attractive periodic points.
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MATLAB code used to generate Julia Sets

Code 1: Auxiliary function

1 function M= cmplxgrid(n)
2 M = zeros(n+1);
3 %Creates a matrix whose entries form a square grid centered at 0, with side
4 %length 3
5 for x = 0:n
6 for y = 0:n
7 M(x+1,y+1) = ((y-(n/2))/(n/3))+(((n/2)-x)*1i/(n/3));
8 end
9 end

10 end

Code 2: Method 1

1 function [poli,M]=julia5(n,polin,polid)
2 %Finds the fixed points of the rational function, which are assumed to be
3 %repelling
4 poli=[polin;polid];
5 poli2 = [0 polin]-[polid, 0];
6 r=roots(poli2);
7 %Calculates the pre-images of the fixed points, one at a time, choosing
8 %randomly one of the pre-images and iterating
9 for w=1:length(r)

10 M = zeros(n,2);
11 z0=double(r(w));
12 z0x = real(z0);
13 z0y = imag(z0);
14 M(1,1) = z0x;
15 M(1,2)= z0y;
16 for j=2:n
17 poli0= polin-z0*polid;
18 r2 = roots(poli0);
19 k=randperm(length(r2));
20 k=k(1);
21 z0 = r2(k);
22 z0x = real(z0);
23 z0y = imag(z0);
24 M(j,1) = z0x;
25 M(j,2) = z0y;
26 end
27 %Plots the pre-images in the complex plane
28 hold
29 plot(M(:,1),M(:,2),'k.','MarkerSize',2);
30 drawnow;
31 hold
32 axis equal
33 axis off
34 end
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Code 3: Method 2

1 function [polin,polid,M] = julia6(n,polin,polid)
2 M = cmplxgrid(n);
3 for e = 0:50
4 M=polyval(polin,M)./polyval(polid,M);
5 end
6 M= (exp(-abs(M)));
7 imagesc(M)
8 end

Code 4: Method 3

1 function M = juliaroot2(n,polin,polid)
2 M=cmplxgrid(n);
3 %Finds the fixed points of the rational function, which are assumed to be
4 %attractive
5 poli2 = [0 polin]-[polid, 0];
6 r=roots(poli2);
7 len = length(r);
8 while polid(1)==0
9 polid(1) = [];

10 end
11 %Iterates the function
12 for e = 0:50
13 M=polyval(polin,M)./polyval(polid,M);
14 end
15 %Colors the basins of attraction
16 for x=1:n+1
17 for y=1:n+1
18 l = M(x,y)*ones(len,1);
19 diff = r-l;
20 M(x,y)=len+1;
21 for m=1:len
22 if abs(diff(m))<10ˆ-2
23 M(x,y)=m;
24 break
25 end
26 end
27 end
28 end
29 imagesc(M)
30 end

34



References

[1] Bak, J., Newman, D.J.: Complex Analysis 2nd. Edition. Springer, New York, NY, USA
(1997)

[2] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John
Wiley & Sons, England (1990)

[3] Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific Publish-
ing Co. Pte. Ltd., Singapore (2009)

[4] Karas, E.W.: Iteração de transformações racionais aplicada ao método de Newton no
plano complexo. Master’s thesis, Universidade de São Paulo, Brazil (1994)

[5] Milnor, J.: Dynamics in one complex variable 3rd. Edition. Princeton University Press,
Princeton, New Jersey, United Kingdom (2006)

[6] Royden, H.L., Fitzpatrick, P.: Real Analysis 4th. Edition. China Machine Press, Taiwan
(2010)

[7] Serra, C.P., Karas, E.W.: Fractais gerados por Sistemas Dinâmicos Complexos. Editora
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