CMM 031 Álgebra Linear

Professor: Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 6

Obs: A menos de menção contrária, todos os espaços vetoriais são de dimensão finita.

Exercício 1 Verifique se cada uma das funções abaixo é um produto interno no espaço V indicado.

- (a) $V = \mathbb{R}^2$. $f((x_1, y_1), (x_2, y_2)) = 2x_1x_2 + 4y_1y_2$.
- (b) $V = \mathbb{M}_2(\mathbb{R})$. $f(A, B) = tr(B^t A)$.
- (c) $V = \mathscr{P}_3$. $f(p,q) = a_0b_0 + a_1b_1 + a_2b_2 + a_3b_3$, em que $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ e $q(x) = b_0 + b_1x + b_2x^2 + b_3x^3$.

Exercício 2 Sejam $a_1, a_2, a_3 \in \mathbb{R}$ números reais positivos. Mostre que

$$(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \right) \ge 9$$

Exercício 3 Para cada um dos itens abaixo determinar

$$\langle u, v \rangle$$
, $||u||$, $||v||$ e $\angle u, v$

- (a) $V = \mathbb{R}^3$, com o produto usual. u = (1, 2, 1) e v = (3, 4, 2).
- (b) $V = \mathbb{M}_2(\mathbb{R}), com \langle A, B \rangle = tr(B^t A).$

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 12 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 8 & -1 \\ 4 & 3 \end{bmatrix}$$

(c)
$$V = \mathscr{P}_2$$
, $com \langle f, g \rangle = \int_0^1 p(x)q(x)dx$. $p(x) = 1 + x \ e \ q(x) = x3/4 + 3x^2$.

Exercício 4 Verifique se os conjuntos abaixo são ortonormais.

(a) $V = \mathbb{R}^2$, com o produto usual.

$$S = \{(1,0), (3,5)\}$$

(b) $V = \mathbb{M}_2(\mathbb{R}), com \langle A, B \rangle = tr(B^t A).$

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

Exercício 5 Considere $V = \mathscr{C}([0, 2\pi]; \mathbb{R})$ munido do produto interno

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx.$$

(a) Mostre que o conjunto

$$S = \{1, \cos(nx), \sin(nx), n \in \mathbb{N}\}\$$

é ortogonal.

- (b) A partir de S encontre um conjunto ortonormal em V.
- (c) Conclua que V tem dimensão infinita.

Exercício 6 Determine U^{\perp} , sendo $U = \{(x, y, z) \in \mathbb{R}^3; x - y - z = 0\}$.

Exercício 7 Obtenha uma base ortonormal de $U = \{(x, y, z) \in \mathbb{R}^3; x - 2y = 0\}$.

Exercício 8 Obtenha uma base ortonormal de \mathscr{P}_2 , com $\langle f, g \rangle = \int_0^1 p(x)q(x)dx$.

Exercício 9 Sejam \mathscr{P}_3 , com $\langle f,g\rangle = \int_0^1 p(x)q(x)dx$, e

$$p(x) = 1 + x + x^2$$
 e $W = ger(\{q(x) = x^3 - x\}).$

Obtenha a projeção de p sobre W.

Exercício 10 Obter a projeção ortogonal de u = (2,3,1) sobre

$$U = ger\left\{ \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \right\}$$

Exercício 11 Considere \mathbb{R}^3 com o produto interno usual, v = (3,0,2) e W o espaço gerado por $\{(1,0,2),(1,1,1)\}$. Obtenha a projeção de v sobre W.

Exercício 12 Considere $V = \mathscr{C}([-1,1];\mathbb{R})$ munido do produto interno

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

Obtenha W^{\perp} , em que W denota o espaço das funções ímpares em V.

Exercício 13 Considere $V = \mathscr{C}([0, 2\pi]; \mathbb{R})$ munido do produto interno

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx.$$

Determine a função de $W = ger(\{1, sen(t), cos(t)\})$ que melhor se aproxima de $f : [0, 2\pi] \to \mathbb{R}$ dada por f(t) = t - 1.

Exercício 14 Determine a reta de \mathbb{R}^2 que melhor se ajusta so pontos (-1,-10), (0,-6), (1,-4) e (2,-2).

Exercício 15 Determine a melhor solução real aproximada do sistema

$$\begin{cases} x - 2y = 1 \\ x - y = 0 \\ 2x + 2y = 2. \end{cases}$$

Exercício 16 Seja $\{v_1, v_2, \ldots, v_m\}$ um conjunto ortogonal de vetores não nulos num espaço com produto interno V.

(a) Mostre que

$$\sum_{k=1}^{m} \frac{|\langle v, v_k|^2}{\|v_k\|^2} \le \|v\|^2, \ \forall v \in V.$$

(b) Mostre que vale a igualdade acima se, e somente se,

$$v = \sum_{k=1}^{m} \frac{|\langle v, v_k |^2}{\|v_k\|^2}.$$

Exercício 17 Uma isometria entre espaços com produto interno $(V, \langle \cdot, \cdot \rangle_V)$ e $(U, \langle \cdot, \cdot \rangle_U)$ é uma transformação linear $T: U \to V$ que satisfaz

$$\langle T(x), T(y) \rangle_V = \langle x, y \rangle_U, \ \forall x, y \in U.$$

- (a) Mostre que toda rotação $T:\mathbb{R}^2 \to \mathbb{R}^2$ é uma isometria.
- (b) Mostre que são equivalentes
 - (i) T é uma isometria.
 - (ii) $||T(u)||_V = ||u||_U$, para todo $u \in U$.
 - (iii) $||T(x) T(y)||_V = ||x y||_U$, para todo $x, y \in V$.
 - (iv) Se $\{u_1,\ldots,u_n\}$ é ortonormal em U, então $\{T(u_1),\ldots,T(u_n)\}$ é ortonormal em V.
- (c) Toda isometria é injetiva.

Exercício 18 Determine a quádrica

$$5x^2 + 5y^2 + 8z^2 + 8xy - 4xz + 4yz - 2x + 2y + 8z = -1$$

Exercício 19 Determine a quádrica

$$7x^2 + 17y^2 + 7z^2 - 4xy + 6xz - 4yz - 6x - 12y - 6z = -1$$